Value Grouping for Binary Decision Trees
Neil C. Berkman

Computer Science Department
Lederle Graduate Research Center
University of Massachusetts

Ambherst, MA 01003-4601

CMPSCI Technical Report 95-19
April 8, 1995

Contents

1 Introduction

2 Decision Tree Induction

3 Rationale for Value Grouping

4 Tree Replication Example
4.1 Method

4.2 Effects

On Size & Accuracy

5 Approaches to Value Grouping

6 Empirical Evaluation
6.1 Methods Tested L.
6.2 Questions
6.3 Experimental Method 0.
6.4 Learning Tasks

6.5 Results
6.5.1

6.5.2

6.5.3

6.5.4

7 Conclusion

How do the trees produced by the three methods com-
pare with respect to classification accuracy?
How do the trees produced by the three methods com-
pare with respect to size?
How often is the test with maximal-gain ratio a group
of more than one value?
How do the tests selected by the sequential forward se-
lection heuristic compare to those selected by exhaus-
tive search?o o oL

S

10
11
11
13
13
14

14

16

17

Value Grouping for Binary Decision Trees

Neil C. Berkman *
berkman@cs.umass.edu
University of Massachusetts at Amherst

Computer Science Department
Ambherst, MA 01003-4601

Abstract

The tests associated with the internal nodes of a binary decision tree
can take on a variety of forms; for instance, they can test whether a
given attribute has a given value, or more generally, whether it has
a value in a given set. This report examines whether allowing the
latter form of test (which we call a value group) provides significant
advantages over allowing only single-valued tests. The results of an
empirical study comparing performance of these two approaches on a
variety of learning tasks are reported. For the data sets studied, value
grouping is shown to have no strong effect on classification accuracy,
although it does result in smaller trees.

1 Introduction

An issue that has not been explored very deeply in the decision tree induction
literature is the effect of allowing a group of values to be used as a test rather
than a single value. Extending the range of tests in this way has potential as
a simple form of constructive induction and may aid in solving the replication
problem. Although single-value tests are the norm, value grouping is available
as an option in some of best known decision tree induction systems (Quinlan,
1993; Breiman, Friedman, Olshen & Stone, 1984). This project is an attempt
to assess the effects of value grouping through an empirical study. The focus
is on value grouping methods designed for use with algorithms producing
binary trees.

*This material is based upon work supported by the National Science Foundation under
Grant No. IRI-9222766 and by a grant from the Digital Equipment Corporation.

Value Grouping for Binary Decision Trees 2

2 Decision Tree Induction

The objective of decision tree induction is to produce a representation of
a concept to be used to classify objects. This is accomplished by general-
izing from a set of training instances, where each instance is a class label
paired with a vector of values for a predefined set of attributes. Decision
tree induction typically proceeds by partitioning a set of training examples
according to some test. This process is performed recursively until all exam-
ples in a partition are of the same class. The result is a tree in which each
internal node represents a test, each branch represents a value of a test, and
each leaf corresponds to a set of examples of the same class, or for which no
more tests are informative. Each test generally corresponds to an attribute.
For a discrete attribute, a branch may represent either a single value or a
group of values. Continuous attributes are handled differently; one common
method is to a construct binary test using a cutpoint, with all values below
the cutpoint sent to one branch and all values above it sent to another. An-
other method is to discretize continuous attributes and treat the intervals as
discrete attributes.

Some algorithms produce only binary trees. A test may take one of a vari-
ety of forms, such as “attribute = value,” “attribute € {valuey, ..., values},”
or “attribute < cutpoint,” where the two branches associated with the test
node represent “true” and “false.” As there is strong evidence that algo-
rithms producing trees with only binary tests tend to perform better than
those allowing multi-valued tests (Fayyad, 1991), this paper restricts its at-
tention to binary trees.

3 Rationale for Value Grouping

Intuitively, grouping is desirable because sometimes values of an attribute
naturally “belong together.” For example, for an attribute taking a letter
as a value, in some situations it might be advantageous to treat the set of
vowels as a group. As such, one may think of value grouping as a limited
form of constructive induction, in which primitive features (such as letters)
are automatically combined in some way to produce higher-level features
(such as “vowel”). A potential advantage of this ability to construct high-
level features would be to reduce the need for a human domain expert to
construct such features before presenting data to a learning algorithm.

Value Grouping for Binary Decision Trees 3

Value grouping may also help alleviate the replication problem (Pagallo,
1989). This problem arises when the tests available to a decision tree al-
gorithm are insufficient to allow a concept to be represented without some
duplicated subtrees. The problem is not just that the tree produced will be
larger than necessary; replication causes the training set to become overly
partitioned. As a result, tests are selected on the basis of less data, increasing
the probability that tests of lower quality will be selected. Thus, replication
may cause classification accuracy to suffer.

As an illustration of this, consider a set of instances of the form (A, B, class),
where A € {al,a2,a3,a4,ab,a6}, B € {b1,b2,b3,b4,b5,b6}, and class €

{+, —}. The class label of an instance is determined by the expression:

A € {al,a2,a3,a4} N B € {b1, b2} (1)

An instance satisfying this expression is labeled with class “+,” otherwise it
is labeled “—.” If only single-valued tests are permitted, the smallest tree
that can be generated for this concept will contain thirteen nodes. One such
minimum-sized tree is shown in Figure 1, using the convention that the left
branch is the “true” branch of a node and the right branch is the “false”
branch. Note that this tree contains a replicated subtree. If value grouping
is permitted, the concept can be represented by a five-node tree, as shown in
see Figure 2.

4 Tree Replication Example

As a concrete illustration of the effects of the replication problem I present
the following comparison of trees produced with and without value grouping
for the concept described above.

4.1 Method

Training sets of size ten to 150 (and all multiples of ten in between) were
used, and ten sets of each size were created. Each instance was generated by
randomly selecting values for the attributes A and B according to a uniform
distribution and labeling the resulting instance according to the expression
given in (1). The ITI decision tree induction system (Utgoff, 1994) was used
to create trees for each of the training sets. Two versions were run; the single

Value Grouping for Binary Decision Trees 4

O OO (=

Figure 1: Minimum-sized tree (no value grouping)

Value Grouping for Binary Decision Trees 5

(A in {a1,a2,a3,a4})
(B in {b1,b2})

Figure 2: Minimum-sized tree (value grouping permitted)

value version considers only tests of single values whereas the value group-
ing version considers as tests all subsets of values for each attribute. Each
selects a test with maximum gain ratio (Quinlan, 1993), a commonly used
information-theoretic metric. Decision trees were created for each training
set using both methods. Classification accuracy was measured on a test set
containing the 36 possible instances, each represented once. Given that every
possible instance was tested, a tree scoring 100% accuracy can be said to be
a “correct” tree.

4.2 Effects On Size & Accuracy

Figure 3 shows the average size of trees created by each method for the
various sizes of training set. Note that, although trees of at least thirteen
nodes are needed to represent the concept correctly using single-valued tests,
the average size of trees built by the single value version is below thirteen
for all training set sizes below 110 instances. The value grouping method
constructs trees large enough to represent the concept (five nodes or more)
beginning with training sets of size thirty. Figure 4 shows that the value
grouping method does indeed find more accurate trees for training sets of all
sizes up to 150, at which point both methods produced correct trees for all
ten data sets.

These results indicate that there are situations in which value grouping

Value Grouping for Binary Decision Trees

% 14 a Value Groups
() .
&
g <& Single Value Tests 270l L& ©-0
< N & =7 N
12 @’
£ o
c .
e »
3 10 ’
= v~
© /I
N 8 /
% v
S /
5 S,
>
< & bbb —h—h—A—A
y -
2 —
0 | | | | |
0 30 60 90 120 150

Size of Training Set (num. instances)

Figure 3: Replication experiment - size results

Value Grouping for Binary Decision Trees

= 100.00

Average Accuracy (p

95.00

90.00

85.00

80.00

75.00

70.00
0

P A Value Groups
/ & Single Value Tests

30 60 90 120 150
Size of Training Set (hum. instances)

Figure 4: Replication experiment - accuracy results

Value Grouping for Binary Decision Trees 8

can improve classification accuracy by solving the tree replication problem.
One aim of this project is to determine whether value grouping will have this
effect for “real-world” data.

5 Approaches to Value Grouping

Given that value grouping has some potential benefits, let us consider how
it can be accomplished. One possibility would be to select a test in the same
way in which single-value tests are typically selected - by picking the test
with highest gain ratio over all possible tests. This was the method used
in the preceding section. The problem with this approach is that there are
2V-1 _ 1 possible value groups for an attribute of N values, and thus for
large N considering all groups would be computationally infeasible.

One alternative would be to use a polynomial-time heuristic to find a
candidate test for each attribute and then to select the candidate with highest
gain ratio to be used in the tree. Given that the tests produced by the
heuristic will ultimately be evaluated by gain ratio, the goal of the heuristic
should be to produce a test with high gain ratio.

This paper will evaluate a heuristic similar to that used in the ASSISTANT-
86 system (Cestnik, Kononenko & Bratko, 1987). It is based upon the idea
of sequential forward selection, and it selects a test for a given attribute as
follows. First, all groups containing one value are considered. Of these, the
test with highest gain ratio becomes the “current best.” Next, all tests that
can be created by adding a second value to the group are considered. If
the maximal gain ratio over these tests is greater than that of the current
best, the test achieving this becomes the new current best. The process is
repeated until no improvement is made over the current best, at which point
the current best is selected as the test for the attribute.

This heuristic will always pick a test with gain ratio at least as high as
the best single-valued test. This does not, however, guarantee that trees
produced using the heuristic will have greater classification accuracy than
those with only single-valued tests. Gain ratio, like all test-selection metrics,
is a heuristic, and tests with high gain ratio are not guaranteed to yield more
accurate trees than those with lower gain ratio.

Value Grouping for Binary Decision Trees 9

6 Empirical Evaluation

In order to assess the effects of value grouping, I undertook an empirical
comparison of three methods of test selection - two value grouping and one
non-value grouping.

6.1 Methods Tested

The three methods tested were:
e Exhaustive (EXH)

This method considers all possible value groups for each attribute and
finds a group with maximal gain ratio.

e Sequential Forward Selection (SFS)

This is the heuristic described in the preceding section.

e Single Value (SNG)

This method considers the N possible single-valued tests for each at-
tribute and finds a test with maximal gain ratio from among these.

The implementations of these differ only in the method used to select a
test for an attribute. Other features shared by all three implementations are
as follows:

o All were implemented using the ITI incremental decision tree induction
system, which produces binary trees. Batch mode was used for all
experiments.

o Numeric attributes were discretized using the multiple interval dis-
cretization method (Fayyad, 1991). The resulting intervals were treated
in the same manner as values of a discrete attribute.

e One test was selected for each attribute (using either the EXH, SNG,
or SFS method). Of these, the test with maximum gain ratio among
those with at least average gain was selected to be used in the tree.
When more than one test had the maximum gain ratio an arbitrary
test was chosen. The tie-breaking method was the same for all three
methods.

Value Grouping for Binary Decision Trees 10

6.2 Questions

This experiment attempts to answer the following questions:

e How do the trees produced by the three methods compare with respect
to classification accuracy?

This question is asked because classification accuracy is the most direct
measure of the quality of a decision tree.

e How do the trees produced by the three methods compare with respect
to size?

If value grouping produces larger trees, it is not solving the tree repli-
cation problem.

o How often is the test with maximal-gain ratio a group of more than
one value?

Another way to phrase this question is “how often is the test selected

by EXH different from that selected by SNG?”

If the answer to this question is “almost always,” it may not be worth
the extra computational expense involved in considering value groups.

e How do the tests selected by the sequential forward selection heuristic
compare to those selected by exhaustive search?

This asks how well the heuristic approximates exhaustive search.

Note that the first two questions ask about the trees produced by the
various methods while the last two concern the tests selected. It is certainly
important to look at the quality of the trees produced; however, classification
accuracy is also affected by the test selection metric used (in this case, gain
ratio). To eliminate the variance due to the heuristic nature of gain ratio, it
will also be informative to examine directly the gain ratios of tests selected
by the various methods. Specifically, we can perform exhaustive search to
obtain a complete ordering of all possible tests with respect to gain ratio.
We can then calculate the rankings of the tests found by SFS and SNG.

Value Grouping for Binary Decision Trees 11

6.3 Experimental Method

For this experiment, performance of the various methods was measured over
a number of different learning tasks. The process by which these tasks were
chosen is described in the next section. Ten four-fold cross-validation runs
were performed for each task using each method. For each cross-validation
run, the data set was split into four equal-sized parts. Each of these parts
was used as a test set for one run, with the remainder of the data used as
a training set. Appendix A outlines the algorithm used to build and gather
statistics on a decision tree.

One set of statistics was computed to answer the first two questions listed
above, which concern the trees produced by the three methods. These statis-
tics are the average size of the tree produced and the average classification
accuracy on the test set, recorded for each run using each method and av-
eraged over the four folds. The algorithm for computing these is given in
Appendix A, Procedure GET_TREE_STATISTICS.

Another set of statistics was computed to answer the last two questions,
which concern the tests chosen by the three methods. These were gathered
only on the runs using the EXH method, since computing them required
ranking all possible tests for each attribute by gain ratio and determining
where the tests found by the SNG and SFS methods ranked. It is important
to note that for attributes of three or fewer values, the SNG method will
consider all possible tests and thus will produce the same test as the EXH
method. The SFS method will consider all possible tests for attributes of four
or fewer values. Statistics were gathered to compare the tests found by SFS
and SNG in only those situations in which the attribute under consideration
had a sufficient number of values so that the behavior of these methods
differed from that of EXH. The method for computing these statistics is
described in Appendix A, Procedure GET_TREE_STATISTICS.

6.4 Learning Tasks

Data sets representing eleven different learning tasks were used in this com-
parison. Some of these have only discrete attributes, some only continuous,
and some have both. No data set having only discrete attributes with fewer
than four values was used, since all three methods will consider all possi-
ble tests for an attribute with three or fewer values, and will thus produce
identical trees. Similarly, all three methods will produce identical trees for

Value Grouping for Binary Decision Trees 12

Discrete Continuous

Attributes Attributes
Data Set Instances | Number | Max Vals | Number | Max Intvls
canasta 2299 14 1210 1 19
crx 690 6 14 9 3
glass-no-id 214 0 N/A 8 6
nettalk 5438 7 27 0 N/A
landsat 1000 0 N/A 7 6
plural 1937 15 27 0 N/A
promoter 106 57 4 0 N/A
road 2056 0 N/A 6 7
soybean 683 35 7 0 N/A
splice 3190 60 6 0 N/A
vowel 528 0 N/A 10 8

Table 1: Data Set Characteristics

continuous attributes with three or fewer values. Since the number of inter-
vals produced for a continuous attribute is not determined until run time,
a preliminary investigation was undertaken to find data sets for which the
discretization procedure would produce four or more intervals for at least
some attribute.

Table 1 summarizes some characteristics of the data sets used. The col-
umn labeled “Max Vals” gives the maximum number of values over the dis-
crete attributes. “Max Intvls” gives the maximum number of intervals pro-
duced by the intervalization procedure. Since this occurs at run time, the
figures given are based on runs using all of the data set for training and SNG
as the test selection method. Note that the data sets used all have either a
“Max Vals” or a “Max Intvls” of four or greater.

Nine of the learning tasks used were drawn from the repository kept at
the University of California at Irvine. Only five tasks in the entire repository
contain at least one discrete attribute with four or more values, and all of
these were used in this investigation. Fourteen data sets with only continuous
attributes were selected aribtrarily from the repository, and the four used in
the experiment were the only ones of these that met the criterion listed above.

Value Grouping for Binary Decision Trees 13

Accuracy (pct.)
Data Set EXH | SFS | SNG
canasta N/A | 81.33 | 86.14
crx 80.46 | 80.49 | 81.17
glass-no-id | 64.58 | 64.68 | 65.79
nettalk N/A | 82.29 | 82.67
landsat 80.50 | 80.50 | 80.50
plural N/A | 95.20 | 95.11
promoter | 69.54 | 69.54 | 66.57
road 76.82 | 76.82 | 77.00
soybean 86.29 | 86.33 | 86.50
splice 90.59 | 90.59 | 89.84
vowel 72.12 | 72.31 | 72.84

Table 2: Accuracy Results

6.5 Results

The questions posed in Section 6.2 can now be answered:

6.5.1 How do the trees produced by the three methods compare
with respect to classification accuracy?

Table 2 shows the average percentage of the training set correctly classified
for each method on the data sets used. Note that the exhaustive method
was not run for the canasta, nettalk and plural data sets. This is because
these data sets contain attributes with large numbers of values, making the
exhaustive method computationally infeasible.

Paired t-tests were run on each pair of methods to determine statistical
significance of these results. In no case were the differences between the
EXH and SFS methods significant. For the splice data set, the differences in
accuracy between SNG and both EXH and SFS were significant at the .05
level. For the nettalk and canasta data, the difference between SNG and SF'S
was significant at the .05 level. In only one of these cases (splice) were the
trees built with the value grouping methods more accurate on average than
those built with the single value method.

Value Grouping for Binary Decision Trees 14

Size (num. nodes)
Data Set EXH SFS SNG
canasta N/A | 292.65 | 495.40
crx 118.80 | 119.10 | 127.90
glass-no-id | 58.60 | 58.45 59.90
nettalk N/A | 997.75 | 1436.70
landsat 193.90 | 193.90 | 192.35
plural N/A | 127.25 | 172.55
promoter 23.55 | 23.55 27.15
road 406.10 | 406.15 | 411.25
soybean 140.15 | 140.15 | 151.40
splice 279.70 | 279.70 | 322.55
vowel 124.30 | 124.10 | 127.65

Table 3: Size Results

6.5.2 How do the trees produced by the three methods compare
with respect to size?

Table 3 shows average tree size in number of leaves. As with classification
accuracy, in no case were the differences in size significant between EXH and
SFS. For the following data sets, the differences in tree size between SNG
and both EXH and SFS were significant at the .05 level: crx, glass-no-id,
promoter, road, soybean, splice, vowel. For canasta, nettalk, and plural, the
differences between SNG and SFS were significant at the .05 level. In all of
these cases, the trees built with value grouping were smaller on average than
those built with the single value method.

One conclusion that can be drawn from these results is that value group-
ing did cause significantly smaller trees to be built. Smaller trees are gen-
erally considered to be more understandable, so by this criterion, allowing
value groups provides an advantage over single-valued tests.

6.5.3 How often is the test with maximal-gain ratio a group of
more than one value?

Table 4 summarizes the average rankings by gain ratio of tests found by SNG.
As described in Section 6.3, these statistics were gathered by comparing tests

Value Grouping for Binary Decision Trees 15

Percent Percent Percentile

Total | Matches | Tests w/ Matches Rank of

Data Set Tests | (Total) | > 3 Vals | (> 3 Vals) | Non-Matches
crx 735.00 93.68 69.03 32.67 89.17
glass-no-id | 249.37 98.37 5.68 28.19 85.41
landsat 652.08 98.78 9.93 19.65 83.61
promoter 630.33 71.63 477.98 62.59 85.71
road 1412.25 98.76 21.50 18.37 84.77
soybean 1090.00 93.47 149.73 52.48 84.35
splice 7789.37 69.39 | 5734.67 58.43 85.77
vowel 616.47 94.85 46.42 31.61 80.37

| plural | 632.00 | 61.23[431.00 | 43.16 | 91.56 |

Table 4: Gain Ratio Ranking Results: SNG

chosen by SNG to those chosen by EXH. Given the large numbers of values
per attribute for the canasta and nettalk data, EXH could not be run for
these. It is unfortunate that runs could not be performed for data sets with
many values per attribute, since it seems likely that the differences between
the non-exhaustive and exhaustive methods would be greater for these. To
provide some clue as to whether this is the case, one run (that is, one fold of
one cross-validation) was performed for the plural data set *. For all other
data sets, the figures presented are averages over all runs using EXH.

Table 4 gives the statistics for the SNG method computed in Procedure
GET_TREE_STATISTICS (see Appendix A). Briefly, a “match” on a given
attribute indicates that the test chosen by the SNG method matched that
found by EXH; in other words, that value grouping was unnecessary to find
the test with maximal gain ratio for that attribute. Separate statistics were
computed for those situations in which the attribute under consideration had
more than three values, as SNG will perform the same as EXH for attributes
of three or fewer values. The “Percentile Rank of Non-Matches” indicates
the average the percentile ranking of the test chosen by SNG for those cases
when the chosen test has less than maximal gain ratio. This is intended to
indicate the quality of tests selected when SNG fails to select the “best” test.

1This one run took over two days to complete on a DEC Alpha

Value Grouping for Binary Decision Trees 16

Percent Percent Percentile

Total | Matches | Tests w/ Matches Rank of

Data Set Tests | (Total) | >4 Vals | (> 4 Vals) | Non-Matches
crx 735.00 98.93 53.67 85.28 97.16
glass-no-id | 249.37 99.97 1.58 95.24 94.55
landsat 652.08 99.99 5.65 99.12 93.44
promoter 630.33 100.00 0.00 N/A N/A
road 1412.25 100.00 5.47 99.09 90.00
soybean 1090.00 99.88 26.20 94.94 95.06
splice 7789.37 99.97 280.37 99.10 92.44
vowel 616.47 99.87 16.67 95.20 94.18

| plural | 632.00 | 90.82 [370.00 | 84.32 | 98.47 |

Table 5: Gain Ratio Ranking Results: SFS

It is apparent from the low figures in the “Percent Matches > 3 Vals)”
column that the test with maximal gain ratio is often a group of more than
one value. This indicates that if the goal is to find the test with highest gain
ratio, it is important to allow value groups.

6.5.4 How do the tests selected by the sequential forward selection
heuristic compare to those selected by exhaustive search?

Table 5 summarizes the average rankings by gain ratio of tests found by SFS.
The columns of this table have the same meanings as their counterparts in
Table 4. The only difference is that tests with more than four, rather than
three, values are considered separately, since the SFS heuristic will consider
all possible groups for attributes with four or fewer values.

These results seem to indicate that for these data sets, the heuristic pro-
vides a good approximation to exhaustive search. For all but two data sets,
95% or more of the tests found by SFS had the highest possible gain ratio.
Also, for all data sets, tests found by SFS with less than maximal gain ratio
averaged in the 90th percentile or higher. This indicates that when SFS does
not find the highest gain ratio test, it tends to find tests with gain ratios
that rank highly compared to all possible tests. By this measure, SFS can
be considered a good approximation to exhaustive search.

Value Grouping for Binary Decision Trees 17

7 Conclusions

Given the evidence that accuracy gains should result from a reduction in
tree replication, the fact that value grouping had no strong effect on ac-
curacy in these experiments indicates that it did not solve the replication
problem. However, it is possible that replication is simply not a problem for
any of the data sets tested. The fact that value grouping produced smaller
trees with no significant change in accuracy may be sufficient justification
for its use, particularly in situations where understandability is important.
Furthermore, it is clear that a computationally feasible heuristic exists that
closely approximates the performance of exhaustive search in terms of the
gain ratio of tests chosen. A surprising aspect of these results is that value
grouping frequently produced tests with higher gain ratio than any single-
valued test, but this did not lead lead to significantly more accurate trees.
Further research, perhaps using attribute selection metrics other than gain
ratio, would be helpful in resolving this puzzle.

Appendix A: The Decision Tree Induction Al-
gorithm

Procedure BUILD TREE(TRAINING SET,TEST SET,ATTRIBUTES)

1. (EXH method only) Initialize TOTAL_TESTS, OVER_3_VALS, OVER 4_VALS,
SFS_MATCHES_TOTAL, SNG_MATCHES TOTAL, SNG.MATCHES _OVER_3_VALS,
SFS_MATCHES_OVER 4_VALS, SNG_.TOTAL_PCTL, and SFS_ TOTAL_PCTL
to 0.

2. Call BUILD NODE(INSTANCES,ATTRIBUTES) and set TREE to

its return value.

3. Call COMPUTE_TREE_STATS(TREE)
4. (EXH method only) Call COMPUTE_TEST_STATS(TREE)

5. Return TREE
Procedure BUILD NODE(INSTANCES,ATTRIBUTES)

1. If all instances are of the same class, return leaf node labeled with that
class.

Value Grouping for Binary Decision Trees 18

2. Fori =1 to N, the number of ATTRIBUTES.
(a) Call PICK_TEST _FOR_ATTRIBUTE_{SNG,SFS,EXH} (ATTRIBUTES;)

and set TEST; to its return value.
(b) Let GAIN; be the information gain of TEST;
(c) Let GAIN RATIO; be the gain ratio of TEST;

3. If no test has GAIN > 0, return leaf node labelled with the majority
class over the instances.

4. Let AVG_GAIN_RATIO be the average gain ratio over the TEST;’s

5. Let SELECTED_TEST be the test with highest GAIN_ RATIO from
among those TEST,’s with GAIN greater than or equal to AVG_GAIN_RATIO.

6. Partition the data according to SELECTED _TEST. Let INSTANCESt
be the set of instances for which SELECTED _TEST is true, and let
INSTANCESF be the set of instances for which SELECTED_TEST is

false.
7. Create a new node called NODE with SELECTED_TEST as its test.

8. Call BUILD NODE(INSTANCES7, ATTRIBUTES), and set the left
child of NODE to the result.

9. Call BUILD_ NODE(INSTANCESF, ATTRIBUTES), and set the right
child of NODE to the result.

10. Return NODE.
Procedure PICK TEST FOR_ATTRIBUTE SNG(ATTRIBUTE)
1. Compute the gain ratio for each single-value test.
2. Return the test with highest gain ratio.
Procedure PICK TEST FOR_ATTRIBUTE SFS(ATTRIBUTE)
1. Let N be the number of values for the attribute.
2. Let IN.GROUP = {}
3. Let NOT_IN.GROUP = {ATTRIBUTE,,..., ATTRIBUTEy}

Value Grouping for Binary Decision Trees 19

4. Let BEST_GR be 0.
5. Let IMPROVING be TRUE.
6. While IMPROVING and |[NOT_IN_GROUP| > 0 do

(a) Let IMPROVING be FALSE.
(b) Let NEXT_TO_ADD be NIL.
(c) Fori=1to IN.GROUP|.
1. Let CURRENT _VALUE be the ith element of NOT IN_GROUP.

ii. Remove CURRENT_VALUE from NOT IN_GROUP and add
it to IN.GROUP.

1. Calculate GR, the gain ratio of the test where all instances
with a value in IN.GROUP are sent down one branch and all
others sent down the other branch.

iv. If GR > BEST_GR, let NEXT_TO_ADD be CURRENT_VALUE
and let BEST_GR be GR.

v. Remove CURRENT_VALUE from IN.GROUP and re-add it
to NOTIN_GROUP.

(d) If NEXT_TO_ADD is not NIL, set IMPROVING to TRUE and
remove CURRENT_VALUE from NOT_IN_GROUP and add it to
IN_.GROUP.

7. Return the test specified by IN.GROUP.
Procedure PICK TEST FOR_ATTRIBUTE EXH(ATTRIBUTE)
1. Increment TOTAL_TESTS by 1.
2. Let N be the number of values for the attribute.
3. If N > 3, increment OVER_3_VALS
4. If N > 4, increment OVER_4_VALS

5. Calculate the gain ratio for each of the 2¥~1 — 1 possible tests. Rank
the tests numerically in increasing order by gain ratio. Call the test
with highest gain ratio Tgxg, as this is the test that EXH will select.

Value Grouping for Binary Decision Trees 20

6. Call PICK_TEST FOR_ATTRIBUTE_SNG(ATTRIBUTE) and set Tsng
to its return value. Let RANKgyg be the numerical rank of Tgyg in
the ranking computed above.

7. Call PICK_TEST_FOR_ATTRIBUTE_SFS(ATTRIBUTE) and set Tgrs
to its return value. Let RANKgrs be the numerical rank of Tgrg in
the ranking computed above.

8. If Tsps matches Tgx g, then increment SFS_MATCHES _TOTAL, and
if N >4, increment SFS_MATCHES_OVER 4 _VALS.

9. if Tgps does not match Tgx g, thenlet PCTLgpg, the percentile rank of
Tsps, be RANKses 100, Increment SFS_TOTAL_PCTL by PCTLsps.

10. If Tsyg matches Tgx g, then increment SNG_MATCHES _TOTAL, and
if N > 3, increment SNG_MATCHES_OVER_3_VALS

11. if Tgye does not match Tgxgy, then let PCTLgng, the percentile

rank of Tgng, be % x 100. Increment SNG_TOTAL_PCTL
by PCTLSNg.

12. Return Tgxg.
Procedure COMPUTE _TREE STATS(TREE,TEST _SET)
1. Classify each instance from TEST_SET using TREE. Let ACCURACY

be the percentage of instances correctly classified.
2. Let SIZE be the number of nodes in the tree.

Procedure COMPUTE _TEST STATS(TREE)

SNG.MATCHES_TOTAL
1. Let SNG_.PERCENT _MATCHES_TOTAL be TOTATL, TESTS .

SNG_.MATCHES_OVER_3_VALS
2. Let SNG_ PERCENT _MATCHES_OVER_3_VALS be OVER.3 VALS .
3. Let SNG.NON-MATCHES be TOTAL_-TESTS—SNG_MATCHES _TOTAL.

SNG_TOTAL_PCTL
4. Let SNG_.NON-MATCH PCTL_RANK be SNG NON-MATOHES

SFS_ MATCHES TOTAL
5. Let SFS_ PERCENT _MATCHES_TOTAL be TOTAL TESTS .

Value Grouping for Binary Decision Trees 21

SFS_MATCHES_OVER 4 _VALS
6. Let SFS_ PERCENT MATCHES_OVER_4_VALS be OVER 4 VALS .

7. Let SFS_ZNON-MATCHES be TOTAL_TESTS—SFS_MATCHES_TOTAL.

SFS_TOTAL PCTL
8. Let SFS_NON-MATCH PCTL_RANK be SFS NON-MATCHES"

Acknowledgments

I thank Paul Utgoff for many helpful comments.

References

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Clas-
stfication and regression trees. Belmont, CA: Wadsworth International
Group.

Cestnik, B., Kononenko, I., & Bratko, I. (1987). ASSISTANT 86: A
knowledge-elicitation tool for sophisticated users. In Bratko & Lavrac
(Eds.), Progress in Machine Learning. Wilmslow, UK: Sigma Press.

Fayyad, U. M. (1991). On the induction of decision trees for multiple con-
cept learning. Doctoral dissertation, Computer Science and Engineering,
University of Michigan.

Pagallo, G. (1989). Learning DNF by decision trees. Proceedings of the
FEleventh International Joint Conference on Artificial Intelligence (pp.
639-644). Detroit, Michigan: Morgan Kaufmann.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kauf-

mann.

Utgoff, P. E. (1994). An improved algorithm for incremental induction of de-
cision trees. Machine Learning: Proceedings of the Eleventh International

Conference (pp. 318-325). New Brunswick, NJ: Morgan Kaufmann.

