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Abstract

This paper examines a recent attempt to justify an inductive bias
toward decision trees with few leaves. It is shown that this argument
is invalid because it rests upon questionable assumptions, and can
be used to deduce contradictory conclusions. Specifically, it can be
used to prescribe any inductive bias. In general, it is shown that
one cannot justify a preference for any inductive bias over another
without making a priori assumptions about the distribution of target
concepts. These results refute one common justification for Occam’s
Razor, which recommends preferring simple hypotheses over complex
ones when both are consistent with a set of observations.
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1 Introduction

The notion that the accuracy of an explanation is associated with its sim-
plicity dates back at least as far as the 14th century, when William of Occam
first posited his famous razor. More recently, machine learning researchers
have followed this principle in biasing their algorithms toward finding hy-
potheses with simple representations. Two approaches have been used to
justify Occam’s Razor:

e Simplicity of Nature: This is the notion that nature exhibits regu-
larity, i.e. that natural phenomena are more often simple than complex.
Alternatively one could argue that the phenomena humans choose to
study tend to have simple explanations. For either reason, simple the-
ories would better describe the phenomena under study.

e Rarity of simple theories: An alternative justification is expressed:
“There are far fewer simple hypotheses than complex ones, so that
there is only a small chance that any simple hypothesis that is wildly
incorrect will be consistent with all observations. Hence, other things
being equal a simple hypothesis that is consistent with the observations
is more likely to be correct than a complex one.” (Russell & Norvig,

1995)

In this paper, we do not dispute Occam’s Razor. We believe that the first
justification may well hold; that is, the phenomena that are studied in prac-
tice exhibit simplicity due to either inherent simplicity of natural problems
or simplicity-directed biased sampling from among natural problems. Thus,
this argument for simple theories relies on an a prior: distribution of target
concepts. Such a distribution has to be taken as a conjecture and is not
provable as a theorem. The second justification for Occam’s Razor assumes
no such distribution. We claim that the second justification is questionable.
We first discuss this in general and then analyze a specific example of an ar-
gument along these lines, a recent attempt (Fayyad, 1991) to justify formally
a bias toward decision trees with few leaves. This line of reasoning relies
on unsubstantiated assumptions and can be used to arrive at contradictory
conclusions.

In Section 2 we argue that to state a preference for any inductive bias, one
must make a prior: assumptions about the distribution of target concepts.
Section 3 reviews Fayyad’s argument in favor of small trees. In Section 4 we



show that the assumptions of this argument are unfounded, and necessarily
untrue in some cases. Section 5 shows how this “proof” can be used to jus-
tify a preference for any decision tree over any other, for example trees with
large numbers of leaves over trees with few leaves. The fact that the same
argument can produce results diametrically opposed to each other indicates
that it cannot be used to justify any specific inductive bias. Section 6 demon-
strates that, although Fayyad’s argument relies on counting representations
of hypotheses rather than hypotheses themselves, our objections would hold
even if his argument were modified to count hypotheses directly. Section 7
presents conclusions.

2 Need for assumptions on priors

A general issue (Wolpert, 1994b; Wolpert, 1995; Schaffer, 1994; Schaffer,
1993; Wolpert, 1993) that has received much attention in the machine learn-
ing community lately is that under certain conditions, no inductive bias can
validly be preferred over another without making certain a prior: assump-
tions. Specifically such assumptions have to be made regarding the distri-
bution of target concepts. We define a target concept as the combination
of a labeling and a distribution of feature vectors. Consider a classification
problem with k binary features, each of which can take on value 0 or 1. A
labeling f is a mapping from feature vectors V = {0, 1}* to classes C. Simi-
larly, 7 is a probability distribution of feature vectors if = : V' — [0, 1], and
gev (V) = 1.

The fact that no inductive bias can be justified over another holds, for
example, under the conditions that the hypotheses under consideration are
consistent with the training data, that no noise is present, and that the
training and test sets are drawn independently according to the same fixed
distributions of f and 7. This point can be illustrated by the following sim-
ple example. Let us consider an inductive bias that prescribes preferring one
consistent hypothesis (H;) over another (H;). By the fact that H; # H,,
there is at least one labeling f* such that for a uniform =, the hypothesis H;
has a greater error rate than H,. If no a prior: assumptions are made about
7w and the distribution of f’s, an adversary can choose a uniform 7 and a
distribution of f’s such that f* has probability one and all other f’s have
probability zero. For these priors, the prescribed inductive bias is clearly
worse than its complement. But the inductive bias was chosen arbitrarily.



Thus no inductive bias can validly be preferred over another without assum-
ing any properties of the aforementioned priors !. This argument casts severe
doubts upon the second (rarity of simple theories) justification of Occam’s
Razor.

Wolpert has presented similar results (the No Free Lunch theorems (Wolpert,
1992)) concerning generalization performance, accuracy on examples not
found in the training set. In the case where all hypotheses under consid-
eration are consistent with the training set (which is usually the case for
decision tree induction algorithms when no noise is present), any error must
result from generalization error. Thus, Wolpert’s results verify the above
finding.

Similarly, Schaffer’s Conservation Law (Schaffer, 1994), a restatement of
some of the No Free Lunch theorems, demonstrates that expected general-
ization performance over all learning situations is zero. In other words, the
existence of a concept for which a particular inductive bias leads to good
generalization implies the existence of a different concept for which the bias
leads to poor generalization. Schaffer’s analysis weights all possible labelings
equally; thus, it corresponds to a situation in which the f’s are uniformly
distributed 2. Again, the existence of a distribution for which all biases
have equal generalization performance necessitates that assumptions be made
about 7 and the distribution of f’s in order to prescribe any inductive bias.

These results call into question several previously published results. For
example, Wolpert has shown that the Bayesian “Occam factors” argument
for Occam’s Razor is incorrect (Wolpert, 1994a). The remainder of our paper
is an examination of Fayyad’s attempt to theoretically justify a bias toward
small decision trees 3. This argument makes no assumptions about 7 or the

!Note that this does not mean that one must assume a particular 7 or distribution of
f’s, but that one must assume some properties of these.

2While the Conservation Law itself is sound, we do not agree with one of the conclusions
Schaffer draws from it. Specifically, he points out several examples of real-world datasets
for which many common learning algorithms perform surprisingly poorly. While this
phenomenon is interesting in itself, it is not a necessary consequence of the Conservation
Law. The Law concerns only the ezistence of difficult problems for a given algorithm, but
says nothing about the likelthood that they occur in the real world. To make an argument
that such difficult problems occur in the real world for any algorithm, one needs to know
something a priori about 7 and the distribution of f’s, as pointed out in Rao et al. (Rao,
Gordon & Spears, 1995).

3The bias toward small decision trees has been questioned before. Murphy and Pazzani
(1994) present example target concepts for which larger decision trees are more accurate.
Webb (1995) shows that by systematically increasing the complexity of trees found by
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distribution of f’s. A preference for small decision trees is a form of inductive
bias; therefore, Fayyad’s conclusion is inconsistent with the above results. In
the remainder of this paper, we resolve this contradiction by pointing out
flaws in Fayyad’s argument. We present his proof in detail, in order to be
able to examine later exactly how this argument fails. We feel that such a
detailed analysis is valuable, not only to point out that the specific conclusion
is erroneous, but also to help other researchers avoid similar flaws in the
process of constructing arguments about induction algorithms.

3 The argument for small trees: a review

In his dissertation “On the induction of decision trees for multiple concept
learning,” Fayyad attempts to show * that given two decision trees consistent
with a set of data, the tree with fewer leaves is likely to have a lower error rate
(as defined below). In order to present our objections, it will be necessary
to summarize the proof as presented by Fayyad. First we present some
preliminary assumptions made in the argument.

[...] it is assumed that the learning algorithm generates a decision
tree that classifies all examples in the training set correctly. Another
assumption we make is that the sets of training and test examples
are noise-free and not ambiguous ®. Furthermore, we assume that
the examples in the training and test sets are drawn independently
and at random according to some fixed (unknown) probability dis-
tribution. Finally, the training examples are expressed in terms of
attribute-value pairs [...] These assumptions admit most decision
tree algorithms in the literature [...]

Fayyad also presents a theorem that shows that for any decision tree
T with n leaves, there exists a binary decision tree 7' with n leaves that
represents the same hypothesis. Using this fact, Fayyad confines his analysis
to binary trees.

C4.5 (Quinlan, 1993) in such a way that performance on the training set is unchanged,
trees more accurate than the original usually result.

*The argument in the dissertation is an updated version of an argument appearing
earlier (Fayyad & Irani, 1990).

A data set is said to be ambiguous when it contains at least two examples that agree
on the values of all the attributes but belong to different classes. [Fayyad’s footnote]



Binary trees with n leaves Trees in DT(n) with error > ¢

Trees in DT(n) consistent
with the training data

Trees in DT(n) with error > €
that are consistent with the data.
We want to bound the probability
of this intersection.

Figure 1: Venn diagram of binary decision trees with n leaves.

The learning situation consists of a training set of m examples consistent
with some target concept () that we wish to approximate. Define the error
rate of a decision tree T' as the probability that 7" will misclassify (i.e. assign
a classification different from that assigned by @) a test instance that is
drawn randomly from our fixed probability distribution.

Let DT(n) be the set of binary decision trees with n leaves. Call a tree
bad if it has error rate greater than ¢, 0 < € < 1. Let B(n,€) C DT(n) denote
the set of bad binary trees with n leaves. In inductive learning, one generally
does not know the target concept ), and thus will not be able to determine
B(n,e).

Call a tree consistent if it correctly classifies all instances in a given train-
ing set. Let W C DT (n) be the set of consistent trees with n leaves. Figure
1 depicts the relationship between DT(n), B(n,¢), and W.

The first step in the proof is to bound the probability that a given con-
sistent tree with n leaves is bad.

Theorem 3.3.2 [Fayyad 6] Let T be a binary tree having n leaves
that classifies a set of N randomly chosen training examples correctly.
Then |B(n,€)| - (1 — €)N is an upper bound on the probability that
T has an error rate greater thane, 0 < e < 1.

6This theorem is similar to the more general Theorem 1 in Blumer et al. (1987).



Let py. = Prob{T € B(n,€) | T € W}, the probability that a tree T is bad
given that it is consistent. One would like to know pj., but to calculate it ex-
actly would require additional information that is unavailable (for example, it
would be sufficient to know the cardinalities of W and B(n,e)NW). Instead,
the theorem uses the fact that the particular consistent tree in which we are
interested can be bad only if some tree exists that is both bad and consistent.
Thus, pe is bounded above by Prob{W N B(n,€) # 0}, the probability that
at least one tree is both consistent and bad. Now, Prob{W N B(n,¢€) # 0}
can be computed by Prob {UTIGB(H,S){E'Tr}}, where E7/ is the event that
T' € W. The probability of this union cannot be computed directly, but
an upper bound |B(n,¢€)| - Prob{ E7'} may be determined by subadditivity.
Now, Prob{Ezr:} < (1 — €)V because the probability that T’ correctly classi-
fies one instance drawn from the fixed distribution is less than (1 — €) (since
T' € B(n,€)) and there are N training instances. So we have obtained an
upper bound on an upper bound of the probability in which we are interested
(Pbe) as follows:

|B(n,€)|- (1 — E)N > Prob{W N B(n,€) # 0} > ps

Note that unless N > —IC{EU(B%, this upper bound will be greater than 1
and will not bound the probabihty at all.
The next step in Fayyad’s argument is to show that the number of trees

with error rate greater than e increases with the number of leaves:

Lemma 3.3.6 [Fayyad] For any fixed €, 0 < € < 1, and any ny >
ny > 2 the following property holds:

The proof of this lemma relies on the fact that for n > 2, any bad tree,
say T, with n leaves can be augmented to produce at least 4 bad trees with
n + 1 leaves, each logically equivalent to T' (i.e., they represent the same
hypothesis). The general case where ny > n; > 2 is shown by induction on
g — Ny.

Fayyad presents the following corollary to Lemma 3.3.6:

Corollary 3.3.1 [Fayyad] Let T} and T, be two decision trees con-
sistent with a fixed training set of N examples. Let ny and n, be the



number of leaves in Ty and T, respectively. For a fixede, 0 < € < 1,
let b, and by be the bounds derived in Theorem 3.3.2 for Ty and Ty
respectively.

Ifny > mq > 2 then by < by. Furthermore

ba > 92(na—m),

by

Following his presentation of Corollary 3.3.1, Fayyad discusses its impli-
cations:

Thus for a fixed training set, given two decision trees 77 and T, with
ny and ny leaves respectively, let P, = Prob{T; has error rate > €}
and P, = Prob{T, has error rate > €}. Note that if n; < n, it fol-
lows from Theorem 3.3.2 that: P, < b; and P, < by. Corollary 3.3.1
states that by is smaller than b, by a factor of 22(n2-m1)  However,
Corollary 3.3.1 does not imply that P, < P,. Proving this would be
desirable but is not possible because the trees T and T were derived
by an induction process that examined the same finite subset of the
set of all possible examples. The corollary does state, however, that
the upper bound on the probability that 77 has an error rate that
exceeds € is always lower than the corresponding upper bound for T5.

We shall denote the probability that a tree 7' has error greater
than € by P(T,¢€), i.e.

P(T,€) = Prob{T has error rate > €}

Definition 3.3.4: We say that a tree T} is likely to have a lower
error rate than a tree Ty if, for a fixed ¢, 0 < € < 1,

1
Prob{P(T1,€) < P(Tz,€)} > 5

i.e. when it is more likely that P(T3,€) < P(T3,€) than otherwise.
Given two decision trees, we should, at least on an intuitive level,
prefer the one that is likely to have a lower error rate than the other.
Assume that, for a fixed training set of N examples, we are given two
decision trees 77 and T3 having n; and n, leaves respectively, with
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ny > ny. If we have no special knowledge of the data or the trees, we
only have one more piece of information, namely that for any fixed ¢,
Corollary 3.3.1 states that the bound b; on P(Ty,€) is exponentially
smaller than the corresponding bound by for P(T5,€). How may we
use this piece of information? Is there a formally justifiable strategy
that justifies our intuitive tendency to prefer Ty over T5?

Having no further knowledge, it seems reasonable to assume that

P(T1,¢€) could be any value less than b, i.e. that P(T%,€) is uni-
formly distributed over the range [0,b;). [...] Making the same as-
sumption for T5 and its bound b,, the following corollary will formally
justify our intuitive tendency to prefer T over T5.
Corollary 3.3.2 [Fayyad] Given two decision trees Ty and Ty having
ny and ny leaves respectively, ifny < ny then assuming that P(Ty, €)
and P(T,€) are uniformly distributed below their respective bounds
by and bsy, then Ty is likely to have a lower error rate than Ts.

Given the assumptions that P(77, €) and P(T5, €) are uniformly distributed
below their respective bounds, it is only necessary to show that b; < b, to
show that T; is “likely to have a lower error rate” than 7,. In Section 4 we
will examine the assumption that the probabilities are uniformly distributed
below their bounds.

After presenting Corollary 3.3.2, Fayyad discusses its implications:

Corollary 3.3.2 justifies the strategy that prescribes preferring the
tree with the smaller number of leaves. Note that Corollary 3.3.2
does not state that a tree with the minimal number of leaves is the
best tree. The key condition is that the tree must be consistent
with the training examples. For example, the tree consisting of a
single node is not consistent with the training set (unless all training
examples are of one class, in which case it would be the best tree).
Furthermore, the corollary does not state that P(T1,¢) < P(T3,¢€),
it just states that, under the uniform distribution assumption, the
event that {P(T4,¢€) < P(T5,€)} is a much more likely event than
its complement: {P(Ts,€) < P(T1,€)}.

This finishes the review of the argument for small decision trees. In
the following sections we present our criticism of the argument. First, the
assumptions are questioned.



4 Questionable assumptions

The argument for small decision trees is based on the assumption that P; and
P, are uniformly distributed below their respective bounds. This assumption
that pp. is uniformly distributed below the bound is not true in general. It
would require that the bound be tight (i.e. that the upper end of the uniform
distribution be at the bound) and that the distribution of ps. be uniform
(wherever the distribution is located). In Section 4.1 we discuss the events
that generate the distribution, in Section 4.2 we discuss the assumption that
the bound on py. s tight, and in Section 4.3 we discuss the assumption that
this probability is uniformly distributed.

4.1 What is the event space?

A probability distribution is generated by events. Each event corresponds to
one point in the distribution, but not necessarily vice versa. When making
arguments concerning probabilities, it is crucial to make clear what the event
space is. Although Fayyad’s argument deals with probability distributions,
the event space is not specified. Wolpert (1992) has pointed out the same
problem in the PAC learning framework, from which Fayyad’s argument
is derived. Since the training set and the hypothesis function (determined
by the decision tree under consideration) are fixed, the only things left to
vary are the labeling f and the probability distribution of feature vectors =
(defined in Section 2). Therefore, each event corresponds to a combination
of some f; and some 7;; denote the event by (f;, w;) 7. The labeling f; allows
us to determine which instances a given tree misclassifies. The distribution =
gives a weighting on the instances, allowing us to calculate the error rate for a
given tree. Thus, each (f;, 7;) corresponds to one point in the distribution of
Pse- The probability mass of each point pg. is the sum of the probabilities of
the (f;,m;)’s that correspond to that point. Therefore, making assumptions
regarding the tightness of the bounds or the shape of the distribution of pp.
amounts to making assumptions about the distribution of (f;, 7;)’s.
Because Fayyad’s argument does not explicitly make any assumptions
about the target concept distribution, the argument should apply to all
such distributions. Here we construct a very simple example distribution of
(fi,m;)’s for which the argument does not hold (see Figure 2). Let us look at

"Note that we do not assume that the distribution 7 of feature vectors is statistically
independent of the labeling f.

10



Trees

T
05 05 Error rate

0 Labeling1 + + 0 0.5
1 Labeling2 + - 0.5 0

°® 1
+ 1 0 Prob(f;) <> <0>| T, T,
+ -

Training set: {<<1>,+>}

Figure 2: Fzample distribution of (f;, 7;)’s where a larger tree is “likely to
have a lower error rate” than a smaller tree.

a classification problem with two classes (+ and —), and one binary feature.
Let the training set consist of only one instance where the feature has value 1
and the correct classification is +. Say that 7} has only one leaf and classifies
all instances as +. Say that T, has two leaves and classifies instances with

feature value 1 as + and instances with feature value 0 as —. Let 0 < e < %
Let us define 7 as follows: 7*((0)) = 3, #*((1)) = 1, and let us define f*
as follows: f*((0)) = —, f*((1)) = +. Now let us choose a distribution of

(fi,m;)’s where (f*,7*) has probability one and all other (f;, 7;)’s have prob-
ability zero. Now T3 has error rate % > €, so P(T1,€) = 1. Similarly, T, has
error rate 0 < €, so P(Ty,€) = 0. Thus, Prob{P(T,¢) < P(Ty,e)} =0<
This contradicts Fayyad’s conclusion that Prob{P(T1,€¢) < P(T»,¢)} >

More complex examples of settings where trees with more leaves outperfor
trees with fewer leaves have been presented in (Murphy & Pazzani, 1994).

9
1
9

m

4.2 Tightness of the bounds

In Fayyad’s argument, the purpose of the assumption that the bounds b,
and by are tight is to ensure that Prob{P(T1,¢€) < P(T3,€)} > % This same
property could also be assured in other, less restrictive ways. For example, if
P(T1,¢€) and P(T3,€) are uniformly distributed, the desired property holds if
P(T1,¢) is distributed right below a true bound b} and P(T,€) is distributed
right below a true bound b, where b} < by, by, < by, and b} < b),. In order
to conclude anything about the actual probabilities being bounded, the true
bounds b] and b, must be in the same order as b; and b,. In general, there
is no reason to believe that some arbitrary bounds are in the same order as
the true bounds. In fact, in Section 5.1, we show that one can use Fayyad’s
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argument to obtain arbitrary bounds that give a different ordering.
Secondly, when N < —%, the bound b will be greater than one.

However, because the bounded quantity is a probability, it is already known

to be less than or equal to one. Therefore, the bound is not tight in this

situation.

4.3 Uniformity of the distribution

Fayyad justifies the uniform distribution assumption by appeal to the “prin-
ciple of indifference” which states that, absent prior knowledge, the uniform
distribution is the most unbiased. This principle must be applied with care
because it can easily lead to contradictions. A classic example is Bertrand’s
paradox (Li & Vitdnyi, 1993), where assuming a uniform distribution of the
values of a quantity, and assuming a uniform distribution of the inverses of
these values, leads to a contradiction. This paradox points out that unifor-
mity assumptions applied to related distributions may be inconsistent with
each other.

By similar reasoning, it turns out that assuming a uniform distribution
of pye 1s equivalent to making an assumption of a non-uniform distribution
of (fi,m;)’s (target concepts).

Consider a situation where there is one binary attribute A, two classes +
and —, € = 0.25, and the training set consists of one instance: ((1),+). Let
us consider binary trees with two leaves. There are four such trees, and two of
them are consistent with the training example (see Figure 3). Let us assume a
uniform distribution of (f;, 7;)’s and consider the distribution of ps. that this
induces. There are four possible f;’s (labelings), of which two are consistent
with the training example and are thus considered. There are infinitely
many distributions 7 satisfying the constraints that #((0)) + «((1)) = 1,
0 < 7({(0)) <1, and 0 < w((1)) < 1. Each possible pair (f;,7;) is an
event, and all such pairs are considered equally probable. For each event,
we would like to know the probability that a consistent tree is bad. For
labeling 1, T is never bad. T3 is bad whenever w((0)) > € = 0.25, i.e. with
probability 0.75. Put together, there is a 0.25 probability that p,. = 0 and
a 0.75 probability that p,. = 0.5. For labeling 2, T is never bad. Tj is
bad whenever w((0)) > € = 0.25, i.e. with probability 0.75. Put together,
there is a 0.25 probability that p,. = 0 and a 0.75 probability that py. = 0.5.
Now, averaging over labelings, there is a 0.25 probability that ps. = 0 and a
0.75 probability that p,. = 0.5 (see Figure 4). Clearly py. is not uniformly

12



Consistent trees

T, T, Column weights m(<1>) ®(<0>)
IN A Prob(f;) <> <0> T, T,
05 Labeling 1 + + Never bad ac 1
<0>)=0.25
+ 4+ + - W0>) =
n(<1>)
1 0.5 | Labeling 2 + - Bad if Never bad
1(<0>) = 0.25
m(<0>)

1

Training set: { <<I1>,+>}

Figure 3: Ezample showing the non-uniform distribution of py. when (f;, ;) ’s
are distributed uniformly.

distributed. Because the uniform distribution of (f;,7;)’s implies a non-
uniform distribution of py.’s, it follows that assuming a uniform distribution
of pec’s amounts to assuming a non-uniform distribution of (f;, 7;)’s!

5 Contradictory results

One could argue that even though the assumptions do not hold exactly,
they are a sufficiently good approximation to prove that small decision trees
are “likely to be more accurate” than large trees. However, in this section
we show that using the same assumptions, but grouping trees by different
criteria, we can use the same argument to justify any other inductive bias
as well. Because there is no reason to prefer any grouping of trees over any
other grouping, the argument is of no use in justifying any inductive bias.

One crucial point to note about the argument for small trees is that
the only role played by the number of leaves is in partitioning the space
of decision trees into subsets. The only property of this partitioning that
is used in the proof is that some of the subsets (in this case, those with
many leaves) are guaranteed to contain more bad trees than others (in this
case, those with few leaves). Thus, we can make the same argument for
any partitioning of decision tree-space, as long as the partitioning has this
property. In this manner, we “justify” several inductive biases which give
contradictory prescriptions to the bias toward small trees.

13
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Figure 4: FEzample showing the non-uniform distribution of the probability
when concepts are distributed uniformly.

5.1 The more the leaves, the better the tree?

Consider two arbitrary consistent trees 77 and 75 with n; and n, leaves
respectively such that ny > ny. For any fixed ¢, 0 < € < %, 8 assuming that
P(T1,¢€) and P(T3, €) are uniformly distributed below their bounds, Corollary
3.3.2 tells us to prefer T over Ty. Now let us consider the following alternate
partitioning of decision tree-space:

e For all n # ny,ny, DT'(n) = DT (n)
e DT'(ny) = DT(n,) U{To} — {11} ®
e DT'(ny) = DT(ny) U {T1} — {T>}.

Define B'(n,€) as {T | T € DT'(n) and Error(T') > €}. Now, |B'(ny,¢)
|B(n1,€)| + 1, and |B'(na,€)| > |B(na,€)| — 1. Assuming |B(nq,€)| >

<
1, by
Corollary 3.3.6 |B(ns,€)| > 4|B(ni,€)| > 4. Hence, Ig,g:ﬁgi > % > %

This is sufficient to ensure that Prob{P(Ty,€) < P(Ts,€)} > %, and using

99
Fayyad’s terminology, we can say that 75 is “likely to have a lower error rate”

than 7. Thus, using Fayyad’s argument and changing only the partitioning

8In Fayyad’s argument, ¢ € (0,1). This is slightly erroneous because for ¢ > % and
small n, it is possible that | B(n, €)| = 0 which would invalidate Lemma 3.3.6. This problem
can be fixed by choosing € € (0, %)

9Although this partitioning may not be as intuitive as the original partitioning by

number of leaves, it is equally valid for the purposes of the proof.
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of decision tree-space, we have arrived at a justification of a bias directly
opposed to his: a preference for the tree with the greater number of leaves!

5.2 The lexicographically earlier the root test name,
the better the tree?

We can also use a partitioning that is unrelated to size. Consider a situation
in which the number of attributes k is greater than 2. First, number the
attributes from 1 to k by lexicographic order of their names. Let RT(n) be
the set of binary decision trees with root test of attribute n for 1 < n < k.
Note that each of these groups contains the same number of trees of each
size, and thus the average tree size is the same in each group. Let RT(0) be
the set of binary decision trees with no root test (i.e., with one leaf). We
can construct a partitioning of decision-tree space that has the property that
some of the subsets are guaranteed to contain more bad trees than others as
follows.
e For 1 <m < [logy(k+1)| — 1, let RT'(m) = U_ sy, RT(n).

_a3am—-143
- 2

e For m = |logs (k + 1)|, let RT'(m) = RT(0)U U::w—1+1 RT(n)|.

For example, in a situation with 50 attributes, RT’'(1) = RT(1), RT'(2) =
RT(2)URT(3)U RT(4), and RT'(3) = RT(5)U...U RT(13), and RT'(4) =
RT(0) U RT(14)U...U RT(50).

Let RB(m,¢€) denote the set of bad trees in RT'(m). In appendix A we
show that, for 0 < € < 3, at least half of the trees in each group RT'(m)
are bad. Thus, %ﬂﬂ < |RB(m,¢)| < |RT'(m)|. Similarly, w;"_‘l'lﬂ <
|RB(m+ 1) < |RT'(m +1)|. Because |RT'(m +1)| > 3-|RT'(m)|, it follows
that |RT'(m)| < w;n“)'. Therefore, |[RB(m + 1,€)| > |RB(m,¢)|.

Now consider two arbitrary trees 77 and 75 where 77 has more leaves
than T3, each tree has more than one leaf, and T3’s root test is sufficiently
lexicographically earlier than T5’s so that Ty € RT'(z), T, € RT'(j), and 7 <
j. The fact that |[RB(m + 1,€)| > |RB(m,¢€)| ensures that Prob{P(Ts,¢) <
P(T1,€)} > % T 1s “likely to have a lower error rate” than 7,. Thus, again
using Fayyad’s argument and changing only the partitioning of decision tree-
space, we have arrived at a justification of a preference for the tree with the
lexicographically earlier root test, but the greater number of leaves!
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5.3 Any arbitrarily chosen tree is better than any other?

Taken to its logical extreme, this same argument can be used to justify a
preference for any given tree over any other. Consider any two consistent
trees 17 and T3, each of any size. Consider 77 to be a member of the set
{T1} and T> to be a member of U, the set of all decision trees for this
learning situation. Define B(U,¢€) as {T | T € U and Error(T') > €} and
B({T1},¢€) as the set {71} if Error(71) > € and () otherwise. For any € such
that 0 < € < 3, |B(U,€)| > 1 > |B({T1},€)|. Thus the bound by > biz,3}.
Using the assumption that the true probabilities are uniformly distributed
below these bounds, Prob{P(T},€) < P(Ts,€)} > ;. Thus we have “proven”
that any arbitrarily chosen tree is “likely to have a lower error rate” than
any other arbitrarily chosen one.

We have shown that by changing only the partitioning of tree-space while
leaving the rest of the argument intact, we can justify any bias. Since we
are given no reason to prefer the partitioning of tree-space by size over any
other, it is clear that the original result cannot be used to justify a bias
toward decision trees with fewer leaves.

6 Counting trees vs. counting hypotheses

Fayyad’s argument for small trees differs from other examinations of the
simplicity bias (Pearl, 1978) in that representations (in this case, decision
trees) for hypotheses are counted rather than hypotheses themselves. One
might suspect that the problems we demonstrate with Fayyad’s analysis could
be remedied by modifying the argument to count hypotheses, or equivalently,
logically non-equivalent trees. We now show that this is not the case.

The fact that logically equivalent trees are counted is crucial to the proof
of Lemma 3.3.6, which states that the number of bad trees with n leaves
grows with n. The proof uses the fact that for every tree T' with n leaves,
there are four trees logically equivalent to 7' with n + 1 leaves. These are
constructed by adding tests to 7' for which both children are leaves of the
same class (call such tests spurious). The growth in the number of bad trees
constructed in this manner is exponential, and since this number is a factor
in the formulation of the bounds, these grow exponentially as well. Decision
tree induction algorithms typically do not produce trees containing spurious
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Training set: {<<I,1>,+>}

Some consistent trees:
LH, SH,

Figure 5: Ezample trees where the argument for small decision trees leads to
contradictions.

tests. 10

In the next two sections we present examples where the argument for
small decision trees results in paradoxical prescriptions of hypotheses. In
Section 6.3 we show that the argument for small decision trees cannot be
corrected even by analyzing hypotheses rather than trees.

6.1 Preferring a hypothesis to itself

The fact that logically equivalent trees are counted rather than hypotheses
allows the argument to give contradictory results in certain situations.

Consider the trees SH; and LH; shown in Figure 5. Both trees represent
the same hypothesis. However, because SH; has fewer leaves than LH;,
Fayyad’s argument states that SH; is “likely to be more accurate” than SH,,
even though they have the same error rate!

10 Another source of logically equivalent trees is repeated tests, i.e. testing the same
attribute more than once on a path from the root to a leaf. Repeated tests necessarily
occur in trees with more than 2% leaves, where a is the number of binary attributes.
Decision tree algorithms typically do not produce trees containing repeated tests. Even
if one disallows spurious and repeated tests, there may be many logically equivalent trees
(even with the same number of leaves).
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6.2 Contradictory prescriptions of hypotheses

Consider the four trees LH;, SH;, LH;, and SH, shown in Figure 5. LH;
and SH; represent the same hypothesis, call it H1. Similarly, LH, and SH,
represent the same hypothesis, call it H2. Now the argument for small
decision trees prescribes preferring SH; over LH,, i.e. preferring H1 over
H2. But the argument for small decision trees also prescribes preferring SH,
over LHy, i1.e. preferring H2 over H1, which is contradictory.

The next section shows that the argument for small decision trees cannot
be corrected even by analyzing hypotheses rather than trees.

6.3 Will counting hypotheses fix the argument?

To change the argument for small decision trees to count logically non-
equivalent trees, it would only be necessary to show that the number of
bad non-equivalent trees grows in n. It is not necessary to show that growth
is exponential in order to replace Lemma 3.3.6. The growth of the number
of such trees implies that b, > b;. Now we can again use the argument
of Section 5.3 (which did not use the assumption of exponential growth) to
reach a contradictory conclusion. Thus the objections do not depend upon
the counting of logically equivalent trees.

7 Conclusions

It should be emphasized that these results do not deny Occam’s Razor. Nei-
ther do they deny the possibility that for data sets occurring in the real world,
an inductive bias toward decision trees with fewer leaves may be appropriate.
They do show, however, that the argument intended to prove this claim in
general is invalid. We demonstrated this by first questioning the assumptions
it relies upon, and then using the same argument with different partitionings
of decision tree-space to deduce contradictory conclusions. This shows that
the argument cannot be used to prescribe any inductive bias. More generally,
we showed that no bias can be justified without making a prior: assumptions
about the distribution of target concepts. This refutes the second (rarity of
simple concepts) justification of Occam’s Razor.

Our analysis also points out several pitfalls to avoid when constructing
arguments about induction algorithms. First, we point out that when mak-
ing arguments about probability distributions, confusion may arise if one
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does not make explicit the event spaces over which these distributions are
defined. Second, we show that when modeling a state of no knowledge with
a uniform probability distribution, one must be very aware of the impli-
cations of such an assumption. In many cases, uniformity assumptions of
two quantities are inconsistent. Thus, one should keep in mind that making
a uniformity assumption for some quantity may amount to making an as-
sumption of non-uniformity for related quantities about which we also have
no knowledge. Third, one cannot conclude that two quantities are likely to
be in a particular order based on upper bounds of unknown tightness. Fi-
nally, in making counting arguments, one should be aware of the distinction
between hypotheses and representations of hypotheses, e.g. trees. In a given
representation schemes, a hypothesis may have several representations, and
different hypotheses may have different numbers of representations. Thus,
counting arguments regarding representations will give results different from
those regarding hypotheses. Nevertheless, even if one considers hypotheses
rather than representations, one cannot justify any inductive bias without
making a priori assumptions about the target concept distribution.
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A Proof: At least half of the trees in RT'(m)
are bad

In this appendix we prove that, for 0 < € < %, at least half of the trees in
each group RT'(m) are bad. This fact was used in Section 5.2. Let T be an
arbitrary tree in RT’(m) that is not bad. For each leaf 7 of ', 1 <7 < n,
let V; be the set of feature vectors ¥ that fall into 7. Associated with each
leaf 7 is an error rate e; determined by V;, the weight 7= of each v € V;,

the correct classifications of these ¥’s, and the class label of 7. Specifically,

See, "(% oD where MISCLASSIFIES(i,5) is 1 if leaf i
TeV;

misclassifies feature vector ¥, and 0 otherwise.

From the good tree T' € RT'(m) we can construct a bad tree T’ as follows.
Consider the classes of T' as a vector. Now 7" is the same as T except that the
classes are rotated by one position (say to theleft). For example, in a problem
with classes 1, 2, and 3, every leaf of T that has class 1 will have class 2 in 7",

€, =

every leaf that has class 2 in 7' will have class 3 in 7" and every leaf that has
class 3 in T will have class 1 in 7. Because the root test of 7" is the same
as that of T, clearly 7' € RT'(m). The error rates of the leaves of 7" will be
at least (1 —e1)...(1 —e,) because T" will misclassify all the feature vectors
that T classified correctly. Let Er be the overall error rate of T' and let Ep+
be the overall error rate of 7’. These are computed from the error rates of the
leaves by weighting each leaf by the sum of the 7’s of the feature vectors that
fall into the leaf. For example, Er = > [ sV 7r(17)] e;. It follows from

the above that Em > 37 | [ TV 7r(17)] (1—e)=1-3%2, [ Fev; 7r(17)] e; =
l—ET>1—e>%>e, and thus 7" is bad.
Note that T' is the only tree that transforms into 7" using our rotation

mechanism. Therefore every good tree in RT'(m) has a unique bad tree in

RT'(m). Thus at least half of the trees in RT'(m) are bad. O
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