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Abstract

A model registration system capable of tracking an object through distinct aspects
in real-time is presented. The system integrates tracking, pose determination, and
aspect graph indexing. The tracking combines steerable filters with normalized cross-
correlation, is rotation compensated in 2D and is adaptive. Robust statistical methods
are used in the pose estimation to detect and remove mismatches. The aspect graph
is used to determine when features will disappear or become difficult to track and to
predict when and where new features will become trackable. The overall system is

stable and is amenable to real-time performance.
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1 Introduction

Registration of moving real-world objects with their image space appearance has important
applications in vision and robotics. The use of visual servoing in an assembly operation
would entail continuous registration of the manipulated object model with the it’s image
over distinct aspects and preferably in real-time. Similarly, one can visualize anenhanced
reality application such as an interactive repair manual. Instead of reading abstract de-
scriptions that can easily be misinterpreted such as "remove the lateral stabilization screw”,
technicians could look through the clear visor of an enhanced reality helmet at the object
being repaired. The object model’s registration with it’s appearance in the visor can be used
to provide annotations or instructions such as “remove the screw” with an arrow pointing

unambiguously at the screw that should be removed.

There are two basic approaches to the registration problem. One relatively expensive, yet
proven technology is to instrument the real world with location beacons and position sensors.
The other approach is to visually register the position of the helmet to the real world using
image tracking and pose determination algorithms. This approach is cheaper and can be used
in unmodified environments; it can also be used to track and annotate independently moving
real-world objects, which the automatic positioning systems cannot (unless the moving object

has its own beacon).

In this paper we combine a new tracking algorithm and a known pose determination al-
gorithm [2] in a closed loop and demonstrate that robust, real-time registration is possible

through 360° of camera or object rotation. In particular,

1. Tracking Through 360° of Rotation. Typically, when an object (or the camera)
rotates through 90° of rotation or more, none of the features that were visible in the
first frame are still visible (unless it is in the plane of the camera). Consequently,
most image-based trackers cannot track objects through large rotations. By using the
object model to predict when old points will drop out of view and when (and where)

new points will become visible, our system is able to track objects through arbitrary

rotations.

2. Robustness and Stability. The pose determination and tracking algorithms operate
in a closed-feedback loop. Pose is used to hypothesize locations of object features that
are tracked and the tracked features provide correspondences for the pose algorithm.

Errors can be induced by both these components and system stability is an important
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Figure 1: The interaction between components of the registration system

issue. We show that the system is stable (with a bounded error) in that tracking

compensates’ for pose errors and robust pose computation compensate for tracking
errors.

3. Real-Time Performance. Enhanced reality applications must be able to keep pace
with the real world. Although they do not necessarily have to produce pose estimates
at frame rate — for some applications, the visor’s screen may only have to be updated
at 5 or 10 hertz, for example - the tracking system must track objects continuously as
the helmet and/or objects move. The rate-limiting step is the image tracking, and we

use steerable filters [19] to reduce the amount of search in the correlation process.

Our system achieves reliable,-real-time object registration through 360° of rotation using a
simple three (rather than two) step loop, shown in Figure 1. The loop starts with.a set
of features to track, expressed as templates with predicted (z,y) image locations.The first
step is a tracking component that combines steerable-filter and normalized cross-correlation
tracking algorithm that is able to track points through large translations and image-plane
rotations, and through smaller (but non-trivial) out-of-plane rotations. The second step is
a median-filter pose determination algorithm [2] that detects outliers in the tracking data

while computing the camera pose that minimizes the object-to-image projection error. If the



residual error in this pose fit is too high, then more tracking errors have occurred than the
median filter can compensate for, and an error is signalled. Otherwise the third step takes
the pose computed by Kumar’s algorithm and uses it as an index into a feature indexing
table of visible points. This table (computed beforehand from the model, in a manner similar
to aspect graphs [4]) maps viewpoints onto lists of visible model points. These points are
then re-projected onto the image, and used as the set of (z,y) point locations for the next

iteration of the cycle.

Within this cycle, it is the feature indexing table that allows the system to track objects
through 360° of rotation. As the object rotates, new points become visible. The feature
table maps the pose of the object onto a list of currently visible points, including those that
were not visible from previous views. These points are then projected onto the image and
given to the tracker as new points to track. Correspondingly, old points are dropped as they
rotate out of view. Note that the feature indexing table also compensates for occlusions

between modeled parts of the real world.

The aspect table also stores the templates required by the tracker. Feature templates are
pre-compiled and associated with visible points for every aspect. However, the tracker is
adaptive; every template that successfully tracks (i.e. is not an outlier after in the median
pose computation step) is updated from the current image. This permits using wide aspects,
reduces the storage requirement for pre-compiled templates and makes the system relatively

insensitive to lighting changes.

Stability arises from the median-filter on the pose determination algorithm and the robust-
ness of the tracker to unexpected image motions. Tracking errors, which can occur due to
specularities, un-modeled occlusions or other image phenomena, are detected as outliers by
the pose determination algorithm, which does not use them to compute the camera pose.
Consequently, the predicted positions of image features in the next frame (which are com-
puted from the pose) are unaffected by the tracking error, so the error is not fed back into
the tracker. Pose errors, which can occur due to camera calibration errors, modeling errors
and feature position noise, result in the predicted feature locations that are offset by the
amount of the error. Such errors simply appear as additional image motion to the tracker,
however, and as long as the pose error is not so extreme as to cause the new position of the
feature to fall outside the tracker’s search window, the pose error will not, effect the result of
the tracker, and therefore will not be fed back to the pose algorithm. (Stability is discussed

in more detail in Section 4).



Finally, real-time performance is possible on current hardware, within reasonable limits.
Exact timings depend on several factors, most notably the size of the search windows for
tracking (which depends on the expected image motions), the size of the search window,

“and the maximum number of outliers to be detected. For 11z11 size search windows and
9z9 templates, the tracker can track 6 points at 8 Hz. If a maximum of one tracking outlier

per frame is detected, the system can produce registration data at 7 Hz. The cycle times
increase proportionally with the area of the search window and the number of points being

tracked, and exponentially with the number of outliers detected.

2 Related Work

There has been some previous work on detecting mismatches during tracking. Shi and
Tomasi [12] used a dissimilarity measure for detecting likely mismatches. They find the
affine transform which maps a window around the tracked point in each image back to the
window in the first frame. Then a measurement is computed over the sequence. This has the
advantage that it is purely image-based, but it may take several frames before a mis-match

is detected. Our model-based pose method can detect outliers after the first frame.

While most techniques employ an array of independent windows for tracking, other methods
rely on a hierarchy, or network of features. Such is the approach adopted by Hager {13
who describes his objects in terms of basic (low-level) and composite (high-level) features,
taking 3D projective information into account. Beginning at the top level, constraints on
the state of the sub-feature (position and orientation) are propagated down the hierarchy.
Tracking at the lowest level is accomplished using convolutions (edges) or SSD methods
(image patches) [22], with epipolar constraints for stereo pairs. These results are then
propagated upwards and used to evaluate the state of the composite feature. The advantage
of using this approach in visual servoing is that the objective function and constraints are
formulated in image coordinates. However, the reported work does not detect or handle
mismatches. There has been some work based on extraction of symbolic image features
such as line segments. Crowley [14] used a dynamic model composed of a set of line tokens,
which were parametrized by position, orientation, and length. In each new frame the lines

are matched based on Mahalanobis distance between feature vectors based on a Kalman
filter prediction. Some issues not discussed in the paper include potential problems with

detecting mismatches and real-time line extraction. If a line does not have a match based

on its feature vectors, it is not immediately dropped, but its confidence factor is decreased.



Sawhney [24] extended this approach to triples of lines that transform according to an affine
transformation. This property is satisfied by lines belonging to objects which have small

variation in depth, i.e. shallow structures.

An approach which avoids the extraction of symbolic tokens is the use of direct image
methods, e.g. active contours or snakes. In their work on estimating surface shape and
curve tracking, Cipolla and Blake [23] do not rely on an explicit representation of object
geometry, and use a variation of active contours which they refer to as the B-spline snake.
The flexibility provided by the cubic B-spline representation in terms of local-effect and
smoothness discounts the need for internal energy and allows for a reduction in the number
of state variables, down to the number of control points. Similarly, physics-based model of

features, namely active contours, or snakes are developed by [17].

The tracking work described above does not handle predictable events where faces, lines,
or points may appear or disappear. Dickinson et al. [28] use an aspect prediction graph
together with a network of active contours. When the area of an active contour shrinks
below a threshold, it signals that a face is going to disappear. The aspect prediction graph
can be used to determine what changes should be made to the network of contours. In

contrast, our system works top-down using the pose to predict what features to track.

The registration system'’s feature indexing module is a lookup table that maps camera po-
sitions onto sets of visible features, in a manner similar to an aspect graph [8]. Although
the feature indexing table used in the experiments in this paper was derived by hand, algo-
rithms have been published for calculating aspect graphs for polygonal [11, 6], curved [10],
and articulated object models. Bowyer and Dyer [4] provide a thorough review of aspect

graph computation techniques.

Although the use of aspect graphs is not new (e.g. [5, 7]), most systems do not limit their
complexity by using a coarse quantization of the view sphere. A coarse quantization is
acceptable for tracking because it is not necessary to track every feature that is visible from

a given viewing position.

For computing pose from 2D-3D correspondences, there are a number of other standard
algorithms that could be used, e.g. [3, 25, 26]. In addition, there has been some other work
on using robust statistics for computing pose, e.g. [27, 1]. In the work of Fischler and Bolles,
subsets of size three are used to compute estimates of the pose and maximal subsets which
are consistent with each estimate are found. The value with the largest consistent subset is

chosen. For a more detailed review see [2].



A few researchers have examined a complete registration system. Notable among them
are (20, 18, 21]. Alternative approaches that are bottom-up and image independent have
been studied by [28] and have been reviewed earlier in this section. Gennery describes a
registration system where they tracks known 3D objects. Although they employ Kalman
filter style prediction for pose, the tracking system is edge based. Similarly Walters employs
a kalman filter for feature prediction and closes a feedback loop around the pose of the
object. Gennery uses multiple frames to compute pose and uses features as weights in the
covariance matrix. Verghese develops an interesting system where registration is performed
using two approaches, the first is called a motion searching paradigm where changes in the
feature configurations (i.e. edges) are used to hypothesize changes in the pose space and
the pose with least change is selected. In the second method changes in the feature space
are used to compute changes in pose space directly. In this sense the registration system
presented in this paper is based on a motion calculation paradigm. However, unlike any of
the above approaches we use a robust localization scheme that is tolerant to arbitrary feature
rotations in 2D. Further we use both edge and image data to localize image features. Further,
use of edge information significantly reduces the search space and feature mismatches. Pose
computation from tracked model-image correspondences employed robust statistical methods

that results in a stable registration system.

3 Registration System Components

As shown in Figure 1, the registration system is composed of three basic modules: tracking,
feature indexing, and pose estimation. In this section we describe each of these components
individually, paying particular attention to the tracking module which contains novel ele-
ments (the pose determination module is as presented by Kumar (2], and the feature indexing
module is quite simple). In Section 4 we describe how the modules interact, focusing on the

underlying sources of error and how each module compensates for the others.

3.1 Tracking

The tracking module localizes a set of feature templates in a newly acquired image given
hypothesized 2D feature locations. Within the context of the registration system, the hy-
pothesized 2D locations are the positions of features (templates) in the previous image. The

role of the tracking module is to find the position of the templates in the new image, by



searching windows around their previous positions. The size of the search window is a crit-
ical parameter: it determines the maximum displacement between the previous and new
feature position, and therefore the amount of image motion that is allowed between frames.
Unfortunately, the rate of tracking is inversely proportional to the search window size, so
there is a tension between allowing greater inter-frame motions and processing more frames

per second.

The basic algorithm for matching templates to image patches is a combination of normalized

cross-correlation and steerable filters. The intuition behind normalized cross-correlation is
that the incident light falling on a small patch of a single image is approximately constant,

but that the incident light may change from frame to frame. By normalizing each pixel, it is
possible to correlate relative changes in intensity, which are less sensitive to temporal lighting
variations than the intensities themselves. The normalized cross-correlation of a template
(image patch) 7(z,y) over a set with an image y(z,y) over the set at a location (3, ) is given

in a computationally efficient form by

2+ 3 7(m—1,n—j)*y(m,n)

; §) = 1
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Theoretically, this measure assumes that the surfaces in the environment are Lambertian,
that they can be locally approximated by a plane, and that the illumination incident on the
surfaces can be locally approximated by a constant. Under these assumptions the correlation
measure is normalized in that it is independent of the illumination incident on the surface.
However, good experimental results have been obtained with this measure on surfaces that
are only weakly Lambertian (see [15] for a derivation and [16] for experiments with this

measure).

However, normalized cross-correlation degrades when there is a relative rotation between
the templates and image patches. Figure 2(i) illustrates this problem. A template of size
15215 was extracted in Frame 0 at the center of the small rectangle. This template is

then correlated over a 43243 search window in each subsequent frame (numbered by the



rotation in degrees with respect to frame 0) within the ia.rge rectangles. After 15° of rotation
the template begins to mismatch and never matches again. Figure 3 plots the percentage
correlation error (w.r.t. the auto-correlation of the template) over these rotations. The error
increases dramatically and then stays high at all the mismatches. Further the degree of
rotational tolerance varies only slightly with changing template sizes and search windows

with larger templates being less tolerant to rotations.

To compensate for 2D rotations it is sufficient to note that equation 1 is linear shift invariant
in cartesian space and hence is translation invariant. Equivalently, linear shift invariance in
polar space is equivalent to rotational invariance in cartesian space and we formulate an

equivalent correlation expression in polar space.

A feature template is defined as a pair (r,0;) where 7 is an image patch centered over a
dominant image edge and .¢[—=,w] is the phase of the maximum response of a steered
gaussian derivative filter [19] with the edge at the patch center. Templates are then localized

within a search window v in a new image as follows:

1. Spatial gradients and their orientations are computed by filtering 4 with steerable
Gaussian derivative filters and suppressing non-maximal edges within the search win-

dow.

2. Each local maximal edge location (2, 7) in - is a potential candidate for the new location
of the template, and normalized correlation in polar space is used to identify the best

match.

Normalized correlation (described in equation 1) is computed in polar coordinates parametrized
by radius(p) and angle(#); however, the image and templates are parametrized by row and
column. The expression in polar coordinates equivalent to the numerator in equation 1 is
given by:

2
52

2 % Z T (Mo, o) * ¥ (my + 2,7y + )
p=0,6=0

where mo = p * cos(8 + 6;), no = p * sin(6 + 6;),m, = p* cos(8 + 6;), n1 = p * sin(0 + 6;) and
f;¢ [—m, 7] is the orientation response at (z,7). The equivalent term for the denominator in

equation 1 can be determined similarly.

The advantage of using steerable filters is that they can be represented as a set of basis

filters from which an arbitrary orientation of a template can be estimated [19]. For edges,
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Figure 4: Two templates are used to capture lines.

first derivatives of Gaussian masks can be used. Their performance is better than that of
box filters, for example, when there are non-step edges. While polar correlation compensates
for any changes in orientation of the feature there is, however, an issue of sampling and
interpolation accuracy when going from cartesian coordinates of the image to the polar
coordinates under which normalized correlation is performed. Accuracy is traded for speed to
a certain degree in the real-time applications we have investigated, and sampling is performed

without interpolation.

3.1.1 Performance of NCC-R

The performance of rotation compensated normalized cross-correlation (NCC-R) is observed
to be much better in terms of rotational tolerance. Figure 2(ii) illustrates the performance of
NCC-R under 2D rotation. Similar to the previous corresponding experiment templates of
size 15215 were extracted from frame 0 and then correlated in search windows (represented
by the large rectangles). The small rectangles indicate the location of best match and NCC-R
is observed to correlate well over all rotations of the feature. Figure 3 shows the percentage
correlation error (w.r.t. the auto-correlation value of the template) for varying rotations.
Note that this value fluctuates due to the integer discretization of rotation space but never
exceeds 0.05%. Unlike normalized cross-correlation however, NCC-R can correlate under
arbitrary 2D rotations up-to the discretization of rotation and has been observed to work

well with varying search windows and template sizes.

3.1.2 Template Aggregates and Features
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Figure 5: Using templates to represent an image curve

The definition of a template used by the NCC-R algorithm is an edge centered image patch.
This specification can be used to capture features such as lines, curves or corners. It is
sufficient to use two templates to define an image line. Figure 4 illustrates this case. The
left picture shows a projected model, and the filled rectangles show the templates. The right
picture shows the lines defined by the template. Similarly, curves can be approximated by
using piecewise straight line approximations between templates. Points of high curvature are
used as locations for templates and the curve is then represented as a list of line segments
joining the templates. Figure 5 illustrates this case. The templates and the curve they define

are plotted in the picture.

Corners are a special case. Note that first derivative operators will typically fail at the corner.
However, it is possible to assign to the template an angle from any one of the edges leading
to the corner. The reason this strategy works in tracking corners is because, rotations are
needed only to determine a sampling order and it does not matter what angle is chosen, so
long as it falls on an edge. During the localization process in a search window, a match is
still found at the right spot, if there exists a location in the search window that corresponds
to the sampled point. Alternatively, higher order filters may be used, at the expense of

increased computation and noise.

3.2 Pose Estimation

The pose estimation module finds the transformation (both rotation and translation) that
maps a set of 3D model points onto the observed image points. The transformation is what
registers the artificial world to the real one, and is therefore the goal of the registration
system. At the same time, this transformation is used as an index into the feature index
table to predict what image features should be visible in the next image, and is used to

project the corresponding points into the image frame as a starting point for the tracking

12



module.

The pose estimation module uses Kumar’s algorithm (2] to solve for the rotation and trans-
lation that maps a set of 3D model points onto corresponding 2D image points. Kumar’s
algorithm is an iterative approach that minimizes the squared image-plane distance from the
data points to the projected model points. The Levenberg-Marquart method is used to solve
this nonlinear optimization problem, starting from an initial "guess” of the approximate
object pose. For small inter-frame motions, the change in pose between successive images is
small enough that the pose from the previous image can be used as an initial guess in the
pose algorithm.

Pose estimation techniques such as the simple version of Kumar’s algorithm described above
work well when the correspondence between model and data points is correct. Unfortunately,
tracking errors will sometimes result in a model point being matched to an erroneous image
point. Even a single such outlier can have a large effect on the resulting pose. Robust
statistical approaches such as least median squares provide a powerful method to detect
mismatches and categorize them as outliers. These methods are typically better than image
based methods such as thresholding a correlation score which may vary from experiment
to experiment and feature to feature. NCC-R for example, can produce a high correlation
score at mismatches and thus a threshold will not work. Kumar used an approximation
to least median squares, where subsets of size N were sampled and transformations (both
rotation and translations, calculated together) were computed for these samples. The sample
which minimized the median of squares was used to eliminate outliers, and the final pose

was computed using the remaining set of correspondences.

The computational cost associated with the least median squares filter grows exponentially
with the number of k sized subsets considered, where k ranges from the size of the original set
down to 4 (the minimum required to compute pose). In practice, we generally compute pose
from sets of six points, allowing the computation to grow with the number of points tracked
(up to eight in the experiments investigated in this paper). With fast machines! (since the
pose computation is purely compute bound) and for up to eight tracked points, the time

expended in computing pose remains a fraction of the image acquisition and tracking time

and is amenable to real-time performance.

1We are currently running on a Sparc-2.
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3.3 Aspect Tables and Feature Indexing

As an object undergoes rotation with respect to the camera, features change in appearance,
and new features may appear while old ones disappear. The range of viewpoints over which a
set of features can be tracked is an aspect and an aspect table is used to encode sets of model
points that are visible from each aspect. This table therefore contains lists of model points
visible from the surface of a discretized sphere? encompassing the object, and is indexed
using the latitude and longitude. The number of aspects typically depends on how sensitive
the tracker is to rotation. The tracking module described above can handle at worst up to

20° of 3D rotation (see section 5.1 for experiments).

For this paper, model points were extracted manually and aspect tables were constructed off-
line. In addition to the model points the aspect table is also used to store feature templates.
At run-time, the current pose is used to determine the latitude and longitude. These angles
are discretized to index into an aspect and a set of 3D points and their corresponding
templates are extracted extracted for points that appear new for this aspect. As stated in
the previous section these 3D points (transformed into the camera frame) are projected as

feature location hypotheses.

3.4 Adaptive Templates

Templates can be updated on the fly as tracking is in progress. However, if a template
mistracks updating it can result in system instability. Templates that match correctly i.e.
are not outliers are updated by cutting out appropriate portions of the current image. The
edge-detection and local-maxima operations ensure that this patch will be edge centered.
The median filtering step ensures that mismatched templates are not updated and feature

points that are detected as outliers continue to retain their old templates.

This technique has several advantages. First, fewer templates will have to be recompiled
thereby reducing the amount of memory required and making the system more robust to
lighting changes between experiments. Second, this allows for wider aspects. Thus a new
aspect is needed only when a new feature point appears or a current one disappears. Third,
adaptation makes the system handle incrementally the depth changes between the object and

the camera. In this paper the view hemisphere is discretized into 18 longitudes (representing

a 360° rotation) and 3 latitudes (representing a 90°) rotation. This discretization takes no

?For the experiments in this paper, the feature index table encompassed a viewing hemisphere, since the
object is not visible from below the table.
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consideration of the amount of rotation that the tracker can handle in 3D. It is purely based

on the appearance or disappearance of features.

4 Stability Analysis

Describing the three modules in isolation does not explain why the system as a whole has
bounded errors. To show that the system is stable, we have to consider all possible sources
of error or variation within the system. In this case, there are three such sources. The first
source of variation (which in this case is not an error) is image motion. On each iteration of
the loop, the system projects points based on the pose of the object in image N, and uses
these positions as starting points for the tracker in image N + 1. If the image motion of

points is greater than the size of the tracker’s search window, then tracking will fail.

The second source of variation is tracking error. There are several reasons why tracking
might fail: specular reflections might distort the appearance of the feature, an un-modeled
object might occlude the point being tracked, or the feature might not be unique enough,
so that another point matches the template as well or better than the intended feature.
Additionally, if the system was not configured properly, the underlying image motion could
imply that the tracked point is outside of the search window.

The third source of variance is pose computation error. As shown in simulation studies
by Kumar (2], the residual pose error resulting from simple noise in the positions of point
features is very small for most images. In practical systems, however, modeling errors and
camera calibration errors can create non-trivial pose errors; in our experiments, we have

noticed that projected model points may be off by as much as three or four pixels.

The stability of the overall system is guaranteed because the tracking module compensates
for pose error and image motion, while the pose modules compensates for tracking error. The
result is a system with bounded errors. To be precise, the median filter of the pose estimation
module identifies mistracked points and excludes them from the pose computation. Since the
starting point of the tracker on the next iteration is the projection of the model points from
the computed pose (rather than the tracking results from the previous image) and the outliers
were not used in the pose computation, tracking errors are not fed back into the tracker and
the system remains stable. Pose errors, on the other hand, are indistinguishable to the
tracker from image motion; they simply imply a disparity between the (slightly inaccurate)

projected feature positions for frame N and their actual positions in frame N + 1. One
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way to look at it is that the tracker never knows that the pose was wrong - it just tracks
the motion from the inaccurate computed positions to the new positions. As long as the
tracker’s search windows are big enough to accommodate the largest expected image motion

plus the pose error, the result of tracking is not effected by pose error.

Catastrophic failures are possible, of course. If the tracking module produces more errors
than the median filter was set to detect, an outlier will be included in the pose computation
and produce a grossly inaccurate pose. One circumstance that might create such simultane-
ous tracking failures is if the image motion is larger than the tracker’s search window size.
This is essentially a configuration problem: the search windows must be large enough to
account for the image motion plus the expected (typically small) pose error. Fortunately,
if such a catastrophic failure occurs it will be detected in the residual error of the pose

algorithm, and the user will be informed.

5 Experiments and Discussion

In this section we conduct experiments that demonstrate the performance of the tracking
module under mid-range rotations, illustrate failure modes of the tracker under un-modelled
events such as specularity, and demonstrate failure of tracking under least mean squares.
Then we demonstrate tracking using least median squares over a 180° rotation of the object

relative to the camera.

5.1 Midrange Feature Rotations and Tracking Failure Modes

Figures 6 and 7 show the performance of tracking under a 3D rotation. The object was
rotated in approximately five degree steps about the vertical axis and the frame numbering
indicates the rotation. Templates of size 929 were extracted from the frame numbered 40,
indicated by the small rectangle in the picture. The algorithm NCC-R was then applied in
a 31z31 window indicated by the large rectangle. In all frames except frame 40 the small
rectangle then indicates the location of best match. These frames must be read left and
right of frame 40 indicating positive and negative rotations about the midrange point. The
correlation withstands about +/ — 25° rotation about the midrange. As with the rotation
compensation experiments, the search window size did not affect the degree of rotation
tolerance. However, varying the the template size significantly changes the ability to tolerate

rotations. Under a template size of 21221 for example the rotation about midrange drops to
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Figure 6: Mlustration of performance of NCC-R under 3D feature rotation

+/ — 20°.

This experiment demonstrates that in the absence of unpredictable circumstances such as
specularity and occlusion for example and when the feature does not undergo a geometric
singularity under perspective projection, then NCC-R performs well even under 3D rotations.
Further, since the window sizes do not affect the degree of rotation tolerance for any given
template size, the tracking algorithm therefore can handle significant amounts of error in 2D

feature hypothesis. These errors as noted earlier may arise both from image motion as well
as poOs€ €rrors.

5.2 Registration employing Least Median Squares(LMS)

In section 3 we argued for the use of least median filtering as a robust technique for detecting
tracking errors that may arise from unpredictable events as opposed to least mean squares
which may fail under these circumstances. Figures 8 and 9 illustrate the failure of least
mean squares. In this experiment the object undergoes a rotation of about the vertical
axis and template numbered 66 encounters a specularity. The tables adjoining the figures
indicate the projection error associated with each template. The template sizes used in this

experiment were 15215 and search window sizes were 11z11. The frames shown here are
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Figure 7: Percentage correlation error (w.r.t. the autocorrelation value of the template) vs.
3D midrange Rotation using NCC-R

sampled every third frame out of a rotation sequence of approximately 1°. The first frame
indicates that all features are tracked correctly and the corresponding projection error is low.
In frame 2 specularity reaches the corner numbered 66 and the template mistracks. This is
indicated in the high projection error observed in the corresponding table. By the time the
rotation reaches frame sample 3 ( in figure 9 - three frames have past in between but have
not been shown for lack of space) almost all features except 2 and 47 mistrack as a result of
incorrectly template updates. The reason for this is that the pose is significantly off by this
frame especially features 66,69 and 70. In frame 4 we see that the projection errors drop.

At this point both the pose and tracking are in error and the system has become unstable.

Figures 10 and 11 demonstrate the corresponding sequence employing least median squares.
The template and search window sizes are exactly the same as above. In this sequence
however, the marked feature 66 is the projection after least median pose computation as
opposed to the tracked location. Throughout the entire sequence feature 66 is projected
correctly and in frame 3 both the projection and the tracked location are shown for this
feature. Observe that while the feature mistracks (the corresponding pose error is large) the
pose computed drops this feature from least median squares and as a result the projection
of the feature appears correctly albeit within a 3 pixel tolerance from the actual feature

location. Further none of the other features have mistracked and their corresponding pose

18
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Figure 8: Failure under least mean squares pose computation
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Figure 9: Failure under least mean squares (contd.)
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error is low indicating that the system is stable.

5.3 System Performance

Here we demonstrate the registration system traversing approximately 180° of rotation of the
object around the vertical axis. The tracker employed adaptive NCC-R as the localization
scheme and least median squares were used for pose computation. The number of features
tracked per aspect ranges from a low of 5 to a high of 8. Least median squares was used
when the number of features was greater than 5 and in other cases least mean squares was
employed. Figures 12,13,14 and 15 must be read in sequence and each of the figures must be
read in a text book fashion. The white markings are those of the tracked location on each

frame and there is approximately a 10° — 15° rotation from frame to frame.

Another important system issue is the measure of time spent in the tracking and pose com-
putation components. The timing results of NCC-R per template and the pose computation
are tabulated in figure 16. Note that for about eight templates the time spent in comput-
ing pose is only a fraction (5%) of the time spent in tracking. The additional overhead of
acquiring the image from the frame grabber is small compared to the tracking costs, since

only subsections of the image are transferred to the host.

6 Conclusions

Enhanced reality applications such as an interactive manual require the registration of the
real world with the observed imagery. Registration entails the computation of pose and the
ability to track object features over distinct aspects. Using an existing pose algorithm, a
new tracking algorithm and aspect tables we have shown that it is possible to construct such
a registration system that is stable and operates in real time. The tracking algorithm is
capable of handling rotations both in the image plane and in depth. Further, the tracker
compensates for pose errors that arise from modelling and calibration inaccuracies and the

least median pose algorithm compensates for tracking errors.

7 Limitations and Future Work

One of the limitations of our system is that pose computation is not predictive and therefore,

search window sizes must not only encompass pose errors but also image motion. Kalman fil-
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Figure 12: Registration under a 180° rotation
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Figure 13: Registration under a 180° rotation(contd.)
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Figure 14: Registration under a 180° rotation(contd.)
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Figure 15: Registration under a 180° rotation(contd.)
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Figure 16: Execution times for Tracking and Pose on a host in Milliseconds

tering style prediction have been studied by a number of authors and incorporating a kalman
filter is the next immediate step. Note however that in an enhanced reality application the
agent is normally a human and it may therefore not be possible to use a low-order dynamical

model. Examining the performance of a extended-kalman filter would be an interesting step.

A second extension to the project is the automatic extraction of feature templates. Tomasi’s
work lays a basis for measuring feature dissimilarity over small frames of motion. Small
dissimilarities over a range of motion typically yield a good feature. This work is currently
under examination.

Finally alternative techniques such as M-estimation that provide a faster computation and

yet are robust statistical methods need to be examined for pose computation.
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