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Abstract

This paper considers two properties of graphs, one geometrical and one topolog-
ical, and shows that they are strongly related. Let G be a graph with four distin-
guished and distinct vertices, wy, ws, by, by. Consider the two properties, TRI(G)
and MONO(G), defined as follows.

TRI*(G): There is a planar drawing of G such that:

e all 3-cycles of G are faces;

e all faces of GG are triangles except for the single face which is the
4-cycle (wy; — by — wy — by — wy).

MONO(G): G contains the 4-cycle (w; — by — wy — by — wy), and for any
labeling of the vertices of G by the colors {white, black}, such that w,
and w, are white, while b; and b, are black, precisely one of the following

holds.

e There is a path of white vertices connecting w; and ws,.
e There is a path of black vertices connecting b; and b,.
Our main result is that a graph G enjoys property TRI*(G) if, and only if, it is

minimal with respect to property MONQ. Building on this, we show that one can
decide in polynomial time whether or not a given graph G has property MONO(G).
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1 Introduction

We consider drawings of simple graphs on the plane and on orientable surfaces. In a
drawing G of a graph G on an orientable surface, a vertex v is represented by a point,
and an edge between vertices u and v (denoted u — v) is represented by a curve joining
its two endpoints. Two such curves do not intersect, except perhaps at their endpoints.
When we delete from the surface all points and curves of G, the surface is partitioned to
(one or more) connected components called faces. If the topological boundary of a face
is a cycle of G, we sometimes do not distinguish between the face and the cycle, referring
to the cycle as a face.

Let ¥ be a property of graphs. We say that a graph G is minimal with respect to ¥
if G satisfies ¥ and any proper subgraph of G does not satisfy .

A g-graph is a simple graph with four distinguished and distinct vertices wy, ws, by,
and by which form a 4-cycle (w; — by — wy — by — wy). We refer to this 4-cycle as the
principal cycle of G, and to the edges and vertices of the cycle as the principal edges and
vertices. Other edges and vertices of G are nonprincipal.

A g-path in a g-graph G is a path! whose endpoints are either (wi,ws) or (b, bs).
A walid coloring of G is a labeling of the vertices of G by the colors {white, black} in
such a way that vertices w; and w, are labeled white, and vertices b; and b, are labeled
black. This paper is devoted to exposing strong interrelationships among the following
properties of g-graphs.

TRI(G): There is a planar drawing of G in which all faces are triangles, except for one

face, which is the principal cycle.

TRI'(G): There is a drawing of G on an orientable surface such that all faces are trian-
gles, except for one face which is the principal cycle.

TRI*(G): There is a planar drawing of G as per property 7RI, and, in addition, every
3-cycle is a face. (Thomassen [2] used property TRI™ to study 2-linked graphs. A
graph satisfying TRI™" is called there a rb.)

MONO'(G): Any valid coloring of G has a monochromatic g-path.

MONO(G): MONO'(G) holds, and, additionally, no valid coloring of G has both a
white g-path and a black g-path.

1A pathin a graph G is a sequence of vertices, wherein adjacent vertices are connected by an edge in
G. A path is stmple if no vertex occurs more than once. The length of the path is the number of edges,
i.e., one less than the number of vertices.
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Figure 1: Transforming an instance of Shannon’s game into a g-game. (a) Shannon’s
game. (b) Overlaying the dual graph. (c) Replacing crossings with vertices.

Our main results demonstrate the following relationships among these properties.

1. If TRI'(G) holds, then MONO'(G) holds.
2. TRIT(QG) holds if, and only if, G is minimal with respect to property MONO.

Building on these results, we show that one can decide in polynomial time whether or
not a given graph G enjoys property MONO.

The stimulus for this study comes from a two-player path-construction game that gen-
eralizes several other games, namely, Hex, Bridgit and the Shannon Switching Game [1].
This generalized game—Ilet us call it a ¢g-game—is played on a g-graph G. The game
begins with G in an #niteal configuration:

e Some vertices of GG, in particular, b; and by, are colored black;
e some vertices of GG, in particular, w; and ws, are colored white;

e all other vertices of G are uncolored.

The two players, called Black and Whate, alternately select an uncolored vertex and color
it with their own color. The game concludes when all vertices are colored. Player Black
(resp., Player White) wins if there is a black (resp., a white) g-path and no white (resp.,
no black) g-path in the fully colored G; otherwise, the game is a tie. In this context,
property MONO(G) means that there is no tie in a g-game based on the graph G.



Let us see how the g-game generalizes Shannon’s Switching Game. Shannon’s game is
based on a graph K having two distinguished vertices: 4+ and —. The two players, called
Short and Clut, alternately select an unclaimed edge and claim it. The game concludes
with Short winning if he owns a + to — path; otherwise, Cut wins.

If K is a planar graph, drawn so that vertices + and — lie on the same face, then
there is a g-game that generalizes the Shannon game. The g-graph and its initial coloring
are constructed as follows. Add to the drawing of K an edge from vertex + to vertex
—, drawn within the face that has both vertices. Call the augmented graph K’. On
the drawing of K’, overlay the (geometric) dual of K'; see Figure 1. Now, replace each
edge-crossing in the augmented drawing with a vertex, and add the principal edges (these
edges are missing in Figure 1). In the initial configuration, color the vertices of K’ black
and the vertices of the dual graph white, and leave the crossing vertices uncolored.

2 Property TRI(G) Implies Property MONO(G)
Theorem 2.1 If TRI'(G) holds, then MONO'(G) holds.

Proof: Let G be a drawing of G as provided by property TRI'. Let us augment G
by adding the edge w; — wy drawn within the face (w; — by — wy — by — w;). We call the
augmented drawing G*, and, by extension, we call the new depicted graph G*. (Note
that graph G™ may be not simple.) Clearly, all faces of G* are triangles.

Consider now the multigraph G* that is the geometrical dual [3] of GT: the vertices
of G* are the faces of G*, and the edges of G* are in one-to-one correspondence with

edges shared by faces of G*. For each edge e of G*, let e° denote the corresponding edge
of G*.

Let a valid coloring of graph G be given. In the resulting colored drawing, an edge
or a face of GT is called bichromatic if it has both black and white vertices. Define the
bichromatic subgraph K = (V, E) of G* by:

V = {v|wis a bichromatic face of G}
E = {e| €°is a bichromatic edge of G*}

Since every face of G is a triangle, every vertex of K has degree exactly two; hence, K
is a collection of disjoint simple cycles.

Let C = (vo —v1 — -+ — vp_1 — ) be a cycle of K. Define the “circular list”
Cp = (zo,Z1,...,&n_1,20) of white vertices of G by

z; = the white vertex on the edge (v; — v;;1)° of G*



Figure 2: Construction of C,,.

(where addition on subscripts is modulo n). Let ;, z;1; be any two consecutive vertices
of Cy. If the face v;;; has exactly one white vertex, then z; = z;1; (see Figure 2(a));
alternatively, if the face v;1; has two white vertices, then z; and #;,; are neighbors in
G (see Figure 2(b)). Let C, be the cycle in G* obtained by contracting each block
of consecutive identical copies of a vertex z in C, to a single copy of z. (é'w 1s not
necessarily a simple cycle.) Dually, we can define the “circular list” Cj of black vertices
of C, and the associated contracted cycle G of black vertices in G.

Consider the triangles ¢; = (w; — wy — by — wy) and ¢y = (w; — wy — by — wy ), which
are faces of GT, hence vertices of K. Let C be the cycle of K which contains triangle ¢;.
On the one hand, if cycle C also contains triangle ¢5, then both b; and b, are in Ch, so
that é'b contains a path P of black vertices connecting b; and b,y. Since path P does not
use the edge w; — wy, it is a path in the original graph G. On the other hand, if cycle C
does not contain triangle ¢,, then the edge w; — wy appears exactly once in C,. Hence,
é'w contains a path of white vertices connecting w; and wy; which does not use the edge
w; — Ws.

We have thus shown that graph G has property MONO'(G). O

Note that the proof does not use the fact that graph G is drawn on an orientable
surface. Hence, Theorem 2.1 holds for graphs drawn on any two-dimensional manifold.

Since a planar g-graph clearly cannot have two disjoint g-paths, one with endpoints
(b1,by) and one with endpoints (w;,ws), Theorem 2.1 actually implies the following.

Lemma 2.2 If TRI(G) holds, then MONO(G) holds.

3 TRI"(G) Holds iff G Is MONO-Minimal

Let G be a graph and @ a set of vertices and edges of G. Let us denote by G\@ the
subgraph of G generated by removing: all edges of Q; all vertices of ) as well as their



incident edges.

Let G be a q-graph. We say that G’ is a g-subgraph of G if G’ is a subgraph of G and
a g-graph (having the same principal vertices as G).

A trail T of a gq-graph G is a simple path in G such that:

1. The endpoints of T are (wy,ws) or (b1, bs); i.e., T is a g-path.
2. T does not contain the other two principal vertices.

3. For any vertices v and v of T: if v and v are adjacent in G, then u and v are
adjacent in 7.

Lemma 3.1 Let G be a g-graph and P a g-path in G whose only principal vertices
are its endpoints. Then there a trail T in G whose vertez-set 1s a subset of the vertez-set

of P.

Proof: We lose no generality by assuming that P is a b;-to-by q-path. Let P’ be the
subgraph of G induced by the vertex-set of P. One verifies easily that any minimal-length
bi-to-b, path in P’ is a trail in G. O

A consequence of Lemma 3.1 is that any q-graph having property MONQO has a trail.

Lemma 3.2 Let MONO(G) hold, and let T be a by-to-by trail in G. Then:
(a) wi and wy are not connected in G\T.
(b) Any simple by-to-by path in G whose vertez-set is a subset of T'’s coincides with T.

(c¢) For any nonprincipal vertex v of T, there is a wi-to-w, trail T' such that v is the
only vertex common to T and T".

(d) Every g-subgraph of G that has property MONO(G) has trail T as a subgraph.

Clearly, by symmetry, we may interchange the roles of (wy,ws) and (b1, bs) in the
lemma.

Proof:

(a) If w; and wy were connected in G\T', then one would be able to color G in a way that
simultaneously produces a white and a black g-path, contradicting property MONO(G).

(b) Let P = (ug — ua — -+ — Uy, ) be a simple by-to-by path whose vertices all appear in
trail T = (v; — vy — -+ — vy,). Assume that P # T, and let ¢ be the smallest index such



that u; # v;. Clearly, then, vertices u;_; and u; are adjacent in G but are not adjacent
in T, contradicting the definition of “trail.”

(c) Let C be the valid coloring of G whose only black vertices are the vertices of T\ {v}.
By (b), G cannot have a black g-path under coloring C. Because MONO(G) holds,
then, G must have a white g-path under coloring C; in fact, by Lemma 3.1, G must have
a white trail 7'. By (a), trail 7’ must intersect trail 7. Since v is the only white vertex
of T under coloring C, it must be the only vertex common to trails 7' and 7".

(d) Assume, for contradiction, that the g-subgraph G’ of G has property MONO(G')
but does not contain trail 7' as a subgraph. Let C' be the coloring of G’ that colors all
vertices of T'N G’ black and colors all other vertices white. By (b), G’ cannot have a
black g-path under coloring C. Since G' has property MONO(G'), it must contain a
white g-path P under coloring C'. However, such a path P would be a path in G that is
disjoint from trail 7. By (a), such a path cannot exist. O

In what follows, we concentrate on b;-to-b, trails for definiteness. The entire develop-
ment dualizes to w;-to-wy trails by interchanging the roles of the principal sets {b;, b2}
and {w;,w,}.

Let G be a g-graph, and let T' be a b;-to-b, trail in G. Define the following subgraphs
of G.
A&T) = the connected component of G\T that contains principal vertex w;.

AgT) def

= the connected component of G\T that contains principal vertex ws.
x@ = a\(Tu A" u A

Note that the four graphs T, A&T), AgT), and X(T) form a partition of G: the graphs
collectively contain all vertices of G, while property MONO(G) implies that the graphs
are disjoint.

Given GG and T as above, define the g-graphs G&T) and GgT) as follows. For z = 1,2,
let Gt = G\(AZ(T) U XT)). Construct the graph GZ(T) by adding to G} the vertex w;, as
well as the edges w; — t for every vertex t of T'. See Figure 3.

Lemma 3.3 If MONO(G) holds, and if T is a trail in G, then both MONO(G')
and MONO(GS") hold.

Proof: By symmetry, it suffices to establish that MONO(G&T)) holds. To this end,
let C be a valid coloring of G&T). Extend C to a coloring of G by labeling all vertices of
A&T) U XT) white.
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Figure 3: Construction of G&T): (a) G and T, (b) G, (c) G&T).

Now, if MONO(G) holds, then G has a monochromatic g-path P. If P is a black
g-path, then P is a subgraph of G&T). Alternatively, if P is a white g-path, then by
Lemma 3.2.a, P intersects T'. From the way we have constructed G&T), it should be clear
that, in this case, we can construct a white g-path in G&T) from P. (In short, we replace
an initial segment of P by the edge from w; to the last vertex of T that appears in P.)
We have thus shown that MONO'(G&T)) holds.

To finish the proof, we must show that G&T) never simultaneously has both a black
g-path and a white one. Assume, for contradiction, that, under coloring C, G&T) does
simultaneously contain the black g-path P® and the white g-path P*). Then P®)
is a black g-path in G; moreover, Lemma 3.2.c assures us that we can use P(®) to
construct a white g-path in G that coexists with P(®). This, however, contradicts property
MONO(G). O

We are finally ready for our weak converse to Lemma 2.2.

Lemma 3.4 If MONO(G) holds, then G has a g-subgraph G' for which TRI(G')
holds.

Proof: We prove the lemma by induction on the number of vertices of G. If G has no
more than four vertices, then direct inspection verifies that T RI(G) holds. Henceforth,
therefore, we assume that G has more than four vertices, and we consider five exhaustive,
but not necessarily disjoint, cases.

Case 1. G has a traidl T' such that both A&T) and AgT) have at least two vertices.

With no loss of generality, say that T is a b;-to-by trail. Now, since MONO(G) holds,
Lemma 3.3 assures us that both MONO(G&T)) and MONO(GQT)) hold also. Let us
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Figure 4: Construction of G: (a) G and T, (b) G, (c) G» and Gy, (d) G.

focus on G&T). (A symmetric analysis can be done for for GgT).) Since G&T) has fewer
vertices than G, our induction hypothesis guarantees that it has a g-subgraph K; that has

property TRI(K;). By Lemma 2.2, then, MONO(K,) holds. Hence, by Lemma 3.2.d,
trail T is a subgraph of K;, and w; — T — w; is a simple cycle in Kj.

Let G; be a planar drawing of K; whose external face is the principal cycle (of G),
which goes in the clockwise direction. Generate G; from G; by removing vertex wy, all
edges incident to w;, and all other vertices and edges that reside in the internal domain
of the plane bounded by the simple cycle? (w; — T — w,). See Figure 4. All faces of G,
are triangles, except for the external face (wy — T'— w3). In a similar way, construct the
planar drawing G, whose external face is (w; — T — w;). Merge drawings G; and G, into
a single drawing G by identifying each vertex of T' in G; with the corresponding vertex
in Go. Note that since T is a trail, this merging does not duplicate edges of the original
graph®. Hence, G is a planar drawing of a q-subgraph G’ of G that witnesses property
TRI(G").

Case 2. G has a trail of length one.
This case is immediate.
Case 3. G has a traidl T of length two.

Say that T' = (b; —t — by) for some vertex t of G. If each of A&T) and AgT) has at least two
vertices, then we can just invoke Case 1. Assume, therefore, that one of these graphs,
say A&TS, has only one vertex—which must be principal vertex w;. In this case, vertex
w; has precisely three neighbors: vertices by, by, and .

Consider the g-graph G = G\{w,} where t replaces w; as a principal vertex. We
claim that MONO(G") holds. To verify this claim, let C' be any valid coloring of G”.

2 Actually, there are no other vertices and edges, but we do not need this fact.
30therwise, edges short-circuiting vertices of T may be duplicated.



Extend C to a valid coloring of G by labeling vertex w; white. Let P be any monochro-
matic g-path in G (which must exist by property MONO(G)). On the one hand, if P is
a black g-path in G, then it is a subgraph of G”; on the other hand, if P is a white g-path
in G, then P\{w,;} is a white g-path in G”. Now, G" cannot simultaneously have both
a white g-path P®) and a black g-path P®) or else G would also have paths of both
colors, contradicting property MONO(G). To wit, path P®) would be a black g-path in
G, while path (w; — P™)) would be a white g-path in G.

Since G" has one fewer vertex than G, there is a planar drawing G of a g-subgraph
G®) of G”, that witnesses property T RI(G®)). Let us alter this drawing as follows. In the
face (t — by —wy — by —t), add vertex w; and the edges w; — by, wy; — by, and w; —¢. Easily,
this altered drawing depicts a g-subgraph G*) of G, that witnesses property T RI(G*)).

Case 4. G has a trail T of length greater than three.

Denote T by T'= (by = t; —ty —t3 — -+ — t, = by), where n > 4. Lemma 3.2.c assures
us that there is a w;-to-w, trail T’ that shares precisely vertex t3 with 7. It follows that

vertex ty € AgT'), and vertex t, € A&T'); therefore, Case 1 applies.

Case 5. All trails of G are of length three.
For any vertex v of G, denote by I'(v) the set of neighbors of v, and define:

.s('u)d:ef Z 1+ Z 7.

w; €L(v) b;el(v)

Let C be the valid coloring of G wherein a nonprincipal vertex v is labeled white if, and
only if, s(v) is even. Since G has a monochromatic g-path, it has a monochromatic trail
T as well. Let us discuss only the case where T is a b;-to-b, trail; the proof of the other
case is similar. Let 7' = (b; = t; — ty — t3 — ts = by). We now infer several important
facts about the adjacencies of the vertices of T'.

Fact 1. Vertez ty is adjacent to by but not to by, and is adjacent to precisely one of
wy, Ws.
By Lemma 3.2.c, there is a w;-to-w, trail 7' (perforce, of length three) that shares
precisely vertex t, with trail 7. Therefore, vertex ¢, is adjacent to one of w; and ws.
Easily, t, cannot be adjacent to both w; and w,, nor to both b; and b,, since either such
double-adjacency would lead to a trail of length two in G.

Fact 2. Vertez t3 is adjacent to by but not to by, and is adjacent to precisely one of
wi,Wsa.
This follows by reasoning symmetric to Fact 1.

Fact 3. t, and t3 cannot be adjacent to the same vertez of {w;,wsy}.
Such common adjacency would imply that s(¢5) # s(t3) mod 2.

10
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Figure 5: The subgraph induced by T U {by, by, w1, w,}.

Facts 1-3 imply that the subgraph of G induced by the vertices of T'U {b;, by, w1, ws}
has the form depicted in Figure 5. One can see from this figure that both A&T) and AgT)
must each have at least two vertices. Therefore, the scenario of Case 1 holds.

Since the list of cases above is exhaustive, the lemma is proved. a
Lemma 3.5 If TRIT(G) holds, then G is minimal with respect to property TRI.

Proof: Let K and K’ be simple graphs (not q-graphs) such that K’ is a subgraph
of K, K' has at least four vertices, and both K and K’ have planar drawings such that
every face is a 3-cycle and every 3-cycle is a face. We claim that K = K'. To the end of
proving this, focus on a vertex v of K', and let N(v, K) (resp., N(v, K')) be the subgraph
of K (resp., of K') induced by the neighbors of v. Clearly, N(v, K) and N(v, K') are
simple cycles, and N(v, K') is a subgraph of N(v, K). Since no proper subgraph of a
simple cycle is a cycle, we must have N(v, K) = N(v, K'). (We have subtly used the fact
the K' has at least four vertices; since if K’ = K3 then N(v, K') is a single edge!) This
establishes that every vertex v of K’ has the same set of neighbors in K’ as it does in K.
Since K is connected and K’ not empty, we conclude that K = K.

Let us return now to g-graphs. Assume that TRI"(G) holds, and let G’ be any q-
subgraph of G that enjoys property TRI(G'). We need to show that G = G'. Clearly, G’
has a g-subgraph G” that enjoys property TRI*(G"). Let G be a planar drawing of G
that witnesses property TRIT(G). By drawing new vertices and edges in the principal
face of G, we can construct a planar drawing such that every face is a 3-cycle and every
3-cycle is a face. Let us call the graph depicted by this augmented drawing K. Now,
add the same vertices and edges to graph G”, and call the resulting graph K’. K and K’
satisfy the requirements of our claim in the preceding paragraph; hence, K = K'. The
equality of K and K’, however, implies that G = G". O

The preceding series of lemmas allows us to prove our main theorem.

11



Theorem 3.6 TRI*(G) holds if, and only if, G is minimal with respect to property
MONO.

Proof: Say first that TRI*(G) holds. By Lemma 2.2, MONO(G) holds also. As-
sume then, for contradiction, that G is not minimal with respect to property MONO;
in particular, let G’ be a proper g-subgraph of G that enjoys property MONO(G'). By
Lemma 3.4, there exists a g-subgraph G" of G' that enjoys property T RI(G"). But this
contradicts Lemma 3.5.

Say next that G is minimal with respect to property MONQO. Then, by Lemma 3.4,

TRI(G') holds for some g-subgraph G’ of G. It follows that TRI*"(G") holds for some
g-subgraph G” of G'. We have just shown, though, that property T RI*(G") implies that
G" is minimal with respect to property MONQO. Since G is also minimal with respect
to the property, we must have G = G". O

4 Property MONO is Decidable in Polynomial Time

Since property TRI*(G) can be verified in polynomial time, theorem 3.6 provides a
polynomial-time algorithm for deciding whether or not a given g-graph is minimal with
respect to property MONQO. We need some more technical lemmas to establish that
property MONO itself is polynomial-time decidable.

Let G be a q-graph. Define the g-subgraph G & <V, E’> of G, by:

Ty def . . . . .
V' = {v | v is a principal vertex or v is on some trail}

7 def . . . . .
E = {e| eis a principal edge or v is on some trail}

The next lemma establishes that any G that enjoys property MONQO has exactly one
MONO-minimal g-subgraph, which is the graph G.

Lemma 4.1 Assume that MONO(G) holds. Then G is the only g-subgraph of G
that 1s minemal with respect to property MONO.

Proof: By Lemma 3.2.d, any g-subgraph of G that enjoys property MONQ includes
G as a g-subgraph. Hence, we need only establish that MONO(G) holds.

To this end, let C be a valid coloring of G. Extend C in any way to a valid coloring of
G. Since MONO(G) holds, G has a monochromatic g-path; hence, by Lemma 3.1, G has

a monochromatic trail. By definition, this trail is a subgraph—hence, a monochromatic

12



q-path—of G. Of course, G could not have two conflicting monochromatic g-paths, or
else G would also. We conclude that G enjoys property MONO. O

Lemma 4.1 implies that, if G is minimal with respect to property MONQO, then any
nonprincipal edge of G is on a trail; moreover, the lemma combines with Lemma 3.2.c to
imply that any nonprincipal vertex of G is on both a w;-to-w, trail and a b;-to-by trail.

Lemma 4.2 If G is minimal with respect to property MONQ, then any two distinct
nonadjacent vertices of G are separated by a trail.*

Proof: Let u and v be any two distinct nonadjacent vertices of G. We consider the
following two cases:

Case 1: There 25 a trail T that contains both v and v.

Let z be a vertex of T that lies between u and v. By Lemma 3.2.c, there is a trail 7"
that shares precisely vertex z with 7. By Lemma 3.2.a, T separates u and v.

Case 2: No trail of G contains both v and v.

In this case, v and v must be nonprincipal vertices. Let T' be a b;-to-b, trail that contains
vertex v. Since G is MO N O-minimal, the arguments of Case 1 in the proof of Lemma 3.4
show that the graph X(T) is empty. Assume, with no loss of generality, that vertex u
belongs to the graph AgT). Let P be a v-to-w; path such that v is the only vertex common
to P and T'. Consider now the g-graph G&T). It is easy to verify by geometrical arguments
that G&T) enjoys property TRIT. (Start with a drawing of G that witnesses property
TRI*, and modify it as shown in Figure 3.) Let T’ be a b;-to-b, trail in G&T) that passes

through vertex u, and let P’ be a u-to-w, path in G&T) such that u is the only vertex
common to 7" and P’

Let us return now to graph G. T and 7" are trails in G which, respectively, avoid
vertices u and v; P and P’ are paths which both avoid (7' U T")\{u,v}. Consider the
valid coloring of G wherein vertices of (T'UT")\{u, v} are black and all other vertices are
white. Assume that G has a white g-path and, therefore, a white trail 7". Now, trail 7"
must intersect both 7" and 7"; hence, it must include both u and v. But this contradicts
the assumption that delineates this Case. We conclude, therefore, that G has a black
g-path and, therefore, a black trail T. Since T separates vertices w; and w,, and since
vertices u and v are connected to w; and w,, respectively, by paths that are disjoint to
T, we see that vertices u and v are separated by T. a

Lemma 4.3 (Thomassen [2]) If TRI*(G) holds, then, for any edge e that is not
in G, the graph (G U {e}) contains two disjoint g-paths.

“Vertices u and v of G are separated by trail T if any path connecting u and v contains a vertex of T.

13



Proof: We present here an alternative proof. Let e be the edge u —v. By Lemma 4.2,
there is a trail T in G that separates vertices u and v. Say, with no loss of generality, that
u € A&T) and v € AgT), and that T i1s a b;-to-b, trail. It follows that G contains a wi-to-u
path P; and a v-to-w, path P,, such that both paths avoid trail 7. One sees easily that,
in the graph (G U {e}), trail T" and path (P, — u — v — P,) are disjoint g-paths. O

For any q-graph G, we defined G® to be the graph generated from G by adding a
vertex 2z and four edges connecting z to the principal vertices. For any 3-cycle ¢ in G, let
G®) be the g-subgraph of G generated by removing (from G) all vertices not connected
to z in G®\t. A g-graph G is lean if for any 3-cycle t: G = G®. (In other words, for any
such t, every vertex of G\t is connected (in G\t) to some principal vertex.)

Lemma 4.4 For any g-graph G and any 3-cycle t in G: property MONO(G) holds
if, and only if, MONO(G®) holds.

Proof: Let Y be the set of vertices removed in the construction of G®). Let P be a
g-path in G that uses vertices of Y. Then there is a q-path P’ in G{*) whose vertex-set
is a subset of P’s, that has the same endpoints as P. This means that the vertices of Y
are superfluous, as far as monochromatic g-paths are concerned. a

Lemma 4.5 Any lean g-graph G enjoys property MON O(G) if, and only if, it enjoys
property TRI*(G).

Proof: By Lemma 2.2, property 7RI (G) implies property MONO(G). To establish
the converse, we assume that MONO(G) holds and show that G is M ONO-minimal.

Assume, for contradiction, that G # G. We claim that there is a path P in G whose
endpoints are nonadjacent vertices in G and all of whose other (“internal”) vertices
are not in G. If G has an edge that is not in G, then this edge is the required path;
otherwise, G has a vertex v that is not in G. Let X be the connected component of G\@
that contains v, and let I'(X) denote the set of neighbors of X in G. If T'(X) contains
two nonadjacent vertices, then we are done. Alternatively, I'(X) is a clique in G. Since
G does not include the 4-clique Kj, I'(X) is either empty or is one of the smaller cliques
K, Ky, or K3. Since every edge and vertex of G is on a 3-cycle, this contradicts the fact
that G is lean. This establishes the existence of the desired path P.

Now, if path P is a single edge, then G contains two disjoint g-paths by Lemma 4.3.
However, the same also holds when P is a path of several edges. This contradicts property

MONO(G). 0

Theorem 4.6 Property MONO 1is polynomaual-time decidable.
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Proof: Let a g-graph G be given. By Lemma 4.4, we can reduce GG in polynomial
time to a lean g-graph G’ that has property MONO if, and only if G does. Having G,
we can decide MONO(G) in polynomial time via Lemma 4.5. O
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