
Recovery Protocols for Shared Memory Database Systems

Lory D. Molesky and Krithi Ramamritham

Department of Computer Science
University of Massachusetts
Amherst MA 01003-4610

e-mail: lory@cs.umass.edu, krithi@cs.umass.edu

Abstract

Significant performance advantagescan be gained by implement-
ing a database system on a cache-coherent shared memory mul-
tiprocessor. However, problems arise when failures occur. A
single node (where a node refers to a processor/memory pair)
crash may require a reboot of the entire shared memory sys-
tem. Fortunately, shared memory multiprocessors that isolate
individual node failures are currently being developed. Even
with these, because of the side effects of the cache coherency
protocol, a transaction executing strictly on a single node may
become dependent on the validity of the memory of many nodes
thereby inducing unnecessary transaction aborts. This happens
when database objects, such as records, and database support
structures, such as index structures and shared lock tables, are
stored in shared memory.
In this paper, we propose crash recovery protocols for
shared memory database systems which avoid the unnecessary
transaction aborts induced by the effects of using shared physical
memory. Our recovery protocols guarantee that if one or more
nodes crash, all the effects of active transactions running on the
crashed nodes will be undone, and no effects of transactions
running on nodes which did not crash will be undone. In
order to show the practicality of our protocols, we discuss
how existing features of cache-coherent multiprocessors can be
utilized to implement these recovery protocols. Specifically,
we demonstrate that (1) for many types of database objects and
support structures, volatile (in-memory) logging is sufficient to
avoid unnecessary transaction aborts, and (2) a very low overhead
implementation of this strategy can be achieved with existing
multiprocessor features.

1 Introduction
Shared memory systems offer significant performance advantages
for applications which share data. But, when we consider how
applications that have failure resilience requirements can benefit

This research is funded in part by the National Science Foundation
under grant NSF IRI-9314376, and by Sun Microsystems’ Labs.

from cache-coherent shared memory (SM) systems, we find that
current crash recovery mechanisms are insufficient to support these
applications. With current mechanisms, a single node (where a
node refers to a processor/memory pair) crash is likely to require a
reboot of the entire shared memory system. Although the crash of
a single node in an SM system should be infrequent, in very large
systems if one node crash implies system failure, then the system
could be down quite often. Clearly, it will be beneficial to have
independent node failures whereby the crash of one node does not
cause the failure of other nodes.

One class of applications which will benefit immensely from
the provision of independent node failures is database applications.
Primarily because of the absence of support for independent node
failures, shared memory database implementations suffer from
recovery problems [1]. This is unfortunate because database
applications can easily exploit the performance advantages of shared
memory architectures.

While the support for independent node failures in an SM system
requires certain low-level mechanisms to be in place, such as
mechanisms to detect and isolate hardware faults [12], these alone
are not enough to guarantee that transactions are not unnecessarily
aborted due to node failures. These abortions can occur as side
effects of the cache coherency protocol. When a node crash occurs
(whereby the contents of the physical memory on the failed node are
destroyed), correctly recovering from the crash may require aborting
otherwise independent transactions which execute on other nodes.
These unnecessary transaction aborts can be avoided by appropriate
design of recovery protocols. This is our goal.

Our recovery protocols guarantee the failure atomicity of
transactions, yet avoid unnecessary transaction aborts. Specifically,
our recovery protocols guarantee that if one or more nodes crash,
all effects of active transactions running on the crashed nodes
will be undone, and no effects of transactions running on nodes
which did not crash will be undone. The key features of
these recovery protocols are (a) logging-before-migration (LBM)
policies, which enforce specific logging policies prior to the
migration of uncommitted data from one node to another, and
(b) recovery mechanisms for ensuring that the appropriate undo’s
and redo’s are performed. The volatile LBM policy helps
achieve our recovery goals with very low runtime overheads
and can be implemented with existing features of cache-coherent
multiprocessors.

Failure atomicity of a transaction, also called the all-or-nothing
property, means that either all or none of the transaction’s operations are
performed even when there are failures.

This paper is structured as follows. Section 2 discusses our
system and transaction model, and section 3 discusses how cache
coherency can complicate recovery. In section 4, we present
our recovery protocols and discuss how these protocols can be
applied to database objects, such as records, and database support
structures, such as index structures and lock tables. Techniques
for implementing the LBM policies on a cache-coherent shared
memory multiprocessor are discussed in section 5. Issues which
arise when integrating our recovery protocols with other transaction
processing components are discussed in section 6. A summary of
the overheads associated with our recovery protocols is presented in
section 7. Related work is discussed in section 8 and our conclusions
are presented in section 9.

2 System and Transaction Model
In an SM database system, each node is connected to all disks
in the system, and each node has access to shared memory.
We consider SM database implementations where the shared
memory is made coherent using a hardware-based cache coherency
protocol. Hardware-based cache coherency provides low latency,
high bandwidth access to shared memory, and ensures that each
node reads the most recent version of the data in the shared address
space. By utilizing these features of an SM system, it is possible to
construct high performance multiple node database systems.

The coherency protocol, implemented in hardware, ensures that
any read operation sees the most recently written value for any
data item. Each node has its own cache, and before an operation
is performed on a data item, the data item must first be brought
into the cache. In general, operation execution time is minimal
if the data item is already in the cache, more expensive if the
data item is in another node’s cache, and the most expensive if
the data item must be fetched from disk. Typically, the hardware
elements implementing the cachecoherencyscheme include a cache
controller, a cache directory,and the cache itself. The cache contains
the cached data, while the cache directory contains the addresses
of all cached data. Our discussions in this paper assume a write-
invalidate cache coherency protocol [2, 13] where, before a write
to a cache line by one node occurs, all other cached copies of the
line are first invalidated . However, a cache line could be valid in
multiple nodes after a series of read requests to that line have been
issued. While the unit of I/O is a page, the unit of coherency is a
cache line, and is typically smaller than a page.

Our recovery protocols rely on low-level hardware error detection
and recovery mechanisms. Although we are unaware of any
commercial multiprocessor which provides these mechanisms,
these mechanisms are currently under development in the context
of the Stanford FLASH (cache-coherent) multiprocessor research
project[12]. In FLASH, node failures are detected with a diagnostic
CPU in conjunction with various timeout mechanisms associated
with each memory controller and network router [6]. Once a node
failure is detected, all CPU’s are interrupted so that they stop issuing
requests, then a low-level recovery state is entered, which uses
the inter-connection network to restore the cache directories to a
consistent state – one which reflects the contents of the caches. Once
the low-level recovery mechanism restores the cache directories to
a consistent state, our (software) recovery protocols are employed
to ensure the failure atomicity of transactions.

Our results also apply to a write-broadcast cache coherency protocol.
We briefly discuss the implications of write-broadcast on recovery in section
7.

Consistent with most commercial database implementations, we
assume that:

Locking-based concurrency control is used. The basic lock
modes are shared and exclusive. An exclusive lock on a record

guarantees that no other transaction will read or modify ,
while a shared lock on ensures that no other transaction will
modify . Note that several shared requests on can be granted
concurrently.

No-force/steal buffer management policy is used [8].

Each node maintains a log, and in-place updating is used in
conjunction with the write-ahead log protocol (WAL) [3]. All
update operations to this log take place in the node’s cache. This
in-cache log is volatile, but can be made stable by writing it to
one of the shared disks. Since updates to the log are performed
only by the local system, with proper memory alignment (i.e.
a cache line which contains local log information stores no
other sharable information), we can ensure that local logs
do not migrate between systems. Figure 1 illustrates these
assumptions in the context of a cache-coherent shared memory
multiprocessor.

Stable Logs

...
CPU

Cache

Volatile Logs

I/O Interconnect

Cache Interconnect

Shared Disks
Figure 1: Multiprocessor System Model.

We focus on transaction workloads where independent transac-
tions execute entirely on a single node. Although an SM database
system is well suited for applications where a single (parallelized)
transaction executes on multiple nodes, the presentation of the re-
covery strategies is simplified under the assumption that each trans-
action executes on a single node. However, our results easily gen-
eralize to address transactions which execute on multiple nodes.

3 Failure Effects Induced by Cache
Coherency

Any data structure implemented in shared memory can be adversely
affected by the failure effects induced by a cache-coherency
protocol. In database systems, these data structures include
database objects, such as records, and database support structures,
such as index structures and shared tables. One case where these
failure effects can arise occurs when two or more records are stored
in the same cache line. Due to typical cache line sizes of current
shared memory multiprocessors, it is likely (unless a lot of space
is wasted) that multiple records will be stored in a cache line. For
example, on the KSR-1 and KSR-2 multiprocessors [24], and on
Stanford’s FLASH [12] distributed shared memory machine, the
cache line size is 128 bytes.

Under a write-invalidate cache-coherency protocol, when two or
more records stored in the same cache line are concurrently updated

by transactions runing on different nodes, the node where the last
update occurred will hold the only copy of these records. Due to this
access pattern, two types of failure effects occur: First, the crash of
one node may not result in the complete annulment of transactions
which execute strictly on the failed node. Second, the crash of one
node may destroy updates performed by transactions which execute
on other nodes.

Next, in section 3.1, we consider how typical database operations
can cause these failure effects to occur. After presenting these
simple examples, in section 3.2 we present the general patterns of
cache line references which may cause these failure effects. Section
3.3 discusses our approach to ensuring the failure atomicity of
transactions – one which does not incur unnecessary transaction
aborts.

3.1 Examples of Failure Effects
The following example illustrates one case where a transaction
executing on one node may become dependent on the validity of
memory on some other node. Assume records and are stored
in a single cache line, . Transaction (executing entirely on node

) locks, then updates record . Then, transaction (executing
on node) locks, then updates record . As a side effect of the
write-invalidate cache coherency protocol, the only copy of cache
line now resides on node . If node crashes, the control state
(registers, stack, etc.) of will be destroyed; but since migrated
to node , the uncommitted update to record will remain intact.
On the other hand, if node crashes, will be destroyed and even
though the node is executing on has not failed, the uncommitted
update to performed by will be destroyed. Thus, if either node

or node crashes, the failure atomicity of transactions may be
compromised.

These failure effects can also occur due to the sharing of database
support structures, such as database indexes, or tables used by lock
managers. Consider a shared memory implementation of a lock
manager, where, in order to properly acquire and release locks, each
node examines and updates information stored in shared memory.
In this situation, multiple entries which describe the acquisition of
database locks may be stored in a single cache line. For example,
suppose two active transactions, running on different nodes, have
acquired a lock on the same record (in shared mode). Further
suppose that the lock control block, the shared data structure which
contains the information describing the two holders of this lock, is
stored in one cache line. The last node to acquire this record lock
will hold the only copy of the lock control block. Without sufficient
recovery provisions, a crash of this node will result in the loss of
some of the information about locks granted to transactions running
on other nodes. This can also lead to a violation of the failure
atomicity of transactions.

3.2 Cache Line Migration and Replication
The previous examples have shown simple scenarios where
recovery problems arise when two or more objects are stored a
single cache line. In this section, we consider the general patterns
of data sharing which may cause recovery problems. First, we
consider coherency patterns due to ww (write-write) data sharing.
In a write-invalidate cache coherency protocol, ww sharing occurs
when writes by different nodes are issued to the same cache line.
In this case, a cache line migrates from one node to another. The
recovery scenarios discussed in 3.1 all fall into the category. Cache
line replication may occur when one node writes, then another node

reads (wr (write-read) data sharing) a particular cache line. Cases
of wr data sharing are especially important because these patterns of
coherency may occur due to references to cache lines which contain
only a single object.

Consider ww patterns of sharing. We use cache line histories to
consider in general how read and write operations on cache lines
affect the state transitions of the cache coherency protocol.

In , a cache line migrates directly from node to node
. In this case, a write by node to line () occurs, causing

line to be valid only in node ’s cache (recall our assumption of
a write-invalidate cache coherency protocol). The next operation
issued on line is a write by node , causing to be invalidated in
all other caches (), and held exclusively in node ’s cache.

shows how intermediate read operations can cause the
state of to be held in shared mode (in potentially many caches)
between the and operations. This shared state of may
occur after occurs, zero or more reads on are issued by node

, one read is issued by some node other than (), and zero or
more read operations are issued by any other node (as indicated in
the above history).

wr sharing occurs when a write to a line by one node is followed
by a read to that line by another node:

In , node writes , then node reads . At this point,
line will be replicated – valid on both nodes and . Some of
the recovery problems which arise in wr data sharing also arise
in ww data sharing. For example, in , the crash of node

will leave uncommitted updates on node – requiring certain
undo operations to complete the abort of transactions running on
node . For database records, may occur under the following
conditions:

If dirty reads are not allowed (as in serializability or cursor
stability [7]), when two or more database objects are stored in
the same cache line.
If dirty reads are allowed (as in browseor chaos [7]), even when
a single database object is stored in a cache line.

Thus, if dirty reads are allowed, the recovery problems due to
cache coherency cannot possibly be avoided merely by storing at
most one object per cache line. This applies to browsing database
records, and for database support structures,where it is not necessary
to ensure even browse mode.

To simplify our presentation, in section 4, our recovery examples
are cast in the form of . However, our recovery protocols are
also designed to handle the data sharing patterns posed by histories

and . We revisit these histories when we discuss the
enforcement of our logging policies in section 5.

3.3 Isolated Failure Atomicity
In the event of a node crash in a cache-coherent SM database,
one way to ensure the failure atomicity of transactions would be
to abort all transactions which are dependent on the memory of
remote nodes. But this method is overkill, since unnecessary
transaction aborts are incurred. Instead, our recovery protocols

guarantee Isolated Failure Atomicity (IFA), by ensuring the failure
atomicity of transactions, yet avoid unnecessary transaction aborts.
IFA ensures that if one or more nodes crash, all effects of active
transactions running on the crashed nodes will be undone, and no
effects of transactions running on nodes which did not crash will be
undone.

Ensuring IFA is particularly important in large multiprocessors,
where the number of active transactions may be very large. Very
large multiprocessors are feasible, as evidenced by the KSR-1
multiprocessor [24] which can be configured as large as 1,088 nodes.
In such as system, it is conceivable that a single node failure would
affect thousands of active transactions.

Furthermore, in geographically dispersed DSM (distributed
shared memory) multiprocessors, the probability of a node failure
is likely to be much higher than in a tightly-coupled multiprocessor.
Consider a scenario where a user has the capability to "plug into"
a DSM network. In this scenario, users would also be at liberty
to powerdown their machines at any point, essentially simulating a
node crash. If IFA were not guaranteed, it would be unlikely that
these types of geographically dispersed DSM networks would be
accepted by a large group of users.

4 Transaction Recovery in Shared Memory
Database Systems

In this section, we propose SM crash recovery protocols which
ensure IFA. Recovery protocols are generally comprised of two
main mechanisms. The first takes the necessary steps to facilitate
recovery at some future point in time. It ensures that sufficient
information is available for the recovery procedure to re-establish a
consistent database state. The second undertakes the actual recovery
when needed, i.e., it restores the database to a consistent state after
a node crash. We discuss these mechanisms in detail in section
4.1, in the context of providing recovery support to guarantee IFA
for database objects. Section 4.2 considers additional issues which
arise when IFA is ensured for database management structures.

4.1 Recovery of Database Objects
We assume that the possible operations on database objects (records)
are read and write. Our recovery protocols make use of many
of the mechanisms used in existing commercial database systems,
including certain logging techniques, in-place updating, the WAL
protocol, and the use of strict 2PL to ensure serializability. By
utilizing mechanisms and structures which are already part of the
database management system, the incremental costs associated with
adopting our recovery protocols are minimized. For example, our
LBM policies exploit the existence of undo and redo log records
which are part of most database systems [8]. When a database record
is updated, a redo log record (containing the value of the updated
database record) is written to the volatile log. When a transaction
first performs an update to a database record, an undo log record is
written to the volatile log. This undo log record contains the before
image (the last committed value) of the database record. To ensure
the WAL protocol, prior to updating the disk version of a database
record, the associated undo log record must be forced to stable store.

In the context of the WAL protocol, the assumption of strict 2PL
allows transaction aborts to be implemented by simply replacing all
the data touched by a transaction with their before images. Under
strict 2PL, record locks are not released until after a transaction
either commits or aborts. These protocols simplify recovery by
ensuring that, at any time, only one transaction is associated with

a particular uncommitted data item, and all before images exist in
stable store. These assumptions also allow simple extensions to our
LBM policies to implement transaction undos.

Our discussions focus on the two recovery problems for
uncommitted transactions (the migration of committed data does
not pose a recovery problem since the commit process ensures the
durability of this data): First, the crash of one node may not result
in the complete annulment of transactions which execute strictly on
the failed node. Second, the crash of one node may destroy updates
performed by transactions which execute on other nodes. Consider
any transaction , which was active at the time one or more
nodes crash: With respect to database objects, in order to ensure
IFA, our recovery protocols guarantee that if one or more nodes
crash, for all ,

1. If was running on a node that crashed, then all its updates
must be discarded.
Thus, in case some of these updates migrated to other nodes,
sufficient information must be available to undo them.

2. If was running on a node that did not crash, then none
of its updates must be lost.
Thus, in case some of these updates migrated to a node that
crashed, and hence are lost, sufficient information must be
available to redo them.

Next we consider strategies for ensuring these guarantees.
In section 4.1.1, we discuss the mechanisms which ensure the
availability of specific information at recovery time, while section
4.1.2 describes the associated restart recovery schemes.

4.1.1 LBM policies
To provide sufficient information to allow restart recovery to ensure
IFA in the event of a node crash, we employ LBM policies, which
perform Logging Before Migration. Prior to the migration of
uncommitted data, LBM policies log sufficient information to allow
the recovery procedure to ensure the failure atomicity of transactions
without unnecessarily aborting transactions. Undo information is
logged in order to ensure that if a node crashes, all effects of
transactions running on the crashed node will be undone. Redo
information is logged in order to ensure that if a node crashes, no
effects of transactions running on nodes which did not crash will be
lost.

We examine two different LBM policies, one based on volatile
logging, and the other based on stable logging. Volatile logging is
implemented by logging information into local (volatile) memory,
while stable logging is implemented by first logging into local
memory, then forcing the log to stable storage. The primary
advantage of Stable LBM is that the portion of the log which
contains log records corresponding to uncommitted updates which
have migrated is guaranteed to survive node crashes. In Volatile
LBM, the absenceof this guarantee requires that restart recovery has
the capability to perform the appropriate undo operations without the
use of the local undo log. Depending on the specific restart recovery
scheme selected, supporting this undo requirement may also need a
mechanism which pairs the migration of undo information with the
migration of uncommitted updates (discussed in section 4.1.2).

For clarity of presentation, we examine a scenario when one
transaction becomes dependent on the memory of one remote node.
Consider active transaction with the only copy of a record ()
updated by having migrated to another node (), as illustrated
in figure 2. Note that this scenario may occur due to or

tx

w [r].xCache line containing
Record for
Volatile Log

w [r].x

Node y

...

Node x

Figure 2: Uncommitted Data Migration and Local Logging.

, and a similar crash scenario may occur due to . When
we consider how the failure atomicity of a transaction may be
compromised, we must consider two basic crash scenarios:

1. , the node executing crashes.

2. crashes.

These crash scenarios necessitate the undo and redo requirements
imposed above. For case 1, the update performed by on
(which now resides on node) must be undone. For case 2, the
update performed by to must be redone, since node crashed,
destroying the contents of .

Under the Stable LBM policy, prior to the migration of record
, undo and redo log records for are written to stable storage.

For case 1, the stable undo log records are used by the restart
recovery procedure to undo the update to by , ensuring the
failure atomicity of . For case 2, the stable redo log records are
used by the restart recovery procedure to redo the update to by .
Thus, under the Stable LBM policy, both undo and redo information
are durably maintained prior to cache line migration to ensure the
failure atomicity of transactions – without incurring unnecessary
transaction aborts – when nodes fail. The obvious disadvantage
of this approach is that the runtime overheads of stable logging
are very high (unless non-volatile RAM is used to maintain logs).
These runtime overheads can be reduced by adopting the Volatile
LBM policy.

The Volatile LBM policy is sufficient to ensure the redo
requirements of our recovery protocol, since, if some node other
than the one executing the transaction in question crashes, that
transaction’s volatile log remains intact.

Because of the volatility of the local log, one cannot rely on
using the local undo log to support undo under the Volatile LBM
policy. For example, in case 1, when the node executing crashes,
it could easily be the case that the transaction management system
left no trace of ever running (as would be the case if neither stable
logging or checkpointing had occurred after the start of). This
is illustrated in figure 2, where the log record corresponding
is destroyed if node crashes. In this case, to complete the abort,
the update performed by (which is in node ’s cache) must be
undone.

Next, we outline two options for restart recovery which do not
rely on the existence of the crashed node’s undo log.

4.1.2 Restart Recovery
In this subsection, we consider two schemes for restart recovery,
Redo All, and Selective Redo. Since neither of these schemes rely
on the existence of the crashed node’s log, both these schemes will
work with in conjunction with either the Stable or Volatile LBM

policies. These restart recovery schemes are named based on the
degree of redo required for active transactions. In general, the
Redo All scheme requires more redo operations to be performed at
recovery time than does Selective Redo. However, Selective Redo
requires slightly more runtime support.

First we consider Redo All:

Redo All
If a node crashes,

1. On each surviving node, all cached database records are
discarded from volatile memory.

2. On each surviving node, the cache of database objects is
reconstructed based on the local redo log. More specifically,
redo must be performed for all log records for which the
updates are not reflected in the stable database.

By requiring each node to flush its cache in step 1 of the Redo
All scheme, any uncommitted updates which may have migrated to
surviving nodes are effectively undone. However, in the process,
many updates made by both active and committed transactions
running on surviving nodes may also be undone. To ensure IFA,
these updates made by surviving nodes must be redone. Note that
under a no-force buffer management policy, updates of a committed
transaction are not necessarily propagated to the stable database, so
redo may be required for committed transactions. Also, under a steal
buffer management policy, updates of uncommitted transactions
may have already been propagated to the stable database, and if so,
these propagated updates would not require redo.

Next we consider the Selective Redo scheme:

Selective Redo
If a node crashes,

1. Each surviving node performs redo for only those record
updates which were made by the local node, but which were
exclusively resident on the crashed node.

2. Each surviving node undoes the updates of aborted transac-
tions using the undo tags (described below) stored in each
record.

In the Selective Redo scheme, just those updates which were
resident only on the crashed node are redone. This set can most
easily be determined by observing the conditions for which no redo
is necessary (we assume that the cache directory does not survive
the node failure):

If the update has been propagated to the stable database.

If the cache line containing the update is either resident in the
local cache, or resident in some other surviving node’s cache.

The first condition can be easily checked based on the last
checkpoint – this determines which committed updates have been
propagated to the stable database. The second condition can be
tested by temporarily (i.e., just during recovery) disabling the cache
miss requests which incur I/O – if a memory reference cannot be
satisfied with a cache line in a surviving node, an invalid flag is
returned. Thus, in Selective Redo, the redo log is processedforward
from the last checkpoint, and each log record is tested to see if the
corresponding update remains cached on a surviving node. In this
case, no redo is necessary. Otherwise, redo is performed.

As a result of thefirst step of the Selective Redo protocol, a node’s
cache contains the updated records that exist only on this node. But

the cache may also contain updates of transactions that are aborted
on other nodes. Thus, we need an additional mechanism to identify
the active records, i.e., records updated by active transactions,which
require undo. For these records, which had been updated by a
transaction on a failed node and which subsequently migrated to
another node, the undo of the aborted transaction’s updates can be
effected by installing each record’s last committed value. Given our
assumption of the WAL protocol, the last committed value of these
records will necessarily be in stable store – either in the stable log,
or in the stable database.

A simple way to identify these active lines is to associate a node
identifier with each data object. The node ID is stored in the same
cache line as the active data object:

Tagging Rule: If multiple database objects are stored in
a cache line, each active object is tagged with a node
identifier. The node identifier indicates which node was
executing the transaction that had updated the object. In
the event of a crash of node , all objects which are in the
cache and tagged with node are candidates for undo.

Note that because of the strict 2PL assumption, only one node will
be associated with each active record. Once the data is no longer
active, the node ID is assigned a null value. Thus, the node ID
enables active cache lines (those cache lines which contain active
data) to be identified for undo purposes. Of course, this approach
requires additional space in order to maintain the per object node
ID.

For Volatile LBM with Selective Redo, we envision the following
implementation of undo at recovery time. Any active updates which
have been written to the stable database (steal) will necessarily have
their corresponding undo log records written to stable store (by the
WAL protocol). Thus, these undo’s can be performed based on
the stable log records. Any additional undo’s will correspond to
in-cache records. To perform these undo’s, each surviving node
will perform a sequential search of all cache lines, performing the
appropriate undo operation on an ID match. For example, for an
active record, this undo corresponds to installing the most recent
committed version of the record.

We have shown how the Stable LBM or the Volatile LBM policies
can ensure IFA for database objects. These policies ensure that
under any crash scenario, when a transaction becomes dependent
on the memory of any other node, sufficient information will be
available for the restart recovery procedure to mask this dependency.
In order to guarantee IFA for (independent) transactions, we must
also consider the effects of sharing databasemanagement structures,
such as index structures and those related to database locking. This
is the topic of the next subsection.

4.2 Recovery of Database Management Structures
By implementing database management structures in shared
memory, the performance advantages of a shared memory
multiprocessor can be fully exploited. Examples of these database
management structures include hash tables, index structures such
as B-trees, and tables used for lock management. In this section we
examine the last two in detail.

For many transaction management issues, it is important
to distinguish between structural and non-structural changes to
database management structures. Examples of structural changes
include B-tree page splits and the dynamic allocation of space used
to store lock management information. In a multi-programmed
uniprocessor database implementation, the subsequent use of

this newly altered or created space by other transactions can
cause transaction abort dependencies to form. To avoid these
dependencies, when one transaction performs a structural change,
it is customary to allow these changes to commit regardless of the
future commit or abort of the transaction that caused the change
(typically implemented as nested top-level actions) [14, 15, 16, 18].

However, in an SM multiprocessor database implementation
which ensures IFA, volatile structural changes can also cause one
transaction to become dependent on the memory of another node.
For example, suppose space is allocated (in volatile memory) on
behalf of , and no corresponding redo log record for this allocation
is on stable store. If subsequently uses this space, the crash of
node will require the abort of .

In an SM multiprocessor database implementation, one way to
avoid this dependency is to immediately commit any operations
which may result in such dependencies. In our previous example,
the space allocated by will be committed before any another
transaction is allowed to use this space. Given this assumption, we
can be sure that structural changes will not result in dependencies
between active transactions and the memory of some other node.
Thus, for structural changes, no additional recovery provisions are
necessary in a SM implementation. However, for non-structural
changes, uncommitted data migration can occur, potentially
violating IFA. Next, we consider applying our recovery protocols to
database management structures for which non-structural changes
are likely.

4.2.1 A Shared Memory Implementation of B-trees
In this section, we consider the recovery issues which arise in a
shared memory B+-tree (where records are stored only in leaf nodes)
implementation of an index. We focus on non-structural updates,
such as insert and delete. For the most part, the recovery issues
for insert and delete operations are the same as for records. For
example, in a SM implementation of a B+-tree, insert and delete
operations can trigger the migration of uncommitted data between
nodes. Consider the case where one transaction performs an insert
operation. If other records may also be stored in the same cache
line where the newly inserted record is stored, it is possible for
the newly inserted (uncommitted) record to migrate to some other
node. In this case, just as for record updates, dependencies may
form between an independent transaction executing entirely on one
node and the memory of some other node.

For such updates to B+-trees, these dependencies can be avoided
by applying the record oriented recovery techniques. For example,
under Volatile LBM with Selective Redo, just as for record updates,
to enable the undo of active insert and delete operations, a node
identifier can be tagged to each active record. If a node crash does
not result in the complete annulment of a transaction, the restart
recovery procedure can identify all cache lines which need undo
based on the node identifier.

However, issues related to space management allow a subtle
implementation of record delete operations be employed. To ensure
that the spacefreed by a delete is not used until the transaction which
performed the delete commits, it is customary to perform record
deletes logically, by marking the record as deleted [16]. Once the
transaction which performed the delete commits, the space freed by
the deleted record can be used by other transactions. This strategy
also enables an efficient implementation of the undo requirement for
Volatile LBM with Selective Redo – since any migrating cache line
which contains an uncommitted delete will also contain the original

record, the undo of a delete is effected by merely “unmarking” this
record.

No such special provisions need be made for space management
for the undo of an insert, since allocated space can always be freed.

4.2.2 A Shared Memory Implementation of Locking
Next, we consider how a shared memory implementation of
database locking may benefit from our recovery protocols. For
a lock table implemented in shared memory, almost all operations
on a lock table are non-structural (space allocation operations are
the exception). Because of the likelihood of many non-structural
operations to a lock table during transaction execution, to guarantee
IFA for transactions, it is important to apply our recovery protocols
to this database management structure.

One strategy for implementing a lock manager in a multi-node
system is to designate some node as being responsible for managing
each database object, and allow remote nodes to access locks by
using message passing. This is the approach of many shared-disk
(SD) systems [19, 21, 25]. The presence of shared memory in an
SM database system allows a more efficient approach to be taken
for the implementation of database locking. In this strategy, which
we call SM locking, LCB’s (lock control blocks) are stored in shared
memory, and transactions acquire and release locks via operations
on these LCB’s. The performance gains of SM locking stem from
the elimination of all inter-process communication [20].

Consider acquiring a record lock using SM locking. A lock
request consists of a lock name and a lock mode. Using a hash
function, the name is translated to an LCB address specific to
one lock. An LCB stores the current mode of the lock, plus two
transaction lists, one containing the current holder(s) of the lock,
the other containing any transaction(s) waiting for the lock. All
updates to the LCB are performed inside a critical section. If the
requested mode is compatible with the mode stored in the LCB, and
there are no conflicting waiters, an entry containing the requesting
transaction and requested mode is added to the holder list, and the
lock is granted. This entry is called the lock acquisition record.
Otherwise an entry is added to the wait list, and a not-granted flag
is returned to the requestor. The strategy for releasing a lock is
similar. After finding the appropriate LCB, the tuple identified by
the transaction is deleted from the holder list, and any lock requests
in the wait list which become compatible due to the release are
granted.

When lock information pertaining to two or more transactions
is stored in a single cache line, recovery issues similar to those
for record updates arise. For example, after two transactions
running on different nodes have acquired a compatible lock, the
LCB will be valid at the node which last acquired the lock. In
this case, a node crash may lose some but not all of a transaction’s
lock information. Note that this scenario is only applicable to
uncommitted transactions, since committed transactions have no
effect on the lock space (once a transaction has committed, all
its locks are released) . In contrast, each lock acquired by an
uncommitted transaction will have a corresponding entry in the
lock space.

Next, we consider recovery issues for acquired locks . Consider

An exception to this rule occurs in some SD systems [19] where since
lock acquisition is expensive in SD systems, locks are sometimes retained
on local nodes after the transaction commit has occurred.

The recovery issues for transactions which are waiting for locks are
similar, but the discussion has been omitted due to space limitations.

any transaction , which was active at the time that one or
more nodes crash. To ensure IFA for SM locking, we guarantee that
if one or more nodes crash, for all ,

1. All locks acquired by transaction running on a node
which crashes will be released.

2. No locks acquired by transaction running on a node
which did not crash will be released.

Because of (1), any lock acquired by running on a node
which had crashed and stored in LCB’s which survived the crash
must be released by the restart recovery procedure. Because of
(2), any lock acquired by running on a node which did
not crash and stored in LCB’s for which no copy survived the
crash must be restored by the restart recovery procedure. As
with database objects, guaranteeing condition 1 requires undo
information to be maintained, while guaranteeing condition 2
requires redo information to be maintained. Depending on the
specificsof the LCB data structure, different strategies are necessary
for ensuring these conditions.

Before we address the recovery options which are dependent on
the specifics of the LCB data structures, we first point out a few of
the salient aspects of SM locking.

Prior to acquiring (or releasing) a lock on node , a logical
log record [7] is written to the log on node . Note that in
order to ensure that redo can be performed in the event that a
node crash destroys LCB’s of transactions running on surviving
nodes, both write and read locks must be logged. Also, any lock
requests which are queued (due to conflicts with lock holders)
must also be logged.

In most lock manager implementations, the transaction ID is
stored along with the queued lock request or lock grant. If the
transaction ID also encodes the node ID, this information is
already available for use by the Volatile LBM policy.

For LCB’s, crash recovery is further complicated when pointer
based data structures must be supported. For example, in order
to efficiently implement aborts, typically all locks held by one
transaction are chained together with a linked list. If a node
crash destroys an internal segment of a linked list, the restart
recovery procedure must restore the reachability of all entries in the
list. Detecting and remapping pointers to lost entries is inherently
difficult. This suggests that for volatile pointer based data structures,
the best method to ensure their consistency is to first restore the data
that the pointers are derived from, then reconstruct the pointers
which organize this data. For example, the transaction chain of
LCB’s is derived from the transaction ID. At restart recovery, once
the transaction ID (and lock acquisition or request mode) of each
LCB is restored, the transaction chain can be reconstructed based
on this information.

The data structure used to represent individual LCB’s also
impacts the implementation of the restart recovery procedure. For
example, it may be feasible to ensure that an LCB spans at most one
cache line. Consider the queue of lock grants under this assumption.
Whether this queue is organized as a table or a linked list, a node
crash will either destroy all or none of a specific LCB. In this case,
only those LCB’s which were destroyed need be reconstructed.

A more difficult recovery scenario can occur if LCB queues
are pointer based data structures which may span multiple cache
lines. Under this assumption, a node crash could destroy arbitrary
segments of the lock grant queue of a particular LCB. Rather than

attempting to repair only the missing portion of this LCB, it would
be much easier reconstruct the entire LCB based on the log records
on all surviving nodes.

Some issues related to ensuring the failure atomicity of database
management structures are covered in [23, 25, 11], where crash
recovery issues for an SD lock manager implementation on a
VAXcluster are discussed. When a node crash is detected, all
locking activity in the database system is stopped. Then, any updates
performed by failed transactions are undone. This is accomplished
by the installation of the before images of the associated records.
After this restart recovery procedure is complete, user activity may
proceed.

In contrast, in a cache-coherent SM database system, if certain
mechanisms, discussed presently, are available, locking activity
does not need to be stopped when a node crash is detected. In an
implementation of SM locking, problems of ensuring a consistent
lock space may arise if a node holding the only copy of a LCB
crashes, but other nodes, not detecting the existence of this LCB,
create a new LCB and incorrectly release an acquired lock. This
will not be a problem if the underlying hardware support of the SM
multiprocessor ensures that (just the) references made to cache lines
residing on crashed nodes are stalled.

This section showed how our recovery protocols can be applied
both to database objects and database management structures to
achieve independent failure atomicity (IFA) for transactions. In
the next section, we discuss how a low overhead implementation
of our recovery protocols can be achieved in a cache-coherent SM
multiprocessor.

5 Implementing LBM Policies in Shared
Memory Systems

The LBM policies require that prior to the migration of a cache
line, either stable logging or volatile logging is performed. Here,
we discuss the implementation of these Logging Before Migration
policies on a shared memory multiprocessor. We will show that
sufficient primitives are already available on existing multiprocessor
hardware to efficiently enforce the Volatile LBM policy, but not the
Stable LBM policy.

To enforce the Volatile and Stable LBM policies, it is sufficient
to construct the appropriate log record at any point after line is
updated and before migrates. For a number of reasons, it is best to
perform volatile logging immediately after an update is performed.
This is both a logical and efficient point to perform volatile logging,
since at the time of an update, most of the relevant information
is already cached locally, and performing a few additional local
memory references to write the log record minimizes the additional
overheads. However, to reduce the overheads of stable logging, it
is wise to minimize the frequency of log forces. Thus, while it is
best to enforce Volatile LBM immediately after an update, it is best
to delay enforcing Stable LBM as long as possible. We discuss
the enforcement of the Volatile LBM policy in section 5.1, and the
Stable LBM policy in section 5.2.

5.1 Enforcing the Volatile LBM Policy
A (cache) line lock [24], commercially available on the KSR-1
multiprocessor, is an example of a mechanism useful for efficiently
implementing critical sections in a cache-coherent multiprocessor.
Thus, they can be utilized to achieve a very low overhead
implementation of the Volatile LBM policy. Once a line lock

is acquired on cache line by a process running on node , the
underlying hardware ensures the following properties:

Line is held exclusively in cache .
No other process, whether it be on the same or a different node,
can read or write to until is explicitly released by the holding
process.

The getline() instruction is used to obtain and hold a cache
line in a mutually exclusive (ME) state. The semantics of the
getline primitive are such that, if the cache line is not already
in ME state in any cache, the local cache acquires it in ME state.
The releaseline() primitive releases the cache line from ME
state . The advantages of the line lock are that (a) locking and
unlocking the line each requires only a single instruction, and (b) in
the process of locking the line, the line also becomes resident in the
local cache.

The Volatile LBM policy can be efficiently enforced with the use
of the line lock as follows. Whenever an update to a database object
or database support structure is performed, a log record is written
describing this update. To ensure that a cache line does not migrate
between the time it is updated and the time the log record is written,
a line lock can be used. Thus, prior to performing an update to
data stored in cache line , getline is issued to lock the line in
cache. The update is performed, and the log record is written prior
to releasing the line with releaseline .

Our experience in the implementation and empirical performance
evaluation of database mechanisms on the KSR-1 confirms the
expected performance gains provided by the line lock primitive.
In [20], we implemented a prototype lock manager, using the line
lock to ensure mutually exclusive updates to the shared memory
implementation of the lock space. Our empirical performance
studies have shown that under low contention, the mean execution
time to obtain a line lock is less than 10 s,and under high contention
(32 processors simultaneously attempting to acquire the same line),
the mean execution time to obtain a line lock is less than 40 s.

5.2 Enforcing the Stable LBM Policy
One approach to enforcing the Stable LBM rule would be to force
the log as part of the update protocol. In this solution, line locks
would be retained on the updated cache lines until the update is
performed, the log record is written, and the log force is completed.
Although this solution would guarantee the stable logged rule, it
is also very inefficient – a log force is performed on each update,
regardless of whether the cache line ever migrates. In order to
guarantee the Stable LBM rule and minimize the frequency of log
forces, we must address the following:

What is the latest point in a cache line use history where the log
must be forced?
What are the appropriate enforcement mechanisms?

To answer these questions, we must consider how read and write
operations on cache lines affect the state transitions of the cache
coherency protocol. The following discussion references the cache
line histories given in section 3.2, , and .

In order to minimize the frequency of log forces, we would like
to determine the latest point at which it is necessary to force the
undo and redo logs. In , this point would be immediately

On the KSR-1, these primitives are called gsp and rsp, get subpage
and release subpage. We have renamed these primitives to be consistent
with the literature on cache coherency.

prior to , since this is the operation which causes the transition
from exclusive in cache to exclusive in cache .

However, in and in , this latest point occurs as soon
as the next read by some node other than occurs. For example, in

, after , () will downgrade from exclusive
to shared mode on node , allowing node to also hold in
shared mode. If node crashes after , the crash recovery
procedure would require undo information to complete the abort of
active transactions that were running on node . Clearly, to permit
this, at least the undo portion of the log must be forced prior to .

Thus, for a line which has been updated by some node , the
latest point at which the Stable LBM polices must be enforced
corresponds to the downgrade or invalidation of (for undo) and
the invalidation of (for redo). By triggering log forces based on
these cache line state changes, the number of log forces can be
minimized. This log force would only be done if the cache line
contains database related information for which the corresponding
log records had not been forced to stable store.

Unfortunately, triggers associated with the change of a cache line
state are not a feature of any commercial multiprocessor that we
know of. This extension to the cache coherency protocol can be
implemented by dedicating one bit per cache line to indicate whether
the line contains active data. Updates to the cache line would set
this bit, and log forces would clear the bits of all associated cache
lines.

Summarizing this section, it is clear that even though the Stable
LBM policies are simpler to explain, they are more expensive
to realize and in fact are not implementable with the features in
today’s multiprocessors. Volatile LBM policies, on the other hand,
lend themselves to fairly efficient implementations with very little
additional demands being placed on multiprocessors.

6 Integrating the Recovery Protocol with
other Transaction Processing
Mechanisms

In this section we consider the important issues involved when our
recovery protocols are integrated with other salient components of
a database system. Although many of the implementation issues
of interest to us have been addressed in the context of SD systems
[17, 19, 21, 22, 23, 25], significant differences between SD and SM
systems require that, for the most efficient implementation, different
mechanisms be developed for SM. These differences stem from the
different approaches used to achieving coherency. In SM, cache
coherency is achieved transparently by the underlying hardware
cache coherency protocol. In contrast, in an SD system, coherency
is achieved entirely in software and is closely coupled with the lock
and buffer managers [19, 21]. Two significant implications of these
factors are (1) an SM database need not include the SD mechanisms
used for ensuring coherency, and (2) an SM database can utilize
the low latency access to shared memory to yield very efficient
adaptations of other SD mechanisms.

In the rest of this section, we discuss how these implications affect
the transaction processing components needed for SM systems in
the context of our recovery mechanisms. We focus on the protocols
and implementation mechanisms used in a recent SD system [19].
This system supports record level locking and uses in-place updating
in conjunction with the WAL protocol. It uses the repeating history
paradigm followed by undos to recover from failures. We discuss
how WAL and the techniques for ensuring the repeating history

paradigm can be efficiently implemented in SM, in light of the
mechanisms for achieving LBM.

Since this system has also addressed some of the issues related
to the migration of uncommitted data, we discuss this aspect of
[19] first. In order to ensure inter-node coherency, [19] defines four
inter-node page transfer schemes, two of which allow the migration
of uncommitted data, called fast, and super-fast schemes. In the
fast scheme, all updates to page must be stable logged prior
to ’s migration. In the super-fast scheme, all updates to page

must be volatile logged prior to ’s migration. In the super-fast
scheme, because page updates are not necessarily stable logged prior
to uncommitted data migration, enforcing the WAL protocol may
require referencing merged log. To implement the WAL rule for
SD, each updating node remembers an LSN (log sequence number)
greater than or equal to its last update to page [19]. Page can be
written to the StableDB only after all systems which have updated

have forced their logs up to this LSN.
Closely related to the page transfer schemes is the ordered

update logging rule [17, 19], which is important for supporting
the repeating history paradigm (even for a multiprogrammed
uniprocessor database system). This rule guarantees that the order
of logging of updates to a page is the same as the order with which
those updates are performed on the page. In [17], the ordered
update logging rule is satisfied as part of the update protocol. This
guarantee is provided by acquiring and holding a semaphore on the
page to be updated for the duration of the update and the log write.

On the surface, there are many similarities between the SD
protocols described in [19] and our recovery protocols. However,
there are important differences. Many of the protocols of [19],
such as the page transfer protocols, are designed for the purpose
of enforcing inter-system page coherency. In contrast, for cache-
coherent SM, our LBM policies are designed specifically to isolate
the crash of one node from affecting transactions which execute
on other nodes. Thus, whereas the protocols of [19] are aimed at
achieving page coherency,we are motivated by the need to eliminate
the ill-effects of system-ensured cache coherency! Furthermore, as
was discussed in section 5, efficiently enforcing the LBM policies
on a cache-coherent SM multiprocessor requires a careful analysis
of the coherencyprotocol, and a novel application of multiprocessor
features.

Finally, the availability of shared memory in SM systems allows
for more efficient implementations of many transaction processing
mechanisms. To illustrate this, next we show how shared memory
can be utilized in the adaptation of two mechanisms used in the
SD system of [19]: the ordered update rule and enforcing the WAL
protocol under the Volatile LBM policy.

In section 4, we discussedhow line locks could be used to enforce
the Volatile LBM policy as part of the update protocol. The line
lock mechanism can also be employed in SM to efficiently enforce
the ordered update logging rule. Consider updating record stored
in page , when it is also necessary to update the page’s Page-LSN
field . Once a record lock is obtained on , a line lock is acquired
on (a) the cache line (by convention, the first cache line of page)
containing the Page-LSN of , and on (b) the cache line containing
the record (assuming these cache lines are different). Once these
line locks are acquired, and Page-LSN() are updated. Finally,

Each database page has a Page-LSN field which contains the LSN of
the log record that describes the latest update to that page. The Page-LSN is
used during restart and media-recovery to determine which logged updates
have been applied to the page.

the log record for the update is written and the two line locks are
released. By using line locks instead of semaphores to enforce this
protocol, runtime overheads, as measured in terms of the number of
instructions executed, are substantially reduced.

To enforce WAL under Volatile LBM, we can adopt the same
bookkeeping technique as done in SD, but exploit the available
shared memory to minimize the runtime overheads. Each updating
node remembers an LSN equal to its last update to page . Page

can be written to the StableDB only after all nodes which have
updated have forced their logs up to this LSN. The determination of
whether any other node is required to force its log can be computed
very fast by maintaining this table of (page,LSN) pairs in shared
memory. Recovery problems for this table can be avoided since this
information is written only by the local node, and, in the event of a
node crash, will be reinitialized on the crashed node.

7 Summary of Overheads of Ensuring IFA
Ensuring IFA contributes to the availability of multiprocessor
database systems, but also entails certain overheads. In this section,
we consider which additional, incremental overheads are incurred
in order to ensure IFA as compared to ensuring just failure atomicity
(FA). Recall that the basic difference between these assurances is
that while IFA guarantees that all active transactions running on
non-failed nodes will survive failures, FA does not.

The overheads associated with IFA occur during the normal
(failure-free) operation of the database system, and during restart
recovery. Assuming low failure rates, of primary concern are the
overheads associated with the normal operation of the database
system (compared to those associated with restart recovery). Thus,
we dedicate this section to summarizing overheads associated with
normal operation.

Many of the mechanisms used to ensure IFA are necessary
to ensure FA, so we do not include these overheads in our
assessment. These common mechanisms include volatile (redo and
undo) logging, forcing the log at transaction commit, and taking
checkpoints. For our recovery protocols,table 1 lists the incremental
overheads associated with normal operation:

Protocol
Overhead Stable LBM Volatile LBM Volatile LBM

w/Selective Redo w/Redo All
Early Commit of
Structural Changes
Logging of
Read Locks
Undo Tagging

Higher Frequency
of Log Forces

Table 1: Overheads of Protocols which Ensure IFA

All the recovery protocols presented incur overheads due to the
early commit of structural changes and the logging of read locks.

Early Commit of Structural Changes.
Structural changes include operations such as the allocation
of space that can be used by potentially many transactions.
To avoid inter-node transaction dependencies, we require that

structural changes be committed early – before any transaction
on a remote node is allowed access the data and thereby form a
dependency.
Logging of Read Locks.
Typically, transaction management systems log only write
locks. When lock tables are stored in shared memory, in order
to support IFA, our protocols require that read locks are also
logged. This requirement enables uncommitted transactions
(running on surviving nodes) to redo the acquisition of any locks
destroyed due to node crashes. However, this requirement could
be obviated with a different (but less efficient) lock manager
architecture – one that did not exploit shared memory. This
alternative lock manager architecture is essentially the same
as used in certain SD systems [19, 21, 25], where locks are
acquired with message passing and lock tables are replicated
in order to survive failures. Some aspects of this tradeoff have
been studied in [20].

These are the only two overheads associated with Volatile LBM
with Redo All. In addition to these overheads, Volatile LBM
with Selective Redo has additional overheads associated with Undo
Tagging:

Undo Tagging.
Undo Tagging requires that, for each update, an undo tag is
also written. This enables the recovery procedure to eliminate
updates made by uncommitted transactions running on crashed
nodes, without requiring the force of the local undo log.
The overheads associated with Undo Tagging include a small
amount of additional space (to store the tag) per updatable
object, and a small amount of computation time to perform
the (volatile) write of the tag.

Finally, in addition to the first two overheads mentioned,
associatedonly with Stable LBM is a higher frequency of log forces.

Higher Frequency of Log Forces.
By itself, the Stable LBM policy ensures that sufficient
information will be available during recovery to ensure IFA.
Under Stable LBM, the frequency of log forces can be reduced
with an extension to the cache coherency protocol which
performs a log force triggered by the migration of a cache
line containing uncommitted data. The undo log is forced by
the invalidation of a cache line, while the redo log is forced by
the invalidation or downgrade of the cache line.

One of the advantages of Stable LBM is that one does not need to
keep track of other nodes’ uncommitted updates to a page in order to
enforce WAL (mechanisms for maintaining this table in the context
of Volatile LBM were discussed in section 6). However, since this
mechanism is needed to ensure FA as well as IFA, this overhead
was not included in table 1.

If the only available stable storage is disk, then the increased
latency associated with the higher frequency of log forces may be
substantial, especially compared to the low latencies associatedwith
an SM multiprocessor. However, we chose to present this policy
for a number of reasons. First, the Stable LBM policy imposes the
least programming complexity, and is also the easiest to explain.
Second, advances in technology, such as the proliferation of non-
volatile RAM, may make it feasible to store large portions of the
log in low latency stable store. In this case, a Stable LBM policy
may incur reasonably low overheads and hence may be of practical
interest.

By avoiding costly disk I/O’s, the Volatile LBM policies offer
a low latency implementation of IFA. In the Volatile LBM policy,
we have offered a choice between Selective Redo and Redo All
schemes. The Redo All scheme does not require Undo Tagging, but
requires potentially more time to perform restart recovery. However,
there are additional reasons why a Selective Redo scheme would
be appropriate. Under a write-broadcast cache coherency protocol,
data sharing patterns such as and would not imply
that the last node to update a cache line has an exclusive copy –
both nodes would end up with a copy. In general, a write-broadcast
protocol does not require redo – only undo would be required at
restart recovery. Thus, to support the undo-only requirements of
a write-broadcast cache coherency protocol, the Selective Redo
scheme would be the best choice.

8 Related Work
Many studies have demonstrated the performance advantages of
using SM implementation platforms for database systems. Based
on a TP1 benchmark performed on a Sequent Symmetry shared
memory multiprocessor, [27] conclude that an SM database system
can deliver very high performance. In [28], an analytical and
simulation study compares SN (shared nothing), SD, and SIM
(shared intermediate memory). This comparison concludes that
the data sharing architectures, especially SIM, are more resilient to
transaction load surges. In [4, 5], simulation studies compare SN,
SD, and SM (called SE (shared everything) in this reference), and
concludes that SM outperforms SN and SD by a fairly wide margin.
Our work exploits the performance advantages of SM systems, yet
guarantees good failure properties for transactions.

In the previous sections, we discussed how our work is related
to work in shared disk systems [19, 21, 23, 25]. Architectural
differences between SD and cache-coherent SM, such as the unit
of inter-system data sharing, how coherency is achieved, and
whether shared memory is available, have a significant influence
on the design and implementation of SM crash recovery protocols.
Furthermore, our goal was to achieve IFA with minimal extra
overheads while capitalizing on features available on or proposed
for SM multiprocessor systems.

In [22], augmenting an SD system with a non-volatile global
extended memory (GEM) is considered. System performance
can be improved by adding GEM to a system that otherwise can
only communicate by message passing. Failure atomicity for
data structures can be ensured by propagating their updates to the
GEM. However, non-volatile memory is much more expensive
than volatile memory, and is a significant departure from a
database implementation based on off-the-shelf shared memory
multiprocessors wherein the cache – where (parts of) data structures
may reside – is volatile.

Transactional Memory [9] is another approach to supporting
transactions on a cache-coherent shared-memory architecture.
Transactional memory allows programmers to define customized
read-modify-write operations that apply to multiple, independently-
chosen words of memory. However, this approach is intended
to replace short critical sections, i.e., it works well for short
transactions with relatively small data sets. Our recovery protocols
do not have these restrictions.

The SIM model is slightly different than the shared memory model. In
SIM, a shared intermediate memory serves as a global shared buffer for all
nodes.

Volatile logging has been used in the context of process
checkpointing schemes [10, 26] to ensure a consistent state of a
distributed computation without necessitating the rollback of any
processes other than ones that failed. In process checkpointing,
information is periodically checkpointed to disk in order to ensure
forward progress of a computation in the event that a processor and
its associated memory fail. In this case, a checkpoint consists of the
necessaryprocess state for restarting execution, such as the program
counter, process identifier, and register contents. Here, messages
sent between processes trigger log records to be written to volatile
memory. Recovery of a failed process is achieved by restarting the
failed process from its checkpoint and replaying the message from
the sender’s logs.

9 Summary and Conclusions
When database objects and support structures are implemented
in the shared memory of a cache-coherent shared memory
multiprocessor, dependencies, caused entirely by the cache
coherency protocol, may form between a transaction running on
one node and the memory of another node. Moreover, these
dependencies can arise due to typical patterns of cache line
sharing. Unless steps are taken to address this problem, it is
very likely that the crash of a single node requires the abort of all
transactions in the entire shared memory multiprocessor. This is a
very undesirable situation in large shared memory multiprocessors,
where the number of active transactions is likely to be large, and in
geographically dispersed shared memory machines, where untimely
node disconnections may be common.

In this paper, we have presented crash recovery protocols which
avoid unnecessary transaction aborts in cache-coherent shared
memory database systems. For independent transactions, our
recovery protocols guarantee IFA – that is, if one or more nodes
crash in a system that isolates individual failures, all effects of active
transactions running on crashed nodeswill be undone, and no effects
of active transactions running on nodes which did not crash will be
undone. By applying our recovery protocols to databaseobjects and
database support structures, IFA is ensured for transactions under
any crash scenario.

We have also demonstrated how these protocols can be integrated
with well established database design and recovery principles, such
as the use of in-place updating in conjunction with the WAL
protocol, the flexible no-force/steal buffer management policies,
fine-granularity locking, and the repeating history paradigm. By
exploiting mechanisms and structures which are already part of
many databases, the incremental overheads associated with adopting
our recovery protocols are minimized.

For a parallel transaction (one which executes on multiple
nodes), the recovery measures are similar to those for independent
transactions. However, if one of the nodesexecuting this transaction
were to crash, the entire transaction must be aborted.

The recovery protocols developed in this paper assume that
only read/write operations are performed on database objects. We
are currently working on the extensions required to accommodate
arbitrary operations on (abstract data type) objects.

In addition to providing support for SM database systems, our
recovery protocols can also be applied to provide operating system
support for handling independent node failures. For example,
many operating system data structures, including semaphores,maps
used to catalog disk usage, and the disk buffer, used to cache
recently used disk blocks, lend themselves to a shared memory

implementation. Recovery techniquessimilar to ours can be applied
to these operating system data structures in order to ensure that the
crash of one node does not necessarily affect the integrity of the
process management information on other nodes.

Acknowledgements
We would like to thank the anonymousreviewers for their helpful

comments.

References
[1] Panel Discussion on Shared Nothing, Shared Disk, and Shared

Memory Database Systems. Proceedings of the 1994 ACM
SIGMOD International Conference on Management of Data,
23, May 1994.

[2] J. Archibald and J. Baer. Cache Coherence Protocols:
Evaluation Using a Multiprocessor Simulation Model. ACM
Transactions on Computer Systems, 4(4):273–298, November
1986.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley,
Reading, MA, 1987.

[4] A. Bhide. An Analysis of Three Transaction Processing Ar-
chitectures. Proceedingsof the 14th International Conference
on Very Large Data Bases, 14:339–350, September 1988.

[5] A. Bhide and M. Stonebraker. A Performance Comparison
of Two Architectures for Fast Transaction Processing. IEEE
Proc. 4th Intl. Conference on Data Engineering, pages 536–
545, February 1988.

[6] J. Chapin. Personal Communication. 1995.
[7] J. Gray and A. Reuter. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, 1993.
[8] T. Haerder and A. Reuter. Principles of Transaction-Oriented

Database Recovery. ACM Computing Surveys, 15(4):287–
317, December 1983.

[9] M. Herlihy and E. Moss. Transactional Memory: Architec-
tural Support for Lock-free Data Structures. Proceedings of
the 20th International Symposium on Computer Architecture,
May 1993.

[10] D. Johnson and W. Zwaenepoel. Sender-Based Message
Logging. Proceedings of the 17th International Symposium
on Fault-Tolerant Computing, pages 14–19, 1987.

[11] N. Kronenberg, H. Levy, and W. Streker. Vaxclusters: A
Closely-Coupled Distributed System. ACM Transactions on
Computer Systems, 4(2):130–146, May 1986.

[12] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni,
K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter,
M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The
Stanford FLASH Multiprocessor. Proceedings of the 21th
International Symposium on Computer Architecture, pages
302–313, April 1994.

[13] D. Lilja. Cache Coherence in Large-Scale Shared-Memory
Multiprocessors: Issues and Comparisons. ACM Computing
Surveys, 25(3):303–338, September 1993.

[14] B. Liskov and R. Scheifler. Gardians and Actions: Linguis-
tic Support for Robust, Distributed Programming Languages.
Ninth Annual ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languates, pages 7–19, February 1982.

[15] D. Lomet and B. Salzberg. Access Method Concurrency
with Recovery. Proceedings of the 1992 ACM SIGMOD
International Conference on Management of Data, 21:351–
360, June 1992.

[16] C. Mohan and D. Haderle. Algorithms for Flexible
Space Management in Transaction Systems Supporting Fine-
Granularity Locking. Proc. International Conference on
Extending Data Base Technology, March 1994.

[17] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial Rollbacks
Using Write-Ahead Logging. ACM Transactionson Database
Systems, 17:94–162, March 1992.

[18] C. Mohan and F. Levine. ARIES/IM: An Efficient and
High Concurrency Index Management Method Using Write-
Ahead Logging. Proceedings of the 1992 ACM SIGMOD
International Conference on Management of Data, 21:371–
380, June 1992.

[19] C. Mohan and I. Narang. Recovery and Coherency-Control
Protocols for Fast Intersystem Page Transfer and Fine-
Granularity Locking in a Shared-Disk Transaction Environ-
ment. Proceedings of the 17th International Conference on
Very Large Data Bases, 17:193–207, 1991.

[20] L. D. Molesky and K. Ramamritham. Efficient Locking for
Shared-Memory Database Systems. Technical Report 94–
10, University of Massachusetts Dept. of Computer Science,
February 1994.

[21] E. Rahm. Concurrency and Coherency Control in Database
Sharing Systems. Technical Report, University of Kaiser-
slautern, Germany, December 1991.

[22] E. Rahm. Use of Global Extended Memory for Distributed
Transaction Processing. Proceedings of the 4th Int. Workshop
on High Performance Transaction Systems, Asilomar, CA.,
September 1991.

[23] T. Rengarajan, P. Spiro, and W. Wright. High Availability
Mechanisms of VAX DBMS Software. Digital Technical
Journal, (8):88–98, February 1989.

[24] Kendall Square Research. KSR1 Principles of Operation. KSR
Research, Waltham, Mass., 1992.

[25] W. Snaman and D. Thiel. The VAX/VMS Distributed Lock
Manager. Digital Technical Journal, (5):29–44, September
1987.

[26] R. Strom, D. Bacon, and S. Yemini. Volatile Logging in n-
Fault-Tolerant Distributed Systems. Proceedings of the 18th
International Symposium on Fault-Tolerant Computing, pages
44–49, 1988.

[27] S. Thakkar and M. Sweiger. Performance of an OLTP Appli-
cation on Symmetry Multiprocessor System. Proceedings of
the 17th International Symposium on Computer Architecture,
pages 228–238, May 1990.

[28] P. Yu and A. Dan. Performance Evaluation of Transaction
Processing Coupling Architecutres for Handling System
Dynamics. IEEE Transactions on Parallel and Distributed
Systems, 5(2):139–153, June 1994.

