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Abstract

Multi-armed bandits may be viewed as decompositionally-structured
Markov decision processes (MDP’s) with potentially very large state
sets. A particularly elegant methodology for computing optimal poli-
cies was developed over twenty ago by Gittins [Gittins & Jones, 1974].
Gittins’ approach reduces the problem of finding optimal policies for
the original MDP to a sequence of low-dimensional stopping problems
whose solutions determine the optimal policy through the so-called
“Gittins indices.” Katehakis and Veinott [Katehakis & Veinott, 1987]
have shown that the Gittins index for a task in state ¢ may be in-
terpreted as a particular component of the maximum-value function
associated with the “restart-in-i” process, a simple MDP to which
standard solution methods for computing optimal policies, such as
successive approximation, apply. This paper explores the problem of
learning the Gittins indices on-line without the aid of a process model;
it suggests utilizing task-state-specific Q-learning agents to solve their
respective restart-in-state-i subproblems, and includes an example in
which the online reinforcement learning approach is applied to a sim-
ple problem of stochastic scheduling—one instance drawn from a wide
class of problems that may be formulated as bandit problems.



1 Introduction

Reinforcement learning algorithms, such as the method of temporal differ-
ences (TD) [Sutton, 1988] and Q-learning [Watkins, 1989], were originally
advanced as models of animal learning, motivated and inspired by the be-
havioral paradigms of classical and instrumental conditioning. These algo-
rithms have subsequently proved useful in solving certain problems of pre-
diction and control encountered by general adaptive real-time systems or
agents embedded in stochastic environments. Supporting theory and ap-
plications have reached a stage of development that is relatively mature.
Connections have been established with stochastic dynamic programming
and heuristic search [Barto et al, 1990 & 1991], and a mathematical frame-
work, grounded in the classical theory of stochastic approximation, has led
to new and improved proofs of convergence [Jaakkola et al, 1994], [Tsitsiklis,
1994]. Researchers have customarily focused their attention upon asymptotic
learning of maximally-efficient strategies, and not on the “optimal learning”
of these strategies. The most successful applications have been to large,
complex problems for which the computational effort required by traditional
engineering methods would be unduly burdensome and perhaps unjustified,
given that in many cases only approximate models of the underlying systems
are known [Tesauro, 1992], [Crites, 1995].

This paper examines a class of problems, called “bandit” problems, that is
of considerable practical significance. One basic version of the problem con-
cerns a collection of N statistically independent reward processes (a “family
of alternative bandit processes”) and a decision-maker who, at each time
t =1,2,..., selects one process to “activate.” The activated process yields
an immediate reward and then changes state; the other processes remain
“frozen” in their current states and yield no reward. The decision-maker’s
goal is to splice together individual reward processes into one sequence of
rewards having maximum expected discounted value.

The size of the state sets associated with bandit problems may typically
be of such magnitude as to overwhelm straightforward methods of solution.
These large state sets, however, do possess a particular Cartesian-product
structure and independence under various control actions, and one may ex-
ploit these defining characteristics. In fact, proof that bandit problems can
be decomposed into simpler, low-dimensional subproblems— in effect, ren-
dering problems for which previous approaches had exponential complexity



into problems with solutions of linear complexity— has been rigorously es-
tablished by Gittins [Gittins & Jones, 1974]. In this paper I will show how
Q-learning can be integrated with the Gittins approach to solve bandit prob-
lems online in a model-free way.

After reviewing the bandit problem formulation, this paper notes the
complexity of computing optimal policies for a family of alternative bandit
processes by modeling the family, straightforwardly, as one large Markov
decision process. This is followed by a discussion of Gittins’ approach, which
is a comparatively efficient and elegant method with a number of interesting
interpretations, one of which allows Q-learning to be applied. (A brief and
informal summary of TD(0) and Q-learning is provided in the Appendix.)

The main contribution of this paper appears in Section 6, where the
central conceptual argument is summarized and the implementational details
of a reinforcement learning algorithm are presented. This is followed by
several examples, as well as a discussion of important generalizations of the
basic bandit formulation to cases of practical interest.

Finally, this paper concludes by observing that the archetypal multi-
armed bandit problem, in which policies map histories to arm-selections,
captures the essence of the problem of optimal learning— the algorithm pre-
sented in Section 6 may be interpreted as a method for learning how to learn
optimally.

2 Bandit Problems

Suppose there exist N stochastic processes {z;(k)}, 1 = 1,2,..., N, whose
values are members of a countable set. At each stage, k, a decision maker
chooses an action, ax € 4 ={1,2,...,N}.

Supposing that ar = j, then the state x = (z,(k),...,zn(k)) evolves
according to

zi(k+1) = zi(k) i#j

zi(k+1) = fi(=zi(k), w;(k)),
where w;(k) is a random disturbance depending on z;(k) but not on prior
disturbances. For example, for Markov transitions, the state evolution is gov-

erned via Pr{z;(k + 1) = y} = P;;(),, where P is a pre-specified transition
matrix. This is the case considered henceforth (Figure 1).
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Figure 1: FABP schematic.

The goal is to choose a sequence of actions {a} to minimize the expected
value of the infinite-horizon discounted return:

[~}
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k=0
where R, () is a bounded reward function and v € (0, 1) is the discount factor.
Hence, the decision maker is essentially switching between the component
processes’ reward streams; activating a given process causes it to change
state, while other component-process states remain “frozen.” !

This is one version of the “multi-armed bandit” problem. In the liter-
ature, each component process is referred to as a bandit process, while the
entire collection of candidate processes is termed a family of alternative ban-
dit processes (FABP).

The multi-armed bandit problem appears to have originated with the pa-
per by Thompson [Thompson, 1933]. In a highly-influential paper, Robbins

'In some versions of this problem, at each time k, one also has the option of retiring
permanently and receiving a one-time-only reward v* M. M provides a useful parametriza-
tion for certain derivations or interpretations of the Gittins index, which will be reviewed
in Section 4 (note that for M sufficiently small, the retirement option can be excluded).
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[Robbins, 1952| initiated systematic study of bandit problems that empha-
sized strategies for which asymptotic “loss” tends to zero. Bellman [Bellman,
1956] adopted a Bayesian formulation for the infinite-horizon discounted case,
and Gittins and Jones [Gittins & Jones, 1976] generalized Bellman’s process
model to the one given above. Dubins and Savage [Dubins & Savage, 1976]
credit F. Mosteller with coining the term “two-armed bandits.”

This term and its multi-armed generalization refer to the Bayesian adap-
tive control problem of selecting a sequence of plays on a slot machine that
has several arms corresponding to different but unknown probability distri-
butions of payoff. One may identify the conditional probabilty distributions
of success probabilites of the respective arms given the observed past history
up to stage k with the process state {z;(k)} given above. The action of
pulling an arm elicits an immediate reward or payoff as well as a Bayes-rule
update (which is Markov) of the arm’s success probability.

The slot machine example highlights a key feature of multi-armed bandit
problems, namely, it may be prudent to sacrifice short-term reward for infor-
mation gain that will allow more informed future decisions. Thus, Whittle
[Whittle, 1982] has claimed that a bandit problem “embodies in essential
form a conflict evident in all human action.” This “exploration versus ex-
ploitation” trade-off, a recurring theme in sequential experimentation and
adaptive control, makes the general bandit problem a challenging one.

3 Families of Alternative Bandit Proceses as
Markov Decision Processes

3.1 Markov Decision Processes

Consider a system whose dynamics are described by a finite state Markov
chain with transition matrix P, and suppose that at each time step, in addi-
tion to making a transition from state z; = i to x4, = j with probability P;;,
the system produces a randomly determined reward, r,.,, whose expected
value is R(z). The evaluation function, V, maps states to their expected,
infinite-horizon discounted returns,

V()= E {i"yt'l‘g...dﬂ!o = z‘},

t=0



and V/(-) may also be shown to uniquely satisfy a system of linear equations
describing local consistency: for ¢ =1 to N,

V(i) = RG) +v 3 PV (). (1)

In addition, for each state 7, suppose that there is a set of feasible actions,
A;, from which to choose, and that choosing an action, a, determines the
transition probabilities and reward distribution associated with that state.
The resulting Markov chain is called a Markov decision process (MDP). A
(stationary) policy is a mapping of states to actions, and one may think
of P above as the transition matrix associated with some particular policy.
An optimal policy is one that optimizes the value function over all states;
the associated optimal value function is the unique solution to Bellman'’s
optimality equation: for 2 = 1 to N,

N
V(i) = max | R(i,a) +73_ Pi()V(i) | - (2)

a€A i=1

An optimal policy is determined by the optimal value function through Equa-
tion 2; that is, if V' is the optimal value function, then for each state 7, an
optimal action for that state is the action that achieves equality in Equation
2.

Standard methods for solving Bellman'’s equation include value iteration,
policy iteration, and linear programming—see, for example, [Ross, 1983] or
[Bertsekas, 1987].

3.2 FABP’s as MDP’s

This section adopts a perspective from which a family of alternative bandit
processes, such as that described in Section 2, can be viewed as a standard
Markov decision process. Computing optimal policies for bandit problems by
applying standard methods to their associated MDP’s, however, is in general
ill-advised.

Consider the bandit problem of Section 2 with N tasks, each with state
space S. The overall state of the FABP is then an element of S¥, and the
action of activating a given task generates an immediate reward and causes
the FABP-state to change in a Markovian fashion. Hence, ignoring the special
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structural constraints satisfied by FABP’s, they are simply standard MDP’s
with potentially rather large state-sets. Transition matrices are |S|¥-by-
|S|¥, and standard methods for computing optimal policies have complexity
of order O(|S|<V), where c is a small constant.

But non-activated tasks do not change state, and rewards received depend
only upon the state of the active task. These features may naturally lead
one to conjecture the existence of a decompositionally-defined optimal policy
whose determination requires work on the order of O(IV|S|¢). This is what
researchers mean when they say, for example, that “the multi-armed bandit
problem was solved, after puzzling researchers for thirty-years, by Gittins
and Jones,” [Walrand, 1988]. The next section provides a summary of the
Gittins-Jones solution.

(Aside: For MDP’s in general, the problem of computing optimal value
functions may alternatively be viewed as a problem of constructing transition-
matrix/expected-reward-vector pairs, (P,., R,-), yielding optimal values for
V in Equation 1; that is, the optimization procedure seeks (P,-, R,.) such
that V = (I — yP,-)"*R,- is maximized, where the choice of (P,., R,-) is
constrained in the following way:

Let P,, be the transition matrix associated with taking action i in every
state, and let R,, be the corresponding entry of the expected reward vector
under action 7. (If action 7 is inadmissible for a given state, the corresponding
entries in P,;, and R,, are null.) Then each row of P,. must be set to the
corresponding row of one of the P,,’s, and the corresponding entry of R,.
must be consistent with this choice; i.e., if the j** row of P,. is chosen to be
the j** row of P,,, then the j** entry of R,. must be chosen to be the j**
entry of R,;.

For the case of n states and m possible actions in each state, this implies
m™ possible candidates for (P,., Ry.), and the goal is to select that candidate-
pair that yields, as a solution to Equation 1, an optimal value for V—this
interpretation is implicit in Bellman’s Equation 2.

Consider a very simple example of a bandit problem in which there are
three tasks, each with only two states. Then FABP-states may be represented
by binary strings of length three; for example, the string “011” signifies a
FABP-state in which the first bandit process in is state 0 while the other
bandit processes are both in state 1. The transition matrix for a policy de-
fined by taking the same action in all states is 8-by-8, but is quite sparse.
For example, the transition matrix associated with the action “activate the
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second task” has, for each row, possible nonzero entries only for columns
associated with bit-strings that match the row bit-string in all positions ex-
cept possibly the second, a consequence of the fact that non-activated tasks
do not change state. This, along with the fact that rewards received de-
pend only upon the state of the active task, may lead one to suspect the
existence of decompositional algorithms of order O(IN|S|¢) for computing
optimal policies.)

4 The Gittins Index

“...The term ‘Gittins index’ now has firm currency in the lit-
erature, denoting the concept which first proved so crucial in the
solution of the long-standing multi-armed bandit problem and
since then has provided a guide for the deeper understanding of
all such problems....The multi-armed bandit is a prototype of this
class of problems, propounded during the Second World War, and
soon recognised as so difficult that it quickly became a classic, and
a by-word for intransigence. In fact, John Gittins had solved the
problem by the late sixties, although the fact that he had done
so was not generally recognised until the early eighties. I can
illustrate the mode of progagation of this news, when it began
to progagate, by telling of an American friend of mine, a col-
league of high repute, who asked an equally well-known colleague
‘What would you say if you were told that the multi-armed ban-
dit problem had been solved?’ The reply was somewhat in the
Johnsonian form: ‘Sir, the multi-armed bandit problem is not of
such a nature that it can be solved.’ ”

—Peter Whittle?
Consider the version of the multi-armed bandit problem described previ-

ously in Section 2 in which the decision maker has the added option at each
stage k of permanently retiring and receiving retirement reward v*M.

*From the forward to [Gittins, 1989]. Elsewhere (in the discussion following [Gittins,
1979]), Whittle recalls that the efforts to solve the multi-armed bandit problem “... so
sapped the energies and minds of Allied analysts that the suggestion was made that the
problem be dropped over Germany, as the ultimate instrument of intellectual sabotage.”
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Figure 2: The Gittins index as an indifference threshold (after [Bertsekas,
1987), p. 262).

The rich structure of the bandit problem turns out to imply that there
exist functions, g;(z;(k)), for each task that map bandit process states to
numbers, or “indices,” such that optimal policies for the FABP have the
form:

Retire if M > max;{g:(z:(k)) }
Activate task j if g;(z;(k)) = max;{g:(z:(k))} > M.

Thus one interpretation of g;(z;(k)) is as an index of profitability for activat-
ing task z; it is known as the “Gittins index.”

In order to gain further insight into the meaning of the Gittins index and,
perhaps, a method for calculating it, consider the bandit problem for a single
task 7. This is a standard stopping problem.

Let V:*(z;, M) be the optimal value function viewed as a function of M for
fixed z;. For large values of M, V;*(z;, M) = M, while for sufficiently small
M, V*(z;, M) is some constant value independent of M (i.e., the optimal
policy excludes retirement). Between these two extremes, it may be shown
that V;*(z;, M) is convex and monotonically non-decreasing, and that there
is a minimal value of M such that V;*(z;, M) = M (Figure 2).

In fact, the Gittins index is this minimal value; that is, for all z;,

9i(z;) = min{M|V*(z;, M) = M}.

Thus, another interpretation for the index is that it provides an indifference
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threshold for each state between retiring and activating the task when in
state z;.

Proof of the fact that policies determined by indices defined in this way
are optimal is beyond the scope of this paper (see [Gittins, 1989], [Varaiya et
al, 1985], or [Bertsekas, 1987] for rigorous proofs). Whittle’s proof [Whittle,
1982] that the index rule yields an optimal policy reveals along the way an
interesting relationship that exists between the optimal value function of the
overall multi-task FABP, V*(x, M), and the optimal value functions of the
component bandit processes, V;*(z;, M):

OV*(x M) _ {7 8V (=i, M)
o - Mo
Another interpretation of the index may be derived [Ross, 1983] by again
considering the single-task problem in initial state z; and retirement reward
M = gi(z;); i.e., the optimal policy is indifferent between continuing and
retiring. It follows that, for any positive random retirement time, 7, (a
“stopping time” in the sense of stochastic process theory 2 )

gi(z;) > E[discounted return prior to 7] + gi(z:)E[y7], (3)
with equality holding under the optimal continuation policy. Therefore,

E[discounted return prior to 7]
gi(;) = max ,
>0 1- E[y]

or
E[discounted return prior to 7]

1—1)gi(z;) = - : i )
(1 —7)gi(=:) S E [discounted time prior to 7]

Thus, to calculate an index, it suffices to find the stopping time, 7, such that
the maximum reward per unit time (both discounted) prior to 7 is maximal.

Weber provides an intuitive proof [Weber, 1992 for the optimality of
the Gittins index rule that is based on the notion of a fair game and an
interpretation of the index that is equivalent to the previously-mentioned

3An integer-valued positive random variable 7 is said to be a stopping time for the
sequence {X(k)} if the event {r = t} is independent of X (¢ + 1), X(¢ + 2),... for all
t=1,2,...
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Figure 3: Fair charge and prevailing charge associated with an example ban-
dit process trajectory.

indifference-threshold interpretation. A similar view is presented in [Ishikida
& Varaiya, 1994], where the index is interpreted as the winning bid in an
auction for the right to use a “pipe,” and in [Gittins, 1989], where candidate
bandit processes are callibrated against a “standard bandit process.” The
following discussion follows [Weber, 1992].

Suppose there is only one bandit process and that the decision-maker
(gambler) may choose to activate (play) the process or not, but must pay a
fixed prevailing charge for each play. For bandit 7 in state z;, one may define
the fair charge, g;(z;), as the value of prevailing charge for which optimal
play of the bandit is a fair game; that is,

-1

g:(z:) = sup {9 : sup [Z 7(Ri(=ilt)) — 9)12:(0) = a:,-] > 0} ,
i t=0

where the stopping time 7 is defined by the policy .

As the bandit process state evolves, so too does the fair charge. In the
event that the fair charge of the current state dips below the prevailing charge,
in which case the gambler would normally stop playing, imagine that the pre-
vailing charge is reset to the fair charge (Figure 3). Then the sequence of
prevailing charges for each bandit process is non-increasing with the number
of plays, and the gambler experiences continued play of a fair game. For the
case of multiple bandit processes, by following a policy of playing the ban-
dit of greatest prevailing charge (or equivalently fair charge), the gambler
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interleaves the prevailing charges from component bandit streams into one
non-increasing sequence. By the nature of discounting, such a policy maxi-
mizes the expected total-discounted charge paid by the gambler. Since the
gambler is engaged in playing a fair game, this policy maximizes expected
total-discounted reward.

5 Restart-in-state-i problems and the Gittins
Index

Restrict attention, for the moment, to the transition- and reward-structure
associated with a single task and consider the following “restart-in-:” prob-
lem. In each state, j, one has the option of either continuing from state j
and accumulating discounted rewards, or else instantaneously “teleporting”
to state  and accumulating discounted rewards from there. The problem is
to find a policy that optimizes the expected discounted value of each state.

The dynamic programming equation for the optimal value function for
this problem may be written: for 7 =1 to N,

‘/ji = ma.x{rj + 72 ijV;:', r: + 72 Rk‘/lj})
k k

“Continue” “Restart”

where V; signifies the j** component of the optimal value function for the
restart-in-state-z problem.
In particular, the i** component satisfies

W=1‘;+7ER]¢‘/J:,
k

and Vi may also be interpreted as the maximum value in state i for the
corresponding embedded single-state semi-Markov decision chain; z.e., V!
satisfies

Vi= m;ig(E {[discounted reward prior to 7] + 7’14‘} ,

where 7 is a stopping time for the process, namely, the first period in which
one chooses to restart in state 7 in the restart-in-: problem. Comparing this
last equation with Equation 3 in the preceeding section under the optimal
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Figure 4: The restart-in-i problem.

continuation policy, one concludes that V; may be identified with the Gittins
index, g(%), for state i.

For a given state 4, there is a set of states, the “optimal restarting set,” for
which, once entered, it is optimal to restart in ¢ (see Figure 4). The number
of transitions taken to reach this restarting set, starting from state 3, is the
optimal stopping time associated with the Gittins index.

Katehakis and Veinott [Katehakis & Veinott, 1987] suggest calculating
the Gittins indices by solving the corresponding restart-in-i problems via
successive approximation:

N« max{Vi,n+Y Puli}
k

Vo « maX{V;,rz+ZszV;,}
k
Vi « ri+) PaVi
k

Vv + max{Vi,r~+ Y PniVi}
p

For each state 7, there corresponds a restart-in-i subproblem that can be
solved in this way, yielding as its i** component the Gittins index for state 1.
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6 On-line estimation of Gittins indices via Q-
learning

The multi-armed bandit problem was stated in Section 2, and Section 4
presented the Gittins index approach for constructing optimal policies, an
approach that reduces the bandit problem to a sequence of low-dimensional
stopping problems; Section 5 asserted that the Gittins index for a given state
may be characterized as a component of the optimal value function associated
with a stopping problem, a simple MDP.

Reinforcement learning methods, such as Q-learning, are adaptive, model-
free algorithms that can be applied online for computing optimal policies for
MDP’s. Q-learning [Watkins, 1989] was originally advanced as a sample-
based, Monte-Carlo extension of successive approximation for solving Bell-
man’s equation; alternative motivation and justification for the algorithm, as
well as rigorous proofs of convergence, appeal to results from the theory of
stochastic approximation, see [Jaakkola et al, 1994] and [Tsitsiklis, 1994]—
the Appendix to this paper provides an informal summary and rationale.

It follows that, in principle, Q-learning can be applied to calculate Gittins
indices and hence provides a model-free means for learning to solve bandit
problems online.

To be a bit more specific, for a given task and given restart-in-i subprob-
lem there are two actions available for each state: “continue” and “restart.”
Associated with each of these actions is a transition matrix and expected
reward vector corresponding to a policy in which only the continue action or
only the restart action is applied (all rows of the restart transition matrix
and entries of restart expected reward are identical to the i** row of the con-
tinue transition matrix and i** entry of the reward vector, respectively). As
was discussed in Section 3.2, the problem of finding an optimal policy for the
restart-in-i MDP is equivalent to the problem of constructing a transition-
matrix/expected-reward-vector pair, whose rows and entries are drawn from
rows and entries of continue- and restart- matrices and reward vectors, that
has maximal value.

In principle, the theory of reinforcement learning implies that Q-learning
will converge to the correct optimal values associated with the various restart-
in-: MDP’s. However, in practical terms, it is reasonable to question the
meaning of the “restart” action in, for example, the context of stochastic
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scheduling. One cannot, simply, reset a given task to a desired state by an
omnipotent act of will. What one desires is that Q-learning “backups” (com-
ponentwise computational contractions — see the Appendix) be performed
for states that arise naturally along sample paths of the FABP process.

Consider, then, one step of the FABP process in which a given task is
activated and changes state from state z to state j generating reward ». This
simple transition yields data relevent to the value of taking the continue
action when in state :. Note that the data are relevent to all restart problems
for the given task. Observe also that the transition supplies information
about taking the restart action for the restart-in-¢ subproblem for all states
in the given task. )

In summary, observing a state-transition from ¢ to j and reward r for a
given active task with n states allows 2n Q-learning backups to be performed;
that is, for k£ = 1 to n, backup:

state=1, action=Continue, restart problem = k) —“Continue data
tate=z, acti Conti tart probl k “Conti data”

Q(state=k, action=Restart, restart problem = ) —“Restart data”.

It remains to define task activations in a way that achieves the requisite
sampling of states and actions as discussed in the Appendix. There are
many reasonable ways of doing this; a generalized Boltzman-distribution-
based action-selection method is proposed here.

Suppose that the multi-task bandit process is in some given state x =
(z1, 23, ...,zx). The current estimate of the Gittins index for task 7 in state
z; 1s given by

Q(state=z;, action=Continue, restart problem=z;, task=1).

Define action-selection via the following Boltzman distribution: for z = 1 to
N,
eQ(zi,C\zii)/T

Z‘N___ 1 eQ(z.‘,C’.:;,i)/T

Pr{activate task 1} =

—where T is the Boltzman temperature described in the Appendix.

In summary, at each stage:

e Select a task to activate via the Boltzman distribution.
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o Observe the state-transition ¢ — j and immediate reward r elicited by
activating the task.

e Perform 2n backups, where n is the number of states for the activated
task: for k =1 to n,

Q(state=3, action=Continue, restart problem=k, task) =
(1 — a)Q(state=t, action=Continue, restart problem=k, task)

+a [r + v L85, Q(state=j, action=a, restart problem=k, task)]

Q(state=k, action=Restart, restart problem=:, task) =
(1 — a)Q(state=Fk, action=Restart, restart problem=i, task)

+a [’r + v max_ Q(state=j, action=a, restart problem=:, ta.sk)] ,

ae{C,

where “C” and “R” respectively denote the admissible actions, continue and
restart. ,

If each of the N alternative processes or tasks has n possible states, then
2Nn? Q-values must be calculated and stored. Note that this is a substantial
reduction from the Nn¥ values required by an approach based upon the
straightforward MDP formulation.

Moreover, each state-transition gives rise to 2n backups, and this effective
parallelism may be viewed as further reducing the computational complexity.
That is, to calculate all the Gittins indices, the algorithm solves Nn MDP’s
(number of tasks x number of restart-problems per task), each of size n. But
for each task the associated n restart-problems are solved in parallel, and are
rather simple MDP’s in that there are only two admissible actions per state.

7 Examples

To confirm that this algorithm works, first consider the simple bandit prob-
lem shown in Figure 5. This problem has two tasks, each with two states.
Transition probabilities/rewards label arcs, and the discount factor is chosen
to be y = .7T.
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Figure 5: A simple bandit problem.

The optimal policy may be calculated by solving a four-state MDP, as
discussed in Section 3.2, or by applying the model-based, successive approx-
imation scheme of Katehakis and Veinott offline. The optimal policy is to
activate task 1 if it is in state 1, but otherwise to activate task 0.

Figure 6 plots the convergence of the Gittins indices to their true values
using the reinforcement learning algorithm proposed in Section 6.

The optimal policy is to activate task 0 once task 1 leaves state 1. Con-
sequently, as the Boltzman temperature is lowered, an increasing number
of transitions are made under the greedy policy with respect to the index
estimates; that is, an increasing proportion of transition samples are drawn
from task 0 activations.

Miscellaneous parameters that govern the rate of Boltzman temperature
and step-size reduction have not been optimized; the purpose of this example
has been simply to demonstrate that the on-line algorithm works.

A more meaningful example bandit problem is that of (static) stochastic
scheduling. Consider the scenario in which, at the begining of each “trial,”
one is presented with a fixed number of tasks to be completed, where each
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Figure 6: Convergence of Gittens Indices for a siml‘Jle example.

task, 7, has a service time determined by a respective distribution function,
F;.

For example, consider the problem of task scheduling where each task 7
has a geometric service time:

Pr{ri=s} = pi(1 - p:)*"".

See Figure 7a.

Each task 7 thus has a constant hazard rate, p;, and it is known that, in
order to minimize either mean flow time * or mean waiting time, an optimal
policy is to activate the tasks in decreasing order of this parameter.

It may be unreasonable to presume that the service-time distributions are
known @ prior:i. In this case, the reinforcement-learning algorithm of Section
6 can be applied, online, to calculate the respective Gittins indices directly,
without building an explicit task model.

In a simple experiment, ten p;’s where drawn uniformly from the unit
interval, and the discount rate was set to ¥ = .9. The reinforcement-learning

*Mean (weighted) flowtime is defined as the (weighted) sum of task finishing times,
divided by the number of tasks.
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Figure 7: Task models with constant (a) and non-constant (b) hazard rates.

algorithm was applied, online, in a trial-based fashion. (A trial consists of
activating tasks in some manner until all tasks are complete.) Index esti-
mates converged to values whose magnitudes are consistent with the optimal
highest-hazard-rate policy.

The constant hazard rate case was considered in the previous example
because the optimal policy is known and provides a simple check. Non-
constant hazard rate cases can be handled by defining the task models as
suitable Markov reward chains, see Figure 7b.

For example, consider a task model for a case in which each task has
increasing hazard rate:

Prir=s}={1—[1- p?’)x*]}:r:l(l — oYkt

where A < 1; i.e., the probability of task completion increases with the num-
ber of task activations. (The model is a simple generalization of the constant
hazard-rate case, where now the probability of non-completion decreases in
a simple exponential fashion with respect to the number of task activations.)

An experiment was performed in which nine tasks were modeled via p,(l) =
di, 1=1,2,...,9, A = .8, and the discount factor, «, was set to 0.99.
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Figure 8: Gittins index surface plotted as function of state (x-axis) and task
(y-axis).
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Again, the reinforcement learning algorithm was applied online in a trial-
based way, and the results are presented in Figure 8, which plots the Gittins-
index “surface” estimate (vertical axis) versus task (axis into the page, rang-
ing from task 1 to task 9) and task-state (axis left-to-right, ranging from
state 1 to state 10) at various stages of the learning process.

It may be seen that the index values gradually “unroll” from the task
axis (Q-values were initialized to zero). Low-numbered states are sampled
more frequently, and consequently their index values converge more rapidly
than do those of rarely-encountered task-states such as, for example, state 3
of task 9.

Again, it is known through analytical means that for this problem the
optimal schedule is to sequence the tasks non-preemptively, highest hazard-
rate first.

The plots of Figure 8 appear to be converging to indices that would give
rise to such a policy—index estimates for rarely-encountered task-states are
slowly rising to their true values. For commonly-encountered bandit states,
the Gittins surface estimate yields an optimal scheduling policy relatively
early in the learning process.

Note that if one were to pursue the straightforward MDP approach of
Section 3.2, it would entail a state-set size on the order of fifty million (~
Ix9x8x8x7x7x6x6x5) and transition matrices of corresponding
dimension—this is assuming that one knows beforehand the effective range
of states for each task.

It is perhaps important to stress that, in the scheduling literature, it is
always assumed that the service-time distributions are known; one contribu-
tion of this paper is that the reinforcement learning algorithm makes no such
assumption.

The problem of stochastic scheduling for the cases of constant or mono-
tone hazard-rates is analytically tractable, and the resulting policies are
usually somewhat intuitive and can be stated simply. For arbitrary, non-
monotone hazard-rates, things are less well-understood, but there is nothing
in the reinforcement learning approach that would preclude its application
to these cases.

For further applications of the bandit formulation to job scheduling, re-
source allocation, sequential random sampling, random search, etc., refer to

the papers by Glazebrook, the book by Gittins [Gittins, 1989], and references
listed therein.
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8 Conclusion

This paper has traced the following chain of reasoning:

o A family of alternative bandit processes is a Markov decision process
(MDP) possessing a special decompositional (Cartesian-product) struc-
ture.

¢ Optimal policies for these processes can be constructed efficiently by
calculating Gittins indices.

e The Gittins index for a given task state ¢ is also the i** component of
the “restart-in-i” problem.

o The restart-in-i process is a standard MDP.

e Optimal policies for MDP’s can be computed online in a model-free
way using Q-learning.

o Therefore, Q-learning can be applied online, without using a process
model, to compute solutions to bandit problems. (The implementa-
tional details of a practical algorithm were presented in Section 6.)

For each alternative n-state process, the resulting algorithm computes, in
parallel, the desired Gittins indices by solving n two-action MDP’s, each of
size m.

A proof of convergence follows from existing convergence proofs of Q-
learning for conventional MDP’s [Jaakkola et al, 1994], [Tsitsiklis, 1994].

One advantage of reinforcement learning methods that has not been men-
tioned thus far is that, as Monte-Carlo methods, they may inherit some com-
putational advantage over conventional (model-based) methods, particularly
for very large problems. This aspect is discussed in [Barto & Duff, 1994]. If
one has a model of the process, or processes, real-time dynamic programming
[Barto et al, 1991] can be applied, in which full model-based backups are per-
formed for states encountered along sample-paths. Indirect methods, such
as adaptive real-time dynamic programming, adaptively construct a model
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for the controlled process and base control policies and value-function up-
date computations on the latest model (see [Gullapalli & Barto, 1994] for a
convergence proof).

There are a number of generalizations of the basic bandit formulation that
are of extreme practical interest for scheduling. For example, Glazebrook and
Gittins [Glazebrook & Gittins, 1981] have examined the issue of the existence
of index theorems for bandit problems with precedence contraints (their focus
is on such constraints that have a tree structure). Whittle [Whittle, 1981]
has studied bandit problems in which new tasks arrive (index results are
preserved when the arrival process is Poisson/Bernoulli). The case of context-
switching costs has been addressed in [Glazebrook, 1980]. When there is
more than one server or processor available—thus enabling more than one
process to be active at a time—in general, quite strong additional conditions
are required for an index theorem to hold. (The special case of the general
scheduling problem with only two processors, deterministic service times,
and no precedence constraints is an alternative standard specification of the
knapsack problem.) .

It is interesting to consider the possible application of the bandit problem
formulation to certain problems in robotics. For example in [Grupen et al,
forthcoming| a “control basis” approach is proposed for distributed control
of manipulation tasks in which control actions are derived from a sequence
of concurrent activations of a subset of a feedback control basis (a set of
declarative feedback laws) bound to specific system degrees of freedom. A
generalization of standard bandit processes, called “superprocesses” ([Whit-
tle, 1980},(Varaiya et al, 1985]), may be relevant to the problem of learning
compositional policies online.

From a cognitive science perspective, it is tempting to identify the notion
of task activation with the concept of “attention.” In performing a motor-
control task, for example, humans adaptively allocate sensory resources.
[Gelfand et al, 1994, in the context of robotic sensor integration for mo-
tor control, notes that the act of invoking a vision system incurs a high
computional cost. It follows that a vision system may be employed initially
to help learn calibrations for unmodeled interactions, but as learning takes
place, the vision system’s role in a given task should be transfered to other
internal (proprioceptive) sensors.
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It has been said that “Robotics is the intelligent connection of perception
to action” [Brady, 1985], but for many natural or synthetic intelligent systems
it may, in fact, be impossible to distinguish or separate these two activities—
a sensing task may be viewed as an action that changes the “state” of a world
model. Agents are active perceivers.

Thus, in the context of active, sensor-based information gathering, a
sensor-planning process must decide what and how to observe, and how much
effort to allocate to sensing a given task.

The bandit problem formulation, with its rigorous theoretical founda-
tion and attendant analytical machinary, presents a compelling model for
this information-gathering process. Task-directed sensor plans could be de-
rived from the optimal strategies computed for suitable bandit models. In a
“sensor-fusion” setting, this paper’s on-line, model-free reinforcement learn-
ing algorithm constitutes one approach to the problem of learning how to
perceive.

The bandit formalism may also serve as a useful tool in analyzing/solving
certain general classes of planning problems. A key feature of bandit prob-
lems is the (statistical) independence of their component processes. Operator
decomposability [Korf, 1987], which is sufficient for the existence of nontriv-
ial macro tables, is similar in nature to bandit process independence. For
planning problems in which subgoals are independent, serializable, or per-
haps block-serializable, one may consider identifying the evolution of a given
state-component in problem space under the action of an operator or macro-
operator toward a given subgoal with a bandit problem component process.
The motivation for adopting the bandit problem formalism is that, as in the
specific context of sensor planning mentioned above, plans could be derived
from optimal policies computed for the bandit model. Admittedly, in many
contexts the basic bandit formulation may be too restrictive; in the analysis
of planning problems with serializable subgoals, for example, it may be neces-
sary to generalize the notion of bandit process independence to “serializable”
process independence. The bandit problem formalism may also prove useful
in the exploration of independent subgoals that are subject to a common
resource restriction, or in planning with respect to an abstraction hierarchy
and its associated hierarchy of macro networks.
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The reinforcement learning algorithm presented in Section 6 has under-
gone only preliminary empirical testing; its convergence could be accellerated
through the utilization of function approximators for representing Q-values or
thoughtful selection of learning rate parameters, which raises an interesting
issue:

The examples of Section 7 considered problems of stochastic scheduling
as specific instances of the general bandit problem formulation. But general
bandit problems themselves are archetypes of “optimal learning” problems,
in which the goal is to collect information and use it to inform behavior so
as to yield the largest expected reward from actions taken throughout the
entire duration of the learning process. (The reader is urged to recall the
slot machine interpretation of the multi-armed bandit problem stated at the
end of Section 2.) This paper has presented a reinforcement learning-based
algorithm for solving bandit problems and thus, in a sense, it might well have
been entitled, “Learning how to Learn Optimally.” But the reinforcement
learning algorithm is itself surely not optimal; its Boltzman-distribution-
based scheme of action selection is practical and provisional, neither inspired
nor informed by a bandit-problem mode of analysis.

One could envision, then, the problem of optimally learning how to learn
optimally. (But could one learn how to do this, and do so optimally?...) This
regress, as stated, is not entirely meaningful, for as Watkins has observed (cit-
ing [McNamara & Houston, 1985]): “Learning is optimal only with respect
to some prior assumptions concerning the ... probability distributions over
environments the animal [decision-maker] may encounter.”

Appendix: An informal summary of TD(0)
and Q-learning

TD(0)

Recall from Section 3.1 the system of linear equations that determines a set
of values for a Markov chain with rewards: for: =1 to N,

V(i) = R() + 7Y P;V(5). (4)
j
Since the right-hand side, viewed as an operator acting on V'(-), is a
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contraction, successive approximation is one viable computational scheme
for finding the solution: for ¢ =1 to N,

V() = R(E) +9 Y PiVE().
F]

TD(0) [Sutton, 1988] is a stochastic approximation method for finding
solutions to Equation 4; it proceeds by taking very small steps in the di-
rections suggested by the “instantaneously-” sampled version of successive
approximation; :.e., having observed a transition for state ¢ to j with reward
r, one’s instantaneous view of the right-hand side of the successive approxi-
mation recursion is » + yV(¥)(j). TD(0) takes a small step in the direction
r +yVE(5) = V(5):

VEG) = VEGE) + agfr + VB (5) - vVO(5)]
= (1-a)VH(@E) + ailr + 7V B(5)).

The update is severely “underrelaxed” (o is very small) so as to, over the
long run, average out the sampling noise. ® The fact that the expected value
of the instantaneous sample is equal to successive approximation’s right-hand
side implies, by the theory of stochastic approximation, that if step-sizes ay
diminish at the appropriate rate and other sensible assumptions hold, then
the sequence of value-function estimates generated by the TD(0) proceedure
will converge to the true solution with probability one [Jaakkola et al, 1994].

Q-learning

Recall from Section 3 the system of nonlinear equations that determines a
set of optimal values for a Markov decision process; i.e., Bellman’s equation:
fori=1to N,

N
V(i) = max | R(i,a) +7 ; P;(a)V(j)| . (5)

One may show that the right-hand side of Equation 5, viewed as an op-
erator, is also a contraction, and so a successive approximation method will

$This view of TD(0) seems to have been first suggested by Etienne Barnard in [Barnard,
1992].
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converge to the solution. Blindly attempting to apply a stochastic approxi-
mation approach using this successive approximation recursion, however, is
complicated by the presence of the “max” operation. What is the meaning
of “instantaneous sample of max, {R(i,a) +9%; P;j(a)V® (j)}?” The is-
sue can be sidestepped by shifting the focus from the estimation of optimal
state values to the estimation of optimal state/action values — the so-called
optimal “Q-values” [Watkins, 1989].

The Q-function of a state/action pair, with regard to a value-function esti-
mate, is the expected infinite-horizon return when, starting in the given state,
the given action is applied, and actions thereafter are prescribed by a policy
having the given value-function; that is, Qv (,a) = R(3,a)+v X; Pij(a)V(j),
the quantity appearing within the scope of the “max” operator in Bellman’s
equation. Informally, the Q-function with regard to a policy is the value of
the policy if the policy’s initial action is perturbed.

In terms of Q-functions, Bellman’s equation is just maxy Q*(j,¢') =
V*(j), where the star signifies optimal value functions. Therefore, by the
definition of @,

Q"(i,0) = R, a) + 7Y Ps(a) max Q*(j, '),
i
which suggests the successive approximation recursion:

Q¥ *(i,a) = R(i,a) + 7 Pij(a) max Q¥)(j, o).

The meaning of “instantaneous sample of the right-hand side” for this equa-
tion is less problematic than that for the original form of Bellman’s equation.
The introduction of @ allows one, in effect, to interchange the order of expec-
tation and maximization. Observing a transition from state ¢ to ;7 and reward
7 upon executing action a admits an instananeous view of the right-hand side
as 7+ maxy Q*)(j, a'), which suggests a stochastic approximation recursion
(referred to as a “backup”) of the form

Q¥(,a) = QW(i,a) + oy [r +7max QM (j,a') - QU a)]
= (1-)QWGa) +as [r+7max@¥(G,a)] . (6)

Theory [Bertsekas & Tsitsiklis, 1989] implies that, if each action is tried
in each state an infinite number of times, then Q®*) converges to Q*. In
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practice, the evolving current estimate of @* is often used to guide the se-
lection of actions, resulting in a gradual focusing of backup operations to
states encountered along sample paths generated through the application of
actions comprising optimal policies ([Barto et al, 1991] includes a discussion
of the ensuing computational efficiency). The goal of action-selection is to
strike a balance between refining estimates for actions currently thought to
be optimal for states that lie on optimal trajectories and exploring regions
of the state-action space for which there is a high degree of value-function
uncertainty.

A generic Q-learning computational cycle proceeds as follows (assuming
that the system is currently in state 3):

e Choose an action, a, via some designated action-selection procedure.

e Observe the state transition, 7« — j, under action a, generating imme-
diate reward r.

o Perform the backup operation (Equation 6) to update the Q-value as-
sociated with state ¢ / action a.

A number of practical action-selection mechanisims have been proposed
to accomplish the desired sampling of state-action values. A widely-used
method, proposed by Watkins [Watkins, 1989], suggests choosing an action,
a, via the Boltzman distribution:

¢Qli.a)/T

PT{a:ty}:W

—where the “Boltzman temperature,” T, is initialized to a relatively high
value, resulting in a uniform distribution for prospective actions. As com-
putation proceeds, temperature is gradually lowered, in effect raising the
probability of selecting actions with higher Q-values; in the limit, the action
that is “greedy” with respect to @ is selected. The details of one way (the
method used in later examples here) of defining the exact manner in which
the temperature is lowered is given in Appendix D of [Barto et al, 1991]. The
step size ay is also decreased over time in accordance with the requirements
for stochastic approximation convergence. In the examples that appear in
Section 7, this was achieved by implementing the “search-then-converge”
schedule recommended in {Darken & Moody, 1991].
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In summary, reinforcement learning methods, such as Q-learning, are
adaptive, model-free algorithms that can be applied online for computing
optimal policies for MDP’s. Q-learning was originally advanced as a sample-
based, Monte-Carlo extension of successive approximation for solving Bell-
man’s equation; alternative motivation and justification for the algorithm,
as well as rigorous proofs of convergence, appeal to results from the theory
of stochastic approximation, see [Jaakkola et al, 1994] and [Tsitsiklis, 1994].
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