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Abstract

A practical real-time system for passive obstacle detection and avoidance is presented.
Range information is obtained from stereo images by first computing a disparity picture
from the image pair and extracting points above the ground plane. Then these points are
projected onto the ground plane and an Instantaneous Obstacl; Map (IOM) is obtained. The
avoidance module modulates the steering and speed of the vehicle. The IOM is transformed
into a one dimensional steering vector that represents the hindrance associated with steering
in a particular direction and then a one dimensional search is performed on the steering
vector for an angle with least hindrance. The steering direction and hindrance value are
used to set the speed of the vehicle. This system has been implemented on the Mobile
Perception Lab (MPL) at University of Massachusetts at Amherst with considerable success,

running at 2Hz for 256 x 240 sized images.

*This work was funded in part by ARPA (via TACOM) grant DAAE07-91-C-R035 and NSF grant CDA-
8922572.



1. Introduction

Obstacle detection systems typically compute the position of obstacles relative to a mobile
agent by using range information. Range information may be obtained from ladar (laser
ranging) (1, 2], sonar (sound ranging) (3, 4] or vision based techniques [5, 6, 7, 8, 9, 10).

Video technology has the advantages of low cost of, low power consumption and a high
degree of mechanical reliability. The speed and accuracy of vision algorithms typically scale
with faster computing platforms. Further, the passive nature of the camera implies that
it has no detectable signature and is relatively free of signal interference in the presence
of other sensors. However, the relatively slow speed of stereo-based obstacle detection has
limited its application in real-world problems.

Existing implementations of correspondence based algorithms either fail to meet real time
reqm'remen;:s or run at coarse resolutions. We believe that the computation of a dense depth
map or a detailed 3D reconstruction of the world is difficult, computationally prohibitive
and not required in some applications. By making assumptions and compromises to simplify
and speed up the task of detection, we have developed a practical stereo based system that
is effective for obstacle avoidance at speeds reaching TMPH (see section 5) on the Mobile
Perception Laboratory (MPL) at the University of Massachusetts.

The obstacle detection algorithm trades accuracy and image resolution for speed, effec-
tively limiting the accuracy of obstacle position estimation to within a small area. Further,
since the MPL is a large vehicle (a HMMWYV), the observable area is navigable only if it
has few obstacles. We believe that for sparsely distributed obstacles, a reflexive approach,
without resort to detailed path planning, is sufficient for effective avoidance. Our approach is
reflexive in the sense that the steering and speed are modulated by a fast greedy algorithm
based purely on the instantaneous local perception of obstacle positions. The avoidance

module runs synchronously with the detection algorithm and does not require the vehicle to



stop in the course of avoiding a navigable stretch of sparse obstacles.

The obstacle avoidance algorithm prioritizes obstacles by their distance from the vehicle
and generates proportionally larger turns (to avoid them) as the obstacles get nearer (to the
vehicle). Therefore the algorithm is relatively insensitive to minor errors in obstacle positions
or actuator servos. Is is stable and has been observed to generate desirable paths over time.
We have also demonstrated that a reflexive approach can coexist with other behaviors and
perform composite tasks, such as maintaining an overall heading while avoiding obstacles in
a cross-country scenario. Further, this approach also serves to improve the robustness of the
execution of a planned path by reacting to local perturbations of a world state that arise
from the presence of un-modelled obstacles.

Section 2 summarizes related work. Sections 3 and 4 describe the detection and avoidance

algorithms respectively. Section 5 describes the implementation details and demonstrates
experimental results. Section 6 presents conclusions and section 7 examines limitations of

our approach.

2. Related Work

A majority of work on obstacle detection uses active sensors {3, 4, 2, 1]. [3, 4] use sonar

and (1, 2] use ladar generated range information. [11] uses an omni-directional conic mirror

as a sensor.

Optical flow forms the basis of obstacle detection in [5, 6, 7, 8, 9, 10]. Nelson and
Aloimonos (9] use flow field divergence while Enkelmann [7] exploits the discrepancy between
observed and predicted model-based flow. Most of the flow based methods assume that the
vehicle motion can be modelled as a pure translation, which may not be true in the general

scenario.

The concept of 2D affine trackability of shallow structures is exploited in [12, 13] to

characterize and hence detect obstacles. The implementation of affine tracking is limited to



objects with straight line boundaries and a minimal set of three lines need to be hypothesized
as a shallow structure, which are selected manually.

[14] presents three algorithms for obstacle detection, two of which are aimed at qual-
itative yes/no obstacle detection without indicating which points are obstacles. They are
based on the solvability of linear systems and are fast but fail to label obstacle points and
do not quantify distances to obstacles. The third algorithm is based on partial 3D scene
reconstruction and continuously estimates the ground plane. Its computational needs limits
its applicability in real time applications.

For an excellent survey of the effectiveness of stereo algorithms in the ARPA Unmanned
Ground Vehicle program, see [15]. The stereo algorithm developed at INRIA aims at 3D
scene reconstruction. The matching is performed at one or two resolutions, where the search
for correspondences is limited to epipolar lines. The SRI algorithm attempts to produce a
set of high quality matches using hierarchal techniques. Although the techniques established
correspondences at as much as 87% of the points with only a few spike errors, their imple-
mentations on existing hardware fall short of real time speed requirements. The algorithm
developed by TELEOS attempts to establish the correspondence of selected points at frame
rate. Selection of these points is critical for obstacle detection applications, which we believe
is still an open problem.

Trinocular stereo is used to detect obstacles in [16]. The implementation in [16] requires
three cameras to simplify matching, yet it falls short of our system by a speed factor of 5-10
for comparable resolutions even though it has custom modifications for its stereo hardware.
(17, 18, 16, 19, 11] address real time implementations.

(18] and [20] discuss the application of potential fields for obstacle avoidance. These
approaches are reactive since the gradients of the potential field at any point determines
the velocity of the manipulator towards a specified goal. [21, 22] discuss the application of

harmonic functions to plan smooth paths with no local minima. This technique can also



be used to generate robust models of the world incrementally. [19] also discusses real-time
obstacle avoidance using harmonic potential functions.

(23, 24, 25] describe reflexive/reactive approaches to autonomous vehicle control. [25, 23]
are based on the construction of motor schemas, similar to the work on potential fields
to generate robot commands. (24] describes an architecture for Autonomous Land Vehicle
Navigation that at the lowest levels contains reflexive behaviors that in a broad sense have

a commitment to preserving the constitution of the agent. One such behavior is obstacle
avoidance. For a survey of reactive systems, see [26].

[27] describes a generalized approach to reflex control for collision avoidance, introduced
in [28]. In this paper the authors construct a reflex controller that examines the nearby

C-space and rejects commands that would result in a collision.

3. Obstacle Detection

The obstacle detection algorithm developed here simplify the task of detection. Further,
certain justifiable assumptions are made to speed up the detection system. These assump-
tions make the system amenable to real time, real world situations. In this section we first

describe the assumptions, then the system requirements, and finally the detection algorithm.
3.1 Assumptions

There are five basic assumptions that underlie the obstacle detection algorithm:

o Obstacles can be defined as objects protruding sufficiently high from the ground or
crevices sufficiently deep in the surface. For the system described here, obstacles are
restricted to objects that are at least k feet above the ground-plane (see Figure 1); the

system is not designed to detect crevices (as explained at the end of this section).



Obstacles

Figure 1: Height k defines an obstacle.

e Flat Ground: It is assumed that the ground can be locally represented by a plane.
The assumption is justifiable on the basis that the area where a big vehicle can be

safely driven is more or less locally flat.

¢ Object boundaries form good features: Obstacles are assumed to be visually
distinguishable from the background in the intensity image, since local intensity dis-
continuities form the basis for matching across stereo image pairs. Note that most

correlation based techniques make this assumption.

e Epipolarity: Image matching is a two dimensional search that can be reduced to a one
dimensional search if constraints imposed by epipolar geometry inherent in an oriented
image pair [29] are met. The detection algorithm exploits the epipolarity constraint

by employing cameras with identical focal lengths that are aligned up to a scan line.

¢ Identical camera/Digitizers: Identical cameras and digitizers are assumed to sim-
plify the task of processing intensity images and finding correspondences. A difference
in focal lengths of the stereo camera lenses introduces a 2D affine transform and obtain-

ing correspondences becomes more complicated. Differences in the dynamic response



of the sensors to incident light and scaling or offset of the input signal by the digitizers

requires costly and time consuming intensity normalization.

3.2 Calibration

Some of the assumptions require a tedious, but by no means impossible, external stereo
camera calibration. Micrometers are used to align the cameras so that the epipolarity con-
straint is met. Camera and digitizer consistency constraints are met by using cameras,
digitizers and auto-irises of identical make and specifications. The camera auto-irises are
driven from the video output of a single camera. After the stereo camera pair is aligned, a
few points k (as in Figure 1) feet above the ground-plane are marked and the disparity is
computed from their right and left camera images. Linear interpolation and extrapolation
of these values produces an expected ground plane disparity value (EGP) for every row of

the image.

3.3 Algorithm

Obstacles are detected and their positions are estimated in a simple four-step process:

1. Calculation of disparity: The epipolarity constraint restricts our search for corre-
sponding pixels to one row. To find the pixel R(¢,j) in the right image corresponding

to L(z, k) in the left image, a simple n x n correlation mask is used.

2. Filtering noise: Because the matching process is so simple, we tend to get quite a
few bad matches which result in incorrect disparities. To eliminate this kind of salt
and pepper noise, the popular constant-local-disparity constraint is exploited. This
constraint enforces the disparities in a small window to have similar values. In the
Marr-Poggio-Grimson approach [30, 31, 32], matching ambiguity is resolved so that the

chosen value is close to the majority disparity of unambiguous points in the neighbor-



hood. We make use of the concept in a slightly different way. The disparity computed
in the previous step is believed if at least K pixels in its m x m neighborhood have the

same computed disparity; otherwise the disparity is ignored.

3. Thresholding the disparity: The disparity D(¢,j) at a pixel R(3,j) is compared
with the expected disparity of the ground plane G(3, j) and if D(3,7) > G(3,3), R(3, 7)

is regarded as a pixel corresponding to an obstacle.

4. Projecting obstacles points onto the ground plane: Each point that corresponds
to an obstacle is projected onto the ground plane using the pixel coordinates (3, j) and
the distance computed from the disparity. The output of the projection step is called

the Instantaneous Obstacle Map(IOM).

Note that the correlation mask used in step 1 does not always give an unambiguous match,
a pixel in left image may match equally well to several pixels in the right image. (This
is particularly a problem on road surfaces which have very little texture at our working
resolution.) In such cases the largest value of disparity is chosen. This is a conservative
choice with regard to positive (protruding) obstacles since it selects the nearest possible
position of the obstacle from the vehicle. Unfortunately, this is also the reason the algorithm

works poorly on negative obstacles such as crevices.

4. Obstacle Avoidance

Obstacle avoidance is a continuous activity where each iteration of obstacle avoidance
transforms the IOM into a suitable representation and then generates motor commands
(speed and steering).

Ravela[26] observes that the representation of the local world in a domain consistent

with the space of actuator commands facilitates the construction of a model for interaction



with the world. We agree with this view and observe that the IOM can be economically
transformed into a steering vector representing a choice of steering directions. The range of
the steering vector is the instantaneous turning extent of the vehicle. A value in each entry
of this vector is interpreted as a steering hindrance in the associated direction. The direction
to turn is simply inferred as the steering angle represented by a cell in the steering vector
that has the lowest hindrance value, up to a threshold.

In order to compute the steering vector from an IOM the coordinates of IOM points are
discretized in a discrete polar occupancy grid(POG) and weights are assigned to each point
in the POG using equation 1. As a pre-processing step each IOM point is appropriately
relaxed to account for the vehicle’s dimensions. The POG is similar to a C-space map [33]
and coarsely encodes the possible configurations that the vehicle can exist in. The second
step of the IOM to steering vector transform collapses the occupancy grid to a steering
vector. Note that in practice, the polar occupancy grid is not explicitly computed and an
O(n) algorithm is developed to directly compute the steering vector from n points in the
IOM. Steering and speed values are computed from the steering vector and fed to the vehicle

controller operating the actuator servos.

4.1 Computing the Steering Vector

Let the set O, contain obstacle points in a 2D cartesian frame F,. The set O, is first
transformed to represent points of a set O, in a 2D cartesian frame .7-'.,rthat is centered at the
intersection of the longitudinal axis of the vehicle and the line joining the two front wheel
contact points on the ground. This transformation °¢T), is computed manually in our case
and represents a transformation between a 2D frame that is formed from a vertical projection
of the right camera origin on the ground plane and F, (see figure 2). °T, in general can

involve rotation, translation and scale. However, in our case this matrix has been designed

to involve only translation.



T
Each point p, = [ Ty, 2, ] in the set O, is then transformed into polar coordinates

T
pr = [ p 0 ] €O, centered at F,, using the equations:

p=+(z2+22)
and

6 = tan™? (ﬁ) , 2y 0
2y

Each point p. represents a location (3, j) in the POG G (0..n,,0..n5). The integer values 3

and j are computed using the formulae:

L(;222minm  n,) | if prmin < P < Prmas

Pmaz —Pmin

undefined otherwise
and
(52t )] i rnin < 6 < O

j =
undefined otherwise

n, + 1 and ng + 1 are the number of rows and columns of G respectively. The value of

G (2,7) is computed for defined values of i and j using the formula:

G (3,5) = (n, =)’ (1)

All locations of G are initialized to 0. Notice that equation 1, assigns smaller values to
obstacles that are farther away from the vehicle. This assignment scheme serves to represent
the hindrance associated with steering in a particular direction and will be discussed shortly.
Thus far we have discussed the construction of the POG G, whose zero entries represent the
free space of a vehicle, albeit for one that has no dimensions. In order to account for the

dimensions of the vehicle each point in O, is expanded. This expansion makes the assumption
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Figure 2: Steps involved in generating the steering vector from O,




EXPAND(O,)

W, — Width of the vehicle
O! « NULL

for each p,e0, do

W,

8, « round (tan'l—"l—) if p>pthrth else exception(TOOCLOSE)
p

min

6, < 0 —8,, 0, 0+0, and d « maz=tmin

ng
for t « 6, to 6, step d
add (p,t) to O}

return O}

END EXPAND
Figure 3: The algorithm to expand an obstacle point

that the vehicle approaches obstacles almost head on and therefore it is sufficient to account
only for the vehicle’s width by expanding a point appropriately along the angle axis of G.

The algorithm EXPAND for expanding a point is described in Figure 3.

thrsh

Prin’ in EXPAND is a minimum distance threshold and if, during the execution of

EXPAND an obstacle is detected to be closer than the threshold, an exception is raised
and the vehicle is brought to an immediate halt. The algorithm EXPAND precedes the
computation of entries in G, which is computed from O!.

Conceptually, a one dimensional steering vector S (0..ny) is computed from G by assigning
to an entry S (j) the value of the smallest non zero row of G corresponding to the column j,
if one exists, 0 otherwise. A cell j in the steering vector therefore contains the POG value
of the closest obstacle along a particular steering direction represented by j.

In practice, as mentioned at the beginning of this section, G is never explicitly com-

puted(no space allocation). S can be computed in O(n) time from O, using the algorithm



STEERING-VECTOR(O,)
Compute O, from O,
0! «+ RELAX(O,)
Initialize T/(0..ng) « n,
Initialize S(0..ng) « 0
foreach p, in O}
Compute ¢,j and G(z,7)
if 1 < T(j) then T'(5) « 7 and S(j) « G(%,7)

return S

END STEERING-VECTOR

Figure 4: Algorithm to compute a steering vector from an IOM

STEERING-VECTOR described in Figure 4.1

4.2 Computation of Steering and Speed

The cell §(7) is said to encode the hindrance associated with steering in the direction
7 in the sense that, the larger the value of S(j), the less confident we are of steering the
vehicle in the direction represented by j. Then, given S, the choice of steering direction is the

corresponding cell j that has the smallest hindrance value below a predetermined threshold
T.

This rule is implemented as a one-dimensional search for a minimum value up to 7 start-
ing from the centered wheel position of the vehicle. The threshold = sets the minimum
distance from the vehicle up to which avoidance is effective and the current implementation
incrementally lowers the effective avoidance distance, starting at n, and stopping at a dis-
tance represented by 7. If no slot is found during this entire process the algorithm raises an
exception and the vehicle is brought to an immediate halt.

The above method for computing a steering direction is greedy in the sense that it picks



the steering direction as the angle 8,..; corresponding to the first satisfactory slot at the
farthest possible avoidance horizon.

The second actuator command that the avoidance module modulates is the vehicle’s

speed. The reference speed v,y sent to the actuator is governed by the following dynamics.

Let ¥ma: be the maximum permissible speed and let ¢ be the threshold at which a satis-

factory steering angle was found. Then,

2 2
—t Oref| — 0
vref = (wl . (npn ) + (1 — wl) B (lfel—dd) ) * Umaz (2)
P

where,

9, = Iemazl if ercf 2> 0
7 |Omin| if Orep <0

and w; is a weight empirically set between 0 and 1.
This metric weighs large turns and close obstacles relatively higher than small turns

and distant obstacles and reduces speed when obstacles come close or when sharp turns are

taken. Note that in the case when there is an obstacle closer than p*7** or when t exceeds =
the vehicle comes to an immediate halt due to the corresponding exceptions raised. In this
case Ures 1s never fed to the vehicle. Only legal values of 6,.; and v,.; are fed to a vehicle

controller that operates the actuator commands based on these values.

5. Implementation Details and Experimental Results

5.1 Hardware

The vehicle has an SGI irisdD (used for avoidance) and SUN a Sparc-10 (used for detec-
tion) as general computing resources. DataCube’s MV-20, DigiColor and ROI store form the

image acquisition, low-level image processing and stereo matching subsystem. An MC68000



based vehicle controller controls steering, brake and throttle. Figure 5 depicts the system

schematically and Figure 6 shows the stereo camera connections in detail.

5.2 Detection

The stereo images are digitized to 256 x 240 pixels. The constants for the various algo-
rithms (described earlier) are: mask size N = 5, threshold neighborhood size M = 5 x 5,
of which K = 9 must agree. The maximum disparity computed is 50. Due to hardware
resource availability and timing constraints, the first and the third steps of the algorithm
are implemented on the DataCube MV-20; the SGI host performs step 2 and step 4. The
entire process executes at 2Hz, resulting in safe speeds of up to TMPH. The Instantaneous
Obstacle Map produced has the right stereo camera as the origin.

Figures 7 and 8 illustrate various intermediate results and the Instantaneous Obstacle
Map produced when a typical stereo image pair is processed. The left stereo image 7(a) and
right stereo image 7(b) are clipped to the size of the disparity image 7(c). Figure 8(a) is the
result of thresholding 7(c) against EGP disparity. Figure 8(b) is the Instantaneous Obstacle
Map produced as a result of projecting points corresponding to obstacles on to the ground
plane. Note that the “shadows” that appear to the right of the obstacles in Figure 7(c) are
the result of correspondence mismatches of ground plane points that are visible from the left
camera but occluded by obstacles in the right; these are eliminated after thresholding (see

Figure 8(a)).

5.3 Avoidance

The constants and thresholds used in the obstacle avoidance components of the system
are: Pmin = 0, Pmaz = 100ft. (determined by the effective range of detection), Omin = —20°,
Omaz = 20° (the steering limits of the vehicle), n, and ny were chosen to be 10 and 40

respectively (providing a 10ftx1° resolution in G). vme= = 10.0fps, 7 = 5 (representing
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(a) Left Image (b) Right Image

(c) Computed Disparity

Figure 7: Disparity Computed from a Stereo Image Pair.




50ft.) and w, = 0.6. Figure 9 illustrates the surface for equation 2 with v, = 1.0. This
surface shows the values of v,.; against varying hindrance values ¢ < T and steering (in

degrees) corresponding t0 Omin < Ores < Omaz. Note that v,.; = 0 for all other values of 8,

and ¢t.

Figures 10 and 11 illustrate a sampled sequence of obstacle avoidance runs. These figures
must be read in a left to right, top to bottom fashion. The first experiment involves placing
both cones and a human obstacle in a configuration clearly observable in the last picture of
the figure. The path traced out by the vehicle is also observable as tracks on the grass in this
picture. In the second experiment, the obstacles (7 cones - see last picture) are arranged in
a star configuration. The distortion observed in the top lines of the images in figure 11 is an

artifact of the video recorder playback (the data given to the algorithm was not distorted).

6. Conclusion

A fast non-hierarchical stereo correspondence algorithm producing sparse disparity infor-
mation turns out to be effective for obstacle avoidance in a common outdoor setting. The
obstacle avoidance module is reflexive in the sense that it is data driven and opportunistic in
generating motor commands. The algorithm is relatively insensitive to positional uncertain-
ties of obstacles as well as the inaccuracies of the actuator servos. The algorithm is stable,
simple, fast and practical to implement. We realize that our approach may fail, but we also
observe that our technique performs very well in most out door scenarios, especially with
sparse obstacle sets. A well engineered system has to make appropriate assumptions so that

a difficult task becomes amenable in real world, real time settings using available technology.

7. Limitations and Future Work

Relaxation of the flat ground assumption would mean a substantial extension of the

obstacle detection system. Automating the representation of the ground plane by computing
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Figure 10: Image sequence showing obstacle avoidance experiment # 1.




Figure 11: Image sequence showing obstacle avoidance experiment # 2.




the equation of the plane on the fly would help in situations when the ground slope changes
suddenly. It would also help in situations where the stance of the stereo system is not fixed
relative to the ground plane but can be actively controlled by the agent. Other improvements
can be expected by relaxing the Epipolarity and the Identical camera/Digitizers assumptions.

Experiments with tracking obstacles over successive IOMs have been promising; the
system is being extended to generate local maps by merging successive IOMs.

The obstacle avoidance system developed in this paper cannot by itself perform a task
such as to move from point A to point B in an outdoor scenario. However, we have con-
ducted experiments in which the obstacle avoidance system coexists with other modules
including a compass-based heading generator and a road follower [34]. Desirable behavior
has been observed to emerge from a composition of these modules (for example, move along
a particular heading while avoiding obstacles or follow a road while avoiding obstacles). OQur
obstacle avoidance system has a limitation in that it does not account for the non-holonomic
constraints introduced by the vehicle. It would be interesting to incorporate non-holonomic

constraints when computing the speed and steering values.
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