
1

Evaluating a Legal Argument Program:
The BankXX Experiments

Edwina L. Rissland
David B. Skalak

M. Timur Friedman

Department of Computer Science
University of Massachusetts

Amherst, MA 01003

rissland@cs.umass.edu

Abstract

In this article we evaluate the BankXX program from several perspectives. BankXX is a case-based legal
argument program that retrieves cases and other legal knowledge pertinent to a legal argument through a
combination of heuristic search and knowledge-based indexing. The program is described in detail in a
companion article in (this issue of) the Journal of Artificial Intelligence and Law. Three perspectives are used
to evaluate BankXX: (1) classical information retrieval measures of precision and recall applied against a
hand-coded baseline; (2) knowledge-representation and case-based reasoning perspectives, where the
baseline is provided by the functionality of a well-known case-based argument program, HYPO [Ashley,
1990]; and (3) search perspective, in which the performance of BankXX run with various parameter settings,
for instance, resource limits, is compared. In this article we report on an extensive series of experiments
performed to evaluate the program. We also describe two brief experiments on ancillary questions regarding
the program's search behavior and knowledge representation. Finally we offer some general conclusions that
might be drawn from these particular experiments.

This research supported in part by grant No. 90-0359 from the Air Force Office of Sponsored Research and
NSF grant No. EEC-9209623 State/University/Industry Cooperative Research on Intelligent Information
Retrieval.

April 25, 1995

Contents

Part I: Introduction 1
1. Introduction: The Problem of Evaluating Arguments 1
2. Evaluation of BankXX: General Experimental Design 5

2.1 The Experimental Space 5
2.2 The de novo Treatment of a Problem Case 8
2.3 Additional Comments on Date Filtering 8

Part II: The BankXX Experiments 9
3. External Evaluation from an Information Retrieval Perspective: 9

3.1 Methodology 9
3.1.1 The aggregated argument pieces 9
3.1.2 Comparing BankXX output with the hand-coded case opinions 11
3.1.3 Precision-recall scores and empty answers 13
3.1.4 Handling undefined precision and recall ratios 15
3.1.5 Propriety of precision and recall as performance measures 15

3.2 Comparing Evaluation Functions 16
3.2.1 Qualitative observations 16
3.2.2 Quantitative precision-recall analysis 21

3.3 Qualitative Observations: A More Detailed Look 27
3.4 A Closer Look at the Quantitative Analysis: The Subset Experiments 31

3.4.1 Analysis with respect to subsets 31
3.4.2 Analysis with respect to argument pieces 35
3.4.3 Analysis with respect to configurations 37

3.5 Chasing down the effect of sparse cases 39
4. Evaluation from Knowledge Representation and CBR Perspectives: 41

4.1 µHYPO, and BankXX’s HYPO submodule 42
4.2 The Argument Record in the BankXX-mHYPO Comparisons 44
4.3 Comparing µHYPO,Arguments with Hand-Coded Arguments 46
4.4 Comparing Arguments—BankXX, µHYPO, and Hand-Coded Opinions 48

5. Evaluation from a Search Perspective: 51
5.1 Start Node 52
5.2 Evaluation Function and Number of Closed Nodes 55
5.3 Number of Billable Seconds 59

6. Three Additional Experiments 63
6.1 Portions of the Search Space that were Closed 63
6.2 Citation Frequencies 66
6.3 An Alternative Approach to Precision-Recall 67

7. Concluding Remarks 72

Acknowledgments 75

References 76

Technical Appendix 77

1

Part I: Introduction

1. Introduction: The Problem of Evaluating Arguments

There is no doubt that more research needs be done on the problem of evaluating arguments,
whether they are complete arguments produced by humans or vestiges of arguments created
by computers. Perelman and Olbrechts-Tyteca [1969, p. 462] have noted, in fact,

In view of the complexity of the factors to be taken into consideration even just to judge
whether an argument has any strength at all, it is curious that the writers of treatises on
rhetoric should so glibly state, almost incidentally, that the strength of arguments is common
knowledge and that they should base their advice regarding the order of discourse and the
sequence of replies, on the degree of conviction that the arguments must have produced,
which it is not hard for us to know, because we know what ordinarily brings this about.

[Footnote to Rhetorica ad Herennium, I, 10].

These respected authors also observe [p. 461] that it is difficult to characterize even just the
positive aspects of an argument: “Thus the strength of an argument shows itself as much by
the difficulty there is in refuting it as by its inherent qualities.”

Fox and Clarke [1991] have suggested a collection of heuristic rules to gauge the relative
persuasiveness of arguments:

 (R1) A larger set of positive arguments is more persuasive than a smaller set;
 (R2) A smaller set of negative arguments is less dissuasive than a larger set;
 (R3) Arguments that make unverified assumptions (e.g., defaults) are less
persuasive than those which are based on grounded arguments (e.g., observations);
 (R4) Arguments that explain more observations are more persuasive than those
that explain less;
 (R5) Any pair of arguments that is strictly independent is more persuasive than
a pair in which [each] argument depends upon the other.

Ashley also provided a list of nine argument-evaluation criteria. Three criteria speak to the
comparison of the whole argument proposed by a side, rather than the comparison of
constituent precedents or points:

7. Improving an argument: The more nontrumped points there are, the better for a side’s
argument.
8. Comparing opposing sides in one argument: If all of the nontrumped points favor Side 1
and there are no nontrumped points for Side 2, Side 1’s argument is stronger.
9. Comparing same side in two arguments: If there are more nontrumped points favoring Side
1 in argument [b] than in argument [a], argument [b] is stronger for Side 1 than argument [a].

[Ashley, 1990, p. 279]

In general, there has been too little work that shows how to evaluate an argument. The
difficulty stems from at least two sources. First, the subjective nature—or rhetoric—of
argument is difficult to define and quantify, since it depends on how persuasive the argument
is to its audience, jury, court, etc. Second, there is a fundamental lack of knowledge on what
an argument is comprised of—its epistemology or structure. While there have been several
fundamental contributions on this front—Olbrechts-Tyteca, Toulmin, Ashley, Branting,
etc.—much remains to be done. We have barely scratched the surface for certain kinds of

2

argument, such as appellate oral argument (e.g., [Rissland, 1990]), and have yet to address
others, such as legal briefs. Our work here with argument pieces (elaborated in the first
article of this two article pair) as well as past work on the effect of high-level purposes on the
content of argument [Rissland et al., 1993], statutory argument strategies and tactics [Skalak
& Rissland, 1992], precedent-based arguments [Rissland et al., 1984; Ashley, 1990], etc. has
addressed certain structural aspects of argument. Of course, although we emphasize the non-
rhetorical aspects of argument, what we have encoded via such mechanisms as argument
factors, argument pieces, dimensions, etc. does reflect some of our intuitions about the
persuasive aspects of argument.

With respect to arguments produced by computers, previous researchers have relied on a
variety of techniques to validate their programs against realistic baselines. For HYPO,
Ashley made comparisons between the output of HYPO program and actual opinions in the
trade-secrets misappropriation area [Ashley, 1990]. Branting [1991] performed a series of
experiments that enlisted the services of a domain expert in the Texas worker’s compensation
area to grade the output of the GREBE program against memoranda written by four
advanced law students. Gardner [1987] overcame the lack of a right answer to most legal
questions by comparing the output of her program with the answers given to five short offer-
and-acceptance questions in Gilbert Law Summaries: Contracts, a study aid for law students
[Eisenberg, 1982].

In this work, we address the evaluation question in three types of experiments:
1. External benchmarking comparisons of BankXX by running BankXX on real legal

cases and comparing its output with hand-coded representations of the opinions in the
cases;

2. External system comparisons of BankXX with a re-implemented version of the
HYPO program called µHYPO; and

3. Internal system comparisons of the performance of BankXX with itself, by varying
parameter settings.

No single one of these evaluation approaches is perfect. For instance, none captures all the
aspects we wish to evaluate, and some introduce aspects (e.g., constraints on case citation
stemming from jurisdictional considerations) that we do not consider in BankXX.
Nonetheless, the composite does give us a fairly detailed look at BankXX’s performance.
Also, note that only the internal comparisons are completely “fair” in the sense that what are
being compared (BankXX against BankXX) are perfectly commensurable. On the other
hand, the external comparisons are more interesting. Evaluating argument is truly a “two-
handed” exercise—on one hand, on the other hand.

3

Another way of understanding our approach to evaluation is in terms of the following three
substantive perspectives addressed in the BankXX project:

1. Information retrieval: How well does BankXX retrieve the “right” information. To
benchmark BankXX’s performance from this perspective, we measure its
performance against hand-coded versions of real cases using traditional IR measures
of precision and recall.

2. Knowledge representation and case-based reasoning, particularly case retrieval:
How well do BankXX’s representation and CBR mechanisms allow it to perform? In
this perspective, we compare retrieval performance of a re-implemented subset of the
seminal case-based reasoning program, HYPO [Ashley, 1990] with that of BankXX.
BankXX borrows a number of case representation and analysis techniques from
HYPO, but HYPO does not contain some types of knowledge that are represented in
BankXX, such as legal theories and factual prototypes.

3. Heuristic search. How do the computational details of heuristic search—evaluation
function, start node, resource limit—affect performance? In this set of experiments
we compare the efficiency and efficacy of BankXX under different (internal)
parameter settings that define its operation.

These three perspectives correspond with the three approaches to evaluation. They are the
“semantics” underlying the “syntax” of those experimental approaches. The driving
motivation for all of this work is our fundamental concern with legal argument. It permeates
all our experiments and all aspects of the BankXX system.

In general, our goal in this paper is to explore the use of heuristic search, guided by
evaluation functions capturing various types of information needs—as reified in BankXX—
to retrieve information, such as cases and legal theories, for use in legal argument from a
“library” of highly interconnected sources, as is typical in law. In particular, we investigate
several hypotheses:

• BankXX endowed with a knowledge-richer evaluation function performs better than
BankXX with a knowledge-poorer one, that is, BankXX/AP and BankXX/AF
outperform BankXX/NT.

• BankXX/AP produces more balanced arguments than BankXX/NT.

• BankXX exhibits performance improvement over HYPO on the task of retrieval.

• BankXX’s performance improves, and then levels off, with increased resources.

In our experiments, we measure performance—and thus define “better”—with traditional
precision and recall statistics and with counts of numbers of items retrieved. To use
precision-recall measures, we must define test problems and answer keys; for these, we use
real cases—the 55 represented in BankXX’s case base—and their court opinions. Since we
are concerned with the use of such measures, which may not be totally appropriate in our
domain, we also briefly explore an alternative approach using modified precision-recall
measures.

4

The remainder of this paper is divided into six main sections. First we describe general
aspects of the experiments carried out upon BankXX and further discuss the three evaluation
perspectives and types of evaluations. Each is explored in depth in one of the next three
sections (Sections 3, 4, 5) of the paper. The sixth, and penultimate section of the paper,
describes a final set of experiments that respond to questions that arose in the course of these
experiments and an alternative approach to precision and recall. The article closes with a
short discussion of alternative design decisions and with general points that might be drawn
from these experiments with BankXX and the particular knowledge we have given it.

5

2. Evaluation of BankXX: General Experimental Design

2.1 The Experimental Space

Setting up a series of empirical evaluations involves making a series of choices. Here we
briefly lay out the choices we explore in our BankXX experiments. Obviously there are
others as well.

One can think of the top level choice as the choice of experimental approach. There are the
three major choices in approach, as laid out in the introduction:

1. External benchmarking (against court opinions)—explored in Section 3.
2. External cross-system comparison (with HYPO)—explored in Section 4.
3. Internal comparison (with different parameter choices)—explored in Section 5.

Next, there are several parameters that can be varied within BankXX. These stem primarily
from BankXX’s computational architecture as a heuristic search program. The configuration
choices for BankXX are:

1. the evaluation function:
a. node-type (NT) evaluation function (denoted BankXX/NT)
b. argument-piece (AP) evaluation function (BankXX/AP)
c. argument-factor (AF) evaluation function (BankXX/AF)

2. the start node:
a. a standard well-known case (Estus)
b. the problem case
c. a random node

3. resource limits:
a. number of nodes closed (e.g., 30, 60, 90);
b. number of “billable seconds” (e.g., 1, 2, 10)1

The terms and weights for the three evaluation functions are given in the Technical
Appendix. Note that BankXX/AP in addition to using the fill limits on argument pieces in the
argument-piece evaluation function, also uses the same fill limits when deciding whether or
not to harvest a node it has closed. Thus, for instance, if a case is both a leading case and a
same-side case and BankXX has already reached its fill on same-side but not leading cases,
the case will only be harvested, and listed in BankXX’s output, as a leading case.2
Regardless of configuration, BankXX always harvests information for the same standard
dozen argument pieces.3

1“Billable seconds” is the time BankXX takes from the moment it is invoked until it returns its output. It includes any time
spent on garbage collection and output to the screen during intermediate processing.

2See the companion paper, for instance, Section 3.5 concerning the argument-piece evaluation function and Section 4.3
concerning an extended example of BankXX/AP processing the Estus case as a problem case.

3N.B., in these experiments the family-resemblance-prototype argument piece is usually empty since we usually have
disabled the aspects of BankXX needed to fill it.

6

We vary each of these three configuration choices in the internal comparisons, discussed in
Section 5. In both external comparisons, the start node and resource limits are not varied. All
external comparison experiments use the Estus case as start node and resource limits of
30 closed nodes and 1000 billable seconds. These particular parameter settings were found
to be a good choices after examination of the results of the internal experiments. (See Section
5.) In particular, the time limit is more than enough to allow BankXX to run until its list of
items to explore (i.e., its OPEN list) is empty.

In addition, there is a fourth configuration choice as to whether BankXX filters its output for
items—cases decided or theories promulgated—dated after the problem case and when it
does so. Date-filtering is needed in both types of external benchmarking experiments in order
to exclude post-dated cases and theories that are extraneous to the problem-case. The choices
for date-filtering are:

a. no filtering
b. post-processing filtering—after BankXX has concluded processing a problem
case.
c. during-processing filtering—while BankXX is processing a problem case,
specifically, at the time a node is expanded. Thus, post-dated items never get put
on the OPEN list.

All external experiments—discussed in Sections 3 and 4—filter for dates during processing.
The internal experiments do not filter for dates at all. By comparison, the extended example
of the companion article used post-processing date filtering.

Finally, there are choices of metric, comparison points, and test cases to use in the external
benchmarking experiments comparing BankXX’s output with real court opinions:

1. Evaluation metric:
a. classic precision-recall
b. modified precision-recall

2. A set of comparison points:
a. the full set of BankXX’s standard 12 argument pieces
b. a set of 4 simplified aggregated argument pieces

3. A set of test cases (to use in averages):
a. the entire 55 case corpus (called All)
b. only the top 20 cases in the leading-cited cases ranking (Top 20)
c. only the 14 appellate cases from the corpus (Appellate)
d. only the 14 so-called meaty cases (Meaty)4

For the most part, we only use the classic precision-recall measures in these experiments
although we briefly explore a modified version of them (in Section 3.6) to emphasize that the
choice of metric is indeed a choice. There is no a priori mandate to use, or use exclusively,
precision-recall measures in their traditional form. And, that in the field of AI and Law, there
are good reasons not to and that we need alternative approaches in fields, such as ours, where

4A meaty case is a case having numbers of cited cases above a certain threshold. This class was defined because so many
of the cases in this area of law cite very few precedents. A few cite none at all. See Section 3.5, especially Table 3, for data
on this point. The definition of meaty case is given below in Section 3.6.

7

there are no unassailable “correct” answers to use as evaluative standards. We explore use of
a modified precision-recall to encourage, by example, development of other measures.

To suit the circumstances of what is being compared—BankXX-Court opinions, BankXX-
HYPO, BankXX-BankXX—we use different sets of comparison points to define what is
being compared in the various experiments. The external experiments use a set of four
simplified aggregated argument pieces. The internal experiments use the standard dozen.
Finally to analyze performance on different types of cases, we use four different partitions of
the BankXX case corpus.

In summary, the experimental space is quite large: 3 overall experimental approaches, 3
configurations of BankXX, 4 partitions of the case base, etc. In these experiments we try to
explore portions of this space in the classical way by varying one aspect while holding others
constant. For instance, within the internal comparison experiments, we vary the start node
while holding the evaluation function and resource limits constant. We do not use n-fold
validation because there is no training phase in BankXX; all cases can be used as test cases.
We use all 55 cases in BankXX’s case base as problem cases in a leave-one-out de novo
manner. Of course, this can be considered an extreme case of cross-validation.

Even with the very rich set of variations engendered by the above choices, we are still only
exploring a small subset of the possibilities. For instance, throughout our experiments we
have not tinkered with the terms and weights in our evaluation functions. In fact, each of the
three evaluation functions is but one particular function from a family of functions spanned
by the terms; others can be generated by varying the weights. Other such closely related
evaluation functions beg to be explored. In particular, if one is interested in fielding a system
such as BankXX, tuning the weights and terms is a must.5

We have performed a large number of experiments—and this is a long paper—and some
results require a close technical explanation that appeals to the design and implementation of
the program. For convenience, for each experiment, we summarize the parameters that are
varied and held constant, and we offer a very broad summary of the results. These are
presented in boxed areas of text. However, we caution the reader against wholesale reliance
on these summary characterizations and extraction of the summaries from the experimental
context in which they are made. A rather blanket caveat is that the results we present are
limited to the particular set of cases and theories we have incorporated into the program.

5The data in these experiments suggest some changes to term weights and thresholds, for instance, increasing the fill limits
on supporting-cases and contrary-cases argument pieces in the argument-piece evaluation function.

8

2.2 The de novo Treatment of a Problem Case

In these experiments when a case from the case base is treated as a problem situation de
novo, it is run as if never seen before by BankXX. The point of view (debtor or creditor)
given to BankXX is that of the side that prevailed in the actual court case. Each of the 55
cases in the BankXX case base is treated in this way.

In the de novo approach, we excise the problem case from the case-domain graph by excising
the nodes that represent it (e.g., fact situation node, citation nodes) and disabling the pointers
that connect it to other cases and items of knowledge (e.g., legal theories). In particular, we
decouple the de novo case from any legal theories it actually put forth or applied. For
instance, when the Estus case is run in a de novo fashion, the Estus theory, which was
promulgated by the Estus case, is treated as if it came from some other case (not included in
BankXX’s case base) since it is left in the knowledge base but its links to the Estus case are
removed.

2.3 Additional Comments on Date Filtering

We use the during-processing date filtering option in the external benchmark experiments
since post-processing filtering would be disadvantageous to BankXX. The question of dates
is not an issue in the internal experiments. Of course, in the intended use of BankXX on new
problem cases, date-filtering is not needed since everything known to BankXX should be
available.

With the post-processing date-filtering option, all cases and theories remaining in the case-
domain graph after de novo preparations are available to BankXX, regardless of their dates
relative to the problem case. For instance, a case decided after the problem case is still fair
game for consideration. The effect of post-processing date filtering can be significant since
many items are often deleted, especially for earlier cases.

There are two reasons not to use post-processing date filtering. First, post-dated cases and
theories—cases decided or theories promulgated after the date of the problem case—are
ignored in the external comparisons, so they count for naught. Second, they represent wasted
resources. Especially with BankXX/AP, where there is a limit on how many items can be
harvested to fill any argument piece, a harvested post-dated item represents a lost
opportunity: a pre-dated item actually used in the actual court opinion might have been
harvested instead. For instance, there are limits of three cases each for supporting and
contrary cases; if these argument pieces are filled by extraneous cases, pertinent cases must
be passed up.6 In addition, consideration of extraneous items uses up other limited resources
like allowed computation time.

6See the treatment of [GOEB] and [IACOVONI] in the extended example of the companion paper (Section 4.3).

9

Part II: The BankXX Experiments

3. External Evaluation from an Information Retrieval Perspective:
Comparing BankXX with Hand-Coded Court Opinions

In this section, we present our primary external evaluation of BankXX in which we compare
the performance of the three configurations of BankXX against hand-coded opinions of the
cases in the BankXX case base. In Section 3.1, we present our methodology, including the
definitions of the four aggregated argument pieces used in the comparisons and a discussion
of precision and recall measures. In Section 3.2, we give an overall assessment of BankXX’s
performance. In Sections 3.3, 3.4, and 3.5 we examine the results in much greater detail. In
particular, in Section 3.4 we examine BankXX performance on various subsets of cases and
in Section 3.5 we examine the effects of sparseness. In Section 3.6 we explore an alternative
definition of precision and recall based on case similarity.

In these BankXX-court experiments we examine how well BankXX retrieves the cases and
theories that are actually cited in the court opinions of real legal cases. The evaluation
methodology was to run BankXX in the de novo manner (see Section 2.2) on each of the 55
cases in the BankXX case base three times—once in each configuration of BankXX with
other parameters held constant—and then to compare the items harvested by BankXX with
those from the hand-coding. For this comparison we represent both the opinions and
BankXX output in terms of four simplified, aggregated argument pieces. For each of the four
aggregated argument pieces, we computed precision and recall scores. This produced 3 x 4 x
55 = 660 raw data points and 1320 individual precision and recall scores, which we examine
in various ways.

Parameters Varied:
BankXX configurations: BankXX/NT, BankXX/AP, BankXX/AF

Parameters Held Constant:
Start node: Estus
Closed node limit: 30
Time limit: 1000 billable seconds

Date-filtering option:
During-processing

3.1 Methodology

3.1.1 The aggregated argument pieces

In order to carry out BankXX-court opinion comparisons—external benchmarking with an
IR perspective—we needed to create a corpus of “correct” answers. To do this we encoded
each case in the BankXX corpus by hand by entering each case and theory actually cited in
the published opinion into its appropriate argument piece[s]. We then checked these against
those contained in BankXX’s case-domain-graph and only kept those that are; for
comparison purposes, it would not make sense to check if BankXX harvested something that
it could not know about. For example, if an opinion cited the important Estus and Deans

10

cases, which are present in BankXX, we would list them in appropriate argument pieces,
such as leading-cited-cases.

In doing this encoding, we initially tried to use all twelve categories of cases and theories
defined by the standard dozen BankXX argument pieces. (See Section 3.3.1 of the
companion paper). However, we found that some of the technical distinctions made easily by
BankXX were difficult for us to make. For example, it is difficult to say whether a theory
belongs to the applicable-theories or the nearly-applicable-theories argument piece. This is
not a problem for BankXX since BankXX uses a well-defined test based on the domain
factors to decide whether a theory is applicable or nearly applicable. In order to avoid forcing
hard-to-make distinctions, we defined a set of aggregated argument pieces. They aggregate
case or theory sub-categories and are simpler than those normally used by BankXX.

To encode court opinions, we used three broad categories aggregating pairs of standard
BankXX argument pieces:

• applicable and nearly applicable theories,
• supporting-best and ordinary supporting cases,
• contrary-best and ordinary contrary cases.

We also used the leading-cited-case category without alteration since there were no
difficulties involved in applying it: one merely checks whether a cited case is on the ‘hit
parade’ of the top five most cited cases in the BankXX corpus.7 See Figure 1.

1. theories any theory mentioned in the opinion
2. pro (same-side) cases any same-side case mentioned in the opinion
3. con (contrary) cases any contrary case mentioned in the opinion
4. leading cited cases any of the top 5 most cited cases in the BankXX corpus
Figure 1. The four categories used to encode court opinions in the BankXX-court comparisons. The pro

viewpoint in the encoding is that of the side that prevailed in the actual court case.

Given a simplified encoding for the court opinions, we needed to use the parallel set of
aggregated argument pieces for BankXX output: the three new aggregated argument pieces
plus the original leading-cited-cases argument piece. See Figure 2.

1. aggregated-theories union of applicable-theories and nearly-applicable-theories
2. aggregated-pro-cases union of supporting-cases and supporting-best-cases
3. aggregated-con-cases union of contrary-cases and contrary-best-cases
4. leading-cited-cases leading-cited-cases
Figure 2. The four aggregated argument pieces used for BankXX output in the BankXX-court comparisons.

The pro viewpoint is that of the prevailing side in the actual court case.

These four argument pieces—involving seven of the original dozen argument pieces—are the
basis of all the BankXX-court comparisons. We ignored the other five argument pieces
(supporting-citations, factor analysis, overlapping-cases, factual-prototype-story, family-

7The top five most cited cases—the leading-cited-cases—are: 1. Rimgale, 2. Estus, 3. Goeb, 4. Deans, 5. Iacovoni.

11

resemblance-prototype) because they were typically too computational in nature to use in the
hand-encoding of court opinions.8 While the aggregated categories do wash out some of the
distinctions that we feel are indeed important in legal argument and they ignore much of
what BankXX accomplishes, they allowed us to minimize subjectivity or ambiguity in the
hand-encoding.9

In summary, if an opinion cited a case, we simply encoded it as pro, con, or leading, and
then filtered it against those known to BankXX (in the case-domain-graph). We did not try to
distinguish a set of best cases, work out other nuances captured in the BankXX argument
pieces, or hand-simulate their computational definitions (functional predicates).10 A cited
theory was listed, regardless of whether the court said that it did, nearly did, or should apply,
etc.

3.1.2 Comparing BankXX output with the hand-coded case opinions

At this new coarser-grained level of representation, the arguments output by the program and
those encoded by hand from actual court opinions were compared automatically. For each
aggregated argument piece a comparison module listed the items that were:

(a) overlap—included in both BankXX’s output and the hand-coded argument;
(b) missed—included in the hand-coded argument but not output by BankXX;
(c) additional—output by BankXX but not included in the hand-coded argument.

This breakdown provides a qualitative sense of how well the program has performed in
analyzing a given case. See Figure 3 for an example.

8For instance, overlapping-cases must have 75% or more of their domain factors in common with the problem case.
Factor-analysis requires strict (computational) application of domain factors (dimensions), particularly, their prerequisites;
in addition, it is not that illuminating in the context of this experiment. Supporting-citations requires a careful check of
cases cited by supporting citations (e.g., accord, see). Family-resemblance-prototype requires application of the Rosch
prototypicality metric. The factual-prototype-story-category was also left out because (if retrieved by BankXX) it would
always match on both sides of the comparison since it was a category tag assigned by us.

9There is no doubt that judges and lawyers do have a sense of “best” or “better” case. The problem is that it is sometimes
hard to make such distinctions consistently in a well-defined manner. Since we wanted the same intuitive sense to be used
throughout the set of hand-coded answers, we decided to sacrifice descriptiveness for consistency in the external BankXX-
court comparison experiments.

10 If we had used a hand-simulation sense for encoding the opinions, we would have defined the best BankXX could have
done on arguments represented in BankXX’s terms. This would have been another interesting set of experiments to have
done. Since it would have involved a great deal of effort and we were interested in a true external comparison, we did not
perform it.

12

AGGREGATED-THEORIES:
OVERLAP MISSED ADDITIONAL

ALL-THE-FACTS-AND-CIRCUMSTANCES OLD-BANKRUPTCY-ACT-GOOD-
 FAITH-DEFINITION

LEADING-CITED-CASES:
OVERLAP MISSED ADDITIONAL
ESTUS IACOVONI
DEANS
GOEB
RIMGALE

AGGREGATED-PRO-CASES:
OVERLAP MISSED ADDITIONAL
ESTUS KULL BURRELL
HEARD CHURA

IACOVONI

AGGREGATED-CONTRARY-CASES:
OVERLAP MISSED ADDITIONAL
DEANS BELLGRAPH GOEB
RIMGALE BARNES

Figure 3. Comparison of the argument generated by BankXX/AP with the hand-coded version of the Kitchens
case using aggregated argument pieces. BankXX filtered for dates during-processing. The point of view
taken by BankXX (“pro”) was that of the creditor who won in the actual case.

To get a quantitative measure of comparison, we use traditional precision and recall
measures used in information retrieval (IR) [Salton, 1989] with the hand-coded argument
serving as “the answer” or “benchmark” against which BankXX is measured.11 In other
words, an item is deemed “correct” if it occurs in the hand-coded answer. Precision and
recall are calculated separately for each of the four aggregated argument pieces used in the
external comparisons.

Court
Argument

BankXX
Argument

overlap
additionalmissed

Figure 4. Regions of interest in BankXX-court experiments: cases and theories found by both BankXX and the
opinions (overlap), those found in the opinion but not by BankXX (missed), and those found by BankXX
but not in the opinion (additional).

In terms of overlap, missed, and additional cases, the standard definitions of precision and
recall are:

11Note, if one reverses this convention and uses BankXX as the benchmark, precision and recall values are interchanged.

13

1. recall is the fraction of correct items that were retrieved by BankXX:
|overlap|/ |missed ∪ overlap| = |overlap|/|hand-coded answer|

2. precision is the fraction of items retrieved by BankXX that are correct:
|overlap|/ |additional ∪ overlap| = |overlap|/ |BankXX output|

See Figure 4.

3.1.3 Precision-recall scores and empty answers

In the case of ratios of 0/0, these numbers are undefined. These occur when either the hand-
coded answer is empty or BankXX’s answer is empty.12 The matrix in Figure 5 sums up the
possibilities.

BankXX’s answer

Coded Answer empty non-empty

empty (A) p=0/0 r=0/0
(N=21)

(B) p=0 r=0/0
(N=90)

non-empty (C) p=0/0 r=0
(N=3)

(D) as defined
(N=546)

Figure 5. The possible combinations of empty/non-empty court and BankXX answers. N is the number of
occurrences out of the 660 possible data points from all three BankXX configurations.

For instance, a recall value cannot be computed when there are no items listed in the hand-
encoding of the court opinion (cells (A) and (B) of the matrix). The numerator is 0 since the
intersection of those items retrieved by BankXX and those listed in the hand-encoded
answer—the null set—is the null set, and the denominator is 0 since BankXX has not missed
any items. Thus for a case with an empty answer, the recall ratio is 0/0, an undefined value.
The problem of empty answers with concomitant undefined recall values occurred many
times in our experiments (N=111 or about 17% of the possible data points). Twenty of our
cases had at least one argument piece that was empty.13 The problem of undefined recall
scores does not arise with non-empty answers.

12When we speak of a BankXX answer, we mean the answer for a particular aggregated argument piece with respect to a
particular configuration of BankXX. Since there are 4 aggregated argument pieces, 3 configurations of BankXX, and 55
cases, there are 660 BankXX answers produced in this set of experiments. Of course, there are only 220 (4x55) hand-coded
answers since these are the same regardless of BankXX configuration.

13In the BankXX corpus of 55 cases, there were 37 aggregated-argument pieces having empty hand-coded answers: 12
cases had no aggregated-theories, 8 had no aggregated-same-side-cases, 13 had no aggregated-contrary-cases, 4 had no
aggregated-theories. Thus, there are 111 (3x37) instances of argument pieces with empty hand-coded answers in our
BankXX-court comparison experiments over the three configurations. Many cases had more than one empty aggregated
argument piece.

14

For a case with an empty hand-coded answer, if BankXX retrieves no items, the precision
ratio will also be 0/0 (cell (A) of the matrix). This occurred very infrequently (N=21 or about
3%) and only with cases decided in 1980 or 1981.14

However note that with an empty hand-coded answer, precision will be 0% if BankXX
retrieves any items whatsoever—they’ll all be “additional”—cell (B) of the matrix. Since a
BankXX answer is almost never empty, this phenomenon of p=0 on empty hand-coded
answers occurred many times (N=90 or about 14% of all the answers). Approximately two-
thirds of these situations occurred with early cases (i.e., case decided in 1980 through 1983),
when there were few precedents available to cite.15

For a non-empty hand-coded answer, the precision ratio can also be undefined when
BankXX’s answer is empty since in this situation, both the overlap and additional item sets
will be empty (cell (C) of the matrix). (N.B., in this case recall will 0%.) This problem almost
never happens, since BankXX is designed to retrieve as much information as its resource
limits allow. It occurred extremely infrequently (N=3 or less than .5%)—and only with the
earliest (1980) cases.16 What caused BankXX to produce its few empty answers was the lack
of date-appropriate items. If few items can pass through the date filter—which is the situation
with the earliest cases—few can be opened, let alone harvested (if few can be called, fewer
can be chosen).

If BankXX produces a non-empty answer with no overlap with a non-empty hand-coded
answer, both precision and recall will be 0 (as they should be). Of the (546) instances where
both precision and recall values are defined (cell (D) of the matrix), this problem of skew or
double-0 answers happened quite a bit (107 times). It is very much related to the sparseness
of some cases.17 It occurred the most with aggregated-theories where 50% of all such skew
answers occurred. Double-0 answers occurred the least on BankXX/NT and the most on
BankXX/AF.18

14All of these 21 instances occurred in 9 (of the 10) 1980 and 1981 cases.

15Of the 90 scores in the cell (B) category, 61 involved early (1980 through 1983) cases. With BankXX/NT 71% of such
cell (B) scores occurred with early cases, 64% with BankXX/AP, and 67% with BankXX/AF. With respect to argument
pieces: 75% (9 of 12) of such aggregated-theory scores, and 67% (52 of 78) of such scores on the three case-related
argument pieces occurred with early cases. There is quite a strong tie between 0%-precision-on-empty-cases and the early
cases. In fact, earliness and sparseness are not unrelated but tend to co-occur. Over 50% of the early cases are empty or
“sparse” (i.e., just have 1 or 2 items in hand-coded argument-piece categories) and 50% of empty or sparse cases are early.
This is not surprising.

16It occurred on only 3 of the 660 possible instances, and only with two 1980 cases (Heard, Terry). For instance, Terry
had 1 leading-cited-case and BankXX missed it and found no other alternatives.

17With BankXX/NT, 18 of 24 (75%) of the double-0 answers involved sparse cases; with BankXX/AP, 29 of 36 (81%);
and with BankXX/AF, 36 of 47 (77%). See the discussion of sparseness in Section 3.5.

18Of 220 possible instances in each configuration, it occurred on 11% (N=24) of the instances with BankXX/NT; 16%
(N=36) with BankXX/AP and 21% (N=47) with BankXX/AF.

15

In summary, if the hand-coded answer is empty (regardless of whether BankXX’s answer is
empty or not), recall is undefined. If BankXX’s answer is empty (regardless of whether the
hand-coded answer is empty or not), precision is undefined. The matrix in Figure 5 sums up
the possibilities.

3.1.4 Handling undefined precision and recall ratios

There are two approaches to dealing with undefined values:
1. call them undefined; and not use them (e.g., in any averaging computations)
2. give BankXX 100% credit, that is, set them to 1.

There are arguments for both options. For instance, if no cases are cited by the case opinion
and none are found by BankXX—resulting in a 0/0 for both precision and recall—BankXX
has done exactly what is called for according to the answer: BankXX retrieved all the cases
there were and no additional ones. That is, it retrieved exactly what was in the answer and
should get 100% for both precision and recall. Throwing out the datum is somewhat “unfair”
to BankXX since this in effect penalizes BankXX for the lack of a contentful answer in the
court’s opinion (that overlaps with BankXX’s knowledge-base).

We have used both approaches and label results accordingly. We indicate the number of 0/0
situations included/excluded in any averages we compute. In fact, there is not much
difference between the two approaches in the context of these experiments except that the
second approach leads to slightly higher averages, which is to be expected.

3.1.5 Propriety of precision and recall as performance measures

In our context of legal argument, the traditional IR assumption of an unequivocal master
answer key is a weighty one. Jurisprudentially, it is problematic to elevate the cases and
theories that are mentioned in a legal opinion as the “correct” or “best” ones. It is not even
clear from a jurisprudential standpoint what it might mean to consider case citations as the
best or the correct ones. Given the workload of most courts in the U.S., it is doubtful that
judges and their clerks have the time or the facilities to seek out the very best case. They may
rely for their citations and theories upon briefs written by attorneys who are equally
overburdened and, of course, interested in analyzing the case from the viewpoint of their
clients. While there may be a presumption of the appropriateness and worth of citations
found in U.S. Bankruptcy Court decisions, the matter is far from proved to the extent
necessary to rely on those citations as providing an answer key. There is no assurance that
the court is putting forth the best argument that could be made. It is easy to conceive that a
better argument may be made than the than the court’s, which clearly undermines the utility
of treating the opinion as an answer key.

Furthermore, each opinion is the product of an individual judge and clerks. Some cite many
cases in support of their argument; others, few. Some mention only the legal theory of their
particular judicial circuit; others look to other circuits as well. We found that earlier
decisions—those written when the good faith issue was first being addressed under the new
law—tended to look further afield and compared more different approaches. Once a number
of appeals courts had set standards for analyzing good faith, opinions tended to look more

16

exclusively to appeals cases in their own circuit for guidance. This can create mismatches
between the criteria, such as jurisdiction, used by a court in selecting its citations and those
used by BankXX.

In our domain, many of the court opinions are quite skimpy, which means very small
numbers are involved in the precision-recall calculations. (See the Table 3 giving sparseness
data in Section 3.5.) This makes such scores ‘unstable.’ For instance, a zero level of recall
might reflect the failure of BankXX to find the one or two cases cited by a court; finding
those one or two cases could boost recall from 0% to 100%. A low level of precision might
reflect the fact that there are very few cases in the hand-coded answer and thus very few
cases found by BankXX count as the “correct” cases to have found; any extras drive down
the precision. For example, if there is one case in the overlap and no extras, precision is
100%; one extra case found by BankXX halves this to 50%, one more cuts it to 33%. Thus,
large differences in recall and precision can be engendered by the small numbers of items
involved.

In general there is a tendency to place too much faith in numerical scores in all evaluation
work. This is especially risky in the case of our precision-recall scores since the numbers
involved are small. For instance, an opinion might mention only 2 or 3 cases. A recall of .66
can sound quite seductive whereas 2 of 3 might not and a precision of 100%, smashing,
whereas 2 of 2, maybe not. There is a danger in thinking of such numbers as more
meaningful than they are.

In addition, these measures are problematic for a program like BankXX which seeks to
harvest as much information as its resource limits allow. If BankXX retrieves information
not found in the opinions—which is likely to happen given its biases and the sparseness of
many opinions—this lowers its precision and may not help its recall, even though it might be
doing a good job of legal analysis.

Nevertheless, the theories and cases cited in an opinion do provide a useful benchmark and
the rest of this section on external evaluation uses hand-coded opinions as the benchmark
against which to measure BankXX’s performance. However one must bear in the mind the
jurisprudential and measurement difficulties we have touched on.

3.2 Comparing Evaluation Functions

3.2.1 Qualitative observations

BankXX/NT

Since in this set of experiments, the start node was always taken to be the well-known Estus
case, all the answers produced by BankXX using the node-type evaluation function
(BankXX/NT) look very similar. BankXX/NT explored the case-domain graph in roughly
the same way in each problem case since BankXX/NT in essence prioritizes its search
according to the types of nodes and the types of nodes connected to Estus (via the neighbor
methods) do not change.

17

What accounted for the small changes among BankXX/NT’s raw output on problem cases
were: (1) the year of the problem case and hence the cases that could pass through the date
filter and be opened; (2) the cases that qualified as most on-point and hence could be used to
initialize the open list; and (3) the cases that qualified as best cases and could be harvested as
aggregated-pro-cases and aggregated-con-cases, which include best cases. There is more
variation in BankXX/NT’s search in early cases than in late ones (where hardly anything is
passed over due to date-filtering).

In summary, BankXX/NT produced quite rote problem-solving. There were two typical
strings of harvested cases, one pro-debtor and one pro-creditor. BankXX/NT did surprisingly
well on recall with these. Thus, BankXX provides a good baseline, even if it was neither
particularly discriminating nor problem-sensitive.

Concerning the two baseline strings of cases, it is important to note that we would not have
known about them if we had not run BankXX/NT. This raises the interesting question of how
to use such an initial result—produced by not particularly clever but still useful means—as a
“learning experience” for the system to be used later in more clever problem-solving. For
instance, a human legal researcher would eventually learn a standard set of cases to use as an
initial guess as to which cases to cite in a problem. But, of course, these would only serve as
an initial “first-order approximation” to an answer since one cannot get away with a totally
rote dumping of the same string cites for each case.

BankXX/AP and BankXX/AF

The other two configurations of BankXX produced quite different searches for different
problem cases. In particular, BankXX with the argument-piece evaluation function
(BankXX/AP) produced very varied results since its evaluation function is quite responsive
to the problem-solving context. For instance, the argument-piece evaluation function (see the
Technical Appendix) breaks cases down into 6 sub-categories that depend on the problem
case. In contrast, the node-type evaluation function uses only 5 broad categories that are
independent of the problem case.

BankXX/AP and BankXX/AF were much less profligate in their output than BankXX/NT
(see Figure 6). In the case of BankXX/AP, fill limits on argument pieces kept numbers of
harvested items quite low, especially for pro and con cases.19 In fact, the sum total of fill
limits from the 7 argument pieces that contribute to the 4 aggregated argument pieces that
comprise an answer is 28, less than the limit of 30 closed nodes.20 This guarantees small
answers for BankXX/AP. Output from BankXX/AF was also comparatively small, not
because of any limits on items harvested, but because of resource limits since computing
with argument factors is time-consuming.

19E.g., fill limits relevant to pro and con cases are: 5 best-supporting-cases, 3 supporting-cases, 3 best-contrary-cases, 3
contrary-cases.

20Since an individual item can be harvested by more than one argument piece, BankXX/AP is likely to throw away some
of the information it finds. For instance a best case can be used by two (if it’s a leading case, three) argument pieces.

18

Note these observations—larger, fairly rote, answers under BankXX/NT and smaller,
problem-sensitive answers under BankXX/AP and BankXX/AF—suggest a classic trade-off
due to differences in how knowledge-rich the evaluation functions are: larger but lesser
quality answers with BankXX/NT and smaller but higher quality answers with BankXX/AP
or BankXX/AF. Analogous observations arise in the precision-recall data, explored in the
detailed in following sections.

BankXX/NT:
AGGREGATED PRO CASES: Estus, Heard, Kull, Terry, Strong, Sotter, Sheets, Sellers, Sanders,

Iacovoni, Burrell, Chura
AGGREGATED CON CASES: Deans, Barnes, Rimgale, Valentine, Flygare, Goeb, Ali
LEADING-CASES: Estus, Deans, Goeb, Rimgale, Iacovoni
THEORIES: Old-Bankruptcy-Act, Kitchens-Kull Theory

BankXX/AP:
AGGREGATED PRO CASES: Estus, Heard, Burrell, Chura, Iacovoni
AGGREGATED CON CASES: Deans, Rimgale, Goeb
LEADING-CASES: Estus, Deans, Goeb, Rimgale, Iacovoni
THEORIES: Old-Bankruptcy-Act

BankXX/AF:
AGGREGATED PRO CASES: Estus, Burrell, Chura
AGGREGATED CON CASES: Deans, Barnes, Goeb, Ali
LEADING-CASES: Estus, Deans, Goeb
THEORIES: Kitchens-Kull

Figure 6. Sample BankXX Output: the Kitchens (1983) case.

Qualitative observations on system performance can be shown in histograms that record the
number of objects in the OVERLAP, MISSED and ADDITIONAL categories. These give a
rough idea of how BankXX output compares with the hand-coded arguments. Figure 7 shows
histograms for each of the four aggregated argument pieces for BankXX/AP. The two other
BankXX configurations produced similar sets of histograms.

19

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

additional

overlap

missed

Figure 7a. Histogram showing for each case the number of items that were in the overlap, missed and
additional categories for the leading-cited-cases argument piece for BankXX/AP.

-6
-5
-4
-3
-2
-1

0
1
2
3
4
5
6
7
8
9

additional

overlap

missed

Figure 7b. Histogram showing for each case the number of items that were in the overlap, missed and
additional categories for the aggregated-theories argument piece for BankXX/AP.

20

-6
-5
-4
-3
-2
-1

0
1
2
3
4
5
6
7
8
9

additional

overlap

missed

Figure 7c. Histogram showing for each case the number of items that were in the overlap, missed and additional
categories for the aggregated-pro-cases argument piece for BankXX/AP.

-6
-5
-4
-3
-2
-1

0
1
2
3
4
5
6
7
8
9

additional

overlap

missed

Figure 7d. Histogram showing for each case the number of items that were in the overlap, missed and
additional categories for the aggregated-con-cases argument piece for BankXX/AP.

21

Each summarizes BankXX/AP’s performance on all 55 cases treated as de novo problems
(case names are omitted). The vertical axis indicates the number of items retrieved.
Everything above the zero line represents items retrieved by BankXX/AP, with the dark gray
part of a bar representing those retrieved by BankXX/AP and mentioned in the opinion. The
lightly shaded portion represents items retrieved by BankXX/AP that were not mentioned in
the opinion. The black part of the bar below the zero line represents items mentioned in the
opinion that were not retrieved by BankXX/AP. Graphically, precision is the proportion of
gray out of the total bar above the zero; recall is the proportion of gray out of the combined
gray and black parts of the bar.

Bars are organized from left to right from highest to lowest recall and within a given recall
band from highest to lowest precision, and within that from highest to lowest absolute
number of objects in the overlap between BankXX’s output and the hand-coded answer. This
ordering means that cases do not appear in the same order in the histograms. In addition,
some bars toward the far left may be empty due to an empty hand-coded answer and/or
empty BankXX output since we are using the convention here that the undefined value of 0/0
is set to 1.

Notice that many cases display low levels of overlap, which can translate into low values for
recall and precision. This often occurred because many of the opinions cite very small
numbers of cases or theories. (See Section 3.5.) This sparseness makes it hard for there to be
much shared between BankXX and the hand-coded answers.

3.2.2 Quantitative precision-recall analysis

Another way to examine the data is to compute precision-recall statistics. Averaging
precision and recall over the case base smoothes out the vagaries of any individual scores.
Averaged precision and recall results for the BankXX-court comparisons are shown in Table
1 and shown on a precision-recall plot in Figure 8.

Averaged precision & recall percentages across all cases

AGG’D-PRO-CASES AGG’D-CON-CASES LEADING-CASES AGG’D-THEORIES

BankXX/NT p=24 (2354) r=76 (7247) p=23 r=84 (7942) p=46 (4554) r= 99 (9943) p=23 r=53 (4951)

BankXX/AP p=32 (3053) r=55 (4847) p=42 (3348) r=64 (5342) p=46 (4554) r=99 (9943) p=21 r=43 (3851)

BankXX/AF p=30 (2652) r=56 (4847) p=33 (2650) r=63 (5242) p=55 (5251) r=78 (7243) p=26 r=38 (3351)

Table 1. Averaged precision and recall values with undefined ratios set to 1. Averages taken only when a value is
defined are given in parentheses; the number used in these average is given subscripts.

Note, when undefined precision/recall ratios are set to 1, a few individual scores arguably
can be said to be “artificially” high. Thus, to give a more conservative measure of

22

performance—one that probably undervalues BankXX performance on empty cases—the
table also gives averages when undefined values are excluded from the averages.21

precision

re
ca

ll

0 .0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

leading cases

agg’d pro cases

agg’d con cases

agg’d theories

NT

AP

AF

Figure 8. Averaged precision and recall values for the four aggregated argument pieces for BankXX/NT,
BankXX/AP, and BankXX/AF. Undefined ratios excluded from the average.

Recall scores for BankXX/NT lie above those for both BankXX/AP and BankXX/AF. In
fact, with one very small exception,22 all the averaged recall values for each of the four
aggregated argument pieces for BankXX/NT lie above the corresponding values for
BankXX/AP which in turn lie approximately at or a little above those for BankXX/AF. Thus
one can say:

r(BankXX/NT) ≥ r(BankXX/AP) ≥ r(BankXX/AF)
(For nearly all argument pieces)

(There are no exceptions when undefined values are ignored.)

21The presence of so many empty or nearly empty cases motivated us to re-examine our results by considering only
“meaty” cases, those cases having hand-coded answers with numbers of items above a certain threshold. (N.B., p=0 on an
empty answer.) See Section 3.4 below. It also motivated us to examine performance with respect to degrees of sparseness.
See Section 3.5 below.

22Aggregated-pro-cases with BankXX/AF has recall 1% higher than with BankXX/AP. See Table 1.

23

Precision scores for BankXX/NT lie below those for both BankXX/AP and BankXX/AF,
with one exception.23 While precision for leading-cases and aggregated-theories with
BankXX/AP is less than with BankXX/AF, on the two argument pieces concerning cases—
aggregated-con-cases and aggregated-pro-cases—the reverse is true. Thus, there is not a
monotonic relation among precision scores as there is with recall scores. (These observations
hold regardless of the way in which undefined scores are handled.) Thus:

p(BankXX/NT) ≤ p(BankXX/AP) and p(BankXX/AF)
(For nearly all argument pieces)

Between BankXX/NT and BankXX/AP there are big upwards jumps in precision for
aggregated-con-cases—where it nearly doubles—and aggregated-pro-cases accompanied by
big falls in recall. The precision-recall values for leading-cases are identical for BankXX/NT
and BankXX/AP. For aggregated-theories, there is downward change in both precision and
recall. (See Table 1.)

Between BankXX/AP and BankXX/AF, significant differences (about 20% relative change)
occur for leading-cases: precision jumps up and recall down. The same relative changes are
seen with aggregated-theories but they are not as large for recall. Precision and recall scores
on both aggregated-pro-cases and aggregated-con-cases present exceptions to the general
pattern of increasing precision accompanied by decreasing recall. There is a minuscule
change in recall but a significant drop in precision on aggregated-con-cases. Scores on
aggregated-pro-cases are nearly the same.

With respect to the individual argument pieces, in all three configurations of BankXX,
highest recall was found for leading-cases, followed by aggregated-con-cases, aggregated-
pro-cases then aggregated-theories. The same ordering is true except for one small
exception,24 for precision. Thus (no matter how undefined ratios are handled):

leading-cases ≥ aggregated-con-cases ≥ aggregated-pro-cases ≥ aggregated-theories.

We interpret the high recall and precision on leading-cases as follows. Since the same small
group of leading cases is cited repeatedly in the opinions—that’s what makes them leading
cases—the chance that a given leading case harvested by BankXX is also mentioned in the
opinion is very high. In other words, a harvested leading case is likely to be in the overlap
with the hand-coded answer. Furthermore, since leading cases are so well woven into the
case-domain graph, BankXX is unlikely to miss any. For the other argument pieces, there is a
much wider range in the amount of information mentioned in the opinions and in how well
they are tied into the network of domain knowledge: hence a much wider range in precision-
recall scores.

23Aggregated-theories with BankXX/NT has precision 2% higher than with BankXX/AP. See Table 1.

24Aggregated-pro-cases with BankXX/NT.

24

We believe that low precision and recall scores on aggregated-theories are due to the small
OVERLAP between BankXX and the court opinions on aggregated-theories in concert with
large ADDITIONAL and MISSED sets in the comparisons (see e.g., Fig. 7b). We feel several
factors contribute to this situation: (i) many opinions do not cite a large number of theories;
(ii) there is a relatively high number of legal theories (18) in BankXX’s corpus of 55 cases;
and (iii) many theories are very similar (in terms of their defining factors) and are nearly
“synonymous” since they refer to the same legal ideas.

Synonymy of theories means that both BankXX and the opinion could be citing essentially
the same theory without using the same name. Since the match used in the comparisons is
totally literal, such a citation would not show in the overlap, and thus would hurt both recall
and precision. The program receives no credit for retrieving a useful but uncited or
synonymous theory. A metric to measure the similarity of the retrieved theory to the one
actually applied by a court would be required to make this determination.25

One way to examine the data further is to look at the results from the 55 cases sorted
according to ranges of achieved performance. For instance, one can look at the number of
cases that have achieved a recall score of 90% or better on a particular argument piece.
Figure 9a presents a graph that shows the number of cases achieving recall performance at or
above decile intervals: 0%, 10%, 20%, etc. for BankXX/AP for the four aggregated argument
pieces. Figure 9b shows the analogous graph for precision. The distribution of results was
similar with the other two evaluation functions.

With regard to recall, the leading-cited-cases argument piece, uniformly high recall
performance is observed; almost all the problem cases achieved a near perfect level of recall
on leading cases. Except for leading-cases, levels of recall higher than 0.7 are not frequently
observed. For precision, fewer cases achieve similar levels of performance.

Looking at results achieved by 50% of the cases (i.e., at the 27-28 number-of-cases level)
provides the medians:

Median Recall Median Precision

aggregated-theories 50% or better 20% or better

aggregated-pro-cases 55% or better 30% or better

aggregated-con-cases 65% or better 30% or better

leading-cases 95% or better 45% or better

25For instance, one could measure similarity in terms of overlaps of defining factors or overlaps of the sets of cases that
have applied them.

25

recall

n
u
m

b
er

 o
f

p
ro

b
le

m
 c

as
es

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

leading

agg’d con

agg’d pro

theories

Figure 9a. Graph showing the number of problem cases that display a given or better recall level on the four
aggregated argument pieces with BankXX/AP. Recall values of 0/0 are defined to be 1.

precision

n
u
m

b
e
r

o
f

p
ro

b
le

m
 c

as
e
s

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

leading

agg’d con

agg’d pro

theories

Figure 9b. Graph showing the number of problem cases that display a given or better precision level on the four
aggregated argument pieces with BankXX/AP. Precision values of 0/0 are defined to be 1.

Comparing these medians with the averages (in Table 1) gives an indication of the
distribution of scores. Except for recall on aggregated-theories, and precision on aggregated-

26

con-cases, the medians are about equal to the averages, which means that the distribution of
scores is not particularly skewed. For theories, there is more of a concentration of low recall
scores; for con cases, a higher concentration of high precision scores. In general, for
precision, there is a shift to lower median scores, which indicates that there is a greater
concentration of cases with lower precision scores. (See Fig. 9b vs. Fig. 9a)

Summary of Section 3.2

Among the three configurations of BankXX, there was a general pattern for precision and
recall scores, averaged over all 55 cases in the BankXX corpus:

Precision(BankXX/NT) ≤ Precision(BankXX/AP) and Precision(BankXX/AF)
Recall(BankXX/NT) ≥ Recall(BankXX/AP) ≥ Recall(BankXX/AF)

These inequalities held with rare exception across all argument pieces no matter which way
undefined values were handled.26 For precision, there were too many significant exceptions
to allow us to observe a three-way monotonic pattern.27 Note, in many cases the differences
between the scores were small.

Thus, across all argument pieces, BankXX/NT displayed the highest levels of recall and
the lowest levels of precision while BankXX/AP and BankXX/AF displayed the highest
levels of precision and lowest recall. This shows a trade-off in precision and recall between
BankXX/NT and BankXX/AP and/or BankXX/AF. In other words, BankXX/NT was not
very discriminating but produced good coverage of the hand-coded answer whereas
BankXX/AP and BankXX/AF were discriminating but at the expense of overall coverage.

On individual argument pieces, for both precision and recall scores, on all three
configurations of BankXX, we found a consistent pattern of:28

leading-cases ≥ aggregated-con-cases ≥ aggregated-pro-cases ≥ aggregated-theories

In addition, BankXX/NT tended to produce the same answer for every problem case,
whereas BankXX/AP and Bank/AF were quite problem-sensitive.

26There was one small exception to the precision pattern: aggregated-theories under BankXX/AP. There was one small
exception to the recall pattern: aggregated-pro-cases under BankXX/AF.

27There are 3 cells presenting exceptions for precision: in BankXX/AP, aggregated-theories, and in BankXX/AF,
aggregated-con-cases and aggregated-pro-cases.

28There was one small exception: aggregated-pro-cases under BankXX/NT.

27

3.3 Qualitative Observations: A More Detailed Look

Our overall qualitative observations are also borne out by close examination of the items in
the OVERLAP, MISSED, and ADDITIONAL categories produced for the BankXX-court
comparisons. The observations that follow were made by closely inspecting output from each
of the three BankXX configurations on the set of the twenty most frequently cited cases, the
so-called Top 20 cases.

For each of the four aggregated argument pieces, we always found that the sets of items
MISSED by BankXX/NT are contained in those MISSED by BankXX/AP as well as in those
MISSED by BankXX/AF. Close inspection shows that there were not significant differences
for the theories and leading cases missed in the three versions but that there were big
differences in pro and con case categories.

In all of the Top20 cases, for the aggregated-theories and leading-case argument pieces,
there was actually a monotonic chain of containments. Theories or leading cases MISSED by
BankXX/NT were a subset of those MISSED by BankXX/AP which were in turn a subset of
those MISSED by BankXX/AF.

For aggregated-theories, the three sets of MISSED theories were very often identical (in 16 of
the Top20 cases) and always nearly the same, and thus, the monotonic chain was trivial.
Each version of BankXX on a given Top20 case missed the same two or three theories.

For leading-cases, the three sets of MISSED cases were identical a little more than half the
time (in 12 of the Top20 cases), and in fact, in 11 cases, it was the empty set across the
baord. That is, on somewhat more than half of the Top20 cases, no version of BankXX
missed any leading cases. In the remaining cases, BankXX/NT and BankXX/AP missed no
leading cases but BankXX/AF missed just one or two. Thus, on the leading-cases argument
piece, BankXX/AF tended to miss a few more leading cases than the other two
configurations, which missed none.

To summarize: for aggregated-theories and leading-cases, all three versions of BankXX
missed about the same items: virtually no leading cases were missed and the same small set
of theories were missed across the board. This is reflected in the nearly perfect recall scores
for leading-cases and the low recall scores for aggregated-theories. (See Table 2 for
precision-recall scores on Top20 cases.)

In the aggregated-pro-cases and aggregated-con-cases argument pieces, there were some
differences in the sets of cases missed. In well over half of the Top20 cases (70%), the
monotonically increasing chain held.29 In about half the Top20 cases, all three versions of
BankXX missed exactly the same cases. In about a third of the Top20 cases, no pro or con

29The chain held in 14 of the Top20 cases for both the pro and con case categories. However, not the same 14 cases.

28

cases were missed in any version.30 In several additional instances, BankXX/NT and
BankXX/AF missed none but BankXX/AP did, thus, breaking the chain of containments. On
nearly three-quarters of the Top20 cases, BankXX/NT missed no pro or con cases; this was
significantly better than either BankXX/AP or BankXX/AF.31

To summarize: for aggregated-pro and aggregated-con-cases, all three versions did rather
well in terms of not missing many cases. BankXX/NT did the best. BankXX/AP and
BankXX/AF were not that different from each other.

These observations are summed up in Figure 10.

For all argument pieces:
Missed-items(BankXX/NT) ⊆ Missed-items(BankXX/AP)
Missed-items(BankXX/NT) ⊆ Missed-items(BankXX/AF)

For all leading-cases and theories instances and 70% of the pro and con case instances:
Missed-items(BankXX/NT)

⊆ Missed-items(BankXX/AP)
⊆ Missed-items(BankXX/AF)

Figure 10. Relationship among the items MISSED by BankXX/NT, BankXX/AP, and BankXX/AF.

One would expect to find the complementary relations between sets of additional cases. We
did.

For nearly all of the Top20 cases, we, found that the set of ADDITIONAL items found by
BankXX/NT contained those found by BankXX/AP as well as those found by
BankXX/AF.32 The sets of ADDITIONAL items were rarely empty, unlike the sets of MISSED
items. The uniform presence of non-empty ADDITIONAL sets demonstrates BankXX’s drive
to retrieve information.33

As for MISSED items, we found that there was often a monotonic chain: ADDITIONAL items
found by BankXX/NT contained those found by BankXX/AP which in turn contained those
found by BankXX/AF. It was most robust on leading-cases and aggregated-theories. It held
on all 20 Top20 cases for the leading-cases category. It held on three-quarters (15) of the 20
Top20 cases in the aggregated-theories category, where again, there was a steady stream of 2
or 3 additional theories and a great deal of similarity between the sets ADDITIONAL theories

30For the picture across the entire 55 case corpus (with BankXX/AP), see Figs. 7c and 7d.

31BankXX/NT missed no pro or con cases in 14 Top20 cases. BankXX/AP and BankXX/AF each missed no pro cases in
9 Top20 cases, and missed no con cases in 8 and 9 Top20 cases, respectively.

32There were only 4 exceptions to this (out of 80 possible data points). They only occurred for the aggregated-pro-cases
argument piece.

33The picture is similar across the entire 55 case corpus. See Fig. 7 (for BankXX/AP).

29

found. We note that for leading-cases, BankXX tended to find all 5 leading cases, and thus
any leading case not mentioned in the hand-coded answer showed up on the ADDITIONAL set
and lowered precision. Since no case mentioned all 5 leading cases in its opinion, this means
that BankXX often achieved less than 100% precision.34

BankXX/NT always found ADDITIONAL aggregated-pro-cases and aggregated-con-cases. In
nearly every Top20 case, BankXX/AP and BankXX/AF found some ADDITIONAL pro cases.
In more than half the Top20 cases, ADDITIONAL cases found by BankXX/NT was much
larger than those sets for either BankXX/AP or BankXX/AF. ADDITIONAL con cases
occurred more than ADDITIONAL pro cases.35

For the aggregated-pro-cases and aggregated-con-cases categories, the monotonic chain of
nesting ADDITIONAL items was found less often. It occurred in about half the Top20 cases.
For these, it often happened that those cases found additionally by BankXX/AP were the
same as those found additionally by either BankXX/NT or BankXX/AF. In only a very few
cases, were the sets of ADDITIONAL cases found with BankXX/NT and BankXX/AF the
same.

These observations are summed up in Figure 11.

For all argument pieces:
Additional-items(BankXX/NT) ⊃ Additional-items(BankXX/AP)
Additional-items(BankXX/NT) ⊃ Additional-items(BankXX/AF)

For all leading-cases, 75% of theories, and about 50% of pro and con cases:
Additional-items (BankXX/NT)

 ⊃ Additional-items(BankXX/AP)
 ⊃ Additional-items(BankXX/AF)

Figure 11. Relationship among sets of ADDITIONAL items found by BankXX/NT, BankXX/AP, and
BankXX/AF.

In summary, data on MISSED and ADDITIONAL sets shows that BankXX/NT is less selective
than either BankXX/AP and BankXX/AF.36 There are larger ADDITIONAL and smaller
MISSED sets with BankXX/NT than with either BankXX/AP or BankXX/AF.

We posit two reasons for this:

34See Table 3 in Section 3.5 for numbers of cases. For example, if in a problem case, BankXX found all 5 leading cases
and the answer only mentioned 4, precision would be .80; if only 3 were mentioned, precision would be .6, etc.

35A null set of ADDITIONAL cases occurred rarely. Never for BankXX/NT. For BankXX/AP, only 1 time for pro cases and
5 times for con cases. For BankXX/AF, only 3 times for pro cases and 5 times for con cases.

36In many cases, BankXX/NT and BankXX/AF harvested very similar sets of cases. N.B., even though they usually
followed quite different paths through the case-domain graph in doing so (as shown in the order and content of their OPEN
and CLOSED lists).

30

1. BankXX/NT uses a less discriminating evaluation function than the others;
2. BankXX/NT has no fill limits on the harvesting of items for argument pieces as

BankXX/AP does and no significant computational burden as BankXX/AF does.

All three configurations of BankXX tend to exhibit similarities in their sets of MISSED and
ADDITIONAL cases for the leading-cases and aggregated-theories argument pieces. The most
variation occurs on aggregated-pro-cases and aggregated-con-cases. BankXX’s persistent
tendency to find ADDITIONAL items across all configurations and all argument pieces is
reflected in the low precision scores that BankXX received across the board. (See Table 2.)

Our qualitative analysis has shown that BankXX/NT and BankXX/AP or BankXX/AF
exhibit a classic trade-off in selectivity and coverage, especially in the pro and con case
categories. This is the same trade-off that was seen quantitatively in precision-recall values in
the last section (See Table 1.).

Summary for Section 3.3

Detailed analysis of the MISSED and ADDITIONAL cases for each of the 20 cases in the set of
Top20 cases showed that BankXX/NT misses less and harvests more from the hand-coded
answers than either BankXX/AP or BankXX/AF:

For all argument pieces:
Additional-items(BankXX/NT) ⊃ Additional-items(BankXX/AP)
Additional-items(BankXX/NT) ⊃ Additional-items(BankXX/AF)

and
Missed-items(BankXX/NT) ⊆ Missed-items(BankXX/AP)
Missed-items(BankXX/NT) ⊆ Missed-items(BankXX/AF)

In many situations there is a three-fold nesting. (See Figs. 10 and 11 for details.)

MISSED and ADDITIONAL sets for leading-cases and aggregated-theories are similar in all
three configurations of BankXX. There was much more variation for aggregated-pro-cases
and aggregated-con-cases.

The detailed analysis exhibits qualitatively what was seen in the quantitative precision-recall
observations of the previous section: There is a trade-off in selectivity and coverage between
BankXX/NT and both BankXX/AP and BankXX/AF.

31

3.4 A Closer Look at the Quantitative Analysis: The Subset Experiments

Our goal in the analysis in this section is to investigate BankXX’s performance on various
types of cases, like appellate cases, and determine whether any generalizations can be made
with respect to them. In particular, we wanted to know whether the overall precision-recall
patterns of the previous sections held on these particular subsets as well. We especially
wanted to examine a group of cases that were not sparse or empty (and thus suffered from
problematic precision and recall values). The effect of sparseness is examined in detail in the
next section.

In this section, we re-examine BankXX-court comparison data with respect to four different
subgroups of cases:

1. The Top 20 —the set of twenty cases most highly ranked cases according to our
study of leading citations.

2. Meaty cases—the set of cases defined as having in their hand-coded answers: (a)
3 or more aggregated-pro-cases; and

(b) 3 or more aggregated-con-cases; and
(c) 1 or more aggregated-theories; and
(d) 3 or more leading cited cases.

There are 14 meaty cases in our case base.

3. Appellate cases—there are 14 appellate cases in our case base.

4. All—the entire corpus of 55 cases.

In Table 2 we show averages taken with respect to these different subsets. As before we
show averages taken both ways: averages with undefined values not included are shown in
parentheses. There are several observations that can be made about these data. Many involve
monotonicity.

3.4.1 Analysis with respect to subsets

In this subsection we analyze our data with respect to subsets and investigate patterns that
depend on them—row monotonicity—in Table 2. For precision, there is a rough
monotonicity. For recall, there is no real pattern. Further, for precision, the maximum score is
always—for all BankXX configurations, for all argument pieces—achieved on the Meaty
cases. The situation with recall is very mixed: there is no subset of cases that clearly
outscores the others.

32

Precision: The rows in Table 2 support an overall impression that precision scores on Meaty
cases are higher than those on Top20 cases or Appellate cases, which in turn are higher than
those on All cases:37

p(Meaty) ≥ p(Top20) , p(Appellate) ≥ p(All)

(This is true no matter how undefined values are handled.)

In many rows, there is a “full” chain of inequalities:

p(Meaty) ≥ p(Top20) ≥ p(Appellate) ≥ p(All)

There are several exceptions to the full pattern. For unparenthesized values, it holds for half
of the dozen rows—and 30 of the 36 individual comparisons—in the precision portion of
Table 2.38 There are only two exceptions when undefined values are ignored (i.e., with the
parenthesized values).39

In addition, for most all of the rows in the precision portion of Table 2, there is a general
pattern of a significant drop off (over 10%) between Meaty and Top20 cases,40 the middle
two cells in the same ballpark, and another not-so-large drop-off between Appeals and All
cases. The drop-off can be quite dramatic (e.g., over 40% in con cases with BankXX/NT). In
general the drop-offs decrease as one proceeds down the blocks of Table 2 representing the
different configurations of BankXX.

Examining the raw outputs that underlie these data, we found that a low out-of-pattern score
can be due to the presence of a high proportion of items with p=0 precision scores in the
cell.41 For instance, relatively low scores in all the aggregated-theories cells for Top20 cases
are due to the presence of relatively many more p=0’s in the Top20 collection than in the
other collections.42

37The 3 exceptions are: aggregated-theories with BankXX/NT and aggregated-con-cases with BankXX/AF.

38There are 6 exceptional cells. In each configuration, there is an out-of-pattern low precision score for aggregated-
theories on Top20 cases. In addition, there are exceptions on aggregated-pro-cases and aggregated-con-cases with
BankXX/AP, and on aggregated-con-cases with BankXX/AF.

39Both occur with out-of-pattern low scores on Top20 cases: leading-cases with BankXX/AP and aggregated-pro-cases
with BankXX/AF.

40The only exception is with aggregated-pro-cases under BankXX/AF where the values are flat.

41There are many cases (197) where BankXX gets p=0 scores. 90 of these occur because the hand-coded answer is empty.
107 occur when because hand-coded and BankXX answers are skew. Skewness is associated with sparseness in the hand-
coded answers.

42The percentage of instances for aggregated-theories in the Top20 collection that score p=0 with BankXX/NT is 50%,
whereas in Meaty, for instance, it’s 29%. For BankXX/AP it is also 50% vs. 36%. For BankXX/AF, it is 55% vs. 36%.

33

In only one row is a break in row monotonicity due to high scores resulting from setting
undefined precision ratios to 1.43 It occurs in the row for aggregated-con-cases under
BankXX/AP: the score in the All cell is high compared with that for Appeals. This is due to a
combination of proportionally more boosting by default scores of p=1 in All than in Appeals
and more lowering by p=0 scores in Appeals than All.44 An indicator of a potential
“boosting” problem is a large difference between the two ways of computing with undefined
scores (e.g., the scores 33 vs. 42 in the cell for aggregated-con-cases under BankXX/AP on
All). Note that in this row, the scores not using the undefined ratios—shown in ()’s—are in
line with each other.

Recall: With respect to subsets, there is no overall pattern of recall values. There are too
many exceptions—at least one per row—for there to be a pattern of monotonicity for recall;
however the exceptional values are often only a small bit out of line.

Examination of Table 2 shows that most of the exceptions occur with the Top20 and All
subsets. Many of the out-of-pattern scores are either a little too low or too high (within a few
percentage points) although a few—especially with aggregated-theories on All cases—are
very dramatic. There is also significant gap between aggregated-pro-cases between the
Meaty and Top20 subsets, especially in BankXX/AP and BankXX/AF. Because of variation
in the exceptions, a simple re-arrangement of the columns (e.g., putting Top20 cases first)
won’t establish a monotonic pattern.

As with precision, some high out-of-pattern values are due to the use of 1 as a default value
for undefined recall scores.45 The presence of so many empty hand-coded answers in the All
category that are not members of the other subset categories accounts for many of the
upwards jumps in recall scores present in the All column entries.

For instance, under BankXX/AP for aggregated-contrary-cases, there are 13 cases with
recall score set to 1 (because their hand-coded answers are empty) that don’t appear in the
preceding columns. Furthermore, the proportion of such boosting r=1 scores is higher in the
All category than in the other categories except Top20, which also shows a high recall score,
while lowering due to r=0 scores is relatively less in All than in the other categories, except
Meaty cases, which has no r=0 scores.46. This cell is typical of the mixed effects of boosting
by p=1 and lowering by r=0 scores.

43Undefined precision scores are the result of an empty answer produced by BankXX. This does not happen that much (24
times altogether).

44The percentages of boosting p=1 scores are: 20% in Top20, 13% in All, 8% in Appeals, and 0% in Meaty cases. The
percentages of lowering p=0 scores are: 30% in Appeals, 25% in Top20, 24% in All and 0% in Meaty cases.

45There are 111 instances of undefined recall scores. These are due to empty hand-coded answers.

46The percentages of boosting r=1 scores are: 13 (24%) in All, 5 (25%) in Top20, 2 (14%) in Appeals and 0 in Meaty. The
percentages of lowering r=0 scores are : 7 (13%) in All, 4 (20%) in Top20, 3 (21%) in Appeals, and 0 in Meaty. Thus
boosting outweighs lowering in All and Top20; in Meaty it is not an issue.

34

Certain scores do not exhibit such a balanced mixture of boosting and lowering. For instance,
the three elevated scores for aggregated-theories on All cases are due more to the
disproportionate proportion of r=0 scores in all the other cells in the theory row than in a
high proportion of boosting scores in All.47

Summary for Section 3.4.1
Comparisons with respect to subsets (“rows” in Table 2)

In all BankXX configurations for all four argument pieces—that is all rows of the precision
portion of Table 2—highest precision is achieved on Meaty cases, without exception. With
only a few exceptions, the lowest is achieved on All cases.48 Top20 and Appellate cases tend
to fall in between. Thus, generally (no matter how undefined values are handled):

p(Meaty) ≥ p(Top20), p(Appellate) ≥ p(All)

About half of the time there is a full chain of inequalities: precision on Meaty cases is higher
than precision on Top20 cases, which in turn is higher than precision on Appellate cases,
which in turn is higher than precision on All cases:

p(Meaty) ≥ p(Top20) ≥ Appellate) ≥ p(All)

The situation with recall is quite mixed. For instance, Top20 cases often outscore Meaty
ones.

47For instance, for BankXX/NT, the percentage of boosting r=1 scores in All is only 7% (4/55); there are no boosted r=1
scores in the other categories. However the proportion of lowering r=0 scores is: 50% in Top20 and Appeals, 36% in
Meaty and 30% in All. Results for the other two BankXX configurations are nearly identical.

48There are 3 exceptions: In BankXX/NT: aggregated-theories on Top20 cases. In BankXX/AF: aggregated-theories on
Top20 and aggregated-con-cases on Appeals. There are no exceptions with BankXX/AP.

35

3.4.2 Analysis with respect to argument pieces

There is an overall pattern of inequalities with respect to argument pieces—column
monotonicity—in Table 2 that holds across all subsets of the BankXX corpus.

Precision: With respect to argument pieces, for all four subsets and in all three BankXX
configurations, there is an overall pattern of precision values. Precision on leading-cited-
cases is higher than precision on either of the other two case categories, which, in turn, are
higher than precision on theories:

p(leading) > p(con), p(pro) ≥ p(theories)

This pattern holds no matter how undefined values are handled.

On the Meaty cases, one can break this down further since higher precision is always
achieved on Con than on Pro cases:

p(leading) > p(con) ≥ p(pro) ≥ p(theories)

On the set of All cases, there is only one exception to this “full” pattern and it is a very small
one (with BankXX/NT). For Meaty cases, the differences between the scores on the different
argument pieces are always dramatic. For All cases this is less so. The pattern does not hold
for the Top20 and Appeals subsets where there are a few exceptions (with BankXX/NT and
BankXX/AF).

BankXX/AP is particularly “well-behaved” (on unparenthesized scores) with respect to this
full pattern of since it holds across all the subsets. BankXX/AF pretty much fits the pattern—
with the exception of scores on the Appeals cases. With BankXX/NT the reverse seems to
hold: higher precision values are achieved—with the exception of Meaty cases—on pro
cases. However, in BankXX/NT, the differences between the scores in the rows for
aggregated-pro-cases and aggregated-con-cases are not large. In all three configurations of
BankXX, these differences are greater on Meaty and Top20 cases than on Appeals and All
cases.

Recall: With respect to argument pieces, for all subsets and in all BankXX configurations,
there is an overall monotonic pattern. Recall on leading-cases is higher than recall on other
cases, which, in turn, is higher than recall on aggregated-theories:

r(leading) > r(con), r(pro) > r(theories)

This pattern holds for all four subsets of the BankXX corpus in all three BankXX
configurations.

For the most part, the pattern can be refined in most cases to be: higher recall on aggregated-
con-cases than on aggregated-pro-cases:

r(leading) > r(con) ≥ r(pro) > r(theories)

36

There are no exceptions to this pattern for any of the subsets under BankXX/NT, but there
are exceptions under BankXX/AP and BankXX/AF with aggregated-pro-cases on Top20
and Appeals.

Summary for Section 3.4.2
Comparisons with respect to argument-pieces (“columns” in Table 2)

For all BankXX configurations, for all four subsets of cases, for both precision and recall,
highest performance is achieved on leading-cases, lowest on aggregated-theories, and in
between on other cases (no matter how undefined values are handled):

leading-cases > agg’d-con-cases, agg’d-pro-cases ≥ agg’d-theories

For all configurations of BankXX on Meaty and All cases, there is generally a full pattern of
scores for both precision and recall (no matter how undefined values are handled):49

leading-cases > aggregated-con-cases ≥ aggregated-pro-cases ≥ aggregated-theories

There are many exceptions to this pattern in the Top20 and Appeals subsets.

BankXX/NT maintains the full pattern on all subsets for recall values and only on Meaty for
precision values.

BankXX/AP maintains the full pattern on all subsets for unparenthesized precision values
and only on Meaty and All cases for recall values.

BankXX/AF maintains the full pattern for precision and recall values only on Meaty and All .

49There are no exceptiuons with Meaty cases, and 1 exception with BankXX/NT in the All column.

37

3.4.3 Analysis with respect to configurations

Precision: For all four argument pieces and all four subsets of cases, there is a general
pattern that precision is lower with BankXX/NT than with either BankXX/AP or
BankXX/AF:

p(BankXX/NT) ≤ p(BankXX/AP), p(BankXX/AF).

There are two very small exceptions to this pattern.50 Since there is not a consistent pattern
between BankXX/AF and BankXX/AP, there is no clear three-fold monotonic pattern.

Recall: For all four argument pieces and all four subsets of cases, recall is always higher on
BankXX/NT than with either BankXX/AP or BankXX/AF:

r(BankXX/NT) ≥ r(BankXX/AP), r(BankXX/AF).

Since there are four occasions where recall on BankXX/AF is higher than with BankXX/AP,
there is no clear three-fold monotonic pattern, although the pattern that there is more
prevalent than with precision.

Summary for Section 3.4.3
Comparisons with respect to configurations (“blocks” in Table 2)

It is a robust result—across all four argument pieces and all four subsets of cases—that
BankXX/NT achieves higher recall but lower precision than either BankXX/AP or
BankXX/AF:

p(BankXX/NT) ≤ p(BankXX/AP), p(BankXX/AF)
r(BankXX/NT) ≥ r(BankXX/AP), r(BankXX/AF).

Thus, there is a classic recall-precision trade-off between BankXX/NT and BankXX/AP and
between BankXX/NT and BankXX/AF.

50In BankXX/AP: aggregated-theories with All cases. In BankXX/AF: aggregated-theories on Top20 cases.

38

NT-Precision NT-Recall

Meaty Top20 Appeals All Meaty Top20 Appeals All

Leading Cases 81 52 (4919) 52 46 (4554) Leading Cases 100 97 (9615) 100 (10011)99 (9943)

Con Cases 45 26 25 23 Con Cases 83 85 (8015) 84 (8212) 84 (7942)

Pro Cases 38 29 29 24 (2354) Pro Cases 77 81 (7617) 79 (7813) 76 (7247)

Theories 26 22 26 23 Theories 39 24 23 53 (4951)

AP-Precision AP-Recall

Meaty Top20 Appeals All Meaty Top20 Appeals All

Leading Cases 81 52 (4919) 52 46 (4554) Leading Cases 100 97 (9715) 100 (10011)99 (9943)

Con Cases 63 47 (3416) 38 (3412) 42 (3348) Con Cases 53 59 (4615) 53 (4511) 64 (6342)

Pro Cases 45 35 38 32 (3053) Pro Cases 44 63 (5316) 56 (5312) 55 (4847)

Theories 26 22 26 21 Theories 28 24 23 43 (3851)

AF-Precision AF-Recall

Meaty Top20 Appeals All Meaty Top20 Appeals All

Leading Cases 92 65 (5615) 57 (5313) 55 (5251) Leading Cases 71 71 (6215) 71 (6712) 78 (7243)

Con Cases 52 46 (2916) 32 (2712) 33 (2650) Con Cases 61 58 (4415) 58 (5112) 63 (5242)

Pro Cases 39 39 (3619) 38 (3712) 30 (2652) Pro Cases 44 61 (5116) 58 (5513) 56 (4847)

Theories 31 21 28 26 Theories 27 16 21 38 (3351)

Table 2. Precision and Recall values broken out by BankXX configuration, aggregated argument piece, and
special subsets of cases. All values are averages. There are 14 Meaty , 20 Top20, 14 Appeals and 55 All
cases. Values in parentheses do not include undefined values.

39

3.5 Chasing down the effect of sparse cases

After examining all the foregoing data, we decided to pursue the question of determining the
effect of sparseness on BankXX performance. We had noticed that BankXX performed well
on the meaty cases (See Section 3.4.2.) Our hypothesis was that BankXX performance was
correlated with sparseness, that is, BankXX performed better on cases having more items in
the hand-coded answers than on cases having fewer, or no, items.

To explore this idea, we defined a simple measure of sparseness for an individual aggregated
argument piece of an individual case as:

content-count = number of items in the hand-coded answer51

Meaty cases have a content-count of at least 3 in the three argument pieces containing cases
and at least 1 in aggregated-theories (see Section 3.4). With respect to a particular argument
piece, we can group cases into sets of equally sparse—or contentful—answers. For instance,
for the aggregated-pro-cases argument piece, 8 of the 55 cases in the BankXX case base
have content-count of 2, that is, there are 2 same-side cases in their answers. The distribution
of cases according to content-count is given in the Table 3. It is the same, of course,
regardless of which version of BankXX is run since it only depends on the hand-coded
answer.

content-count 0 1 2 3 4 5 6 7 8 9

pro 8 17 8 6 11 3 1 1 0 0
con 13 14 5 9 8 4 0 1 1 0
leading 12 17 10 1 15 na na na na na
theories 4 11 17 10 6 4 2 1 0 0

Table 3. Distribution of cases according to content-count levels for each aggregated argument piece.

We averaged precision and recall scores over cases at each content-count level, argument
piece by argument piece, that is, over sets of cases affiliated with each cell in Table 3, and
then plotted these averaged scores against the content-count level. Since level 0—that is,
where there are no items in the hand-coded answers—results in an undefined recall ratio (i.e.,
0/0), and thus distorts the averages, no matter how one copes with it, we omitted it.52 This
results in eight plots for each version of BankXX. See Figure 12 below.

51Recall, hand-coded answers only include items found in both the opinion and the BankXX knowledge-base.

52For the most part, it also results in precision of 0.

40

2222 4444 6666 8888

0000....2222

0000....4444

0000....6666

0000....8888

1111....0000

2222 4444 6666 8888

0000....2222

0000....4444

0000....6666

0000....8888

1111....0000

2222 4444

0000....2222

0000....4444

0000....6666

0000....8888

1111....0000

2222 4444 6666 8888

0000....2222

0000....4444

0000....6666

0000....8888

1111....0000

2222 4444 6666 8888

0000....2222

0000....4444

0000....6666

0000....8888

1111....0000

2222 4444 6666 8888

0000....2222

0000....4444

0000....6666

0000....8888

1111....0000

2222 4444

0000....2222

0000....4444

0000....6666

0000....8888

1111....0000

2222 4444 6666 8888

0000....2222

0000....4444

0000....6666

0000....8888

1111....0000

PPPPrrrreeeecccciiiissssiiiioooonnnn

RRRReeeeccccaaaallllllll

PPPPrrrroooo CCCCoooonnnn LLLLeeeeaaaaddddiiiinnnngggg

Figure 12. Plots of precision and recall averaged over sets of equal sparseness for BankXX/AF for all four
aggregated argument pieces. (Undefined values were excluded.) The y-axis gives the precision or recall
scores; the x-axis, the sparseness levels.

While there are not a lot of data points on these plots, all plots show that precision increases
with increased content-level, and recall stays flat or falls off slightly. That is, BankXX
performs better on cases with more items in the hand-coded answer. This is not a total
surprise, of course, since BankXX was designed to operate in exactly this sort of situation
where there are too many items for each to be explored, that is, one must judiciously pick and
choose. BankXX was not necessarily designed to operate in sparse situations to find the
needle-in-the-haystack.

Thus we have come full circle back to our underlying design assumptions. In the context for
which it was intended—an abundance of items to explore—BankXX performs best. Of
course, the circle we have traveled was somewhat long in that we needed to find out just how
well BankXX performed, and on which type of cases it performed best. Just because a
program is designed to perform in a certain manner is no guarantee that it will. However in
the case of BankXX we did indeed close the loop.

41

4. Evaluation from Knowledge Representation and CBR Perspectives:
Comparing HYPO with BankXX

In this set of experiments we compare BankXX’s retrieval performance with that of the well-
known and well-regarded legal case-based reasoning program HYPO [Ashley, 1990]. We
have not used the HYPO program itself in these comparisons due in part to technical changes
in operating system, source language, and hardware, but we have re-implemented the core
case-retrieval and case-selection methods of HYPO in a small program we call µHYPO
(micro-HYPO). µHYPO consists of HYPO’s core methods to determine the applicability of
dimensions to a fact situation, to create claim lattices, and to extract most on-point and best
cases for a given side from the claim lattice. There are a number of functionalities of the
original HYPO program that are not present in our µHYPO re-implementation, all of which
contributed to the success of HYPO. These important features include a module to generate
three-ply arguments and the capacity to create telling hypotheticals that probe the limits of a
fact situation.

In this section we describe two experiments. The first experiment evaluates the performance
of µHYPO against the hand-coded court opinions. The second experiment attempts to
determine whether BankXX retrieves legal information that is present in the hand-coded
opinion, but which µHYPO does not retrieve. As the baseline we always use the standard
BankXX/AP configuration with the 10-term evaluation function, given in the Technical
Appendix, with Estus as start node and limits of 30 closed nodes and 1000 billable seconds.

Before we describe these two experiments, some preparatory discussion is required to
describe our efforts to put BankXX and µHYPO on the same footing so that their retrieval
performance can be compared legitimately. There are two parts to the preliminary discussion.
(1) In Section 4.1 we detail how the definition of a “best case” varies in the µHYPO, HYPO,
and BankXX programs. These differences are rather small on their face, and somewhat
technical, but they are one aspect that varies between the programs we compare, and
therefore should at least be noted. We doubt that they account for more than a small portion
of the observed differences in retrieval, however. (2) In the second part of the preliminary
discussion, Section 4.2, we describe our policy for putting the output of µHYPO in a form
that can be compared with the hand-coded opinion and with BankXX. HYPO generated
three-ply arguments, not instantiated argument frames like the hand-coded arguments, and
therefore some work must be done to capture µHYPO’s output in a frame commensurate
with the hand-coded arguments.

Unless two programs are very simple and use the same input and output representations,
trying to compare them can be fraught with caveats and compromises. We shall note these
compromises as we describe the experimental design. Part of the difference in the programs
stems from the distinct emphases of the two projects. The BankXX project emphasizes the
retrieval phase of case-based reasoning, whereas HYPO emphasizes the importance of inter-
case comparison and post-retrieval application of the cases as well.

On the other hand, putting one program in the framework of another can be enlightening. For
example, HYPO and µHYPO are not search programs; BankXX is. µHYPO can be placed

42

within the search paradigm, however. This mental exercise reveals that µHYPO and BankXX
have different biases when regarded from the search perspective. By search bias, we mean
each program’s preference for what nodes (items of legal knowledge) to open and close (to
explore and harvest) and for a particular ordering of those nodes.

HYPO considers the intersection of dimensions that are present in both a problem case and
retrieved case to sort retrieved cases into a claim lattice, which is a directed, acyclic graph. If
HYPO were regarded as a search program, it might be thought of as representing the search
space with respect to each problem case—dynamically—as a claim lattice graph. In this
view, HYPO uses breadth-first search to locate the best and most-on point cases within the
lattice. HYPO also terminates the search at depth one since it makes little use of cases that
are more than one edge away from the root, which represents the problem node.
Alternatively, all cases in the claim lattice can be considered opened in a search space
consisting of the entire case base, and only those at depth one are closed. Either way, HYPO
demonstrates a bias towards selecting (closing) most on-point or best cases, that is, cases that
have many applicable dimensions shared with a problem case. These observations apply to
µHYPO as well.

BankXX, on the other hand, reflects a different and complex retrieval bias that is captured by
the interaction between its neighbor methods (which determine what nodes will be
considered next), its evaluation functions (which order the nodes) and its argument pieces
(which determine how the information in closed nodes is amalgamated). For BankXX/AP,
there are additional biases stemming from the fill limits. The search space includes the case-
domain-graph but is notably larger than it because the neighbor methods greatly expand
these nodes when they are applied.

In the next section we continue our discussion preliminary to the experiments by showing
how the characterization of “best” and “most on-point” cases varies between HYPO, µHYPO
and BankXX.

4.1 µHYPO and BankXX’s HYPO submodule

As we just noted, BankXX contains certain key HYPO functionalities, such as the ability to
perform dimensional analysis, create a claim lattice, and extract most-on-point and best
cases. BankXX’s HYPO submodule is the same as µHYPO in all respects except the
definition of best case that is used. While µHYPO uses a slight relaxation of the original
HYPO definition, BankXX’s HYPO submodule applies a definition that represents a more
radical departure from HYPO’s definition.

The precise definition of best case is important to these BankXX experiments because the
aggregated-pro-cases and aggregated-contrary-cases argument pieces include the best-
same-side-cases and best-contrary-cases argument pieces, respectively. The latter argument
pieces depend on the definition of best case, of course. Thus the definition of best case
affects the retrieval performance of BankXX.

First, µHYPO and BankXX’s HYPO module use the same definition as HYPO for a most on-
point case: a case whose applicable dimensions shared with the problem situation are

43

properly contained in no other case’s set of dimensions shared with the problem [Ashley,
1990]. That is, a most on-point case is a maximal case in the on-point ordering of cases by
set-inclusion on the sets of applicable dimensions intersected with the dimensions applicable
to a problem. The claim lattice captures this ordering. A most on-point case is thus found in
the root node, which contains the current problem case, or in the first level below the root
node.

However, the BankXX-HYPO module and µHYPO differ in their definitions of best case. A
best case in µHYPO is a case that is: (1) a most on-point case and (2) decided for the side
that is citing the case as its best. This is a slightly different sense of “best” case from that
used in the HYPO.53 It is possible for there to be no best cases according to this definition,
since no most on-point case may have been decided for the required side.54

To ensure that there will be best cases in BankXX, we relaxed the most on-point case
requirement. A best case for a given side in BankXX is (1) a maximal case in the on-point
ordering in a claim lattice that consists only of (2) cases decided for the given side.55 In other
words, the best cases in BankXX are those decided for a given side that are closest to the root
node, even if they are not most on-point cases.

Thus µHYPO (and HYPO) use an absolute sense of best: a best case has to be a most on-
point case. BankXX uses a relative sense of best: no better case can be cited for this side,
even if cases for the other side are strictly better. The definitions are summarized in Figure
14.

Definitions in µHYPO and BankXX

µHYPO BankXX
Most On-
Point Case maximal case in claim lattice maximal case in claim lattice

Best Case 1. most on-point case
2. decided for side citing it

maximal of those decided for the
side citing it

Figure 14. Most on-point case and best case definitions in µHYPO and BankXX-HYPO.

53HYPO also required that a best case have at least one dimension whose applicability is tagged as advantageous to the
point-of-view taken in the analysis.

54This can also happen in HYPO. In fact, the requirement of an advantageous dimension makes it even more likely that no
case will qualify as a best case.

55This is tantamount to first restricting all the cases (in the claim lattice) to those for the desired side and then selecting
mopc’s from the restricted lattice. The µHYPO and original HYPO definitions reverse the order of applying the
restrictions: select mopc’s and select same-side cases. The problem is that taking-mopc’s and taking-same-side cases do
not necessarily commute. Note, the only way the BankXX-HYPO module’s definition yields no best cases is if there are no
cases for the desired point of view. By comparison, any time there are no same-side cases within the set of mopc’s, there
will be no best cases for HYPO or µHYPO. While this observation is something of a technicality, it does make a difference
in the retrieval of “best” cases.

44

µHYPO and BankXX’s HYPO-submodule also differ in their computational details from the
original HYPO implementation in some aspects. For instance, both µHYPO and BankXX use
lattice-building algorithms that are derived from recognizing that a claim lattice is an
instance of a Hasse diagram, which is a partial ordering of sets by the subset relation. This
observation has enabled us to experiment with a number of algorithms for generating Hasse
diagrams to generate claim lattices.

In the next section we deal with the last preliminary step to be addressed before giving the
results of our experiments on µHYPO: how to place output of µHYPO in an argument frame
so that it might be compared with the hand-coded opinions and with BankXX.

4.2 The Argument Record in the BankXX-µHYPO Comparisons

The BankXX-court experiments required putting BankXX’s output and court opinions in a
form suitable for comparison by an argument-comparing program. This set of experiments
requires putting µHYPO output, BankXX output, and hand-coded opinions into a format
amenable to direct comparison.

We use the same four aggregated argument pieces as we did before: aggregated-theories,
aggregated-pro-cases, aggregated-con-cases, and leading-cases. (See Section 3.1.1 Figs. 1
and 2.) The effect of the best case definitions is felt in the aggregated-pro and aggregated-
con-cases. To use these argument pieces with µHYPO, we had to decide what would count
as a leading case or a theory in µHYPO and how to limit the set of ordinary same-side and
contrary cases. Our definitions are shown in Figure 15.

aggregated-theories any theory promulgated in any µHYPO most on-point case

same-side-cases any case for the current viewpoint in the top three levels of
the claim lattice up to a limit (8, the sum of the fill limits on
supporting-cases and best-supporting-cases in BankXX/AP)

contrary-cases any case for the opposing viewpoint in the top three levels of
the claim lattice up to a limit (6, the sum of the fill limits for
contrary-cases and best-contrary-cases in BankXX/AP)

leading-cases any µHYPO most on-point case
Figure 15. Definitions of argument pieces applied to µHYPO output .

These definitions are somewhat arbitrary, but some such commensurization was necessary to
make a µHYPO-BankXX comparison study possible. The argument pieces used in these
experiments only make use of about half of BankXX’s standard argument pieces, so there is
some awkwardness in placing BankXX in this framework as well. In the next paragraphs we
describe the motivation behind these definitions of argument pieces for µHYPO.

Aggregated-theories: µHYPO does not explicitly represent and reason with legal theories.
However, it seems reasonable to award to µHYPO any theory that is promulgated by a most
on-point case identified by µHYPO. It might be noted that the same courtesy is not extended

45

to BankXX, which must explicitly close a legal-theory node and add it to the applicable-
theories or nearly-applicable-theories argument pieces in order to count it as “found.” For
BankXX, finding the promulgating case (e.g., Estus) does not give the program credit for the
corresponding theory (Estus theory).

Same-side-cases: Perhaps the obvious choice for cases in a µHYPO same-side-cases
argument piece is to use only the µHYPO best cases for the current viewpoint. In practice,
however, there were very few best cases (according to µHYPO’s fairly strict definition of
best) and the recall of µHYPO was unduly low when measured against hand-coded court
opinions in preliminary experiments. The solution we chose was to permit µHYPO to
incorporate in its argument a set of cases from the claim lattice that includes the best cases.
Even though the original HYPO did not make extended use of cases that were not most on-
point cases, we decided to include cases that were deeper in the claim lattice into the same-
side-cases argument piece definition.

On the other hand, it was not reasonable to include all the cases in the claim lattice for the
current side, since almost all cases appear in some level of the claim lattice generally, and
including all same-side cases would have severely lowered µHYPO's retrieval precision.

The question then arose as to how many additional cases to include with the best-cases. Since
in a later set of experiments we compare BankXX/AP against µHYPO, it would be fair to
give the two programs the same number of potential cases that could be selected for this
argument piece. BankXX/AP, which has “fill limits” on the argument pieces, is permitted a
maximum of eight cases in the same-side-cases piece. Thus we allowed µHYPO to select up
to eight same-side cases from the top three levels of the claim lattice, where the root node is
at level 1. (Since the claim lattice is a graph, and not a tree, the term “level” does not really
apply, and by the top three levels we mean all cases that are in the root node or that are
within two edges of the lattice root node.)

Contrary-cases: The same considerations that applied to µHYPO's definition of same-side-
cases apply to contrary-cases. The fill limits for BankXX/AP's contrary cases argument piece
is six, however, and that limit is incorporated into µHYPO's allotment.

Leading-cases: µHYPO does not provide a sense of leading case in the BankXX sense of a
case that is frequently cited. However it did seem reasonable in the BankXX-HYPO
experiments, to award to µHYPO as a leading case any most on-point case, since these are
the important (leading) cases that drive much of µHYPO’s analysis.

Using these generous conventions for awarding theories, cases and leading cases to µHYPO
allows us to explore value-added questions, such as How do BankXX’s methods compare
with some obvious extensions to HYPO, like those for finding theories and leading cases by
reference to most on-point cases?

Although the fit between the simplified form of argument used to encode output by both
BankXX and µHYPO is tight in some places and too loose in others, some common form of
commensurable output was required for automatic comparison. Other choices for an inter-
program comparison might have been to create a third argument interlingua for the two

46

programs or to extend BankXX's output to conform to HYPO's style of active point-
counterpoint-rebuttal arguments, inventive hypotheticals, etc. We felt that such an attempt to
make a three-ply BankXX argument would have taken this project too far afield from its
focus of heuristic retrieval.

Finally, we acknowledge that the BankXX-µHYPO comparison study obviously required
some compromises and that the comparison really is not between HYPO and BankXX but
rather between scaled-back versions of each. Thus, we must give an explicit caveat that the
empirical results cannot be accorded the status that a comparison between totally
commensurate systems would.

4.3 Comparing µHYPO Arguments with Hand-Coded Arguments

Before comparing the relative performance of BankXX and µHYPO against the hand-coded
opinions, we performed a preliminary experiment to compare µHYPO’s output with the
hand-coded arguments of the court opinions, just as we did with BankXX in the BankXX-
court comparisons. As the baseline we used the standard BankXX/AP configuration.

µHYPO was run on each case in the BankXX case base and the outputs transformed into an
argument record for µHYPO output as just described. For each of the four argument pieces
we then computed the average precision and recall over all the cases (Figure 16). In giving
the precision and recall values we used the policy that where 0/0 arose in the precision or
recall computations, the result should be regarded as 1.

For the three aggregated argument pieces concerning cases, BankXX/AP demonstrates
higher precision and higher recall than µHYPO. On the other hand, BankXX/AP was
designed to find leading cases and so that it outperforms µHYPO on this argument piece is
not surprising and, of course, µHYPO incorporates a different implicit sense of “leading
case.”

47

Precision

R
e

c
a

ll

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50

µHYPO

BankXX/AP

same-side-cases

contrary-cases

leading-cases

theories

Figure 16. Averaged precision and recall for µHYPO and BankXX/AP with respect to hand-coded argument
answer keys. The averages include the value of 1 for undefined precision or recall quotients.

The one surprise in these experiments is that µHYPO achieves a higher level of precision
than BankXX/AP on legal theories. BankXX/AP is designed to be inclusive with respect to
legal theories, and therefore its theory recall is substantially higher than µHYPO’s. Our
policy of which theories to award to a µHYPO argument seems to be very precise but misses
many that it shouldn’t. This high precision tends to show that relevant theories are often
promulgated in most on-point cases. This result reinforces our intuition that most on-point
cases are indeed highly central to argument. On the other hand, µHYPO’s lower recall tends
to show that there are other sources of relevant theories and that only looking to most on-
point cases for theories is not an adequate retrieval strategy in itself.

Summary for Section 4.3
Comparisons against hand-coded arguments:

With respect to the hand-coded arguments, BankXX/AP outperforms µHYPO on all four
aggregated argument pieces for both precision and recall with one very notable and
surprising exception (precision on theories).

48

4.4 Comparing Arguments—BankXX, µHYPO, and Hand-Coded Opinions

Perhaps the most telling way to compare the BankXX and µHYPO programs is to determine
for each case what items in the case-domain graph satisfy the following three requirements:

(1) they are cited in the actual case and so are part of the hand-coded argument,
(2) they are retrieved by BankXX,
(3) they are not retrieved by µHYPO.

The number of items that meet these three requirements give one indication of the “value-
added” by BankXX over a HYPO-style analysis.

We ran an experiment to determine the average number of instances providing such
additional value. Our experimental procedure was first to input each of the 55 cases in the
case base as a problem case to BankXX and to µHYPO in the usual de novo manner. An
argument constituted by the four aggregated argument pieces was created by each program.
Then for each such argument piece, the items that appeared in the BankXX and hand-coded
arguments but not in the µHYPO argument were computed. As in the previous experiment,
to create the BankXX argument we used BankXX/AP in its standard configuration.

BankXX
Argument

µHYPO
Argument

Hand-Coded
Argument

region of
interest

Figure 17. Region of particular interest in this experiment: instances found by BankXX, not by µHYPO , but in
the hand-coded arguments.

Table 5 summarizes the experiments. The rows are defined as follows:
(1) Court and BankXX/AP, not µHYPO: Average number of objects in the court

opinions, found by BankXX, but not by µHYPO.
(2) BankXX/AP and Court: Average number of objects in the court opinions found by

BankXX.
(3) Court and µHYPO, not BankXX/AP: Average number of objects in the court

opinions found by µHYPO that were not found by BankXX/AP.
(4) Court: Average number of objects in the court opinions.

Same side
cases

Contrary
cases

Leading
cases

Theories

49

Court and
BankXX/AP,
not µHYPO

0.53 0.58 1.10 0.65

BankXX/AP
and Court

0.93 1.04 1.80 0.95

Court
and µHYPO,

not BankXX/AP

0.54 0.25 0 0.31

Court 2.24 2.15 1.82 2.51

Table 5. Average number of objects found in each of the four aggregated argument pieces satisfying certain
conditions, where average is taken over 55 cases. Explanations of the row are given in the text.

Several observations can be made:

(a) As shown in row 1, BankXX finds a substantial number of objects from the court
opinions not found by µHYPO. In fact, row 3 shows that no leading cases (according to
BankXX’s definition of “leading”) were found by µHYPO that were not found by BankXX .

(b) By comparing rows 1 and 2, it can be seen that a majority of the items found by BankXX
that also appeared in the hand-coded opinion were not found by µHYPO. BankXX's retrieval
biases leads to items of interest from the court opinions that were typically not found by
µHYPO. Thus, there is solid sense of added value by BankXX when measured against
µHYPO-style retrieval.

Given that BankXX uses HYPO-style dimensional analysis and claim lattice creation,
BankXX ought to perform at least as well as µHYPO, although it is conceivable that it might
not. But is not surprising that the rest of BankXX's machinery yields additional retrieved
items. BankXX has additional domain knowledge in the form of neighbor methods and
evaluation functions that are not present in µHYPO, as well as more indexing information
than µHYPO, particularly in the form of inter-case citation links. By incorporating legal
domain knowledge not present in µHYPO on top of the HYPO case analysis framework,
BankXX retrieves items appearing in the judicial opinions that were not found by µHYPO.

(c) Row 3 shows µHYPO also finds some items not found by BankXX, although usually
fewer than the number found by BankXX but not by µHYPO. However, µHYPO actually
finds as many same-side-cases from the court opinions that were not found by BankXX as
BankXX finds same-side cases not found by µHYPO. The limit on the µHYPO same-side
argument piece (8 cases) was not frugal, but the general lesson is that µHYPO and BankXX
demonstrate complementary search biases. One direction for future work would be how to
combine the cases retrieved by these two systems to get the benefit of this better combined
coverage of the search space without unduly diminishing precision.

Summary for Section 4.4
Value-added comparisons against hand-coded arguments

50

BankXX generally found information cited in judicial opinions that was not retrieved by
µHYPO. Thus, one can say that there is value added by BankXX’s approach. BankXX
provides a viable complementary search technique for retrieval of cases and legal theories to
that used by µHYPO.

51

5. Evaluation from a Search Perspective:
Comparing BankXX’s Performance under Different Parameter Settings

There are a large number of input parameters to BankXX, including the start node, the
evaluation function to use, the limit on the number of nodes that can be closed, and a time
limit. The question of how well BankXX works can be answered in potentially many ways,
depending on the input parameters to the program. We have performed a series of
experiments to control individual parameters, or in some cases pairs of parameters, to give a
sense of the efficiency and accuracy with which BankXX performs its tasks. By running a
configuration of BankXX with a given input parameter setting on all the cases, and
determining the average number of instances filling the argument pieces, we can isolate the
effect of various parameter settings on the performance. In these experiments we only use 11
argument pieces; we disabled the family-resemblance-prototype.

This section is quite specific to the particular implementation of BankXX. Readers interested
in the experimental results in a general way may want to read quickly the boxed experimental
set-up, scan the graphs and note the result summaries. Experimental conclusions should not
be taken out of their very specific context, however. We have not investigated the effect of
many aspects of this program. Chief among such features are the legal domain, the size of the
case base, the representation languages and encodings for the cases and arguments, the
particular cases we have selected for the case base, and the links we have specified manually,
such as the links between legal theories. Nevertheless, we expect that many of our
observations will be borne out by future symbolic AI programs that use a combination of
search and indexing to access legal knowledge.

As in all these experiments, each case and its links were excised from the case graph when it
was regarded as a de novo problem situation for the program. For this set of experiments, we
have relied primarily on one measure of evaluation: counting objects found for each
argument piece.

In the following experiments the parameter settings to BankXX that are not specified in the
Parameters Varied boxes are default values, which are:

Start Node: Estus,
Number of nodes closed: 30,
Number of Billable Seconds: 1000.

52

5.1 Start Node

One potential objection to the kind of automatic, knowledge-directed browsing that BankXX
performs is that in a large knowledge base, one would not know where to begin. Further, the
objection proceeds, search might wander around in a small and not-very-useful portion of the
case base, without locating the information needed to support an argument. The following
experiments show that for our case base and program implementation, this objection was not
supported.

Parameters Varied:
Start Node (Estus, random, most on-point case)
Evaluation Function (node-type, argument-piece, argument-factor)

We varied the start node, which is an optional input parameter to BankXX. Three different
start node specifications were considered:

(1) the Estus case,
(2) a random case, and
(3) a most on-point case.

Since Estus is a well-known case in this area of bankruptcy law, we felt almost any research
materials consulted by an attorney would soon lead to the Estus case, and therefore Estus
may be considered a realistic and useful starting point. The second start node specification
was a random case selected according to a uniform distribution of cases in the case base.
Starting at a most on-point case requires creating a claim lattice before search commences,
extracting the most on-point cases, and then randomly selecting a most on-point case.56

In this experiment, for each of the three evaluation functions the number of instances filling
each of the argument pieces was counted after 30 nodes were closed. All cases in the case
base were used as de novo problems and the average number of objects filling each argument
piece was computed.

The results in Figures 18, 19 and 20 show that the choice of start node, which can be
considered an initial query to the case base, made little difference to retrieval. For each
evaluation function, the average number of objects found for each argument piece is about
the same for each of the three start nodes. The only exception to this occurs for the leading-
cited-cases argument piece with BankXX/NT: the number of leading cases found when
starting with Estus is almost twice the number found when starting with the current problem
or a random case. We believe this finding reflects the common wisdom that starting with a
good case makes it easier for a researcher to exhaust the major cases. While the random and
most on-point case start nodes did often lead to Estus, they did not permit the examination of

56In a design decision that we would change, the other most on-point cases are thrown away rather than placed on the
open list. Including all the most on-point cases on the open list would have made better use of the resources expended to
create the claim lattice and probably provided more fertile cases to initialize the open list.

53

as many of the leading cases as did beginning with Estus, at least within the 30-closed-node
limit placed on the program.

We also examined search paths through the case-domain graph to understand why the choice
of start node made so little difference. As a broad generalization, no matter where search
starts in this case-domain graph of approximately 150 nodes, it soon leads to a highly
interconnected region which contains many useful cases and theories (see Figure 21). For
example Estus and Rimgale, 669 F.2d 4226 (7th Cir. 1982), and the theories promulgated by
these cases are part of this area of the graph. Informally speaking, it doesn’t matter where
search starts because in this domain all roads lead eventually to Estus, so to speak. Thus, in
browsing a case base of comparable size where there is a sufficiently rich indexing fabric, the
initial starting point in case memory may not matter.

0

5

10

15

su
p
p
.
ca

se
s

su
p
p
.

b
es

t
ca

se
s

co
n
tr

.
ca

se
s

co
n
tr

.
b
e
st

ca
se

s

le
ad

.
ci

te
d
 c

as
es

su
p
p
.

ci
ta

ti
o
n
s

fa
ct

o
r

an
al

y
si

s

o
ve

rl
ap

.
ca

se
s

ap
p
l.

th
e
o
ri
e
s

n
e
ar

ly
 a

p
p
.

th
e
o
ri

e
s

fa
ct

.
p
ro

to
.

Estus

random

MOP

Figure 18. Histograms of number of objects filling each argument piece with BankXX/NT.

54

0

5

10

15

su
p
p
.
ca

se
s

su
p
p
.

b
e
st

ca
se

s

co
n
tr

.
ca

se
s

co
n
tr

.
b
e
st

ca
se

s

le
ad

.
ci

te
d
 c

as
es

su
p
p
.

ci
ta

ti
o
n
s

fa
ct

o
r

an
al

y
si

s

o
ve

rl
ap

.
ca

se
s

ap
p
l.

th
e
o
ri
e
s

n
e
ar

ly
 a

p
p
.

th
e
o
ri

e
s

fa
ct

.
p
ro

to
.

Estus

random

MOP

Figure 19. Histogram of number of objects filling each argument piece with BankXX/AP.

0

5

10

15

su
p
p
.
ca

se
s

su
p
p
.

b
es

t
ca

se
s

co
n
tr

.
ca

se
s

co
n
tr

.
b
e
st

ca
se

s

le
ad

.
ci

te
d
 c

as
es

su
p
p
.

ci
ta

ti
o
n
s

fa
ct

o
r

an
al

y
si

s

o
ve

rl
ap

.
ca

se
s

ap
p
l.

th
e
o
ri
e
s

n
e
ar

ly
 a

p
p
.

th
e
o
ri

e
s

fa
ct

.
p
ro

to
.

Estus

random

MOP

Figure 20. Histogram of number of objects filling each argument piece with BankXX/AF.

55

Flygare Theory

Estus Theory

Per Se Minimum Theory

Rimgale Theory

Flygare Makarchuk

Estus Rimgale

Burrell Theory

equivalent
rejects rejects

rejects

overlaps with

Figure 21. A small subgraph of the case-domain graph.

Summary for Section 5.1
Comparisons with respect to start node

In general, BankXX’s performance did not depend on the choice of the start node.

5.2 Evaluation Function and Number of Closed Nodes

BankXX can be configured with any of three evaluation functions to assess the worth of a
piece of legal knowledge to an argument. The next set of experiments compares the
performance of BankXX/NT, BankXX/AP and BankXX/AF with respect to resource limits
from an internal perspective. (Section 3 performed an external comparison with resource
limits held constant.)

As we have noted, in real-world legal research there is no clear guide when to terminate the
discovery and analysis of legal materials. No objective standard exists for when one has
completed research or completed an argument. BankXX has two termination parameters that
may be set by the user: (1) the time limit (“billable seconds”) spent by the program, and (2)
the number of nodes that can be closed. If the open list is emptied within the user's time or
space limits, the program halts.

Since the performance of each configuration of BankXX depends on the resources that have
been allocated to it, this experiment was explicitly designed as a 3 x 3 experiment in which
we varied both the evaluation function and one measure of resource allocation, the number of
nodes that can be closed.

56

Parameters Varied:
Number of Nodes Closed (10, 30, 60)
Evaluation Function (node-type, argument-piece, argument-factor)

As in the other experiments, the experimental procedure was to run each of the cases in the
case base in the de novo manner. We then averaged the number of nodes filling each
argument piece for each problem case. In this 3 x 3 experiment design, we compared the
effects of the three different evaluation function at each of three node closing levels. The
technical appendix contains the terms and weights for each of the three functions. Figures 22,
23 and 24 show the results.

Ten nodes closed is very few, but it does permit BankXX to make some initial progress.
While 10 nodes is too few for any version of BankXX to meaningfully search the case-
domain graph, even at this early stage, several general patterns of behavior are apparent.
With BankXX/NT, 10 nodes was too few to find any items filling the domain-factor-
analysis-significant-overlap, supporting-citations, or factual-prototype-story argument
pieces. By comparison, although BankXX/AP barely got started on these argument pieces, it
did find some items for them. More notably, the number of leading-cited-cases harvested by
BankXX/AP is on average almost 5 (N.B., there are only 5 leading cases), whereas with the
other two evaluation functions BankXX manages to find approximately only one. A similar
difference in the number of supporting-best-cases and contrary-best-cases is also apparent.
On many argument pieces, BankXX/AF performed comparably to the BankXX/NT.

0

5

10

15

su
p
p
.
ca

se
s

su
p
p
.

b
es

t
ca

se
s

co
n
tr

.
ca

se
s

co
n
tr

.
b
e
st

ca
se

s

le
ad

.
ci

te
d
 c

as
es

su
p
p
.

ci
ta

ti
o
n
s

fa
ct

o
r

an
al

y
si

s

o
ve

rl
ap

.
ca

se
s

ap
p
l.

th
e
o
ri
e
s

n
e
ar

ly
 a

p
p
.

th
e
o
ri

e
s

fa
ct

.
p
ro

to
.

NT

AP

AF

Figure 22. Average number of objects filling each argument piece for each configuration of BankXX with a
limit of 10 nodes closed.

57

0

5

10

15

su
p
p
.
ca

se
s

su
p
p
.
b
es

t
ca

se
s

co
n
tr

.
ca

se
s

co
n
tr

.
b
e
st

ca
se

s

le
ad

.
ci

te
d
 c

as
es

su
p
p
.

ci
ta

ti
o
n
s

fa
ct

o
r

an
al

y
si

s

o
ve

rl
ap

.
ca

se
s

ap
p
l.

th
e
o
ri
e
s

n
e
ar

ly
 a

p
p
.

th
e
o
ri

e
s

fa
ct

.
p
ro

to
.

NT

AP

AF

Figure 23. Average number of objects filling each argument piece for each configuration of BankXX with a
limit of 30 nodes closed.

0

5

10

15

su
p
p
.
ca

se
s

su
p
p
.

b
es

t

ca
se

s

co
nt

r.
 c

as
es

co
n
tr

.
b
e
st

ca
se

s

le
ad

.
ci

te
d
 c

as
es

su
p
p
.

ci
ta

ti
o
n
s

fa
ct

o
r

an
al

y
si

s

o
ve

rl
ap

.
ca

se
s

ap
p
l.

th
e
o
ri
e
s

n
e
ar

ly
 a

p
p
.

th
e
o
ri

e
s

fa
ct

.
p
ro

to
.

NT

AP

AF

Figure 24. Average number of objects filling each argument piece for each configuration of BankXX with a
limit of 60 nodes closed.

58

At the level of 30 nodes closed, BankXX/NT, which does not have any limits on the number
of items that can fill any argument piece, finds many more contrary-cases and same-side-
cases than either BankXX/AP or BankXX/AF but it does so at the expense of finding
information for other argument pieces. At 30 nodes, BankXX/NT still has filled in no objects
in the domain-factor-analysis-significant-overlap, supporting-citations, and factual-
prototype-story argument pieces. BankXX/AP yields more cases whose factor analyses fill
the domain-factor-analysis-significant-overlap and supporting-citations argument pieces
than the other two configurations. In general BankXX/AP is much more balanced in
harvesting items for the argument pieces than BankXX/NT, which runs away on ordinary pro
and con cases. This is a direct result of the fill limits enforced by the argument piece
evaluation function on the numbers of items than can be harvested for each piece. Although
BankXX/AF does not harvest the same number of items as BankXX/AP it is similar in that it
produces a fairly balanced profile.

At the level of 60 nodes closed, the observations made at the level of 30 nodes continue to
hold. BankXX/NT concentrates on finding cases at the expense of the other argument pieces
and consequently locates many more contrary and supporting cases and is even less balanced
in its coverage of the argument pieces. Visiting 60 nodes resulted in many cases being found
by BankXX/NT that were not particularly useful, but were merely added to the contrary-
cases and same-side-cases argument pieces. BankXX/NT only found supporting-citations,
however, in the 60-node run.

Since the total limit on objects filling the argument pieces is 39, BankXX/AP shows no
significant progress when the node level limit is raised to 60 nodes. BankXX/AF also merely
adds more supporting and contrary cases to the corresponding argument pieces. For each
argument piece (except for current domain factor analysis, which always contains only the
factor analysis of the current problem), BankXX/AF showed an increase in the number of
items filling it, in a stair-step pattern, as the number of nodes closed is increased from 10 to
30 to 60.

One lesson of comparing the results of the evaluation functions is the utility of limiting the
number of items that can fill any one piece, as is done with the argument piece evaluation
function. Such a limitation leads to a more balanced argument, as might be anticipated.

The node-type function uses only the object type of each node and does not limit the number
of objects retrieved for any argument piece. Considering its lack of knowledge, BankXX/NT
does surprisingly well. To understand how a knowledge-poor function can produce
satisfactory results, one can consider search as just the first of a two-stage retrieval process
for filling the argument pieces. The second stage applies the argument piece predicates to the
retrieved objects to determine if they fulfill the requirements of the argument piece. It
appears that in a two-phase retrieval, applying a knowledge-poor function to generate
candidates in the first phase may be sufficient, as long as the performance criteria in the
second phase are sufficiently rich. The efficacy of the classic generate-and-test or “many-are-
called/few-are-chosen” (MAC/FAC) approach has been observed in other research as well
[Gentner & Forbus, 1991].

59

For BankXX/AP with Estus as the start node, 10 nodes was too few to fill up many of the
argument pieces, and 60 was more than the fill limits allowed. Thus, as a rough guide, 30
nodes seemed an appropriate compromise between more exhaustive search and too shallow
an examination of the case-domain graph. Incremental benefits of more search decreased
after about 30 nodes. From a case-based reasoning perspective, we conclude that the
decreased marginal utility of finding more cases causes there to be a point at which
additional search of the case base is not effective. This conclusion echoes the results of
Veloso and Carbonell [1991] regarding the optimal amount of time to devote to searching a
case base in a hybrid planner.

Summary for Section 5.2
Comparisons with respect to number of nodes closed

Limits on the number of objects that can be harvested for the argument pieces, like the fill
limits used in BankXX/AP, result in more balanced arguments than those produced without
them, as is the case with BankXX/NT and BankXX/AF..

With respect to the number of nodes closed, this set of experiments revealed that there was a
point after which additional node closings did not provide additional benefit.

5.3 Number of Billable Seconds

The usefulness of a heuristic evaluation function depends on its efficiency as well as its
accuracy. A perfect or near-perfect evaluation algorithm that runs in exponential time in the
number of features considered would be little use. That the time to evaluate a node be short is
important in information retrieval settings where users expect fast retrieval in real time. In
some production-level systems, for example, design constraints require that responses to
queries be made in fewer than five seconds. While in an automatic browsing system such as
BankXX time constraints are not as severe (particularly since BankXX is a research
prototype and not a production-level system), efficiency is still a concern.

In designing the three evaluation functions, we attempted to implement functions that
incorporated different levels of abstraction of knowledge about argument. The node-type
evaluation function only considered the lowest level of abstraction, the type of knowledge
that was under evaluation (case, theory, etc.). The argument piece evaluation function
captured a more abstract level, certain kinds of information known to be useful for argument.
The argument factor evaluation function incorporated the highest level of abstraction, that of
considering the quality of the emerging argument.

But the time to compute each evaluation function also increases with the level of abstraction.
The node-type evaluation is quick and easy to apply, since it just checks the type of node that
is being evaluated. The argument-piece evaluation requires a more complex computation,
evaluating the predicate for each argument piece. Finally, the argument factor evaluation

60

function requires the most complex and costly computation, since it involves evaluating the
incremental argument along a number of argument dimensions.

In order to test the efficiency of each evaluation method, we placed three different limits on
the amount of time the program was permitted to run, and compared the effects of a time
limitation on the three configurations of BankXX. The time limitations also include pre-
processing performed by BankXX each time a new problem is presented, which is
independent of the evaluation function. At the commencement of processing, the program
performs dimensional analysis and creates a claim lattice for the problem situation, for
example.

Parameters Varied:
Number of Billable Seconds (1 2 10)
Evaluation Function (node-type, argument-piece, argument-factor)

As in the other experiments, each case was treated as a new problem situation and analyzed
by BankXX. Configured with each one of the three evaluation functions, the program was
run for 1, 2, and 10 billable seconds on a DEC Alpha running Lispworks in 64MB of
physical memory. The average number of items filling each argument piece was computed
across the case base. The results are shown in Figures 25, 26 and 27.

BankXX/AF runs the slowest since it involves provisionally extending the existing argument
by each node that is on the open list, and computing each of the argument factors on that
provisional argument. Creating a temporary, provisional argument for each node evaluation
is computationally expensive. When a time limit is placed on BankXX, therefore, BankXX
with the argument factor evaluation tends to underperform the other two configurations.

This effect comports with our own experiences in doing legal research. If every time a
researcher comes across a new case or theory, he stops to assess exactly where it will fit into
the emerging argument, and then evaluates that argument, research will be a time consuming
process. We speculate that researchers are more apt to use heuristics, concerning when a case
should be read or carefully studied, that make good use of the often short amount of time
available to produce an argument.

61

0

5

10

15

su
p
p
.
ca

se
s

su
p
p
.

b
es

t
ca

se
s

co
n
tr

.
ca

se
s

co
n
tr

.
b
e
st

ca
se

s

le
ad

.
ci

te
d
 c

as
es

su
p
p
.

ci
ta

ti
o
n
s

fa
ct

o
r

an
al

y
si

s

o
ve

rl
ap

.
ca

se
s

ap
p
l.

th
e
o
ri
e
s

n
e
ar

ly
 a

p
p
.

th
e
o
ri

e
s

fa
ct

.
p
ro

to
.

NT

AP

AF

Figure 25. Average number of objects filling each argument piece for each configuration of BankXX with a
limit of 1 billable second.

0

5

10

15

su
p
p
.
ca

se
s

su
p
p
.

b
es

t

ca
se

s

co
nt

r.
 c

as
es

co
n
tr

.
b
e
st

ca
se

s

le
ad

.
ci

te
d
 c

as
es

su
p
p
.

ci
ta

ti
o
n
s

fa
ct

o
r

an
al

y
si

s

o
ve

rl
ap

.
ca

se
s

ap
p
l.

th
e
o
ri
e
s

n
e
ar

ly
 a

p
p
.

th
e
o
ri

e
s

fa
ct

.
p
ro

to
.

NT

AP

AF

Figure 26. Average number of objects filling each argument piece for each configuration of BankXX with a
limit of 2 billable seconds.

62

0

5

10

15

su
pp

.
ca

se
s

su
p
p
.

b
es

t
ca

se
s

co
nt

r.
 c

as
es

co
n
tr

.
b
es

t
ca

se
s

le
ad

.
ci

te
d

ca
se

s

su
p
p
.

ci
ta

ti
o
n
s

fa
ct

o
r

an
al

ys
is

o
ve

rl
ap

.
ca

se
s

ap
p
l.

th
eo

ri
es

n
ea

rl
y

ap
p
.

th
e
o
ri

e
s

fa
ct

.
p
ro

to
.

NT

AP

AF

Figure 27. Average number of objects filling each argument piece for each configuration of BankXX with a
limit of 10 billable seconds. The actual values for BankXX/NT for the supporting cases, contrary cases
and supporting citations argument pieces are all greater than 15.

Note that the overall shape of the 2-billable-seconds histogram in Figure 26 is comparable to
that of the 30 node limit histogram (Figure 23). From these experiments, we concluded that a
limit of 1000 billable seconds is more than enough for each evaluation function to run until
the open list is empty. Thus in the standard configuration of BankXX, we set the time limit at
1000 billable seconds.

Summary for Section 5.3
Comparisons with respect to billable seconds

BankXX with the current argument factor evaluation function was not efficient, and required
a large amount of time to determine whether a node was potentially useful to an argument
piece.

63

6. Three Additional Experiments

In this section we describe three additional experiments concerning: (1) portions of the
search space frequently explored by BankXX; (2) discovering leading cases by analyzing
citation frequencies; and (3) an alternative approach to precision and recall that takes case
similarity into account.

In the course of a set of evaluation experiments of a complex program, tangential questions
arise that do not speak directly to how well a program works, but rather to how a program
works. Partly to satisfy our own curiosity about the program’s behavior, we performed a
handful of side experiments.

The first two experiments reported in this section deal with different instantiations of the
same basic question: Is there a way to determine importance in this domain from mere
frequency counts? In the first experiment, we ask whether some portions of the search space
can be distinguished by having been searched more often than others. In the second
experiment, we ask whether citation analysis in a larger subcollection of full text bankruptcy
cases can lead us to the leading cases in an area.

6.1 Portions of the Search Space that were Closed

The first question we asked was: Are some nodes in the case-domain graph opened and
closed more often than others? The answer to this question generally may help to represent
the structure of a domain to facilitate retrieval and how to conduct the search. From a
jurisprudential perspective, recognizing that some nodes are visited more often than others
and the patterns of visitations give clues about the conceptual structure of an area of the law.
From a technical perspective, a legal retrieval program that automatically browses a large
database may not be able to fit the entire set of domain knowledge nodes in main memory at
once. This situation in common in any production level information retrieval program that
deals potentially with gigabytes of data. Given this constraint, if a developer knows that
some portions of a search space are visited more frequently than others, then it might be
useful to cache frequently accessed nodes in main memory to avoid thrashing through
excessive paging of instances from disk.

To answer our question, for each of the three evaluation functions we compiled a histogram
that records the number of times each node was opened and closed as we ran BankXX
through all 55 cases in the case base as de novo problem cases. These runs were conducted
using a randomly chosen most on-point case as start node, 30 nodes closed per search, a time
limit of 1000 billable seconds, and no filtering for dates.

Figure 28 shows the cases in the case base most frequently opened and closed by
BankXX/NT. The dark gray portion of each bar represents the number of times a node was
closed; light gray gives the number of times a node was opened. There is a sizable core of
cases (27) that are opened for all of the cases in the case base. However, nodes are closed
with a steadily declining frequency with Estus and Rimgale closed the greatest number of
times.

64

Note that with a fixed start node (which is not the case here since we randomly picked a most
on-point case for the problem case being run), BankXX/NT would open and close the same
cases in the same order regardless of problem case, when no date filtering is used. This is
because BankXX/NT’s evaluation function is not sensitive to the problem case but only
depends on node types, and if one always starts from the same node, the nodes opened/closed
do not change. So after BankXX/NT gets to Estus—which it tends to do early since all routes
lead to Estus—the rest of the search is pretty much the same.

0

1 0

2 0

3 0

4 0

5 0

6 0

ES
T
U
S

R
IM

G
A

LE

A
K
IN

SA
N

D
ER

S

CR
U
Z

G
IR

D
A

U
K
A

S

SH
EE

T
S

SC
H
A

IT
Z

B
U
RR

EL
L

C
H
U
RA

A
SH

T
O

N

FL
Y
G
A

R
E

M
A

K
A

RC
H
U
K

SC
H
YM

A A
L
I

M
YE

RS

SO
T
T
ER

B
A

EZ

ST
RO

N
G

RA
SM

U
SS

EN

B
O

Y
D

IA
C
O

V
O

N
I

S
EL

LE
R
S

V
A

LE
N

T
IN

E

T
A

U
SC

H
ER

T
ER

RY

K
U
LL

G
O

EB

Figure 28. Cumulative number of node openings and closings with BankXX/NT. We show only the (28) most
frequently closed cases in the case base. The dark gray portion of each bar represents the number of times
a node was closed; light gray gives the number of times a node was opened.

A similar pattern (Figure 29) is shown by BankXX/AP, except that there are about five cases
that are very dominant. These are in fact the 5 leading cases: Deans, Iacovoni, Estus, Goeb
and Rimgale. This shows that leading cases are indeed often considered as potentially useful
and incorporated into the emerging argument. Fewer cases (20) are opened on every run by
BankXX/AP than with BankXX/NT.

In contrast to BankXX/NT, BankXX/AP and BankXX/AF show great variation in the
“routes” taken through the case-domain graph. Their routes depend on the problem case.

65

0

10

20

30

40

50

60

D
EA

N
S

IA
C
O

V
O

N
I

ES
T
U
S

G
O

EB

R
IM

G
A

LE

C
H
U
RA A

L
I

A
K
IN

S
EL

LE
R
S

SA
N

D
ER

S

A
SH

T
O

N

B
U
RR

EL
L

V
A

LE
N

T
IN

E

SC
H
YM

A

RA
SM

U
SS

EN

B
A

EZ

CR
U
Z

M
A

K
A

RC
H
U
K

K
U
LL

M
YE

RS

FL
Y
G
A

R
E

T
ER

RY

B
O

Y
D

B
RO

W
N

G
IB

S
O

N

B
A

RN
ES

SO
T
T
ER

SC
H
A

IT
Z

Figure 29. Cumulative number of node openings and closings with BankXX/AP for the most frequently opened
cases in the case base.

The results for BankXX/AF were qualitatively different (Figure 30). Whereas BankXX/NT
and BankXX/AP showed many cases that were opened by every case, only two cases—Estus
and Rimgale—were opened for every problem case by BankXX/AF. A second distinguishing
aspect is that there are very few cases that are closed almost every time in which they were
opened.

0

10

20

30

40

50

60

R
IM

G
A

LE

SA
N

D
ER

S

CR
U
Z

C
H
U
RA

A
K
IN

B
U
RR

EL
L

ES
T
U
S

M
YE

RS

G
IR

D
A

U
K
A

S

IA
C
O

V
O

N
I

A
SH

T
O

N

SC
H
A

IT
Z

S
EL

LE
R
S

SO
T
T
ER

RA
SM

U
SS

EN

SH
EE

T
S

V
A

LE
N

T
IN

E

A
L
I

B
A

EZ

ST
RO

N
G

SC
H
YM

A

M
A

K
A

RC
H
U
K

G
O

EB

S
EV

ER
S

K
U
LL

SC
H

O
N

G
A

LL
A

S
A

N
A

B
R
IA

O
W

EN
S

Figure 30. Cumulative number of node openings and closings with BankXX/AF on the most frequently opened
cases in the case base.

Summary for Section 6.1
Heavily visited portions of the case-domain graph

BankXX/NT tended to open the same half the case base on every run and BankXX/AP, less
so. Both displayed a graded structure for the number of node closings. BankXX/AF showed
greatest variation in the number of times cases were opened. With BankXX/AP, the nodes
that were closed the greatest number of times were the leading cases.

66

6.2 Citation Frequencies

One of the measures of importance or centrality of a legal case is the number of citations to
it. In order to supplement a researcher's intuitive impression of the what the leading cases are
in a legal area it would be helpful to have an empirical and somewhat more objective basis
for that determination. It would also be helpful to know which cases are cited in “winning”
arguments, although such cases may be a reflection of the facts of the case at bar and not
citation strength of the cited cases.

As a side experiment, with the aid of Westlaw, we compiled a citation table, a portion of
which appears in Table 6. The table gives, for each case in the case base, the number of cases
that cited that case,57 the year of the original case’s decision, the number of years since the
decision, and the number of cites per year to that case.

To construct this table and to establish a baseline figure, a query was put to WestLaw’s
Bankruptcy database, “1325(a)(3) and good faith.” The number of cases retrieved was 611.
For each of those case opinions, we determined the number of cites to each one of the 55
cases in BankXX’s case base. The number of cites to each BankXX case was determined by
additional Westlaw queries, one for each case in BankXX. For example, for the Estus case,
In re Estus, 695 F.2d 311 (1982) the query “1325(a)(3) and good faith and Estus and 695
F.2d” was put to Westlaw, returning 119 cases. Details on how the experiment was
performed, related experiments, and additional analysis, can be found in [Friedman, 1994].

Name no of cites year no of years cites/year

Rimgale 120 82 12 10.00

Estus 119 82 12 9.92

Goeb 99 82 12 8.25

Deans 85 82 12 7.08

Kitchens 72 83 11 6.55

Memphis 68 82 12 5.67

Flygare 61 83 11 5.55

Iacovoni 73 80 14 5.21

Barnes 56 82 12 4.67

Okoreeh-Baah 27 88 6 4.50

Table 6. Citation frequencies and related statistics for the 10 cases with the greatest citation frequency. U.S.
Courts of Appeal cases are given in boldface.

The number of cites per year gives one measure of the citation frequency of a case. This
statistic has the advantage over the absolute number of citations because it is normalized for
the amount of time elapsed since the decision was handed down. A case such as In re
Okoreeh-Baah, 836 F.2d 1030 (6th Cir. 1988) has been frequently cited since its decision,

57We did not take into account the number of cites within a citing case. (e.g., whether a case cited a case 1 time or 29
times did not matter).

67

with 27 citations since 1988. Many of the best-known cases in this area, not surprisingly,
appear at the top of this list, providing objective confirmation of the importance of these
cases. Nine out of ten cases with the highest citation frequency were from the U.S. Courts of
Appeal.

The citation frequency case ranking may differ from those used by BankXX because of the
larger universe of cases whose citations to BankXX cases are counted. In determining its
leading cases, BankXX only counts the number of citations of cases in its knowledge base by
other BankXX cases. This experiment counts the number of cites to BankXX cases by any
case that includes “1325(a)(3) and good faith.”

While such a table is reasonably simple to construct automatically, it provides quantitative
information that is only available qualitatively to legal researchers. When confronted with a
mass of cases to read, a sorted list could provide one discipline to order one’s research.
Second, the table gives some clues to the structure of a domain. An area such as good faith is
dominated by a handful of important cases. It is a matter for future empirical research to
determine if other legal domains are structured similarly. One might hazard a guess that this
domination of an area by a small group of cases is typical, and that the reason is a cognitive
bias inherent in human judges and commentators in favor of a graded categorical structure
for legal areas and a small set of prototypical representatives. Speculations of this sort might
provide interesting hypotheses for future research.

Summary for Section 6.2
Citation analysis and leading cases.

In this domain, leading cases may be identified easily through counting the inter-case
citations extracted from the full text of legal opinions.

6.3 An Alternative Approach to Precision-Recall

In this section, we present an alternative approach to calculating precision and recall. In all
the other calculations in this paper, BankXX has been credited with finding a case or a theory
that appears in a legal opinion only if it finds that precise case or theory, that is, the names
match literally. In some circumstances a broader sense of match might be preferable. For
example, if a legal opinion contained a cite to a particular case supporting a well-established
proposition of law, but BankXX retrieved a different but highly similar case supporting
exactly the same proposition, the highly similar cases ought to be considered a “match.” Sets
of similar cases—that in their argumentative value are essentially equivalent—are often
presented in so-called string cites. Similarly, if BankXX found a legal theory that referred to
exactly the same factors as another theory appearing in an opinion, then this is tantamount to
finding exactly the same theory. Thus, while the information retrieval field has generally
relied on an “exact match” to documents in the answer key to gauge retrieval success, in

68

some circumstances, there are good reasons for using an alternative, slightly relaxed
definition. In this section, we briefly explore the idea of awarding full match credit for cases
that are highly similar.

In order to use an extended notion of match based on high degree of similarity, we require
some measure of when two cases are sufficiently similar to be considered equivalent.
Fortunately, legal CBR programs provide just such a measure. For instance, according to the
model of case similarity provided by HYPO, two cases are highly similar with respect to a
problem case if they appear in the same node of the standard claim lattice built for the
problem case, which means that they are equally on-point and address a common set of
relevant legal issues.58

We can extend the notion of a match by saying that two cases—one in the BankXX output
and one in the hand-coded answer—are an extended match if either:

1. they are the same, or
2. they are highly similar, where two cases are considered highly similar if they reside
in the same node of the claim lattice for the problem case.

This particular definition of highly similar defines an equivalence relation on cases.
Motivated by this observation, we can generalize our definition to say that two cases are
considered an extended match if they are in the same equivalence class of case similarity.
Notice that we could add a third criterion to the extended match definition: that the two cases
must be decided for the same viewpoint. This happens automatically in our application since
we are only matching cases from aggregates which already reflect the same viewpoint.

For example, suppose the problem case is Estus. Suppose Gunn is mentioned in the opinion
as a pro case, and is therefore in the answer key for aggregated-pro-cases. Suppose further
that BankXX retrieves another pro case, Gibson, which is not mentioned.59 Under the usual
exact match criterion, Gunn would not match Gibson. However, since Gibson and Gunn
appear in the same node of the Estus claim lattice as most on-point cases decided for the
creditor, they are an extended match.60

58Of course, one could also use the extended claim lattice that takes note of nearly applicable dimensions as well.

59Note both Gunn and Gibson were decided after Estus, so they cannot appear in the hand-coded opinion or in the
BankXX output when date-filtering is in effect. They are used here simply for illustration.

60Modulo the technicality that Gunn had not already been "matched" with another ADDITIONAL case retrieved by BankXX.

69

x

x x
xx x

AAAA
AAAA''''

HHHHaaaannnndddd----ccccooooddddeeeedddd AAAAnnnnsssswwwweeeerrrr BBBBaaaannnnkkkkXXXXXXXX AAAAnnnnsssswwwweeeerrrr

ccccffffssss

AAAA AAAA''''

AAAA'''' ≅ AAAA

AdditionalMissed

Overlap

Figure 13. Schematic for extended match similarity between two cases A’ and A.

This notion of extended match gives rise to an alternative way of computing precision and
recall, which was used in another set of experiments described here. Essentially we
proceeded as usual until we computed precision and recall. That is, for each case in the case
base, a version of BankXX was run on that case treated as a new problem situation, with the
default parameter settings for BankXX.

We then examined the output of the three aggregated argument pieces that are filled with
cases—aggregated-pro-cases, aggregated-con-cases, and leading-c i ted-cases—and
computed new OVERLAP, MISSED, and ADDITIONAL sets based on extended matches. To do
this, we first determined the standard sets of OVERLAP, ADDITIONAL and MISSED cases as
usual. Second, we examined the ADDITIONAL and MISSED cases—the cases in the symmetric
difference in Figure 13—to see if any pairs of cases—one from ADDITIONAL, one from
MISSED—could be matched using the extended match criterion. (Recall, a claim lattice for
the problem case is constructed as an initial step in BankXX's processing, so it is readily
available for extended matching.)

The exact procedure involves marking cases so as to not allow more than one ADDITIONAL
case to match a given MISSED case and vice versa. We want to maintain a one-to-one
correspondence between the items we match between the MISSED cases and the ADDITIONAL
cases so that BankXX does not receive too little or too much credit, which could occur if we
allowed unlimited matches. For instance, we did not want to permit unlimited matches of a
case appearing in the hand-coded answer (i.e., a MISSED case) with multiple cases appearing
only in BankXX’s answer (i.e., ADDITIONAL cases).

70

Once a pair is considered an extended match, it is moved to the new OVERLAP (with the
name used in the hand-coded answer) and each case of the pair is deleted from its respective
ADDITIONAL or MISSED category.

After all cases in the original ADDITIONAL and MISSED sets were examined, and new,
modified OVERLAP, MISSED and ADDITIONAL sets determined, we computed modified
precision and recall as usual:

p̃ = |new OVERLAP|/ |new ADDITIONAL ∪ new OVERLAP|
r̃ = |new OVERLAP|/ |new MISSED ∪ new OVERLAP|

For each version of BankXX, we computed average p̃ and r̃ over the entire case base. See
Table 4. As before we explored both options for dealing with 0/0 situations.

AGGREGATED PRO CASES AGGREGATED CON CASES

p, r p̃ , r̃ p, r p̃ , r̃

BankXX/NT 24 (2354), 76 (7247) 25 (2454), 79 (7547) 23 (2355), 84 (7942) 25 (2555), 91 (8842)

BankXX/AP 32 (3053), 55 (4847) 34 (3153), 57 (4947) 42 (3348), 64 (5342) 44 (3648), 67 (5742)

BankXX/AF 30 (2652), 56 (4847) 38 (3452), 63 (5747) 33 (2650), 63 (5242) 37 (3050), 70 (6042)

Table 4. Averaged precision and recall values calculated as usual and with extended matching. Values in
boldface are computed with undefined ratios are set to 1. Average values computed only with respect to
defined values are given in parentheses; the number used in an average is shown in the subscript.

In Table 4, we only show data for aggregated-same-side-cases and aggregated-contrary
cases since for leading-cited-cases both methods of computing precision and recall produce
nearly identical scores. (See Table 1 or Table 2 for precision-recall data computed in the
usual way.) This is no surprise since there are only five cases that can possibly be listed as a
leading-cited-cases and BankXX does very well on finding them, and thus there are few
opportunities to use the extended match criterion.

For the most part, the differences between the usual and the extended method are all within a
few (absolute) percentage points for BankXX/NT and BankXX/AP. The relative changes
vary between 3.6% to 8.6%, when 0/0 is set to 1, and 2% to 11.3%, when undefined values
are excluded. With only one exception, the relative changes are all less than 10%. Thus, the
differences here are not always significant.

However the numbers do change significantly for BankXX/AF. The relative differences
range from 11% to 26.6%, when 0/0 is set to 1, and 15.3% to 38.3%, when undefined values
are excluded. There is a tremendous jump in precision for aggregated-pro-cases. These
relative changes can be considered significant.

71

The higher performance scores for BankXX/AF under the modified precision-recall scheme
shows that BankXX/AF is actually finding cases that are dimensionally highly similar to the
ones cited in the opinions. This is evidence that BankXX/AF—and the argument factors that
drive it—are having greater success than meets the eye under the usual precision-recall
standard.

In situations where there are more cases that can be considered, there is a greater difference
between precision and recall scores based on the extended match criterion and those based on
the usual literal match criterion. In our experiments, this occurs typically with later cases,
where more cases survive date filtering.

We did not experiment with an extended match approach on aggregated-theories because we
had not defined a metric to measure similarity between theories. One obvious approach is to
sort theories according to the degree of overlap between their sets of defining factors in a
manner analogous to HYPO-style case similarity. Another approach would be to measure
theory similarity by measuring the similarity of the cases applying the theory. There are
many possibilities.

This experiment shows that more perspicacious means of computing retrieval success may be
available when additional domain knowledge is used to inform an extended matching metric.
The modified scheme discussed here is one of many possibilities. It is, we believe, more in
the spirit of the way arguments are probably evaluated by legal professionals and law
professors—sometimes one case is just as good as another for supporting a legal proposition.

72

7. Concluding Remarks

There are some general lessons to be learned from our experiences in this evaluation study,
which, we believe, is the first such in-depth study in AI and Law. First, evaluation is a long,
painstaking process. Second, using the evaluation standards taken from some other area of
computer science, like information retrieval, has its pros and cons. On one hand, metrics like
traditional precision and recall are widely used. On the other hand, they may not be totally
appropriate in domains such as the law where the existence of an unassailable correct answer
is doubtful. We need new ways to assess performance. Furthermore, there is a tendency to
lift such measures out of context. Without context and comparable data from other systems
on commensurable problems and data sets, it is impossible to say whether a particular level
of precision or recall is “good” or “bad.” However, we feel that evaluation is important and
beneficial. We have tried to demonstrate how the problem of evaluation can be tackled.

In general, we found that many of our original hypothesis were true, but some in more
qualified terms:

• BankXX/AP and BankXX/AF did perform better than BankXX/NT but only with
regard to precision. In fact, we found a classic trade-off: The knowledge-poorer
BankXX/NT achieved higher recall but the knowledge-richer BankXX/AP and
BankXX/AF achieved higher precision.

• BankXX/AP did produce much more balanced arguments than BankXX/NT.

• BankXX did exhibit performance improvement over HYPO (re-implemented as
µHYPO) on the task of retrieval in the sense that BankXX retrieves information used
in the court opinions not found by HYPO. In direct comparison with hand-coded
answers, BankXX achieved higher precision and recall in all categories with one
surprising exception: HYPO was more precise than BankXX on legal theories.

• With BankXX/NT and BankXX/AP, more resources did not appear to provide much
marginal benefit after a point. With BankXX/AF, additional time is a help because
the calculation of some of the argument factors is so slow.

Some additional specific lessons from our experiments are:

• There was variation in BankXX performance on different types of sets. In particular, there
was high performance on meaty and other contentful cases and low performance on sparse
cases. This suggests that in building future case bases, we would bias our acquisition towards
meatier cases and be aware of the difficulties that can arise with sparse ones.

• As a corollary, statistics aggregated over different types of cases were quite different.
Understanding the statistics often required detailed examination of the program’s product on
individual problems, and even sometimes of its internal data structures (e.g., open, closed
lists). This reinforces the old wisdom that averaging is no “excuse” for detailed examination
of the data.

73

• There was a surprising amount of monotonicity for precision-recall scores calculated with
respect to various subsets of cases, different aggregated argument pieces, and the three
BankXX configurations. There were analogous nesting relationships among the sets of
OVERLAP, ADDITIONAL, and MISSED cases. These pointed to various trade-offs (regarding
the evaluation functions) and correlations (regarding sparse and contentful cases) in
performance.

• The fill limits used by BankXX/AP had profound effects. On the positive side, they caused
BankXX/AP to harvest a nicely balanced array of information. On the negative side, they
caused BankXX/AP to forgo harvesting some very useful information.

• Surprisingly good performance can be achieved with BankXX’s two-stage process of first
retrieving objects and second amalgamating them into argument pieces, even when the first
stage is relatively knowledge-poor, as is the case with BankXX/NT. This demonstrates the
efficacy of the generate-and-test or “many are called/few are chosen” (MAC/FAC) approach
for legal information retrieval.

• BankXX/AP and BankXX/AF were very sensitive to problem-solving context. By contrast,
BankXX/NT was a rote, brute force retriever. Surprisingly, BankXX/NT did quite well—
better in fact than the other two—on recall.

• Different versions of BankXX had different retrieval biases. These reflected the biases of
the evaluation functions.

• There was a trade-off in computational costs. The knowledge-rich BankXX/AF was much
slower than either BankXX/NT or BankXX/AP.

• The setting of some internal parameters did not make much difference. The start node did
not matter particularly (in our highly interconnected space of information). But there was a
point at which additional resources of time and space did not provide additional benefits.

• BankXX and HYPO exhibited different and complementary retrieval biases. One can say
that there was value added by BankXX’s approach but more importantly perhaps, BankXX
and HYPO could complement each other in some larger composite program.

As a general conclusion, we feel that BankXX/AP with its standard configuration provides
good value and is “well-behaved” from many points of view. BankXX/AP imports an
intermediate level of representation of argument into the process of retrieval through its
argument piece evaluation function. BankXX/NT uses a coarser representation, and
BankXX/AF, a finer one. BankXX/NT is a little too quick-and-dirty and BankXX/AF is a
little too thoughtful. BankXX/AP seems about right.

It may be a common experience for researchers to perform an extensive series of experiments
on a program, only to realize that they should have implemented some features differently.
Certainly that has been our experience. Small design decisions long since made and forgotten
were dredged up through close examination of the product of the program. One small
example is our decision not to add all the most on-point cases to the open list when

74

initializing the search. Currently, only a random most on-point case node is placed on the list.
Another is our decision not to reason about the date, jurisdiction, or pedigree of a case. The
rigors of evaluation forced us to address the date of a case even though the problem of post-
dated cases does not arise in the intended usage of BankXX on truly new problem cases,
where everything known by the program should be available to it. These are examples of
design decisions we would now modify.

Of course, there are always variations and extensions to a program that could be made and
evaluated. For instance, based on our experiences we would now use a different set of
weights and fill limits on certain items. In particular, we would increase the limits on the
numbers of ordinary pro and con cases that can be harvested. We would also use a
concomitant standard configuration of BankXX/AP such that the limit on closed nodes is
larger than sum total of the individual fill limits.

In addition, introspection suggests that legal researchers change heuristic evaluation of legal
information as search progresses. At the beginning of research, a variety cases may be read,
to get a sense of the area. Once the skeleton of the argument is formed, however, the
researcher’s information needs (e.g., “the argument needs more applicable legal theories”)
become more precise. As resources are about to run out, the emerging argument might
dictate very much more closely what kinds of cases (e.g., a trumping appeals case from our
circuit) and other support are needed. These observations suggest possible modifications to
the overall architecture of our system. For instance, our program could change its evaluation
function in mid-run after a certain threshold amount of time or space has been searched,
perhaps analogous to the opening, mid-game and end-game stages in game-playing. In the
“opening,” it could use the node type evaluation function to get a quick-and-dirty start on
retrieval. In the “mid-game” (probably, the longest-lasting phase), it could use the argument
piece evaluation to retrieve a well-balanced set of information that is not overloaded in any
one category or empty in others. In the “end game,” it could use the judiciously deliberative
BankXX/AF to find just the right sort of information to strengthen the argument. Our
program might also use its runs with the less smart evaluation function (BankXX/NT) as a
“learning experience” for subsequent runs.

Although we performed a wide variety of experiments with the BankXX program, it may
well take future experiments with similar programs to extract the BankXX-dependent and
domain-dependent conclusions from more general lessons about legal retrieval and argument.

General lessons that we would expect to see emphasized by work with other programs and
domains include the utility of incorporating a variety of types of legal knowledge in a
knowledge base, together with a rich vocabulary of inter-connections. We would expect to
see the benefit of retrieving information for targeted categories, such as those captured in our
argument pieces since this imports the high level purposes for doing the retrieval—the user’s
information needs—into the retrieval process itself. We would expect also to see in various
forms the domination of small sets of cases and the importance of leading cited cases to
structuring a legal area. Finally, we would expect to see that argument creation involves the
complex interaction of pieces of knowledge represented and evaluated at various levels of
abstraction.

75

Acknowledgments

This work was supported in part by the Air Force Office of Scientific Research under
contract 90-0359 and the National Science Foundation under grant EEC-9209623,
State/Industry/University Cooperative Research on Intelligent Information Retrieval. For
assistance we thank Matt Cornell and Kate Sanders, and Elaine Whitlock and Barbara Fell-
Johnson of the Hampshire County Law Library, Northampton, Massachusetts. Jody Daniels
wrote the claim lattice algorithms used by BankXX. We thank the West Publishing Co. for
providing access to their legal databases through the University of Massachusetts Center for
Intelligent Information Retrieval.

76

References

Ashley, K. D. (1990). Modeling Legal Argument: Reasoning with Cases and Hypotheticals. Cambridge, MA:
M.I.T. Press.

Branting, L. K. (1991). Building Explanations from Rules and Structured Cases. International Journal of Man-
Machine Studies, 34, 797-837.

Eisenberg, M. A. (1982). Gilbert Law Summaries: Contracts. New York, NY: Harcourt Brace Jovanovich
Legal and Professional Publications,

Fox, J. & Clarke, M. (1991). Towards a Formalization of Arguments in Decision Making. AAAI Spring
Symposium Series, 1991, Argument and Belief, 92-99. Palo Alto, CA.

Friedman, M. T. (1994). Information Retrieval Techniques Applied to Indexing for a Case-Based Reasoning
System. Unpublished Manuscript, Dept. of Computer Science, University of Massachusetts, Amherst, MA.

Gardner, A. vdl. (1987). An Artificial Intelligence Approach to Legal Reasoning . MIT Press, Cambridge.

Gentner, D. & Forbus, K. D. (1991). MAC/FAC: A Model of Similarity-based Retrieval. Proceedings of the
Thirteenth Annual Conference of the Cognitive Science Society, 504-509. Chicago, IL. Lawrence Erlbaum,
Hillsdale, NJ.

Perelman, C. & Olbrechts-Tyteca, L. (1969). The New Rhetoric: A Treatise on Argumentation . Notre Dame,
Indiana: University of Notre Dame Press.

Rissland, E. L. (1990). Dimension-based Analysis of Hypotheticals from Supreme Court Oral Argument.
Proceedings of the Second International Conference on AI and Law, 111-120. Vancouver, BC.

Rissland, E. L., Daniels, J. J., Rubinstein, Z. B. & Skalak, D. B. (1993). Case-Based Diagnostic Analysis in a
Blackboard Architecture. Proceedings of the Eleventh National Conference on Artificial Intelligence, 66-72.
Washington, DC. AAAI Press/MIT Press.

Rissland, E. L., Valcarce, E. M. & Ashley, K. D. (1984). Explaining and Arguing with Examples. AAAI-84,
Proceedings of the National Conference on Artificial Intelligence. Austin, TX. American Association for
Artificial Intelligence.

Salton, G. (1989). Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by
Computer . Reading, MA: Addison-Wesley.

Skalak, D. B. & Rissland, E. L. (1992). Arguments and Cases: An Inevitable Intertwining. Artificial
Intelligence and Law: An International Journal, 1(1), 3-48.

Veloso, M. M. & Carbonell, J. G. (1991). Variable-Precision Case Retrieval in Analogical Problem Solving.
Proceedings, Third Case-Based Reasoning Workshop, May 1991. Washington, D.C. Morgan Kaufmann, San
Mateo, CA.

77

Technical Appendix

Here we give for reference the weights and terms used by each evaluation method. The
companion article contains a full description of the evaluation functions.

1. Theory-nodes 8

2. Cases-as-facts nodes 6

3. Citation-bundle nodes 5

4. Domain-factor nodes 4

5. Story-prototype nodes 3
The terms and weights used in the node type evaluation function.

1. supporting cases: weight=2 [limit=3]

2. best supporting cases: 7 [5]

3. contrary cases: 1 [3]

4. best contrary cases: 5 [3]

5. leading cases: 6 [5]

6. supporting citations: 1 [5]

7. overlapping cases: 1 [5]

8. applicable legal theories: 8 [6]

9. nearly applicable legal theories: 6 [3]

10. factual prototype stories: 6 [1]
The terms, weights, and piece limits (given in brackets) used in the argument piece evaluation function.

1.centrality-of-theory 8

2. win-record-of-theory 8

3. win-record-of-theory-for-factual-prototype 8

4. strength-of-best-case-analogies 5

5. centrality-of-best-cases 5

6. equally-on-point-casees
4

7. strength-of-citations 4

8. strength-of-factual-prototype 3
The terms and weights used in the argument factor evaluation function.

78

Notes:

2. 26,500 text words; 2,200 footnote words; 28,500 total words

