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Abstract!

This report summarizes progress in image
understanding research at the University of
Massachusetts over the past year. Many of the
individual efforts discussed in this paper are
further developed in other papers in this
proceedings. The summary is organized into
several areas:

1. Image Exploitation under RADIUS

2. Learning in Vision

3. Mobile Vehicle Navigation

4. Recovering 3D Structure

5. The Image Understanding Architecture

The research program in computer vision at
UMass has as one of its goals the integration of a
diverse set of research efforts into a system that is
ultimately intended to achieve real-time image
interpretation in a variety of vision applications.

1. Image Exploitation under RADIUS

1.1. Project Goal

The goal of the Radius project (Research and
Development for Image Understanding Systems)
is to develop image understanding algorithms that
support model-based aerial image exploitation. A
flexible set of IU modules is being developed to
acquire, extend and refine 3D geometric site
models using known extrinsic and intrinsic camera
parameters. In support of this effort, ISR3 (see
Section 2.5) is being ported to the RCDE.
Although individual modules are automated as
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much as possible, the image analyst maintains
control of the site modeling session by deciding
when and where each module is applied. A recent
experiment on site modeling using the RADIUS
Model Board 1 images and these algorithms is
described in [Collins et. al. 1994].

1.2. Finding Roof Structures in the RADIUS
Model Board Imagery

A new method for extracting .flat, polygonal
rooftops in monocular aerial imagery has been
developed [Jaynes et. al. 1994]. Through a
combination of bottom-up and top-down
construction of perceptual groups, polygons in a
single aerial image are robustly extracted.

Building roof detection begins by using vanishing
point information in the 2D image [Collins and
Weiss 1990] to generate a set of correlation masks
for detecting features in the image corresponding
to 3D orthogonal roof corners in the scene.
Compatible pairs of roof corners initiate a search
for supporting edge data, with all extracted corners
and supporting edges entered into a feature
relation graph. Perceptual grouping processes
connect nodes in the graph representing corners
and lines according to their geometric
compatibility. These grouping processes invoke
top-down feature verification routines so that
features, and the relational links between features,
are all verified with local information in the image
and weighted in the graph according to their
underlying image support.

Potential building roof hypotheses are detected as
cycles in the feature relation graph. Virtual
features may be hypothesized for the perceptual
completion of partially occluded rooftops
appearing as open chains in the graph. Extraction
of the 'best' grouping of features into a set of
building rooftop hypotheses is posed as a graph
search problem. The maximally-weighted,
independent set of cycles in the graph is extracted



as the final set of roof boundaries. This method
essentially arbitrates between many (possibly
conflicting) groupings by using information
contained in the image to measure the certainty of
each grouping choice. Note that all the grouping
processes at this stage operate in the image
domain, and further refinement will take place
next at the 3D representation during the
information fusion stage across multiple images.

1.3. Determining the 3D Structure of Buildings

Following polygonal roof detection, simultaneous
multi-image, multi-line epipolar matching and
triangulation algorithms are run to locate
geometric support in other images (often with a
great variety of viewpoints), and to determine the
precise size, shape, and position of the building
roof in the local site 3D coordinate system. At the
moment, only flat, horizontal rooftops are
detected.

The constraint of horizontal roofs allows the use
of a very efficient and robust histogram-based
algorithm to gather supporting line evidence from
other images in the site database. This is achieved
using the known poses to backproject into the
scene each polygonal edge of the roof hypothesis
in the first image to determine a planar wedge in
which the corresponding 3d horizontal roof edge
must lie. This wedge is truncated at a
predetermined maximum and minimum height
values for the site, and projected into a second
image to form an epipolar search region. This
quadrilateral search area is scanned for possible
matching line segments at the expected
orientation, each potential match implying a
different roof height in the scene. All heights
computed from potential polygon edge matches in
the second image are stored as votes in a height
histogram. Each vote is weighted by compatibility
of the match in terms of expected line segment
orientation and length. A single global histogram
accumulates height votes from multiple images,
and for multiple edges in a rooftop polygon. After
all votes have been tallied, the histogram bucket
containing the most votes yields a set of
corresponding polygonal rooftop line segments in
multiple images and a coarse estimate of the roof
height in the scene.

A multi-image line triangulation routine again uses
known camera poses to fuse the line segment
correspondences determined by epipolar matching
into a wireframe rooftop structure in the scene.
During triangulation, each wireframe edge is
characterized by the parameters of the algebraic

infinite 3D line that coincides with it. In turn, the
location and orientation of this 3D line is
characterized by an objective function measuring
how well its projection aligns with the 2D image
segments that correspond to it. A number of
different objective measures are being considered;
the current one is a function of the sum of squared
distances from each projected infinite line to the
endpoints of corresponding 2D line segments in
the image. The triangulation algorithm iteratively
refines the position of each wireframe edge so that
the sum-of-squares of objective measures between
each algebraic line and corresponding image line
segment is minimized. All lines in a rooftop
polygon are thus triangulated simultaneously.
Object-level geometric constraints such as
assumed perpendicularity, parallelism, and
coplanarity of polygonal rooftop edges are also
imposed during triangulation for more reliable
results.

The resulting 3D roof polygon is extruded down to
the terrain to form a volumetric building model.
The ground height at any location is specified by a
digital terrain map that is either provided with the
site database, or created from a pair of stereo
images using the UMass Terrain Reconstruction
System [Schultz 1994]. The final reconstructed
building is then added to the current site model to
form a more complete scene representation that
can be used for future image registration and
interpretation tasks.

1.4. Projective Intensity Mapping

To provide added realism for visual displays and
as a means of symbolic storage, we have
developed mechanisms for projectively warping
image intensities onto polygonal building faces.
Since multiple images are used, intensity
information from all faces of the building polygon
can be recovered, even though they are not all seen
in any single image. By storing surface intensity
information with each building object, the
rendered intensity mappings provide a convenient
storage method for later symbolic extraction of
detailed surface structures like windows, doors and
roof vents without needing to know ahead of time
which information will be desired. Furthermore,
this subsequent processing becomes greatly
simplified. For example, rectangular lattices of
windows or roof vents can be searched for in the
unwarped intensity maps without complication
from the effects of perspective distortion.
Secondly, specific surface structure extraction
techniques can be applied only where relevant, i.e.



window and door extraction can be focused on
building wall intensity maps, while roof vent
computations are performed only on roofs. Future
work will be directed towards combining intensity
information from multiple views of each polygonal
building facet to remove visual artifacts caused by
shadows and occlusion and to potentially increase
the clarity of surface intensity maps using super-
resolution fusion techniques.

1.5. Camera Resection and Feature
Correspondences

We continue to investigate new methods for
performing camera resection and correspondence
matching [Cheng et. al. 1994]. Given N images,
and a set of corresponding 3D-to-2D point features
for each image, a robust algorithm for
simultaneously resecting intrinsic and extrinsic
camera parameters for all views has been
developed. A-priori constraints, such as the
knowledge that all views were taken by the same
camera, can be incorporated. Unknown camera
parameters are determined from the standard
colinearity equations using the Levenberg-
Marquardt algorithm. This iterative least-squares
(LS) algorithm minimizes an objective function
that measures how closely projected 3D point
features fall on their corresponding 2D image
features in terms of squared residual error. It is
well known that LS optimization techniques can
fail catastrophically when outliers (called
"blunders" in the photogrammetry literature) are
present in the data (for example, see [Kumar
1994]). For this reason, the basic LS resection
algorithm is embedded inside a least median
squares (LMS) procedure that repeatedly samples
subsets of correspondences to find one devoid of
outliers by minimizing the median-squared
residual distance error. LMS is robust over data
sets containing up to 50% outliers. The
combination of Levenberg-Marquardt with least
median squares techniques provides a powerful
and robust approach to camera resection.

Alternatively, given a pair of images for which
camera pose is known, and a set of points
extracted from each image, an algorithm has been
developed to automatically establish image point
correspondences and simultaneously triangulate
their corresponding 3D point positions [Cheng et.
al. 1994]. Each point may or may not have a
correspondence in the other image; potential
correspondences are detected using an "affinity"
measure devised by [Scott and Longuet-Higgens
1991]. Ambiguities are resolved by transforming

the correspondence problem into a network flow
problem over a bipartite graph, and solving for the
maximal flow. This approach is currently being
extended to handle N-images, and to work for line
features as well as points.

2. Learning in Vision

2.1. Project Goal

The goal of this project is the construction of a
system for learning object-specific recognition
strategies from a library of image understanding
algorithms and training images [Draper et. al.
1993a]. Such a system will serve as an automatic
integration system, combining IU algorithms (and
representations) that were developed separately
into executable object recognition systems, with
only limited human interaction for locating the
target objects in the training images. It will also
serve as a generator of task-specific vision systems
for applications ranging from the Unmanned
Ground Vehicle to Radius to flexible
manufacturing environments.

The Schema Learning System (SLS) involves a
paradigm of learning with limited user interaction
- just the interactive specification of goals via an
example training set - and a library of vision
routines (possibly a large collection). The vision
routines can be as simple as a low-level operator,
more complex algorithms, or an entire complex
subsystem as a module. The key is that each has a
specification of its input and its output, and
therefore the learning algorithm (or compiler)
knows how they can be linked across the different
levels of representation to achieve the desired goal
given the specified input. We believe SLS is
break-through technology in allowing the many
mini-theories, and the multitude of good vision
algorithms that have been developed across the
field, to be put together into real operational
specialized vision systems - without the system
builder (i.e. user) having to laboriously construct it
by hand. While there is a computationally
expensive off-line leamning and compilation phase,
the result is an efficient run-time system.

Work on the early stages of the schema learning
project has focused on creating a representative
library of image understanding algorithms, and on
developing an object-oriented version of SLS that
will allow us to compare and contrast different
machine learning technologies in the context of
learning recognition strategies.

2.2. Developing an IU Library



The IU algorithm library currently consists of
procedures from three sources: KBVision tasks
[Williams 1990], Khoros modules [Rasure and
Kubica 1994], and algorithms developed locally at
UMass. Integrating algorithms from these three
sources into a single library required creating a
data exchange mechanism that would allow data
created by one algorithm to be read by any other.
This was accomplished by extending ISR3 [Draper
et. al. 1994a,b] to read and write KBVision’s im
and tks formats and Khoros’ viff format (in
addition to its own native data formats) and then
using ISR3 to convert data from one format to
another as needed. Currently, our library consists
of approximately 40 KBV tasks, 30 Khoros tasks,
and we are in the process of adding another 20-30
UMass modules. Major experimental tests will be
run using this set of approximately 100 algorithms.

We hope that eventually the library will include
algorithms from across the IU community. In the
future, other possible sources of algorithms and
modules are the IUE, RCDE, etc.

2.3. Redesigning SLS

The original Schema Learning System (SLS)
learned object-specific recognition strategies by a
combination of logic-based symbolic inference (in
the propositional calculus) and decision trees
[Draper 1993b]. However, other machine learning
technologies are available that might lead to
improved object recognition schemas.

The object-oriented redesign of SLS is aimed at
allowing an investigator to “mix and match”
inference and classification algorithms, and to run
controlled comparisons between them. The aim is
not only to produce a system that learns useful
recognition strategies, but to understand which
learning algorithms are most effective for learning
visual control strategies and why. In particular, we
are examining alternatives to the symbolic
inference algorithm in SLS in terms of an
explanation-based learning or reinforcement
learning approach. Similarly, the decision tree
classifiers are being extended with either
backpropagation neural networks or instance-
based classifiers. Recent work by Brodley
[Brodley 1994] suggests that combinations of
these classifiers may lead to still better results for
certain subproblems. Thus alternative learning
methodologies and strategies should improve the
power of SLS.

2.4. Object Classification from Multiple
Features -

Of particular interest has been the use of non-
parametric pixel-level classifiers as focus-of-
attention (FOA) mechanisms in outdoor scenes.
FOA mechanisms allow a system to focus its
resources on critical portions of the data, and are
an important part of UMass's contribution to the
CSU/Alliant/UMass RSTA effort [Beveridge
1994]. For the same reason, they are an important
tool for the Schema Learning System to have at its
disposal if it is to automatically learn efficient
object recognition strategies.

To be effective in an outdoor context, a pixel-level
classifier must be able to compensate for natural
changes in outdoor illumination, something many
traditional classifiers are not good at. We have.
been working with linear machine decision trees
(LMDTs) for classifying pixels from their RGB
values in outdoor images; the piecewise-linear
functions in color space learned by the LMDTs
approximate the change in apparent color of the
target under natural lighting conditions. In our
most challenging test of this technology, we are
using LMDTs to identify the color of camouflage
(on vehicles) in the publicly available Ft. Carson
data set [Buluswar and Draper 1994]; preliminary
results are extremely promising. In addition, we
have developed algorithms for training LMDTs to
optimize utility functions that prefer false positive
responses (alerting the system to the presence of
an object that isn't there) to false negative ones
(failing to notice an object), thus making them
more suitable for use as FOA mechanisms [Draper
et. al. 1994c]

2.5.ISR3

During earlier research on knowledge-based
approaches to image understanding, we designed
and constructed an image token database, called
the Intermediate Symbolic Representation (ISR),
which supports integration of vision algorithms by
providing user-definable data structures and
common access routines. The ISR was optimized
for common processing tasks in mid- and high-
level vision, such as defining symbolic token
types, adding and removing tokens, manipulating
sets of tokens, and retrieving token sets
associatively by feature value and spatial location.
Recently the ISR was redesigned to take into
account the constraints imposed by real-time
systems such as those found in autonomous
navigation and flexible manufacturing. This new
version, ISR3, differs from the previous ISR in
that it stores native C data structures, is memory-
based rather than file-based, and provides



primitives for memory management and
multiprocess synchronization [Draper et. al.
1994b]. ISR3 is implemented in C++ and is also
being ported to the RCDE.

3. Mobile Vehicle Navigation for UGV

3.1. Project Goal

In the past, the focus of the UMass ARPA-
sponsored UGV effort has been on vehicle
navigation using passive imaging techniques. In
support of this effort, UMass built the Mobile
Perception Laboratory using an Army HMMWV
as the basic chassis. The research effort produced
an integrated software system for vehicle
navigation, including subsystems for driving
control, road following (CMU’s ALVINN
system), obstacle detection, reflexive obstacle
avoidance, vehicle positioning using visually
prominent landmarks, vehicle servoing for cross
country navigation (compass and landmark), real-
time local path planning, etc. These subsystems
were integrated in a behavior-based manner
through a finite machine controller executing a
descriptive behavior language [Rochwerger et. al.
1994]. Near real time performance was achieved,
the vehicle was capable of moving approximately
6-10 mph. This effort terminated with the delivery
of the MPL and associated software to TACOM in
April 1994. Since then, we have been developing
the concept and initial implementation of a system
for stealth navigation in support of UGV RSTA
missions as described below.

3.2. Stereo for Navigation

Obstacle detection is an important safety issue in
mobile robotics, and must be done quickly and
efficiently. Three different algorithms for obstacle
detection based on stereo imagery have been
developed, each based on a different set of
assumptions concerning the amount information
available. The first two algorithms were designed
for yes/no responses without indicating which
points are obstacles. They have the advantage of
fast determination of the existence of obstacles
based on the solvability of a linear system of
equations. The first algorithm uses information
about the ground plane, while the second
algorithm only assumes that the ground is planar.
The third algorithm continuously estimates the
ground plane, and based on that determines the
height of each matched point in the scene. The
algorithms and experimental results are presented
in [Zhang et. al. 1994] for real and simulated data,

and the performance of the three algorithms under
different noise levels are compared in simulation.

3.3. Reflexive Obstacle Avoidance

A practical real-time system (~2Hz for 256 x 240
images) for passive obstacle detection and
avoidance has been developed and tested on the
UMass MPL. Obstacle points are obtained from
stereo imagery under the assumption that the
ground plane is locally planar and that the cameras
are calibrated. The local disparity map is
thresholded against the expected disparity of the
ground plane and points more than k feet above
the ground are assumed to represent obstacles.
These points are projected onto the ground plane,
creating an instantaneous obstacle map (IOM).
The algorithm modulates the steering and speed of
the vehicle, which is assumed to be under the
control of another process, such as the ALVINN
road follower [Pomerleau 1992]. The IOM is
transformed into a steering command to modify
the direction and speed of the vehicle in a reflexive
manner.

3.4. Constructing Terrain Models for Stealth
Planning

A new correlation-based terrain reconstruction
system has been developed that is capable of
producing terrain maps that have much higher
resolution than 30 meter DTED [Schultz 1994]. It
uses multiple images taken from different
perspective viewpoints and produces highly
accurate reconstructions under a wide variety of
viewing conditions, including camera base-to-
height viewing ratios greater than two-to-one, and
camera vergence angles in excess of 90 degrees.
The system utilizes two or more images along with
known camera acquisition parameters to create a
rectified epipolar image. Multi-image stereo
correlation matching is then performed using a
novel set of weighted correlation masks that
produce direct, subpixel disparity estimates, and
are robust to image intensity distortions caused by
large differences in perspective viewpoint. The
output of the system is a dense array of elevations
in rectilinear ground coordinates, and a registered
orthonormal intensity image.

The unique features of this system are the
implementation of weighted correlation masks that
produce match scores that are less sensitive to
perspective distortion and random pixel noise, and
subpixel image shift operators that enable subpixel
disparity estimates that are far more accurate than
previous techniques. While the system produces



very accurate terrain reconstructions, it may
require up to an order of magnitude more
convolution operations and storage elements than a
traditional stereo correlation algorithm.

A simulated fly-through of the texture-mapped
(i.e. rendered) terrain recovered from only two
high-resolution aerial images of the Martin-
Marietta UGV Demo B site is available on
videotape. The algorithm for terrain reconstruction
appears to be very accurate, discriminating about 1
to 2 foot height differences in the Martin-Marietta
Demo B site images; ditches 3-5 deep feet are
recovered, and cars in a parking lot stand out
clearly. Current work involves quantifying the
performance of the algorithm and determining its
error characteristics.

3.5. Stealth Planning Using Reconstructed
Terrain

Under a stealth navigation scenario, the goal is for
a vehicle to navigate from a starting position to a
final position while remaining hidden from a
target. The criterion is to minimize the visibility of
the vehicle from the target position while still
allowing the vehicle to perform its RSTA
functions. One situation that we are analyzing is
where a hill separates the vehicle from the target,
and a horizon line is visible behind the hill [Ravela
et. al. 1994]. It is assumed that the initial position
of the target is known approximately from a
previous sighting or from aerial surveillance.

The path planning system is applied to the
reconstructed digital elevation map (DEM) to find
a path from the starting position to a position from
which the target will be first visible. Visibility
analysis based on an expected or determined
enemy location will allow regions of visibility to
be marked for avoidance. A path is then planned
from the start to end position within the stealth
region using a very fast non-holonomic path
planner based on harmonic functions [Connolly
1992]. The end of the path is located at a terrain
position that allows clear target acquisition.

Such a path planning system was demonstrated for
vehicle concealment and a variety of other
RSTA/Stealth navigation scenarios and behaviors
at UGV Demo B on a Sparc workstation. It allows
a user to specify a vehicle starting and ending
position and the location of the target vehicle on
the DEM recovered using the terrain
reconstruction system.

3.6. Stealth Behaviors for Navigation

The last component of the stealth navigation
scenario is the development of low-level
navigational control algorithms to provide stealth
capabilities during critical periods of a RSTA
mission. In order to perform this scenario, the
scout vehicle must be able to: 1) identify
distinctive terrain features, including but not
limited to horizon lines (e.g. ridge lines) near the
target area, 2) re-identify these same features from
new viewpoints, and 3) control the vehicle's speed,
orientation, and precise positioning as the vehicle
approaches the observation point where exposure
must be minimized.

Several scenarios for stealth navigation are being
developed, but those of most interest involve prior
views of the terrain around the target area, either
from the terrain model reconstructed from the
aerial views, or from previous RSTA activities.
Somewhat prior to the vehicle becoming visible,
low-level servoing procedures would control
vehicle mobility to minimize vehicle exposure
from the target location. For example, one of the
best terrain features for stealth navigation are
distinctive horizon lines. These have the advantage
of being higher than the enemy's position, and so
they come into view before the vehicle or its
sensor platform are exposed. When the vehicle is
climbing a hill, it would slow to a crawl as terrain
features known to be above the target area come
into view, servoing on the relative angles of the
target and horizon line. It would come to a stop
exactly at the point at which its sensor platform
can view the enemy, but the rest of the vehicle
remains hidden behind the hill.

These behaviors utilize curve matching and
tracking. Matching curves is based on the
algorithm of [Kalvin et. al. 86] and is invariant to
translation and rotation in the plane. Curve
tracking is based on normalized cross-correlation
and steerable filters.

3.7. Integrated Color CCD, FLIR, and LADAR
Based Object Modeling and Recognition

This is a_joint effort between laboratories at
Colorado State University, the University of
Massachusetts, and Alliant Techsystems, Inc.
[Beveridge et. al. 1994] The goal of this program
is the development of advanced automatic target
recognition systems which fuses data from
multiple visual modalities (color CCD, FLIR, and
LADAR sensors). The approach is based on target
hypothesis generation using features drawn from
the three sensors, followed by a target verification
stage by matching the hypothesized models to the



sensor data. Target hypothesis generation is
designed to solve the problem of indexing into
large databases by using a quick indexing scheme
to select potential target models. Indexing is based
on both spatial, chromatic, and relational features
extracted from the image. The verification stage
employs a state of the art geometric model
matching system which matches model features to
image features in order to determine the optimal
correspondence between the model and data.

4. Recovery of 3D Structure

4.1. 3D Reconstruction from Profiles

Giblin and Weiss [1994] have some new
theoretical results on modeling curved surfaces
from their occluding contours (profiles) in a
sequence of images with known camera motion.
The reconstruction algorithm was introduced by
[Giblin and Weiss 87] for a simple class of
motions and was generalized in (e.g. see [Cipolla
and Blake 92)) to arbitrary motion. For the general
motion case, epipolar correspondence played an
important role in matching points from one profile
to the next. This approach leads naturally to a
representation of the surface by parametric patches
based on epipolar curves, which makes explicit the
geometry of the surface.

In general, the reconstruction of surfaces from
profiles leaves gaps. These gaps are bounded by
two types of curves. The first type, which we have
analyzed, consists of ‘frontier points’ where the
epipolar plane is tangent to the surface. This is one
of the cases where the epipolar parameterization
breaks down, and the epipolar curves on the
surface are singular. The structure of the epipolar
curves and contour generators at these points on
the surface can be completely determined. The
primary tool is the spatio-temporal surface which
can also be used to facilitate the reconstruction. In
addition, there may be gaps that are due to
occlusion and the boundaries of these regions
occur at T-junctions.

4.2. An Approach to 3D Reconstruction from
Motion

J. Oliensis [1994] has developed a new approach
to the problem of multiframe structure from
motion, which essentially generalizes the earlier
linear algorithm of Tomasi [1992] from
orthographic to full perspective. It operates on
tracked feature points and yields fast, accurate
reconstruction algorithms which can be applied
either in batch or recursive mode. These
algorithms also can cope with the problem of

failed tracking---tracked points missing from some
images. They are well suited to image sequences
such as are typically obtained in autonomous
vehicle navigation. In addition, this work
generalizes from the work of Heeger and Jepson
[1992] on recovering translational motion from
optical flow; it gives an effective method for
determining the translation from sparse as well as
dense optical flow. The approach has been tested
on two real image sequences: the Rocket Field
sequence [Dutta 1989], which involves straight-
ahead translation and significant perspective
effects, and the difficult PUMA sequence
[Sawhney 1990]. Fast and accurate reconstructions
were obtained for both these sequences on a
DecStation 5000 using MATLAB. The approach is
based on finding suitable approximations of the
problem, leading to linear methods for recovering
structure and motion that closely approximate
maximum likelihood estimates.

4.3 Measuring Affine Transformation Using
Gaussian Filters

Image deformations due to relative motion
between an observer and an object may be used to
infer 3-D structure. Up to first order these
deformations can be written in terms of an affine
transform. A new technique for measuring affine
transforms from image patches, which correctly
handles the problem of corresponding deformed
patches, has been developed by Manmatha [1994].
No correspondence is required. Image patches are
filtered using gaussians and derivatives of
gaussians and the filters deformed according to the
affine transform. The problem of finding the affine
transform is therefore reduced to that of finding
the appropriate deformed filter to use. The method
is local, can handle larger affine deformations than
previous techniques and requires fewer iterations
to obtain the correct answer. The technique can be
extended to points and lines and provides a
uniform technique for measuring affine transforms
using points, lines or image patches. In related
work, Manmatha and Sawhney are examining the
use of gaussian and derivative of gaussian filters to
detect local symmetries in images.

5. The Image Understanding Architecture

5.1 TRP Award for Commercial Development
of the IUA

A Technology Reinvestment Project award to the
IUA development team of Amerinex Artificial
Intelligence Inc., Hughes Research Laboratories,
and UMass (through ACSIOM, the UMass



technology transfer arm) will result in the
development of two new generations of the IUA
hardware and software over the next three years.
These systems will form a commercial off-the-
shelf family of products for use in both civilian
and military applications as embedded and stand-
alone systems.

5.2 Status of IUA

The development of the prototype of the second
generation JUA and the third generation proposed
in the TRP is reported in [Weems et. al. 1994a].

5.3 UMass Research Effort

Research in parallel architectures for vision has
continued in three areas, the JU Benchmark, a
parallel vision architecture design and evaluation
environment, and software support for
heterogeneous parallel systems.

ARPA Parallel IU Benchmark

As recommended by the DARPA IU Benchmark
Workshop participants [Weems et. al. 1988, 1991]
we have developed a preliminary second level
benchmark, which incorporates tracking of moving
objects over a sequence of images.

In order to reuse as much of the static benchmark
as possible, the new benchmark operates on the
same type of scenes -- a 2.5 dimensional mobile of
rectangles with chaff, but in the new benchmark,
the mobile and chaff are blown by an idealized
wind to produce predictable motion. The goal of
the new benchmark is to test system performance
over a longer period of time so that, for example,
caches and page tables will be filled. The
benchmark also explores I/0O and real-time
capabilities of the systems under test, and involves
more high-level processing.

Parallel Architecture Evaluation
UMass has developed a system for capturing

traces of programs written in the C++ class library -

as they execute on an abstract parallel machine.
The traces are then fed to a simulation system that
models hardware architectures with different
features and parameters. The system, called
ENPASSANT (Environment for Parallel System
Simulation and Analysis Tools), allows us to
gather real performance data for different
architectural configurations, and to analyze the
data statistically. It uses a new methodology,
called trace compilation, to reduce the time and
space required by typical trace-based analysis
systems by a factor of 20 to 30. This enables us to

generate performance data for a much wider range
of architectural configurations. The performance
data can then be contrasted with cost estimates for
the different configurations to produce a
specification for parallel vision architectures for
different applications {Herbordt and Weems 1993].

Compilation Framework for Heterogeneous
Parallel Software

We have developed a concept and initial design for
a flexible compilation framework that will be able
to manage multiple source programming
languages, software module implementations, and
target machine architectures in order to construct a
working and optimized executable on a
heterogeneous parallel system. The key element of
the framework is a combination of a library of
translation components (transformations,
analyzers, optimizers, etc.) and a compilation
director that plans the application of the
components for each compilation. Development
has begun on a multi-lingual front end that allows
the user to annotate code with hints to be used by
the compilation director [Weems et. al. 1994b]
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