Learning Predictive Generalizations
for Multiple Streams: An
Incremental Algorithm

Matthew D. Schmill and Paul R. Cohen

Computer Science Technical Report 95-36

Experimental Knowledge Systems Laboratory
Computer Science Department, Box 34610
Lederle Graduate Resarch Center
University of Massachusetts
Ambherst, MA 01003-4610

Abstract

We present an approach to learning complex dependencies among multiple streams of time-
series data incrementally. Given a set of input streams that contain categorical values that
change over time, we characterize recurring structure with a set of dependency rules that can
be used to predict stream values in the future. These rules are general in the sense of ignoring
noisy values in streams.

This research is supported by ARPA/Rome Laboratory under contract F30602-93-C-0100 and by NTT Data
Communications Systems Corporation.

1 Introduction

Many dynamic situations can be represented as streams or time series of tokens.[2] For example,
the progress of a patient in intensive care might be characterized by readings from several machines
at regular intervals. We want to learn rules to predict the state of a system—the token values in all
streams at a particular time—from earlier states. The problem we address here is simpler in some
respects and more challenging in others than the intensive care example. We learn only lag 1 rules,
which predict state at time t+1 from state at time £; and we assume the tokens in streams are from a
relatively small alphabet, instead of real numbers. * On the other hand, we assume streams contain
noise tokens, so we learn general rules that ignore noisy streams; and we learn incrementally, as data
appear in streams. In this paper we present the Incremental Multi-stream Dependency Detection
(IMSDD) algorithm and describe some of the factors that affect its performance. We compare it
with MSDD, a batch algorithm that has been shown to solve multi-stream dependency detection
problems quite successfully [4].

2 Definitions

Operating in the world of MSDD and IMSDD requires a few definitions and representations to keep
the concepts clear. We will adopt the following terminology for the remainder of this paper.

e A stream is a source of categorical data values that change over time. We denote a stream
by its values over time, for example aabac.

e A iokent is a datum in a stream. For example, a is the first token in the stream aabac. The
set of all possible tokens is our alphabet, which is of size k.

o A multitoken is a vector of all streams’ values at a particular point in time. We represent a
multitoken as a list of tokens (¢;%, . . .1,) and denote the length of a multitoken by n. Suppose
we have streams adbc and caac. The second multitoken is (da).

e A rule is a pair of multitokens, one of which predicts the other. We denote a rule by
precursor — successor. For the purposes of this paper, the successor of a rule will ap-
pear in the timestep directly after the precursor. We believe that IMSDD can be modified to
generate rules of arbitrary scope (i.e., lag > 1).

e A word is a rule presented as a single entity. We represent a word with the form (¢1%, .. .%,),
and denote the length of a word by n,,.

o A wildcard is a token that indicates that a particular stream value is to be ignored. A wildcard
is denoted .

2.1 The MSDD Approach to Dependency Detection

The MSDD algorithm, IMSDD’s batch predecessor, approaches dependency detection cautiously.
Starting with the completely general rule (% % ...%x) — (x x...%) as a root of a generalization
hierarchy, MSDD iteratively expands that hierarchy by instantiating a single wildcard of a leaf rule
at a time. Figure 1 shows an example MSDD generalization hierarchy. Each iteration of the search
for predictive rules extends the frontier of the tree a single level until a predetermined size limit
has been reached. At that point, MSDD concludes its training session.

! Continuous valued time-series data is appropriate to many domains and is discussed in[1] [3][5].

PEORORRAR N

20N

<B A KR Rk Ry < Rk k) ks

-

<B#EHD*> <FECHED >

Figure 1: A simple MSDD generalization hierarchy.

MSDD accrues several benefits from this approach. Because it considers a large batch of data
simultaneously, any rule that MSDD proposes can be evaluated and either rejected or accepted
immediately. This allows MSDD to explore only fruitful paths in its search space, and results in a
succinct, powerful model for learning rules. In the next section, we will see why these benefits are
important and why an incremental approach lacks them.

2.2 Overview of Incremental Dependency Detection

The move towards an incremental algorithm serves dual purposes. An incremental system is not
dependent on the quality of the training batch; this makes such an algorithm well suited for
environments in which the rules change, as well as environments that present a difficult learning
curve (i.e., the rules are difficult to discern). Further, an algorithm that learns progressively rather
than in large, time-consuming chunks, is better suited for real-time applications. In essence, the
incremental algorithm sacrifices the ability to examine and recount data in batches in order to gain
adaptable, any-time behavior.

As a consequence, IMSDD is forced to abandon the generalization hierarchy exploited by MSDD.
The loss of the training batch (and thus the ability to recount) makes it impossible to start with
general rules and work towards more specific rules; doing so would result in a disastrous, context-
less search in IMSDD’s k™ generalization space.”? IMSDD must take a data-driven, bottom-up
approach to forming rules. As IMSDD receives input, it stores multitoken pairs as fully instantiated
words. Tokens in streams that exhibit no contingent structure are generalized as a move towards
representing the data’s true structure. Such noisy streams in generalized rules are given wildcards
for their values to indicate that they should be ignored.

The basic operation of IMSDD follows a predict — verify — generalize — update loop.
Based on the current input (multitoken), IMSDD predicts what the next multitoken will contain,
evaluates that prediction, uses the input to form new generalizations, and then updates its internal
data structures.

At this point it is worth considering the worst-case complexities of the predict, verify, generalize,
update loop. For a given word w of length n,,, there are 2"+ possible generalizations. We can expect
a worst case of O(2"+) for each of the phases except verify®. In ¢ timesteps, a naive algorithm may
approach O(22"+) and generate the entire search space of O((k + 1)"+).*

2The alternative involves faking incremental behavior by maintaining a batch in memory.
3Which is a simple O(n) comparison.

*The complexity derivations are quite simple. The 2™ cases involve all possible wildcard combinations with a
fully instantiated word, and (k+ 1)™* is the full set of n., length words with k possible tokens as well as the wildcard
token.

2.3 The IMSDD Memory Structure

The first step to combating the combinatorics of the dependency detection algorithm is defining
a memory structure that facilitates efficient storage and retrieval of rules. With an O((k + 1)™~)
search space, a dependency detection algorithm needs a data structure that inherently limits focus
to at most the 2" generalizations that are actually relevant to any given input (and ideally, far
fewer). IMSDD makes use of a structure that resembles a parse tree for the precursor of a rule,
aptly named the precursor tree. Figure 2 shows an illustrative parsing of the precursor portion of
(abac), (ab). Starting with the token a at the root, IMSDD parses the precursor by moving down
the branch that corresponds to the current token, and moves on to the next token, which in the
example is b. By the time IMSDD reaches a leaf in the structure, IMSDD has fully parsed the
precursor multitoken of a rule. Information about what the precursor predicts is stored in the leaf
as a successor table. Each row of a successor table represents a stream in the successor, and keeps
a history of token frequencies in each of the successor streams. For example, in figure 2, row one
of the successor table has recorded that an a in stream one has followed (ab) twelve times.

<abac>

O

N\,
(Successor Counts
O O Oifeme>

2| @3) (b4) (c3) (A4

Figure 2: An IMSDD precursor tree and the parsing of (abac).

This structure narrows IMSDD’s focus for a given precursor to 2™ rules by storing precursor
information as paths in a tree and recording the successors as tables that require a simple O(n)
operation to query. It also provides a simple means for keeping successor counts current with
respect to a particular precursor, which will become important in the prediction phase.

3 IMSDD in Detalil

It is now possible to consider each step in the predict, verify, generalize, update cycle in greater
detail. Further, we add and consider a pruning step to the cycle.

3.1 Predicting and Verifying

Predict and verify are perhaps the simplest phases of the IMSDD cycle. Given a multitoken,
IMSDD’s goal is to predict the next multitoken, based on the contents of the relevant successor
tables in the precursor tree. Once a prediction has been made, its prediction is verified against the

observed successor. Since the verification process is a trivial token-by-token comparison, we turn
to a closer examination of the prediction scheme.

Suppose IMSDD observes the multitoken p (e.g. p =(ab) as in figure 2). To predict its successor,
IMSDD parses p through the parse tree to generate the set of all leaves whose path matches p.
We call this set &, and observe that it contains all of the possible successor tables for p supported
by data we have already seen. Each successor table in S suggests a unique successor s based on the
frequency information it contains. This is accomplished by choosing the “best” token ¢ from each
of the rows in the successor table as rated by the function S:

5(t) = a(Nmies () — (1 - a)(Nrp(t))

where « is the aggressiveness coefficient of the algorithm, or the extent to which it values hits versus
false positives, Npy;;, is the number of times £ has occurred in the successor table row, and Ngp is
the number of times ¢ did not occur in the successor table row. For each row j of the successor table,
IMSDD suggests a token ¢; which maximizes S. The result is the complete successor multitoken
s. As an example, given the precursor (ab) in figure 2, IMSDD would suggest either (ab) or (ad),
since a clearly dominates row one, while b and d have matching counts in row two.

It is now possible to think of S as a set of suggested successors to p. Next IMSDD will need to
rate each complete successor in S to decide which is the best to apply. For this purpose, we define
Siotar ON successor multitoken s :

s ls]

|
Stotat = @ Y (Npigs(t:)) — (1 — @) Z(NFP(ti))

i= =0

All that remains is to choose the successor in S that maximizes S;,;4;-

3.2 Making Generalizations

Intelligent control when forming generalizations (deciding that a stream should be ignored in a rule)
is perhaps the single most important aspect of the IMSDD problem. Because the generalization
space is exponential, the brunt of our effort in developing IMSDD was devoted to addressing this
problem. Since precursors and successors to rules are treated differently in the counting scheme,
it is appropriate to treat the two differently in the generalization scheme. We will look first at the
simpler case of forming generalizations in the successor portion of a rule.

3.2.1 Successor Generalizations

The impetus for successor generalizion is successor data that provides little predictive power.
IMSDD uses the layout of the successor table to decide when generalization is beneficial. Based
solely on the distribution of token frequencies in the rows of a successor table, IMSDD can decide
whether it is best to make a prediction or abstain from making one (i.e., predict a wildcard).

Upon startup, IMSDD assigns a constant S value, 7, to the wildcard token. This value is
based on the aggressiveness of the algorithm, o, and the probability of correctly guessing a token
by chance. Each time IMSDD attempts to predict a stream value, it considers a wildcard token
along with all those tokens that were actually observed to occur. Should no token’s S value be
high enough (greater than 7) for IMSDD to believe it did not occur by chance, the algorithm will
suggest a wildcard for that stream.

5 At first, it may seem that this set would contain a single leaf. This would be the case were it not for precursor
generalizations, which are considered in section 3.2.2.

The result of this simple scheme is a substantial saving in time and space requirements. However,
it relies on an important assumption. By storing only token frequencies in the rows of a table rather
than complete multitokens, IMSDD assumes that streams within a successor are independent, or
because they are dependent, the dependent stream values will always occur together, and thus
either all of them will dominate the successor table, or none will. The benefits of this assumption
are a succinct means of recording successor frequency, and a generalization mechanism that requires
little extra time and space of the algorithm.

3.2.2 Precursor Generalizations

Generalizations in the precursor of a rule come at a somewhat higher cost. The reason is that
successor tables are only valid for a single precursor, and so when IMSDD generalizes, it must
have a unique successor table for the new, generalized precursor. The result is a procedure that
generates precursor generalizations opportunistically, and creates a new path in the precursor tree
to represent the generalized precursor. Figure 3 shows the path (xb) in an illustrative precursor
tree, along with a successor table that is the composition of two successor tables whose precursors
match the new generalization.

'Y
Successor Counts Successor Counts
1{@12)(d?2) 1[(@@))
Successor Counts

2((@3)(4)(c3)(d4) 1|(al17)(b2) 2(@3)((d2)

T~ [2 @O b6 CEHWDH |

Figure 3: Forming a precursor generalization (xb) from (cb) and (bb).

The greatest challenge in generating precursor generalizations is deciding when to make a gen-
eralization, because there are O(2") possibilities and no easy answers as there are with successor
generalizations. To control the explosiveness of the generalization routine, IMSDD constrains pre-
cursor generalizations in the following ways :

e A precursor path must exist in the precursor tree which differs from the current precursor in
exactly one stream (any token matches a wildcard).

e The successors to the nearly-matching precursors must also match or nearly match.

The first of these constraints is implemented in the search for matching precursors. A mechanism
called the wrong turn procedure locates all matches to a precursor that are off by one token. The
wrong turn procedure parses the new precursor into the precursor tree, and at each level of the
parse, considers what would result if the token at that level was parsed incorrectly. When the
algorithm is left to run its course, it will return precisely those leaves in the tree whose paths differ
from the new precursor by exactly one stream value.

In addition, IMSDD offers another speedup option. Instead of considering all wrong turns at
each level of the parse, IMSDD samples randomly some proportion of the possible wrong turns.
Here, IMSDD operates under the assumption that a uniform distribution of stream values (which
indicate that a generalization is going to be useful) will ensure that all important matches will be
manifest at least once through random sampling.

Once the matching precursors have been found, IMSDD has a set of plausible generalizations
and the actual precursors which support them. A generalization will be accepted as good if all
those precursors which match it suggest similar successors. The new generalization will then be
recorded as a path in the precursor tree. At the end of the path, as in figure 3, a new successor
table is formed, and the supporting precursors’ successor tables are combined to fill in the token
frequencies.

As the number of streams presented to IMSDD increases, it becomes increasingly unlikely that
two successor tables will be similar, especially if some of the streams are noisy. This causes precursor
generalizations to fail on the matching-successor constraint. Consequently, IMSDD could run for
many timesteps before having the opportunity to make a single good generalization. IMSDD offers
as a satisficing solution a mechanism that resembles simulated annealing. When IMSDD is filtering
the possible generalizations, it will with some probability v, which diminishes with time, trivially
accept each one whether it meets the constraints or not. In effect, this property overcomes the
bootstrapping problem by agitating the rule base early on until there are some good generalizations.
These good generalizations will have higher counts in the successor that can enable noisy streams
to be identified.

3.3 Updating

Counting successor frequencies is vital to correctly quantifying the predictive accuracy of a rule.
When IMSDD observes a word, it parses the precursor portion in its precursor tree, finding all
paths that the precursor matches. For example, the precursor (bb) would match (xb) and (bbd) in
the tree of figure 3. In each path’s successor table, the token count for each row is incremented
according its corresponding stream value. Using the same example, if precursor (bb) was followed
by successor (ad), the counts in the (xb) successor table frequencies would change to (a 18) in row
one and (d 5) in row two.

3.4 Pruning

The final component to the IMSDD algorithm is the pruning component. By pruning, IMSDD
attempts to bound the search space to contain only those rules that have occurred recently or
have proven useful. Rules are selected for pruning during the prediction phase. During IMSDD’s
selection process to find the best successor to predict, the pruning component selects a fixed number
of the worst rated rules. These rules, unless used under different circumstances within a certain
period of time, will be pruned.

4 Empirical Evaluation

Because of the potential complexity of dependency detection, IMSDD was under constant evaluation
to determine the impact of design decisions on its performance. For the purposes of testing, a system
for creating artificially structured datasets was developed. For a given number of streams, ASG,
the artificial data generator, produces a set of general rules, and generates a series of multitokens,
some containing noise, and some containing actual structure. We define the metrics adjusted hit
rate (ahr) to be the number of correct token predictions divided by the number of tokens seeded
in the dataset,® and fp-rate (fpr) to be the number of incorrectly predicted tokens divided by the
total number of tokens.

Hits / # Seeded Tokens

Adjusted Hit Rate

0.54

Adj. Hit Rate

[sampling rate,(p)runed or (n)ot(p)runed]

—r1r r 1 r1r rrrr1 1 T°t 717 = T T T LI

200 400 600 800 1000 1200 '
Training Instances

U T T U
1000 2000 3000 4000

Figure 4: (a) Effects of sampling and pruning on learning curves. (b) Learning curves for n =

(5,7,9).

Figure 4 shows IMSDD’s learning curves for ehr and fpr on IMSDD experiments with varying
parameters. The curves were produced by recording IMSDD’s performance on a fixed test batch
every 100 timesteps during the learning process.

The first mechanisms we examined were the pruning strategy and the sampling policy for
precursor generalization. We recorded the learning curves generated by IMSDD as we varied the
sampling rate and turned pruning on and off. Figure 4a suggests that both pruning and sampling
have small effects. The effects of pruning and sampling on false positive rate (not pictured) were
somewhat surprising; both sampling and pruning led to slower increase rates and lower peaks in
the curves’, while the steady state of each curve was similar.

We next explored the effects of increasing n, the number of streams. Figure 4b shows the effect
of increasing n from 5 to 9. First note that the overall slope of the learning curve is similar for
all three values of n. Second, the onset of the learning curve and the point at which IMSDD can
account for 100% of the structure differ are delayed as n increases. The first result suggests that the
learning algorithm, when scaled up might exhibit the same facility for learning rules and accounting

6Since IMSDD may correctly predict tokens that occur by chance, the ahr metric often exceeds 1.0.
"Some of the fpr curves rose sharply and then dropped.

for structure. The second result implies that due to the larger stream size, there is some degree of
difficulty learning good initial generalizations given the added dimensions in search space size.

While these results were encouraging, it remained to test IMSDD against its tried and true
predecessor MSDD [4]. Using identical data, we ran the 5 stream dataset through MSDD, varying
the size of its training batch, to see how IMSDD compared. Examination of the ahr curve showed
that MSDD was quicker to account for 100% of the present structure, but that IMSDD was not far
behind. The fpr curve suggested that MSDD’s false positive rate was somewhat lower at 0.23, and
constant, while IMSDD’s fpr curve appeared similar to its learning curve, scaled down to peak at
0.3.

5 Conclusions

We have presented an algorithm that incrementally learns rules which characterize contingent struc-
ture in multi-stream, time series data. The IMSDD algorithm uses a bottom-up, specific-to-general
approach to dependency detection to refine stream data into a set of rules that correctly identify
predictive relationships as well as noisy streams. Further, we introduced a precursor tree repre-
sentation, sampling and pruning strategies, and a compact representation of successor frequencies
to reduce the inherent exponential nature of the problem to a manageable level. Empirical results
suggest that IMSDD is capable of efficiently managing its rule base to make accurate predictions
of structure in time series data. Results of testing against MSDD, our standard for dependency
detection algorithms, indicate that IMSDD does not learn as quickly as a batch algorithm might,
but given adequate time, can exhibit equal performance.

Acknowledgments

This research is supported by ARPA/Rome Laboratory under contract F30602-93-C-0010. The
U.S. Government is authorized to reproduce and distribute reprints for governmental purposes not
withstanding any copright notation hereon. Additional support came from NTT Data Communi-
cations Systems Corporation.

References

[1] John Fox and J. Scott Long. Modern Methods of Data Analysis. Sage, 1990.

[2] Adele E. Howe and Paul R. Cohen. Selecting Models from Data: AI and Statistics IV, chapter
Detecting and Explaining Dependencies in Execution Traces, pages 71-77. Springer-Verlag,
1994.

[3] Berndt Donald J. and James Clifford. Using dynamic time warping to find patterns in time
series. In Proceedings of the AAAI-94 Workshop on Knowledge Discovery in Databases, pages
359-370, 1994.

[4] Tim Oates, Dawn E. Gregory, and Paul R. Cohen. Detecting complex dependencies in categor-
ical data. In Preliminary Papers of the Fifth International Workshop on Artificial Intelligence
and Statistics., pages 417-423, 1995.

[6] John W. Tukey. Fzploratory Data Analysis. Addison-Wesley, 1977.

