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Introduction
This report is a synthesis of two areas in computer science: machine vision and computer
architecture. The first half of the paper explores a  new segmentation algorithm while the
second half discusses the  computational needs of the algorithm and the architectural
features that are required to attain the high performance.

Segmentation is a fundamental operation in machine vision. Grouping image data into
regions is often a first step in interpreting scenes in an image.  A segmentation algorithm is
presented here that has three stages. The first stage provides edge detection through a
Hopfield neural network. The second stage is an edge extension phase to complete the
boundaries indicated by the first stage. The last stage performs region merging in a novel
approach that combines texture classification of regions with multiple merging policies.
This combination proves especially effective on natural scene images.

In the latter half of the paper the computational needs of the algorithm are detailed. The
algorithm is designed to have a very high degree of data parallelism.  This makes the
algorithm ideally suited for a SIMD machine and it has been ported to the University of
Massachuesetts' Image Understanding Architecture (IUA). Performance results are given
along with a discussion of the bottlenecks in the code and architectural features required to
alleviate them.

Segmentation

Overview

The core of the segmentation algorithm is a slight modification of the technique in [Cortes,
1989 #1]  which uses a relaxation algorithm to separately detect horizontal and vertical
edges between pixels.  The horizontal and vertical results are later combined to suggest
likely regions. Originally tested on synthetic images, the algorithm as stated is insufficient
for real outdoor images, however it does provide a good indicator of region boundaries.
Using the output of the above algorithm as a starting point, two additional phases are added
to complete the segmentation. These are an edge extension phase and a merging phase
based on texture classification of regions.  The resulting algorithm goes well beyond the
original and is able to produce good segmentations of real outdoor scenes.

Edge Detection

In [Cortes, 1989 #1] , Cortes and Hertz explored a number of parallel networks for edge
detection. They detail the design of the simplest system that they found to work on
synthetic images which are blurred and corrupted with gaussian noise. The architecture has
two Hopfield neural networks that use the directional second derivative to detect edges in
the image, both horizontal and vertical; the networks differ only in the direction that the
second derivative is taken. The results are combined in a final network to generate the final
segmentation of the synthetic images (fig. 1).

Each network contains image units and edge units (fig. 2). Both types of units can take
values +/-1. The image units, denoted Si, are in one-to-one correspondence with the pixels
in the image; i.e., unit Si maps to pixel i The edge units, denoted Ai,j, are between adjacent
image units i, j and are set to identify discontinuities in the image. Edge unit Ai,j is set to +1
if an edge is hypothesized between image units i  and j.



Figure 1: Network Architecture.

Figure 2: The organization of image units (circles) and edge units (bars).



Horizontal and Vertical Edge Detection

Cortes et al. use the horizontal and vertical edge networks to minimize the energy equation
(1). In this phase, hiext is not the image itself but, rather, the second derivative of the image
in the appropriate direction. A qualitative description of equation (1) is as follows. Since
both Si and Ai,j can only take values +/- 1, the second sum is minimized when Si matches
the sign of the second derivative hiext at pixel i. In the first sum, the pixels i and j straddling
a zero crossing of the second derivative will have values hiext and hjext of opposite signs so
Si and Sj will have also have opposite signs. Thus, the first sum is minimized if the barrier
between the two pixels is set to Ai,j = +1 at zero crossings and Ai,j = -1 otherwise.

H = -1/2 !<i,j>
 [(1 - Ai,j)/2]S iS j - !i Sih iext ( 1 )

The authors describe two methods for numerically solving for the values of image and edge
units. The first is simulated annealing where, the value of a unit is randomly selected to be
+1 with the probability defined by (2) for image units and -1 otherwise. The probability for
edge units is similar.  The factor hi weights the probability to greater than 0.50 that the unit
will have the same sign as hi.  The factor B is the inverse ``temperature'' that is slowly
lowered to allow exploration for a global optimum state.  In the annealing process the units
flip between +/- 1 with the actual value being the average over a period of time at the final
temperature.

P(Si(t+1) = +1|hi(t)) = exp(B  hi(t)) / [exp(B  hi(t)) + exp(-B  hi(t))] ( 2 )

The definition of hi is shown in (3). It is simply the negative of the partial derivative of (1)
with respect to image unit Si and indicates the direction the value of Si should be adjusted at
time t+1 to not increase the energy function given the values of the network at time t. Since
a unit is restricted to only two values (+/- 1), the value probabilistically toggles such that
the average over a period of time is the final value.  This method of stochastically setting
the value of the units allows the network to explore the solution space using only local
information for a highly parallel algorithm. Equation (4) is the corresponding update
equation for the edge units.

h i = !j
 [(1 - Ai,j)/2]S j + hie x t ( 3 )

hij = -1/2SiSj 4 )

The overall function of the network is to smooth the directional second derivative of the
image but not across strong boundaries. Because the network uses the directional second
derivative, it is not sensitive to absolute intensity values or constant gradients in the image.
The output of the network is the value of the edge units that are used as boundary hints in
the final network. Figure 3 shows the state of the edge units and image units for an
example image. Notice the spurious edge marker in the middle. This is due to the
propagation of the  negative values of the image units from the left and the positive values
from the right. It is the job of the final network to  identify and remove these spurious
markers.



Figure 3: (a) The input image. (b) The second derivative in the horizontal direction. (c) The
values of the image units. (d) The values of the edge units.

The second method of solving the energy function, called mean field annealing, replaces
the stochastic binary variables Si, Sj, and Ai,j in (3) and (4) with their averages denoted by
<Si>, <Sj>, and <Ai,j>. Then from (3) and (4)

<Si> = P(Si = 1) - P(Si = -1) = tanh(Bhi) =

tanh[B (! j
 [(1 - <Ai,j>)/2]<Sj> + hiext)] ( 5 )

and

<A i,j> = tanh(Bhi,j) = tanh(1/2B<Si><Sj> ) ( 6 )

Cortes et al. show that mean field annealing produces comparable results to conventional
simulated annealing, but in less time. They also note that although mean field annealing is
an approximation for the stochastic network it is the exact theory for the equivalent analog
network. They briefly outline a possible VLSI implementation with a tunable gain B as the
temperature control.



The Final Network

The final network has the same structure as the previous networks. One difference is that
the image units " are now linear units, the output is not limited by the sigmoid function as
in the preceding stage. Equation (7) is the energy function from [Cortes, 1989 #1]  that is
minimized. The factor µij represents the resulting edge unit values from the horizontal and
vertical networks. The factor hiext is now the original intensity image itself.

H = +1/2 !<i,j>
 [(1 - A{i,j})/2](" i - "j)2 + 1/2K !i ("i - hiext)2 -

! <i,j> µij A_{ij}    (7)

This energy function is easy to interpret. The last term rewards placing boundaries at edge
units where the previous networks placed them and inhibits introducing new boundaries.
The first term encourages placing a boundary marker between two image units that differ
significantly in intensity value.  The middle term encourages the network to set the intensity
values close to the input image. If the coupling constant K is large then the intensities will
tend to track those of the original image. If it is small then the first term will gain influence
and the image units will tend to average their values with their neighbors that are not
separated by edge units.

For completeness, The equations for hi and hij are shown in (8) and (9). They are the
negative of the partial derivatives of the energy equation (10).

h ij = ("i - "j)2  + µij ( 8 )

h i = !<i,j>
 [(1 - A{i,j})/2](" j - "i) + K(hiext - "i) ( 9 )

Observations and Contributions

The above algorithm is the complete segmentation algorithm reported in the paper by
Cortes. The following are observations from experimenting with that algorithm.

Reproduction of Results. Using the information from the paper I was not able to
reproduce quality segmentations of images similar to their test images.  Their test images
were synthetic images of rectangular regions labeled with one of three intensities 0, 1, 2.
Gaussian noise and blur were added to the images to increase the difficulty of the
segmentation. The algorithm I reproduced from the paper did not produce good
segmentations of the synthetic images. The problem is that the algorithm is not guaranteed
to completely close the boundary around a region. There were many instances where the
regions were outlined correctly except between one or two pairs of pixels. As a result, the
regions were incorrectly joined. This behavior is not surprising since the alogithm has only
local information at each pixel to use. For the results in the paper, one possible explanation
that is strictly from conjecture is that since the test images in the original study had only
three intensity values the pixels may have been set to the closest value of the three at the end
of the algorithm allowing the easy grouping of pixels for likely regions.

Scaling. The authors do not mention how the terms in their algorithm scale for images
with intensities with a range greater than 0 to 2. From experimentation, the best results
occur when the intensity range  is of the same order of magnitude as the range for tanh(hi)
which has the range of -1.0 to 1.0. I use a range of 0.0 to 4.0. The minimum and
maximum values of the input image are automatically detected and mapped to 0.0 and 4.0
respectively. All values in-between are scaled linearly within the range.



The Elimination of Spurious Edges. Cortes et al. assert that (7) removes spurious
edge markers.  I found no support for this claim. To demonstrate this, the results of the
first and second network are examined for the vertical edges only. The top image in figure
4 is the output from the first network that finds potential vertical edges. Due to printing
limitations a whole pixel is dark if the vertical edge on the left side of the pixel is selected.
As you can see, the first network generates a significant number of potential edges.  The
second image in figure 4 is the result from the second network using Equation (8) from the
paper. This network does not eliminate any of the potential edges and actually adds
additional edges. Looking more closely at the energy function one can see why. A spurious
edge marker will have a positive value for µij so the third term of the energy function is
minimized by placing an edge marker in the final network at every position where there is a
potential edge from the first network.  The first term does not penalize this action as
claimed by the authors. The first term is always positive; the smallest value it can take is
zero. Thus, the energy equation is actually minimized if all potential edges are maintained.
The number of edges can actually increase due to the first term adding edges at gradients
ignored by the first network.

The goal is to have an energy function that maintains the edge markers from the input
networks except where the intensity gradient is ``small'' to sift out spurious markers. A test
has to be included in the energy function to quantify what constitutes a ``small'' gradient.
Adding a threshold value T as in (10) performs this function.

H = +1/2 !<i,j>
 [(1 - Ai,j)/2][(" i - "j)2 - T] + 1/2K !i ("i - hiext)2 -

    !<i,j> µij A ij  (10)

Unfortunately, T is another arbitrary parameter and is dependent on the image. From
empirical experimentation it was found that the values for T that performed well were in a
tight range of (1.07, 1.10). In general, smaller values produced over-segmentation and
higher values produced significant under-segmentation. Interestingly enough, the 'value'
that performed the best was actually a graduated scale with the highest intensity regions
using a T=1.09 and the lowest intensity regions using T=1.18 and interpolated values for
all intensities in between. The intuition being that we have keen interest in the brighter
regions of the image and but less in the dark regions. This is strictly a heuristical rule, but it
helps to minimize the number of regions in the final segmentation with minimal effects on
the final segmentation across the images tested. The third image in figure 4 is the output of
the second network using the energy function in (10). Notice that there are many fewer
edges. Many of the missing edges along borders such as the roof line would be found in
the horizontal edge representation.

As an implementation note, the value of T must be large enough to discourage spurious
edge markers from being added by the third term. Thus, a value near 1.0 is large enough to
offset the third term. An additional amount defines what is a ``small'' intensity gradient.
However, the actual value relies on the two factors as well as the intensity range of the
image which is 0.0 to 4.0 in this implementation.  The algorithm seems robust enough that
binning the graduated scale of T into only four values does not affect the results and
replaces the interpolation calculation with a small table lookup. Figure 5 is the original
image and figure 6 is the result from the final network showing the placement of horizontal
and vertical edge markers. Due to printing restrictions the state of the edge markers are
shown via the image units.  An image unit is highlighted if either the vertical edge marker to
its left is set or the horizontal marker above is set.



(a)

(b)



(c)

Figure 4: (a) Result from first network for potential vertical edges. (b) Resulting vertical
edges from second network using original equations. (c) Resulting vertical edges from
second network using modified equations.

A Mathematical Simplification. To simplify the calculation of hij in the final network
the absolute value is used instead of the square of the difference of "i and "j.  In addition,
the constant that would be associated with the first term in equation (11) is set to 1. The
values for threshold T stated above account for these adjustments. The resulting equation
for hij hij is shown by (11).  The purpose of these adjustments is to simplify the
calculations for a SIMD array of simple PEs to which this algorithm has been ported. As
will be discussed in a later section, multiplication is a very time-consuming operation on the
particular SIMD machine that is used. Minimizing arithmetical operations such as
multiplication and division is critical to achieving high performance.

hij = |"i - "j| - T + µi j (11)



Figure 5: House Image

Figure 6: Result from final network



Figure 7: Base segmentation after line extension phase

Figure 8: Final segmentation



Edge Extending
As mentioned before, I was not able to reproduce the results of Cortes et al. on the
synthetic images.  I found that there is no guarantee the final network will completely set all
edge markers around the boundary of a region. This problem is especially noticeable when
the algorithm is applied to outdoor scene images. To help alleviate this shortcoming a
simple edge extension phase has been added after the final network to complete the
boundaries around likely regions.

The method is very simple and quite effective. Edge units with an end not connected to
another edge unit are called dangling ends.  Edge units adjoining dangling ends are set to
'extend' boundaries until another edge unit is reached that is set. A dangling end can be
extended in one of three directions.  See figure 9.

To encourage the completion of regions, a direction that will result in a connection to
another edge is always preferred over a direction that will not. The gradient magnitude is
used to resolve multiple choices.  The range of search for the nearest existing edge can be
extended beyond a distance of one. To prevent the explosion of possible directions in the
search the options are restricted to the three initial directions. A restricted search of distance
2 is used in this implementation.

Figure 9: Extending the boundaries

The extension process is iterative with each dangling edge being extended one step per
iteration. Figure 10 is a plot of dangling edges per iteration step. The graph shows that
most dangling edges are resolved in the first few iterations. In the test images using 10
iteration steps has produced good results. The initial segmentation that results is shown in
figure 7. There are 1672 regions. This is the segmentation to which region merging is
applied.



Figure 10: Dangling edges per extension iteration

Region Merging

A region merging phase is common in segmentation algorithms [Kohler, 1981 #5]  to
reduce over-segmentation.  One is used in this algorithm to simplify the initial segmented
image and is based on methods for texture classification.  The texture analysis method is a
modified version of the method by Modestino et al. found in [Modestino, 1981 #6]  which
classifies regions by degrees of contrast. The method detailed by Modestino uses a grey-
level co-occurrence matrix as defined by Haralick [Haralick, 1973 #4]  and applies an
optimum maximum likelihood classifier to assign pixels to one of the predefined stochastic
texture models. In the paper the authors concentrate on textures that are invariant under
rotation so the the grey-level co-occurrence matrix is a probability distribution represented
by a Q x Q matrix with element (m, n) defined as the probability that the grey levels m and
n occur separated by distance d. Q is the number of grey-levels.

To classify a pixel (i, j), a measure of texture similarity is made against each defined
texture. The pixel is assigned the texture with the strongest match value. This algorithm
classifies regions by assigning to each region in the initial segmentation the texture
occurring most frequently within its boundaries.

To calculate a match with a given texture T, a window around the selected pixel (i, j) is
scanned. For each pixel (u, v) in the window many indexes into the co-occurrence matrix
CT (representing texture T) are formed by pairing the intensity m of pixel (u, v) with the
intensity n of each pixel in a ring at distance d from (u, v). A running sum is kept of the log
of CT(m, n). Special bookkeeping is necessary to avoid counting pixel pairs twice. The



pixel (i, j) is set to the texture with the highest match value. The resulting texture is the
maximum log likelihood estimate for the texture of the pixel.

There are only three textures allowed in this implementation. The textures are for low,
medium, and high contrast regions. The histograms for each texture are from samples of
other images that are not shown in this paper. The samples for the low, medium, and high
contrast histograms are from a piece of cloudless sky, a field of grass, and a military tank,
respectively.

Once the regions in an image have been classified it is possible to have a separate merge
policy for each class and between any two classes. This capability is exploited by having a
separate merge threshold for each type of region. When two regions are selected for
merging, a threshold determines if the intensities of the regions are close enough to allow
the two to merge. There are three thresholds for merging; one each for the low, medium,
and high contrast regions. From empirical experimentation the threshold values expressed
as a fraction of the intensity range have been set to 0.00 for low contrast regions and 0.10
for both medium and high contrast regions. A value of 0.00 means that such regions will
not merge with any others.  A value of 1.00 means that such regions will always merge
with adjoining regions of the same class. Adjoining regions of different classes that are
selected for merging use the lower of the two threshold values.

Figure 11 shows the effects on total region count of adjusting the thresholds independently
from 0.00 to 1.00 while the other thresholds are at the aforementioned values. The plot for
the low contrast threshold is not shown as even small values erroneously allowed
significant regions to merge. As a result, this class of region is not allowed to merge. This
is reasonable as low contrast regions tend to be large. Notice that the threshold value for
medium contrast regions is at the low end of the knee of curve while the threshold for high
contrast regions (coincidentally the same value) is higher on the knee of its curve. This
corresponds to the intuition that high contrast regions are areas of interest and minimizing
their number by very--aggressive merging is likely to result in important information loss.
On the other hand, regions of medium contrast very often denote regions that are not
interesting and should have aggressive merging techniques applied.  The threshold values
were chosen by experimentation and the subjective appraisal of the results.

The graph shows the effect of threshold values on the total number of regions in the
segmentation.  The total number of regions is not an objective indicator of segmentation
quality; it is just a metric of the desired goal of minimizing the number of regions. A
subjective evaluation of the segmentation quality was also made for each run. The number
of significant regions that were misclassified steadily increased with the increase in either
threshold. Simply put, the thresholds provide a tradeoff. High thresholds reduce the
number of regions but increase the number of errors and low thresholds provide accuracy
but may produce severe over-segmentation. The goal is to find an appropriate balance
point. It is clear that there are diminishing returns with high thresholds. Values above 0.15
showed obvious errors. The value of 0.10 for both thresholds provides much of benefits of
merging while still maintaining an accurate segmentation.  Referring back to the initial
segmentation in figure 7 gives an indication of the minimum errors possible in the final
segmentation.

Figure 12 shows the classification of the regions of the house image. Here, black is for low
contrast, white for medium contrast, and grey represents high contrast. Figure 13 shows
the original classification of each pixel. Notice that the texture classification process seems
to highlight the border between contrasting regions. If we are only concerned with edge
detection we could use simpler techniques like a Sobel operator. The point of using the co-
occurrence matrix is that the contrast of a region around the pixel of interest is measured



rather than the contrast at a single point. I have found that the performance degrades if too
small a window is used in the classification process. Future work should include analyzing
the structure of the regions in the mathematical framework of [Modestino, 1981 #6]  and
solving for the optimal filter.

Observations and Contributions

Data Reduction. The implementation in this segmentation  algorithm is a modification of
the above method. The Q x Q matrix is collapsed into a single dimension array of size Q by
recording only the difference between intensity values of pixels m and n.  This removes the
dependence of absolute intensity value as an indication of texture and it significantly
decreases the amount of storage required for each texture definition. In addition, it
significantly reduces the time of classification in a SIMD implementation. This will be
addressed in a later section. With 256 intensity levels, 64K values are required in the
original co-occurrence matrix but only 256 values are needed for the modified
representation. In practice, only about the first 50 values seem necessary, decreasing the
amount of data storage even further.

Region Classification. The original classification method is to classify individual
pixels. In this algorithm merging is performed on regions. So, all pixels within a region
must share the same classification. Selecting the simple majority texture for the region was
an obvious design choice.

Non-optimal filter. Modestino et al. propose a method  of calculating the optimum filter
for the window around (i, j). It is posed and solved as a Weiner filtering problem.  The
optimum filter was not calculated for the test images.  A simple mask of ones is used that
has proven very successful and reduces the amount of calculation by removing a
multiplication step.  The mask has width 3 and distance 1 from the center pixel. These
dimensions were shown to perform well in the study by Dropsho in [Dropsho, 1994 #2] .

Multiple Merging Policies. Using texture classification to group regions allows
multiple merging policies to be used. This has proven a very useful technique. It should not
be unexpected that regions with very different characteristics are best managed with
different policies.  In particular, classifying regions by contrast is very helpful in reducing
the number of regions of natural objects. The medium contrast texture is often indicative of
regions with a lot of edges due to randomly distributed pixels with slight variations in
intensity. In general, such regions are not of interest in the image and should be simplified
as much as possible.  Classification allows aggressive merging tactics to be selectively
taken.



Figure 11: Effects of the merge factors on total region count of final segmentation

Figure 12: Texture classification of regions



Figure 13: Texture classification of pixels

Color Images
In some cases it is very useful to use color to help in the segmentation process. Some
images are very difficult to segment using only intensity information. The road scene in
figure 14 is one such image. The result of applying the segmentation algorithm on the
intensity image only is shown in figure 15. Notice that the upper part of the road is missing
as is the lower right shoulder. The road sign is also poorly segmented.

Using images from the three video color bands can add information to improve the
segmentation. The road scene is shown in the red, green, and blue bands, respectively, in
figure 16. Notice that the road is highlighted better in blue. Also notice the difference in the
road sign between the images.  The segmentation of the individual bands is shown in figure
17. Individually, none of the segmentations are satisfactory, however, if we combine the
edges of the individual segmentations a much better segmentation results as shown in
figure 19. But, the image is now over-segmented. A merging phase is applied to reduce the
number of  regions.

The merging phase requires that each region is assigned a texture class. Which image
should be used to classify the pixels? We could use the intensity image but there is more
information in the color images. A conservative approach is to merge the classifications of
each of the color images. On a pixel by pixel basis, the classification with the greatest
interest rating is chosen. The order of interest of the textures has been set so that low
contrast regions have the highest interest rating, followed by high contrast regions, and
lastly medium contrast regions.  From experience low contrast regions are usually



segmented initially into large regions so do not need to be simplified by merging. High
contrast regions generally denote objects of interest. On the other hand, medium contrast
regions generally mark objects like foliage where merging should be aggressively applied.
In general, if the segmentation of one color image classifies a region as low or high contrast
it is usually an indication of a region of interest and as such should be preserved. Figure 18
shows the texture classification of the individual color images. Black is for low contrast
regions, grey indicates high contrast regions, and white is for medium contrast regions.
Figure 20 is the combined classification.

The final segmentation relies on an intensity image formed by combining the color images.
The pixels of the created intensity image are grouped according to the boundaries defined in
the combined segmentations of the color images. A merging phase is applied and the result
is the final segmentation. Figure 21 is the final segmentation of the road scene. There are
278 regions. Comparing this to the segmentation of the intensity image alone (reprinted in
figure 22 for convenience), notice that the road sign has been successfully separated from
the surrounding foliage as has the upper portion of the road. The lower right portion of the
shoulder is also better but there are still breaks in it due to the general low contrast of the
region.

Additional detail can sometimes be gained by focusing attention in a particular region and
redoing the segmentation in the restricted region of interest. Taking the segmentation in
figure 21 as an example, a higher level vision process might generate a hypothesis about
the existence of a road in the image but the poor segmentation along the right shoulder
could be used to veto the correct hypothesis. By focusing attention in that particular region
and performing a segmentation on the restricted region additional detail can be gained that,
in this case, would support the hypothesis.  The shoulder region in our example is shown
in figure 23. The result of resegmenting on this region is presented in figure 24.  By
eliminating the sky and the darker regions elsewhere in the original image the intensities in
the area of interest are now scaled to the full range of 0.0 to 4.0 which adds contrast
between the regions. The additional contrast helps the algorithm reveal more detail. To
achieve the same effect, parameters could have been adjusted to increase the sensitivity of
the segmentation process. To date, settings of the parameters to define low, medium, and
high sensitivity have not been explored. It has been shown in [Kohler, 1981 #5]  that such
settings are useful.

Another example is shown in figure 25. Only the green image is shown as the red and blue
images are quite similar. The grassy field is very easy to over--segment as can be seen in
initial segmetation in figure 26.  The final segmentation is shown in figure 27 and the
combined texture classification is shown in figure 28. Using texture classification allows
the highly over--segmented field region to be very aggressively merged.



Figure 14: Road scene intensity image

Figure 15: Segmentation of road scene intensity image



Figure 16a: Red image of road scene

Figure 16b: Green image of road scene



Figure 16c: Blue image of road scene

Figure 17a: Segmentation of red image of road scene



Figure 17b: Segmentation of green image of road scene

Figure 17c: Segmentation of blue image of road scene



Figure 18a: Texture classification of the red image of road scene

Figure 18b: Texture classification of the green image of road scene



Figure 18c: Texture classification of the blue image of road scene

Figure 19: Combined edges from the three color segmentations



Figure 20: Combined texture classification of the color images

Figure 21: Final color segmentation of road scene, 278 regions



Figure 22: Rrprint of the segmentation of road scene intensity image



Figure 23: Shoulder section of road scene

Figure 24; Segmentation of shoulder section of road scene



Figure 25: Green image of tank

Figure 26: Initial segmentation of tank scene



Figure 27: Final color segmentation of tank

Figure 28: Texture classification of tank



Performance

Serial Performance
The segmentation algorithm is very modular and has five main components. Table 1 lists
the components and the percentage of total run--time attributable to each. The first three
components are from the edge detection stage.

Code Execution Time
Breakdown
Horizontal Network 11%
Vertical Network 11%
Combining Network 26%
Edge Extension 7%
Merging Phase 33%
Miscellaneous 12%
TOTAL 100%

Table 1: Main Algorithm Components

 The runtime of the algorithm is essentially independent of the image. On ten test images the
run--times were very close. On a 100MHz MIPS R4400 processor the quickest ran in 90
seconds and the slowest in 97 seconds to segment a single image. Segmenting a scene
using the color images is essentially three times as long since three separate images are
being segmented. The additional work done to combine the three images is almost totally
offset by leveraging the initialization of data structures over the three images.

The algorithm is parallelizable at many levels. Of course, if color segmentation is being
done then each image can be processed independently and then quickly combined at the
end. Within the segmentation of an image the horizontal network and the vertical network
code can be run simultaneously, however, this can only reduce the run--time by about
11\%. The most dramatic speedup can be  attained only if each component is able to run in
a SIMD fashion. This is explored in section~\ref{parallel_section}.

Data Structures

A proper data structure minimizes the overhead of managing regions during the merging
process.  The merging process requires information about regions such as the average color
(intensity), size, and neighboring regions. Since regions are being merged this information
must be able to be recalculated and updated very quickly. The Union/Find--Set structure as
described in [Rivest, 1992 #7]  allows very efficient access to this information.  For each
region a pixel is selected to be the parent, or representative of the region. All information
about the region is accessed using the parent's indices in the image as the relative address
into the other data structures. Information about a region can be quickly retrieved by
querying any pixel in the region for the information.  Using the Union/Find--Set structure,
the parent is quickly found and its indices are then used to find the requested information in
a table lookup.  In fact, using the union by rank and path compression heuristics in



the Union/Find--Set structure reduces the upper bound on the average time per query (e.g.,
number of pointers followed) into the data structure to O(lg* n) where n is the number of
potential regions.  For a 256 x 256 image the number of potential regions is equal to the
number pixels, 216 and lg* 216 is 4.  Thus, regions are queried in essentially constant time.
In addition, each parent has a pointer to the head and tail of the list of pixels representing
neighboring regions so the neighbors can be quickly queried and combined during the
merging phase.  The structures for recording size, color, and neighbors are two
dimensional arrays with an entry for each pixel and require approximately 3.3 megabytes if
segmenting a 256 x 256 image.

Parallel Performance
This section explores the performance of the algorithm on a SIMD architecture.  The
algorithm has been ported to the Image Understanding Architecture (IUA) low--level
processing layer called the CAAPP. The IUA is an architecture with multiple types of
parallelism and is designed for vision applications.  There are three levels of computing
elements in the IUA. The top two have 32-bit processors connected in a MIMD fashion.
The lowest level, the CAAPP, is a 256 x 256 array of simple 1-bit processing elements
(PEs). Although the multiple layers are very tightly coupled, the algorithm is coded to use
only the SIMD CAAPP layer.  The cycle time of the CAAPP is 100 nanoseconds.

The PEs of the CAAPP are arranged in a mesh with direct communication channels to the
four nearest neighbors. The mesh is dynamically partitionable through the Coterie network,
a set of switches that make or break connections between the nearest neighbors. Thus, sets
of PEs can be grouped and isolated from others in arbitrary patterns. This is a useful
feature that supports segmentation.

The algorithm divides cleanly into three distinct stages: edge detection, edge extension, and
region merging. The three stages have distinctive  computational needs and are discussed
individually.

Edge Detection

Effects of Precision. The two networks that perform the edge detection have arithmetic
operations as a large percentage of their total operations. Table 7 in the appendix lists the
types of operations and their frequency in the implementations of the two networks.
Arithmetic operations make up 58\% and 64\% of the operations in the procedures,
respectively. Since the processors are bit-serial there is a direct correlation between the time
in cycles of the arithmetic operation and its complexity. The complexity of addition and
subtraction is O(n) where n is the number of bits in the operands. Multiplication and
division have complexity O(n2). As a result, the procedures for the networks are very
sensitive to the precision of the operands. The precisions considered are byte (8 bits), short
(16 bits), integer (32 bits), and floating point (32 bits).

From the tables in the appendix it is obvious that floating point operations are in general
much more time--consuming than integer arithmetic, however, floating point datatypes
have the advantage that they are very convenient for the programmer to use when non-
integer values are required.  Bytes, shorts, and integers can be used in such computations
by using scaled values to represent the actual range of values. For example, 8 bits can be
used to represent values between 0 and 1 with increments of 0.0039. While addition and
subtraction are straight forward, multiplication and division require that the placement of
the implicit decimal point be maintained during operations. This requires some additional
work at the end of the operation to shift the result. While this is more cumbersome to



program than floating point, it has the advantage of being much faster on additions and
subtractions and potentially faster on multiplication and division.  If the precision is 16 bits
or fewer then scaled integer is indeed faster. This last qualification is an artifact from
multiplication/division being faster on floating point values than on full 32 bit integer
values. The floating point datatypes simply add/subtract their exponents and then only do a
23 bit multiply (the width of the mantissa). The integer datatypes, on the other hand, must
do a full 32 bit multiply.

Also considered is a datatype float16 that is not currently available on the CAAPP.  The
datatype float16 is a 16 bit floating point number that has an 8 bit mantissa and an 8 bit
exponent. Estimates of its instruction times are given in the appendix. This datatype
combines the ease of programming that floating point datatypes provide while enhancing
performance by decreasing the precision. The following sections will discuss its use.  A
quick remark should be made about the float16 datatype. Its implementation does not
require any hardware support not already in the CAAPP. It can be incorporated by
microprogramming the controller and adding compiler support to make it a new first-class
datatype.

The First Network. Edge detection is performed by two different networks that perform
a relaxation process to minimize an evaluation function (the energy function). Most of the
operations by these networks is arithmetic so their run--times are heavily dependent on the
precision of the operands.  The first network detects potential vertical and horizontal edges.
This network is used for both directions with only slight modifications to reflect the
direction. The effects of the data precision on run--time are graphically shown in figure 29.
The raw data is shown in table 2. Two values are given for each precision. The first value
excludes cycles where the array is waiting or idle; a portion of these cycles are due to the
inefficiencies of the particular array controller. The second value includes these cycles. The
entry for float16 is an estimate using an approximate value for the operations assuming a
16-bit floating point operand.

The Second Network. The second network combines the outputs from the two
instantiations of the first network and generates the final set of edges. Again, due to the
emphasis on computation in this module the run--time is very sensitive to the precision.
Figure 30 shows the run--times relative to precision.

Procedure Execution Times (ms)
Procedure Byte Short Int Float32 Float16
Network 1 1.5 3.6 10.6 18.8 5.8
w/waits and idles 2.2 4.7 12.3 22.0 NA
Network 2 3.6 8.0 21.9 62.8 19.1
w/waits and idles 5.5 10.5 25.1 73.9 NA

Table 2: Execution Times for Procedures



Figure 29: Execution time of first network

Figure 30: Execution time of second network



It is clear from the charts that the run--time is very sensitive to the precision. Ideally, one
would prefer to use the floating point representation so there is full precision and minimal
information lost due to approximation. But there is clearly a significant time penalty for
using more precision than is required.  While floating point is adequate during the
development stage every effort should be taken to minimize the precision of the operands to
the bare minimum.

Required Precision. To determine the minimum precision that provides adequate
results, two factors must be known. The first factor is the largest magnitude that any
intermediate calculation can generate in either network. This is easily calculated and is
bounded by the value 64. The second factor required is the sensitivity of the segmentation
results to the discretization of the real number space. Since the intensity is scaled to the
range 0.0 to 4.0 from the range 0 to 255, a total of 8 bits are required with 6 bits to the
right of the decimal point.  Thus, we expect the required precision to accomodate the
maximum magnitude of any intermediate results with an additional 6 bits for the fraction.
The maximum magnitude for both networks is bounded by the value 64. Hence, 12 bits of
precision may suffice.  This is only an estimate and does not tell us anything about the
sensitivity of the algorithm as a whole to the precision in these modules.  Such sensitivity is
difficult to measure.

One method to do so is suggested in [Dropsho, 1994 #2]  that details a statistical method of
comparing techniques across a suite of test images to give a statistical measure of the
liklihood that two techniques differ in the quality of their results. This method can be used
to compare segmentation results across a range of precisions. This has not yet been done
and only a single image example is used here to illustrate the effects of precision.

Figures 32, 33, 34, and 35 are the results of restricting floating point precision to 16, 12,
8, and 4 bits respectively. These results can be compared to the full precision segmentation
reprinted in figure 31. Notice that with the precision at 8 bits portions of the telephone line
are missing. This precision appears to be at the lower bound of acceptability for the
algorithm and suggests that the algorithm is fairly robust in terms of the precision for the
edge detection stages.

In this example, 8 bits of precision appear just adequate while 12 bits are certainly
sufficient. With a requirement of a maximum magnitude of 64 and 12 bits of precision, a
floating point datatype with a 4 bit exponent and a 12 bit mantissa could be implemented in
the controller of the CAAPP array. While this would be adequate for this example the
datatype lacks the range for general use. The float16 datatype has with an 8 bit exponent
and 8 bit mantissa and could be used to speed up the edge detection phase over using full
floating point while still providing the ease of programming of floating point datatypes. The
loss of precision has to weighed against the ease of use. However, scaled integer arithmetic
of 16 bits is adequate for this example and has a performance advantage over float16
arithmetic.



Figure 31: Segmentation with full floating point precision

Figure 32: Segmentation with 16 bit precision



Figure 33: Segmentation with 12 bit precision

Figure 34: Segmentation with 8 bit precision



Figure 35: Segmentation with 4 bit precision

Approximation of the tanh function. Another method of increasing performance is
to approximate expensive calculations with simpler, but less precise methods. Such is done
with the tanh function. A piecewise-linear approximation replaces y = tanh(x) with

-1  if x < -1

y = x   if -1 <= x <= 1

1   if x > 1

Figure 36 graphs the two functions together for comparison. The approximation is
adequate since the function is primarily to limit range of the output. And, this
approximation reduces the time of the tanh function from 37 milliseconds to 45
microseconds, a factor of over 800 speed up. From the tables in the appendix you can see
that the tanh function is called about 20 times in each network for a total of 60 times in the
algorithm. The calls to the actual tanh function would take over 2 seconds alone on the
CAAPP.



Figure  36: Graph of tanh vs. piece-wise-linear approximation

Edge Extension

The edge extension phase only requires calculating the differences in intensity between
pixels so this phase is implemented with the image scaled to the traditional range of 0 to
255 and not the 0.0 to 4.0 range used in the edge detection stage. As no division is done,
fractions are not generated so the arithmetic is strictly integer arithmetic. The current
implementation requires 9 bits to encode the maximum value generated. As shown in table
3, the run--time is 4.5 ms if wait and idle cycles are excluded and 10.7 ms if all cycles are
included. All operations used are simple operations that the CAAPP performs efficiently.
There are no recommendations for run--time performance improvement.

Procedure Execution Times (ms)
Procedure Run-Time Excluding

RoutePlus
Runt-Time Including
RoutePlus

P e r c e n t a g e  i n
RoutePlus

Edge Extension 4.5 4.5 0%
w/waits and idles 10.7 10.7 0%
Texture Classification 8.8 46.0 80.9%
w/waits and idles 13.7 NA NA
Region Merging 9.3 158.1 94.1%
w/waits and idles 16.2 NA NA

Table 3: Execution Times for Procedures



Texture Classification in the Region Merging Stage.

Texture classification using the co--occurrence matrices requires that values are retrieved
from a lookup table. This is ideally implemented on a machine with local indexing as each
PE may have a different index into the table. On such a machine, all accesses could be
satisfied in one query. Unfortunately, on SIMD machines all PEs must access the same
relative local memory location at any given time. This means that  if the index values may
take any one of m values then m queries into the lookup table must be made while selecting
only the appropriate PEs to be active for a given access.

This artifact of SIMD architectures underscores the importance of the decision to use a 256
element one--dimensional co--occurrence matrix based on the difference between intensity
values of pixels rather than the 256 x 256 two--dimensional matrix described in [Haralick,
1973 #4] . This reduces the size of the lookup  table from 65536 to 256 for each texture.
The algorithm defines three textures for a maximum lookup table of 768 elements. The
number of accesses can be significantly reduced by detecting the last element in the lookup
table for each texture that has useful information and collapsing all accesses beyond that
index into one access. Doing so reduces the total number of accesses to the tables to 144
from 768 for the specific textures used in the algorithm.  From table 3 it is evident that the
code for the table lookup, while awkward, is not the bottleneck for this implementation of
the algorithm.

Region Merging

This stage identifies adjoining regions that meet the criterion for merging and then merges
them by weighted averaging the intensities on population counts and updating the merged
regions to the new intensity value. Like the edge extension stage, the precision of operands
is not an issue in this stage because region merging uses only integer values.  All sizes of
datatypes are required in this phase from bit through full integer values. Operands have
been set to their minimum sized datatypes. However, this stage presents a unique
requirement missing in the previous stages of the algorithm. Before, operations worked on
strictly local information requiring only nearest neighbor communication. Here, global
information about regions must be gathered to do the averaging of intensities for the
merging process. This necessitates the gathering of intensity values and the number of
representatives of each value and then broadcasting the new intensity value to all the PEs of
the joined regions. This turns out to be the bottleneck in this section of the algorithm.

First, a word about how region merging is implemented in the parallel CAAPP. The initial
segmentation is used to define the boundaries around regions. These boundaries are
represented explicitly in the CAAPP through the partitionable Coterie network by breaking
communication links between neighboring pixels that lie in different regions. Once the
regions have been defined, all regions can simultaneously count the number of pixels in the
region and sum the intensity values of the pixels. This is accomplished in a straight forward
manner using the RoutePlus function to route and tally the pixel count and sum the
intensities at a master PE selected for each region. A simple division is sufficient to
calculate the average which is broadcast back to the members of the region.

The actual merging is accomplished by having each PE at a region boundary check all
directions for a possible merge. PEs that satisfy the conditions of the algorithm as stated in
section~\ref{region-merging} make a link in the Coterie network joining the two regions.
The new regions average the intensities via the RoutePlus function and the entire process is
iterated again. This is just one simple method, many others are possible.  One is to only
merge regions that want to merge with each other. This was implemented but suffered from



too little merging due to circular dependencies between three or more regions (e.g. A to B
to C to A again). This resulted from frequent equal values returned by the simple evaluation
function used to determine if two regions should be merged. The segmentation algorithm in
[Kohler, 1981 #5]   used a much more complex evaluation function that had more possible
values in its range which lessens the possibility of creating the circular dependencies stated
above.

Performance of RoutePlus. Table 3 shows the run--times of the two phases of the
region merging stage: texture classification and the actual region merging. Three columns
are shown. The first gives the time for the code excluding the RoutePlus operation. The
second column is the time including RoutePlus calls. Finally, the third column is the
percentage of time each routine spends doing the RoutePlus function.  The times for
routing that include waits and idles were not measured and are marked as NA. The
RoutePlus performed here is sparse in the number of PEs involved.  This is explained in
more detail below. RoutePlus run--times are data dependent and take approximately 12.4
ms per call for the house image. There are 3 calls in the texture classification routine and 12
calls during the actual region merging. The RoutePlus functionality is clearly the bottleneck
in these routines.

In the algorithm only a sparse set of elements route information to a destination PEs in the
merge routine. This is useful for reducing potential congestion.  In this implementation, a
single PE per pre-merge region is selected as a representative of the region to send the size
of the region and the intensity level multiplied by the size. The destination PE adds the
weighted intensities and divides by the sum of the sizes to determine the new intensity level
of the newly formed region. The new size and new intensity value are broadcast to all PEs
in the new region.

Figure 37: Execution time of RoutePlus on whole array, regions, sparse senders



Since it is the bottleneck, other implementations of the RoutePlus functionality should be
looked at to speed up the function. One possible implementation of the RoutePlus
functionality on the CAAPP includes doing each region serially using broadcasts and the
very fast global feedback circuits in the array. This is unlikely to improve much on the time
as there are often many hundreds of regions (over 1600 in the initial segmentation of the
house image) and each broadcast takes about 500 cycles for bytes (to represent the intensity
level). If there are over 500 regions we can expect this method to take greater than a quarter
million cycles (25 ms) per use. This is about twice the current cost.

Another serial method on regions is to select the minimum and maximum intensities in the
each region. For each intensity level between and including these two values select the PEs
with that value and do a fast count of their number. Multiply the intensity value by the
count and keep a running sum. A single divide of the total intensity by the total count gives
the new intensity level of the region. There is the same dependency on the number of
regions here as above and the select and multiply (assuming a byte value multiplied by a
short value) take over 500 cycles. Again, this cost is significantly more than the current
implementation.

A more promising approach may be to implement the RoutePlus at the ICAP level of the
IUA. At this level there is a single powerful DSP chip for every 64 PEs at the CAAPP
level. The ICAP processors can reduce the information from the 64 PEs and route the
intermediate results to the ICAP processors responsible for the destination PEs. The time
advantage of this scheme depends on the overhead of communication between the CAAPP
and the ICAP processors as well as the communication efficiency within the ICAP layer
itself.

Other approaches involve changing the design of the IUA. Some of these options are
explored in [Herbordt, 1994 #3]  that discusses algorithms for routing on reconfigurable
meshes such as the CAAPP. Hardware enhancements studied were wider datapaths,
ALUs, nearest neighbor communication paths, and a broadcast bus. The study shows a
lower bound on speedup due to the required handshaking. The paper also mentions
features such as the routing network in the CM-2 and local indexing as expensive
enhancements that can be exploited for routing.

Recommendations. The ability to gather region-wide information easily is useful
functionality for this algorithm. However, on the CAAPP this is very time-consuming and
is the bottleneck in the algorithm's performance.  The routing algorithm for the CAAPP is
efficient given the  hardware resources. Improvements in performance may have to come
from exploiting the power of the ICAP processor network by using it as an intelligent
routing network for the CAAPP. This is enticing since the ICAP has the wider datapaths,
ALU, and communication paths that [Herbordt, 1994 #3]  shows are important for
accelerating routing. Implementating RoutePlus on the ICAP will be studied in future
work.

Results
Table 4 compiles the run--times of all the stages of the segmentation algorithm. For edge
detection 16 bit scaled integer times are used. It is clear that the RoutePlus functionality is
the dominant factor in the overall run--time. Any algorithm that must gather statistics on a
region-by-region basis will be very sensitive to the speed of the routing in the CAAPP. For
the segmentation algorithm presented in this paper all efforts at optimization should be



directed to speeding up the RoutePlus functionality. Novel methods of emulating the
functionality with simpler, faster primitives needs to be explored as well as the possibility
o f  u s i n g  t h e  I C A P .



Procedure Execution Times (ms)

Procedure Run-Time Excluding
RoutePlus

Runt-Time Including
RoutePlus

P e r c e n t a g e  i n
RoutePlus

Edge Extension 11.6 11.6 0%

w/waits and idles 15.2 15.2 0%

Texture Classification 4.5 4.5 0%

w/waits and idles 10.7 10.7 0%

Region Merging 18.1 204.1 91.1%

w/waits and idles 29.9 NA NA

Total 34.2 220.2 84.5%

w/waits and idles 55.8 NA NA

Table 4: Execution Times for Procedures

Future Work
Additional work that should be done includes:

• Try a simpler directional edge detector in place of the horizontal and vertical
networks. I suspect that a technique such as the Sobel operator filtered through a threshold
would work well on the test images. Cortes et al. point out that many simpler networks
performed equally as well as theirs in the absence of blur. They considered only synthetic
images. How significant is blur in the images that are of interest? There is a potential
savings of 20% of computation if a simple edge detector proves sufficient.

• For texture classification the optimal filter should be  calculated as specified in
[Modestino, 1981 #6] . I suspect that the results may not be affected much. The types of
textures Modestino et al.  looked at were much more coarse than the test images and, as
such, required a larger mask. The much finer textures in the test images will likely require a
small mask so that the weighting of the entries may fall very rapidly from the center. The
resulting optimal mask may be very similar to the mask currently being used.  This
hypothesis should be verified.

• A better control scheme to coordinate merging should be incorporated. Currently,
the control scheme selects regions as they occur from left to right and top to bottom in the
image and are merged according to the differences in intensities. Although quick, it ignores
the fact that applying additional criteria as well as structuring the order of merges can
improve the segmentation results. In [Kohler, 1981 #5] , Kohler uses an evaluation
function to calculate the best two regions to merge and iteratively selects pairs of regions



until no more pairs match the minimum criteria.  His use of a multi--term evaluation
function gives more control over the merging process at the cost of additional
computational complexity for calculating the parameters used in the evaluation function.
However, the use of proper data structures should be able to minimize this overhead.

• RoutePlus is an important function but needs to be accelerated. Thus, an
implementation using the ICAP level of the IUA must be explored.

Conclusion
An algorithm is presented that performs well on real outdoor images by using texture
classification techniques to guide the use of multiple merging policies. Allowing mulitiple
merge policies is a novel mechanism for region merging. In the example in the paper,
texture classification allows an aggressive merging stategy to be applied to foliage--like
regions to significantly reduce over--segmentation without destroying other structures in
the image.  Being able to selecively apply merging policies is shown to be a very powerful
capability.

The algorithm is highly parallel and has been ported to the IUA CAAPP, a SIMD machine.
Analysis of its performance shows that while a portion of the code is very sensitive to the
arithmetic precision, the overwhelming majority of the run--time is spent gathering region
statistics. On the given machine, the CAAPP, optimizing this functionality or rewriting the
algorithm to eliminate its need is paramount. This algorithm requires that the hardware
support the very efficient gathering of region-wide statistics across highly irregular regions.
In the IUA architecture the most promising method to have this functionality may be at the
ICAP level. This is being explored. It does require a low latency network at the ICAP level
and very low latency communication with the SIMD CAAPP.

Appendix: Data Tables
This section details the cost of individual operations on the CAAPP SIMD array and the
frequency of each instruction type in the segmentation algorithm. Not all operations
available on the CAAPP are shown. Only those that are used in the algorithm are shown.

The cost of each operation is reported as a cost relative to the cost of doing an addition.
Byte addition is defined as a cost of 1.00. These are approximate values from empirical
measurements. Exact values can be gotten through detailed analysis of the microcode.
However, the purpose of detailing these costs is only to get first order effects of operations
on an application's performance. Using values from empirical measurement of high-level
instructions has the advantage of folding in the effects of the many low-level instructions
that implement each high-level instruction.

Since the CAAPP uses bit-serial processors, the cost of arithmetic operations depends on
the precision being used. Table 5 shows the cost of doing an addition at each level of
precision relative to a byte addition. The cost of a byte addition is 24 cycles. As expected,
short integers and integers have almost two and four times the cost as a byte. Notice that
there is some savings due to amortizing the overhead across more bits. The 32-bit floating
point cost for addition is over 50 times the cost of byte addition. This is understandable in
that floating point addition requires the mantissas to be aligned by comparing the operands'
exponents, shifting the mantissa of the smaller operand, doing the addition, and then
normalizing the result. This is significant work on the bit-serial CAAPP processor. The
value for the type Float16 is an estimated cost for implementing a 16 bit floating point type
on the CAAPP.  This data type would give 8 bits of precision with an 8 bit exponent.



Please note that bit addition (or any bit logic operation) is only 30\% less costly than a full 8
bit addition due the internal 8 bit wide data path.



Addition Cost Normalized to Byte Operands

Bit Byte Short Int Float32 Float16

0.71 1.00 1.91 3.70 53.04 15.87

Table 5: Instruction Counts for Addition (Normalized to Byte Operands)

Table 6 lists the cost of each operation used in the algorithm relative to the cost of doing an
addition at the given precision level. From the table we can see that multiplication and
division are very expensive operations relative to addition. This is not surprising as the two
operations are O(n2) while addition is only O(n) where n is the number of bits in the word.
Floating point is much more balanced across the operations since addition is very slow due
to the shifting during the computation.  Floating point addition requires over 1200
instructions compared to 24 for byte addition. Entries with NA are operations that are not
available or were not measured.

Some operations are constant in time across the different datatypes. The Index operation
requires 85 instructions to return the PE index ID. This is clearly independent of datatype.
Another such operation is RoutePlus which sums the values of a plane in a region defined
by the Coterie network. The cost of this operation should be dependent on the width of the
data and the size of the array. It could be slightly improved for bit and byte datatypes.  But,
due to their constant run--time across datatypes, these instructions show marked decrease
in their relative cost as the datatype gets larger reflecting the increase in cost of addition.

Below are the counts of each type of instruction for the procedures in the segmentation
algorithm. Table 7 has the instruction count for four procedures. Network 1 refers to the
procedures to find potential horizontal and vertical edgels. They are essentially identical.
Network 2 refers to the final network of the algorithm that takes the potential edgels from
Network 1 to generate actual edgels. The Edge Extension phase extends dangling edgels to
complete regions and produce the initial segmentation.  The two columns under this entry
correspond to strictly bit precision operations and greater precision operations respectively.

Table 8 gives the instruction breakdown for the merging routine that selects the regions to
merge. This excludes the call to the subroutine that performs the details of the actual merge,
Union\_All\_Regions. The instruction count for Union\_All\_Regions is shown in table 9.
Table 10 lists the instruction tally for the texture classification routine. The large values for
the Select and comparison operations are due to the loop to look up values in the co-
occurrence distribution tables for the various textures. Without local indexing support (very
expensive to implement in hardware in a SIMD array) a Select must be done for every
possible index value to set the activity bit on the appropriate PEs so actions may be
selectively taken. There are three table of 256 entries each so a maximum loop of 768
iterations is possible. Using pointers to the last meaningful entry in each table has reduced
the iteration count to 144 for the example textures. In contrast, local indexing would only
require a PE to make only 8 accesses into each table for a total of 24 accesses. Local
indexing, however, is extremely costly in resources to implement in a bit--serial SIMD
array.



Operation Cost Normalized to Addition

Operation Bit Byte Short Int Float32 Float16

= 0.12 0.13 0.15 0.13 <0.01 0.01

+/- 1.00 1.00 1.00 1.00 1.00 1.00

multiplication NA 11.22 19.16 33.93 1.51 1.49

division NA 16.09 28.47 52.82 2.66 2.62

nearest neighbor 1.88 1.83 1.56 1.54 0.10 0.18

logical shift 0.12 3.35 3.07 2.38 NA NA

approx. tanh NA 4.43 3.86 3.51 0.38 0.59

Select (cmp) 2.94 2.35 1.42 0.86 0.18 0.29

Select (bit) 0.41 NA NA NA NA NA

AND, OR (var) 1.00 1.00 0.75 0.62 NA NA

InsertBits 0.12 0.10 0.05 0.02 <0.01 <0.01

comparison 1.00 1.25 1.00 0.86 0.06 0.12

Index 5.00 3.54 1.93 1.00 0.07 0.23

RegionSelectMin/Max 7.41 130.43 69.77 35.29 2.46 8.22

RegionBroadcast 5.00 23.35 23.26 23.53 1.85 2.74

RoutePlus 2411.76 1783.61 953.49 482.35 NA NA

Count 1.82 NA NA NA NA NA

Coterie pattern 0.88 0.63 0.34 0.18 0.01 0.40

Table 6: Instruction Counts for Operations (Normalized to Addition)



Procedure Operation Counts

Operation Network 1 Network 2 Edge Extension

+/- 52 305 100

multiplication 51 60

division 11

nearest neighbor 42 84 320 140

logical shift 10 50

approx. tanh 21 20

Select (cmp) 1 50 170 128

Select (bit)

AND, OR (var) 580

comparison 120

Index

RegionSelectMin/Max

RegionBroadcast

RoutePlus

Count

Coterie Pattern

Table 7: Occurrences of Instructions in Listed Procedures



Merge Regions Excluding Union_All_Regions

Operation Bit Byte Short

Int

+/- 20

multiplication

division

nearest neighbor 54

logical shift 6

approx. tanh

Select (cmp) 179

Select (bit) 10

AND, OR (var) 313

comparison 40 192 20 17

Index 5 5

RegionSelectMin/Max 5 5 5

RegionBroadcast 10

RoutePlus

Count

Coterie Pattern

Table 8: Occurrences of Instructions in Region Merging Excluding Union_All_Regions



Union_All_Region Ops

Operation Bit Byte Short Int

+/-

multiplication

division 5

nearest neighbor

logical shift

approx. tanh

Select (cmp) 5

Select (bit) 5

AND, OR (var)

comparison 5

Index 5 10

Row/Col Index 10

RegionSelectMin/Max 5

RegionBroadcast

RoutePlus 10

Count

Coterie Pattern 5

Table 9: Occurrences of Instructions in Union_All_Regions



Texture Classification

Operation Bit Byte Short Int

+/- 51

multiplication

division

nearest neighbor 8 36

logical shift

approx. tanh

Select (cmp) 2091 2 3

Select (bit)

AND, OR (var)

comparison 2091 3

Index 1

Row/Col Index 2

RegionSelectMin/Max 1

RegionBroadcast 3

RoutePlus 3

Count

Coterie Pattern

Table 10: Occurrences of Instructions in Texture Classification


