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Abstract

This collection of six papers represents a snapshot of current work at the University of
Massachusetts on automated acquisition, extraction, and refinement of geometric site
models under the ARPA/ORD RADIUS program. The first paper “A System for
Automated Site Model Acquisition” introduces the problem of geometric site modeling
from aerial images, briefly discusses the general system requirements for automating the
site model construction process, and outlines the key algorithms making up a system for
extracting a restricted class of buildings from multiple aerial images. The second paper
“Site Model Acquisition under the UMass RADIUS Project” further describes the system
being developed and provides additional results on the RADIUS modelboard imagery.
The third paper “Site Model Acquisition and Extension from Aerial Images” includes a
description of the site model extension techniques being developed. The first three
papers overlap to some degree, but vary in their emphasis on the different system
components and results.

The fourth paper “Terrain Reconstruction from Oblique Views” describes a stereo
algorithm for the extraction of a digital elevation map from two or more views of a site.
The algorithm has been designed to work effectively even when the views are widely
separated and highly oblique. Work is in progress on integrating the geometric site
model with the digital elevation map. The fifth paper “Task Driven Perceptual
Organization for Extraction of Rooftop Polygons” is an in-depth description of the
perceptual grouping and organization algorithm developed for extracting rooftops from a
monocular image. These rooftop hypotheses are then verified across multiple images and
their 3D structure determined by means of a multi-image optimization procedure, as
described in the first three papers. The final paper “Triangulation Without
Correspondence” discusses two algorithms for reconstructing three dimensional points
from two sets of noisy two-dimensional points without a-priori knowledge of the point
correspondences between the sets.
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ABSTRACT

A system has been developed to acquire, extend and refine 3D geometric site models from aerial imagery. The
system hypothesizes potential building roofs in an image, automatically locates supporting geometric evidence in
other images, and determines the precise shape and position of the new buildings via multi-image triangulation.
Projectively warped image intensity maps are associated with the faces of each recovered building, allowing
realistic rendering of the scene from new viewpoints.
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1 INTRODUCTION

Acquisition of 3D geometric site models from aerial imagery is currently the subject of an intense research
effort in the U.S., sparked in part by the ARPA/ORD RADIUS project.”®513 We have developed a set of
image understanding modules to acquire, extend and refine 3D volumetric building models. The system design
emphasizes model-directed processing, rigorous camera geometry, and fusion of information across multiple images
for increased accuracy and reliability.

Site model acquisition involves processing a set of images to detect both man-made and natural features
of interest, and to determine their 3D shape and placement in the scene. This paper focuses on algorithms
for automatically extracting models of buildings. The site models produced have obvious applications in areas
such as surveying, surveillance and automated cartography. For example, acquired site models can be used for
automated model-to-image registration of new images,* allowing the model to be overlaid on the image to aid
visual change detection and verification of expected scene features. Two other important site modeling tasks are
model eztension - updating the geometric site modél by adding or removing features,® and model refinement -
iteratively refining the shape and placement of features as more views become available. Model extension and
refinement are ongoing processes that are repeated whenever new images become available, each updated model
becoming the current site model for the next iteration. Thus, over time, the site model is steadily improved to
become more complete and more accurate.

*This work was funded by the RADIUS project under ARPA/Army TEC contract number DACA76-92-C-0041 and by
ARPA/TACOM contract DAAE07-91-C-R035.



UMass has designed and implemented a system for automatically extracting building from multiple, overlap-
ping images of a site. To maintain a tractable goal for our research efforts, we have chosen initially to focus
on a single generic class of buildings, namely flat-roofed, rectilinear structures. The simplest example of this
class is a rectangular box-shape; however other examples include L-shapes, U-shapes, and indeed any arbitrary
building shape such that pairs of adjacent roof edges are perpendicular and lie in a horizontal plane. The system
is designed to operate over multiple images exhibiting a wide variety of viewing angles and sun conditions. The
system is designed to perform well at one end of a data-vs-control complexity spectrum, namely a large amount
of data and a simple control structure, versus the alternative of using less data but more complicated processing
strategies. In particular, while the system can be applied to a single stereo pair, it generally performs better (in
terms of number of buildings found) when more images are used.

Section 2 begins with a specification of general input requirements of the UMass system. This is followed in
Section 3 by a breakdown of the system into its key algorithmic components: 1) line segment feature extraction,
2) monocular building rooftop detection, 3) multi-image epipolar rooftop matching, 4) multi-image wireframe
triangulation, and 5) projective intensity mapping. This paper concludes with a brief summary and a statement
of future work.

2 General system requirements

The UMass building extraction system was developed on a Sun Sparc 10, using the Radius Common Devel-
opment Environment (RCDE).?? The RCDE is a combined Lisp/C++ system that supports the development
of image understanding algorithms for constructing and using site models. In particular, the RCDE provides
a convenient framework for representing and manipulating images, camera models, object models and terrain
models, and for keeping track of their various coordinate systems, inter-object relationships, and transforma-
tion/projection equations. The RCDE also provides utilities for interactively developing site models, specifying
tie points, and for performing photo-resection.

2.1 Images

Acquisition of a 3D site model requires a set of overlapping images of the site. The UMass system is designed
to operate over multiple images, typically five or more, exhibiting a wide variety of viewing angles and sun
conditions. The number five is chosen arbitrarily to allow one nadir view plus four oblique views from each of four
perpendicular directions (e.g. North, South, East and West). This configuration is not a requirement, however.
Indeed, some useful portions of the system require only a single image, namely line segment extraction and
building rooftop detection. On the other hand, epipolar rooftop matching and wireframe triangulation require,
by definition, at least two images, with robustness and accuracy increasing when more views are available. Once
again, the number five has been chosen arbitrarily, and perhaps only three well-chosen images would suffice, but
verification of this is a matter for further experimentation.

Although best results require the use of many images with overlapping coverage, the system allows considerable
freedom in the choice of images to use. Unlike most other building extraction systems, this system does not
currently use shadow information, and works best if used on images with different sun angles, or with no strong
shadows at all. Also, the term “epipolar” as used here does not imply that images need to be in scan-line epipolar
alignment, as required by many traditional stereo techniques. The term is used instead in its general sense as a
set of geometric constraints imposed on potentially corresponding image features by the relative orientation of
their respective cameras. The relative orientation of any pair of images is computed from the absolute orientation
of each individual image (see Section 2.3).



2.2 Site coordinate system

Reconstructed building models are represented in a local site coordinate system that must be defined prior to
the reconstruction process. The system assumes this is a “local-vertical” Euclidean Coordinate System, that is,
a Cartesian X-Y-Z coordinate system with its origin located within or close-to the site, and the positive Z-axis
facing upwards (parallel to gravity). The system can be either right-handed or left-handed. Under a local-vertical
coordinate system, the Z values of reconstructed points represent their vertical position or “height” in the scene,
and X-Y coordinates represent their horizontal location in the site.

2.3 Camera models

For each image given to the system, the absolute orientation of the camera with respect to the local site
coordinate system must be known. This includes both the internal orientation (lens/digitizer parameters) and the
external orientation (pose parameters) of the camera. Given the absolute orientation for each image, the system
computes all the necessary relative orientation information needed for determining the epipolar geometry between
images. Camera models can be specified in two ways. For the perspective frame camera model, absolute
orientation for each camera is supplied as a 3 x 4 projective transformation matrix describing (in homogeneous
coordinates) how points in the site coordinate system project into points in the image coordinate system. This
simple representation makes no distinction between internal and external camera parameters. Translation between
“standard” photogrammetric parameterizations (e.g. focal length, principle point coordinates, camera location
vector and rotation Euler angles) and the 3 x 4 matrix representation is provided by the RCDE.

Many aerial photographs, particularly satellite images, are generated by nontraditional imaging systems for
which the standard perspective frame camera model is not an adequate description. The fast block interpola-
tion projection (FBIP) camera model has been proposed as an alternative description of the imaging process in
these situations. The general idea is to break space into “blocks” and then generate local frame camera approxi-
mations within each block in such a way that adjacent frame approximations agree at the block boundary, in a
manner somewhat analogous to approximating a nonlinear function by a piecewise linear one. This representation
easily handles 2D image nonlinearities such as camera lens distortion, as well as 3D space nonlinearities caused
by the refraction of light through layers of the atmosphere.

Integrating the FBIP camera model into image understanding algorithms is potentially tricky, since it violates
the fundamental assumption underlying most work with traditional, perspective camera models, namely the
assumption that straight lines in the world will appear straight in the image. The FBIP camera model not
only raises representational concerns such as whether the edge of a building in the image can be adequately
characterized by a single straight line segment, but also strikes at a deeper level, invalidating such fundamental
geometric notions as vanishing points and epipolar geometry. Our interpretation of FBIP camera model is that
it is possible to derive a local 3 x 4 projective transformation matrix that provides an accurate approximation to
the imaging process within a given 3D region of interest spanning the spatial extents of a single building.

2.4 Digital terrain map

Currently, the UMass system explicitly reconstructs only the rooftops of building structures, and relies on
vertical extrusion to form a volumetric 3D wireframe model of the whole building. In other words, perpendiculars
are dropped from each corner of the reconstructed building rooftop down to the ground, and connected by a
building base formed as a vertical translation of a copy of the roof polygon. The extrusion process relies on
knowing the local terrain, namely the ground height (Z value) at each location in the scene. We assume this
information is represented as an array of elevations, or in the special case of flat ground planes as a horizontal
plane equation Z = zo. Representation of digital terrain maps in either format, along with their use in providing
a basic ground level for vertical extrusion, is supported by the RCDE. Future versions of the system will use
digital terrain maps automatically extracted from stereo image pairs (nadir or oblique) by a correlation-based



terrain reconstruction system developed recently at UMass. The technical details of that system also appear in
these processings.l*

2.5 Other required parameters

In addition to the general information described above, a few miscellaneous parameters and thresholds are
required to be supplied by the user before the system can be run. The most important of these are:

e max-building-height -~ the maximum possible height of any building that will be included in the site
model. This threshold is used to limit the extent of epipolar search regions. The lower this threshold can
be, the smaller the search area for rooftop feature matches will be, leading to faster searches with higher
likelihood of finding the correct matches.

¢ min-building-width — the minimum horizontal extent (width or length) of any building that will be
included in the site model. This is, loosely speaking, a way of specifying the desired “resolution” of the
resulting site model, since any buildings having horizontal edges shorter than this threshold will probably
not be found. Setting this value to a relatively long length essentially ensures that only large buildings in
the site will be modelled.

3 Algorithmic building blocks

The UMass building extraction system currently follows a simple processing strategy. To acquire a new
site model, an automated building detector is run on one image to hypothesize potential building rooftops.
Supporting evidence is the located in other images via epipolar line segment matching, and the precise 3D
shape and location of each building is determined by multi-image triangulation and extrusion. Image intensity
information is backprojected onto each face of these polyhedral building models, to facilitate realistic rendering
from new views.

This section outlines the key algorithms that together comprise the UMass building extraction system. These
algorithms are: line segment extraction, building rooftop detection, epipolar rooftop matching, multi-image wire-
frame triangulation, and projective intensity mapping. The description of these algorithms is illustrated with
sample results from two sites, the Schenectady County Air National Guard base (Figure 1), and Radius Model
Board 1 (Figure 2).

3.1 Line segment extraction

To help bridge the huge representational gap between pixels and site models, a straight line feature extraction
routine is applied to produce a set of symbolic line segments, representing geometric image features of potential
interest such as building roof edges. We use the Boldt algorithm for extracting line segments.® At the heart of
the Boldt algorithm is a hierarchical grouping system inspired by the Gestalt laws of perceptual organization.
Zero-crossings of the Laplacian of the intensity image provide an initial set of local intensity edges. Hierarchical
grouping then proceeds iteratively; at each iteration edge pairs are linked and replaced by a single longer edge
if their end points are close and their orientation and contrast (difference in average intensity level across the
line) values are similar. Each iteration results in a set of increasingly longer line segments. The final set of line
segment features (Figures 3 and 4) can be filtered according to length and contrast values supplied by the user.

Although the Boldt algorithm does not rely on any particular camera model, the utility of extracting straight
lines as a relevant representation of image/scene structure is based on the assumption that straight lines in the
world (such as building edges) will appear reasonably straight in the image. To the extent that this assumption
remains true at the scale of the objects being considered, such as over a region of the image containing a single



Figure 1: Sample subimage from Schenectady dataset. Figure 2: Sample subimage Radius Model Board 1.
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Figure 3: Boldt lines for Figure 1. Figure 4: Boldt lines for Figure 2.

building, then straight line extraction remains a viable feature detection method. However, very long lines
spanning a significant extent of the image, such as the edges of airport runways, may become fragmented depending
on the amount of curvature introduced into the image by nonlinearities in the imaging process.

3.2 Building rooftop detection

The goal of automated building detection is to roughly delineate building boundaries that will later be verified
in other images by epipolar feature matching and triangulated to create 3D geometric building models. The
UMass building detection algorithm® is based on perceptual grouping of line segments into image polygons
corresponding to the boundaries of flat, rectilinear rooftops in the scene. Perceptual organization is a powerful
method for locating and extracting scene structure. The rooftop extraction algorithm proceeds in three steps; low
level feature extraction, collated feature detection, and hypothesis arbitration. Each module generates features
that are used at during the next phase and interacts with lower level modules through top-down feature extraction.

Low level features in this system are straight line segments and corners. The domain assumption of flat-roofed
rectilinear structures implies that rooftop polygons will be produced by flat horizontal surfaces with orthogonal
corners. Orthogonal corners in the world are not necessarily orthogonal in the image, however. To determine a
set of relevant corner hypotheses, pairs of line segments with spatially proximate endpoints are grouped together
into candidate image corner features. Each potential image corner is then backprojected into a nominal Z-plane
in the scene, and that hypothetical scene corner is tested for orthogonality.

Mid-level collated features are sequences of perceptually grouped corners and lines that form a chain (Fig-
ures 5 and 6). A valid chain group must contain an alternation of corners and lines, and can be of any length.
Chains are a generalization of the collated features in earlier work® and allow final polygons of arbitrary rectilinear
shape to be constructed from low level features. Collated feature chains are represented by paths in a feature



relation graph. Low level features (corners and line segments) are nodes in the graph, and perceptual grouping
relations between these features are represented by edges in the graph. Nodes have a certainty measure that
represents the confidence of the low level feature extraction routines; edges are weighted with the certainty of the
grouping that the edge represents. A chain of collated features inherits an accumulated certainty measure from
all the nodes and edges along its path.

Figure 7: Final rooftop hypotheses for Figure 1. Figure 8: Final rooftop hypotheses for Figure 2.

High level polygon hypothesis extraction proceeds in two steps. First, all possible polygons are computed
from the collated features. Then, polygon hypotheses are arbitrated in order to arrive at a final set of non-
conflicting, high confidence rooftop polygons (Figures 7 and 8). Polygon hypotheses are simply closed chains,
which can be found as cycles in the feature relation graph. All of the cycles in the feature relation graph are
searched for in a depth first manner, and stored in a dependency graph where nodes represent complete cycles
(rooftop hypotheses). Nodes in the dependency graph contain the certainty of the cycle that the node represents.
An edge between two nodes in the dependency graph is created when cycles have low level features in common.
The final set of non-overlapping rooftop polygons is the set of nodes in the dependency graph that are both
independent (have no edges in common) and are of maximum certainty. Standard graph-theoretic techniques are
employed to discover the maximally-weighted set of independent cycles is, which is output by the algorithm as a
set of independent high confidence rooftop polygons.

While searching for closed cycles, the collated feature detector may be invoked in order to attempt closure
of chains that are missing a particular feature (an example occurs in Figure 6). The system then searches for
evidence in the image that such a virtual feature can be hypothesized. In this way, the rooftop detection process
does not have to rely on the original set of features that were extracted from the image. Rather, as evidence for
a polygon accumulates, tailor-made searches for lower level features can be performed. This type of top-down
inquiry increases system robustness.



3.3 Epipolar line segment matching

After detecting a potential rooftop in one image, corroborating geometric evidence is sought in other images
(often taken from widely different viewpoints) via epipolar feature matching. The primary difficulty to be overcome
during epipolar matching is the resolution of ambiguous potential matches, and this ambiguity is highest when
only a single pair of images are used. For example, the epipolar search region for a roof edge match will often
contain multiple potentally matching line segments of the appropriate length and orientation, one of which comes
from the corresponding roof edge, but the others coming from the base of the building, the shadow edge of the
building on the ground, or from roof/base/shadow edges of adjacent buildings (see Figure 9). This situation is
exacerbated when the roof edge being searched for happens to be nearly aligned with an epipolar line in the
second image. The resolution of this potential ambiguity is the reason that simultaneous processing of multiple
images with a variety of viewpoints and sun angles is preferred in the UMass system.
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Figure 9: Multiple ambiguous matches can often be resolved by consulting a new view.

We match rooftop polygons by searching for each component line segment separately and then fusing the
results. For each polygon segment from one image, an appropriate epipolar search area is formed in each of the
other images, based on the known camera geometry and the assumption that the roof is flat. This quadrilateral
search area is scanned for possible matching edges, the disparity of each potential match implying a different
roof height in the scene. Results from each line search are combined in a 1-dimensional histogram, each potential
match voting for a particular roof height. Each vote is weighted by compatibility of the match in terms of expected
line segment orientation and length. This allows for correct handling of fragmented line data, for example, since
the combined votes of all subpieces of a fragmented line count the same as the vote of a full-sized, unfragmented
line. A single global histogram accumulates height votes from multiple images, and for multiple edges in a rooftop
polygon. After all votes have been tallied, the histogram bucket containing the most votes yields an estimate of
the roof height in the scene and a set of correspondences between rooftop edges and image line segments from
multiple views.

3.4 Wireframe triangulation/extrusion

After finding a set of rooftop edge correspondences via epipolar matching, multi-image triangulation is per-
formed to determine the precise size, shape, and position of the roof polygon in the local 3D site coordinate system.
A nonlinear estimation algorithm has been developed for simultaneous multi-image, multi-line triangulation of
3D line structures.

Two versions of the triangulation subsystem have been developed. In the first, the parameters estimated for
each rooftop edge are the Pliicker coordinates of the algebraic 3D line coinciding with the edge. Specific points



of interest, like vertices of the rooftop polygon, are computed as the intersections of these infinite algebraic lines.
Pliicker coordinates are a way of embedding the 4-dimensional manifold of 3D lines into R®. Although the Plicker
representation requires 6 parameters to be estimated for each line rather than 4, it simplifies the representation
of geometric constraints between lines. For the generic flat-roofed rectilinear building class being considered
here, a set of constraints is specified to ensure that pairs of adjacent lines in a traversal around the polygon
are perpendicular, that all lines are coplanar, and that all lines are perpendicular to the Z-axis of the local site
coordinate system. An iterative, nonlinear least-squares procedure determines the Pliicker coordinates for all lines
simultaneously such that all the object-level constraints are satisfied and an objective “fit” function is minimized
that measures how well each projected algebraic line aligns with the 2D image segments that correspond to it.

Although triangulation of line structures via Pliicker coordinates is general, in the sense that any set of 3D lines
can be represented, we have found this approach to be computationally burdensome and numerically unstable.
The reason for this is mainly due to the number of parameters in the representation and the number of constraints
that must be imposed to achieve a unique, geometrically accurate solution. In particular, triangulation of a rooftop
polygon containing n lines requires 6 x n parameters to represent the Pliicker coordinates, plus an addition 2 x n
Lagrange multipliers to ensure a unique solution (recall that the dimension of the line manifold is 4, thus 6 -4 = 2
additional constraints are required for each line to make the solution vector unique). Further constraints (and
thus more Lagrange multiplier parameters) are necessary to impose the required geometric configuration on the
lines in the final polygon, namely that all are coplanar and horizontal, and that adjacent pairs are perpendicular.

In response to these computational difficulties, a second version of the triangulation system has been developed
using a specialized parameterization for representing flat, rectilinear polygons. The types of line structures that
can be triangulated are considerably more restrictive than in the earlier, general version, however the restrictions
mesh well with current system assumptions and result in a much more streamlined optimization problem. Instead
of each line being represented separately, a whole rectilinear polygon is parameterized at once, using the variables
shown in Figure 10. The horizontal plane containing the polygon is parameterized by a single variable Z. The
orientation of the rectilinear structure within that plane is represented by a single parameter@. Finally, each
separate line within the polygon is represented by a single value r; representing the signed perpendicular distance
of that line from some nominal point in the plane, usually chosen to be near the center of mass of the polygon
being estimated. The representation is simple and compact, and the method of Lagrange multipliers is no longer
necessary since the coplanarity and rectilinearity constraints on the polygon’s shape are already built in to the
representation.
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Figure 10: Parameterization of a flat, rectilinear polygon for multi-image triangulation.

Regardless of which parameterization is chosen, nonlinear estimation algorithms typically require an initial
estimate that is then iteratively refined. In this system, the original rooftop polygon extracted by the building
detector, and the roof height estimate computed by the epipolar matching algorithm, are used to generate an
initial, flat, roof polygon. After triangulation, each 3D rooftop polygon is extruded down to the ground, as
determined by the digital terrain map for the site (see Section 2.4), to form a volumetric wireframe model.
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3.5 Projective intensity mapping

To provide added realism for visual displays, and as a convenient means of storage for later detailed processing
of building surface information, mechanisms have been developed for projectively warping image intensities onto
polygonal building facets. Planar projective transformations provide a mathematical description of how surface
structure from a planar building facet maps into an image. By inverting this transformation using known building
position and camera geometry, intensity information from each image can be backprojected to “paint” the walls
and roof of the building model. Since multiple images are used, intensity information from all faces of the building
polygon can be recovered, even though they are not all seen in any single image (see Figure 11). The full intensity-
mapped site model can then be rendered to predict how the scene will appear from a new view (Figure 12), and
on high-end workstations realistic real-time “fly-throughs” can be generated. For more details on the construction
of the site model used to generate Figure 12, see (Collins, 1994).

Figure 11: Intensity maps are stored Figure 12: Intensity-mapped site model rendered from a new view.
with the planar facets of a building
model.

By storing surface information with the object, intensity mapping provides a convenient storage method for
later symbolic extraction of detailed surface structures like windows, doors and roof vents. Furthermore, this
subsequent processing becomes greatly simplified. For example, rectangular lattices of windows or roof vents can
be searched for in the unwarped intensity maps without complication from the effects of perspective distortion.
Secondly, specific surface structure extraction techniques can be applied only where relevant, i.e. window and
door extraction can be focused on building wall intensity maps, while roof vent computations are performed only
on roofs.

When processing multiple overlapping images, each building facet will often be seen in more than one image,
under a variety of viewing angles and illumination conditions. This has led to the development of a systematic
mechanism for managing intensity map data, called the Orthographic Facet Library. The orthographic facet
library is an indexed data set storing all of the intensity-mapped images of all the polygonal building facets that
have been recovered from the site. Usually, a horizontal roof facet appears in all the aerial site images and thus
has a complete set of intensity-map versions in the library. Vertical wall facets usually show up only in a subset
of the site images, however, so fewer intensity-map versions are available to choose from. Each intensity-map
version is tagged with a variety of spatial and photometric indices (e.g. viewing angle, resolution, sun angle) in
order to facilitate retrieval and analysis by image understanding algorithms. As intensity-mapped building facets
accumulate in the facet image library, knowledge about the site improves; albeit in an implicit, image-based form.

When using the facet library to render a new view of the site, it is necessary to distill the information contained
in multiple intensity-mapped versions of each building facet into a single “best” image representation for that
facet. Two alternative solutions have been tried so far. The first approach is to use the pixels in the best
representative version of each facet to paint the given surface. The “goodness” of an image with respect to a



particular building facet is based on a heuristic measure that takes into account the camera viewing angle, the sun
angle, and the placement and geometry of other buildings in the site, all of which allow the system to compute
the size, relative orientation, and photometric contrast of the facet in the image, as well as predict the percentage
of the facet covered by shadows or occlusion in that view. The advantage of best version representation is its
simplicity, in that only a heuristic function is calculated for each view and no further image processing is needed.
The drawback of this method is that sometimes occlusions or shadows appear in ever image of a building facet,
thus the representative will have to include those artifacts no matter which image is chosen. The best version
representation was used to render the building in Figure 11.

In contrast to the best version approach, the best representative piece method takes occlusions and shadows
into account. As intensity-map versions are placed in the library, pixels in the facet are partitioned into “pieces”
according to whether they are sunlit or in shadow. Pixels that are labeled as occluded areas are discarded and
are not considered to be a part of any piece. The idea of the best piece representation is to assign a heuristic
value to each piece of an intensity-map version, rather than to the entire version. When rendering a new view,
each pixel on a building’s surface is backprojected to determine which pieces it is associated with. This set of
pieces is ordered according o their heuristic values, and the photometric value for the pixel is selected from the
highest-rated piece. Hence, all the pixels in the rendered image are the best ones available. Note, however, that
some pixels in the rendered image might not exist in any of the pieces in the library, when they correspond to
portions of building that have never been seen in any of the images. These pixels are painted black by default.
The best version representation was used to render the site model in Figure 12.

The best piece representation is a method of data fusion, and compatability problems arise in that different
pieces of each building face can appear under different sunlight conditions in different images, and thus different
portions of the same building face may be assigned significantly different grey-levels, leading to a patchy appear-
ance. One reasonable way to solve this problem is to make all the versions of the facet “similar” in intensity.
Currently, a simple histogram adjustment technique is used to make the intensity distributions of all the pieces
associated with a single building face uniform with respect to each other. The biggest sunlit piece of the facet is
chosen as the model piece against which all other pieces are transformed.

4 SUMMARY AND FUTURE WORK

UMass has developed an image understanding system for automated site model acquisition. The algorithms
currently assume a generic class of flat roofed, rectilinear buildings. To acquire a new site model, an automated
building detector is run on one image to hypothesize potential building rooftops. Supporting evidence is located
in other images via epipolar line segment matching, and the precise 3D shape and location of each building is
determine by multi-image triangulation. Projective mapping of image intensity information onto these polyhedral
building models results in a realistic site model that can be rendered using virtual “fly-through” graphics. In
an operational scenario, this process would be repeated as new images become available, gradually accumulating
evidence over time to make the site model database more complete and more accurate.

Several avenues for system improvement are open. One high priority is to add capabilities for detecting
and triangulating peaked roof buildings. Another significant improvement would be extending the epipolar
matching and triangulation portions of the system to analyze why a particular building roof hypothesis failed to
be verified. There are many cases where the rooftop detector has outlined split-level buildings with a single roof
polygon; automatic detection of these situations, followed by splitting of the rooftop hypothesis into two separate
hypotheses, would result in an improvement in system performance.

These symbolic building extraction procedures will soon be combined with a correlation-based terrain extrac-
tion system.!* The two techniques clearly complement each other: the terrain extraction system can determine
a digital elevation map upon which the volumetric building models rest, and the symbolic building extraction
procedures can identify building occlusion boundaries where correlation-based terrain recovery is expected to
behave poorly. A tighter coupling of the two systems, where an initial digital elevation map is used to focus



attention on distinctive humps that may be buildings, or where correlation-based reconstruction techniques are
applied to building rooftop regions to identify fine surface structure like roof vents and air conditioner units, may
also be investigated.
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Abstract

A set of image understanding (IU) modules is be-
ing developed for performing several geometric site
modeling tasks, including initial model acquisition,
model extension, model-to-image registration and
site model refinement. This paper describes how the
UMass system would acquire an initial site model.
IU algorithms have been developed to hypothesize
potential building roofs in an image, automatically
locate supporting geometric evidence in other im-
ages, and determine the precise shape and position
of the new buildings via multi-image triangulation.
This process is demonstrated on a subset of images
from the RADIUS Model Board 1 data set.

1 Introduction

The University of Massachusetts is developing a set
of image understanding modules for automated site
model acquisition, extension and refinement as part
of the ARPA/ORD RADIUS project. This paper
focuses on algorithms for automated building model
acquisition. These algorithms are presented by way
of an experimental case study using images J1-J8
of the RADIUS Model Board 1 data set. In this ex-
periment, 25 building models were generated, cov-
ering a large portion of the model board site. The
study was conducted in order to exercise and eval-
uate current model acquisition procedures on a re-
alistic task.

There are many stages in the model acquisition pro-
cess. This paper steps through the following sub-
tasks:

1. line segment extraction

camera resection

building detection

multi-image epipolar matching
constrained, multi-image triangulation, and
projective intensity mapping.
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Description of each task will follow a standard pat-
tern. First, a statement of task motivation and
goals is presented. Second, a brief overview of the
algorithm currently being used to perform the task
is given. Detailed algorithmic descriptions are out-
side the scope of this paper, and will be provided
elsewhere. Last, results from the Model Board 1
site modeling experiment are presented. The goal is
to present a fair evaluation of current performance
by showing representative successes, failures, and a
quantitative analysis of results.

Buildings come in all sizes and shapes. To main-
tain a tractable goal for our research efforts we have
chosen initially to focus on a single generic class
of building models, namely flat-roofed, rectilinear
structures. The simplest example of this class is a
rectangular box-shape; however other examples in-
clude L-shapes, U-shapes, and indeed any arbitrary
building shape such that pairs of adjacent roof edges
are perpendicular and lie in a single plane. The
most prevalent building types not included in this
class are peaked-roof structures. Expanding current
algorithms to deal with peaked roofs is a priority for
the next stage of system development.

This paper ends with a sketch of how the model ac-
quisition process described here fits within a larger
site modeling framework being developed at UMass.
In the near future we plan to evaluate model exten-
sion and refinement techniques using the detailed
site model acquired in this experiment.

2 Radius Model Board 1

The model acquisition experiment used as a run-
ning example throughout this paper was performed
using images J1-J8 from the RADIUS Model Board
1 data set. Figure 1 shows a sample image from the
data set. The scene is a 1:500 inch scale model of
an industrial site. Ground truth measurements are
available for about 110 points scattered throughout
the model. The scale model is built on a table top
that can be raised and tilted to simulate a variety of
camera altitudes and orientations. For model board



Figure 1: A sample image from Model Board 1

images J1-J8 the table was set to simulate aerial
photographs taken with a ground sample distance
of 18 inches, that is, pixels near the center of the
image backproject to quadrilaterals on the ground
with sides approximately 18 inches long (all mea-
surements will be reported in scaled-up (i.e. x500)
object coordinates). Each image contains approx-
imately 1320 x 1035 pixels, with about 11 bits of
grey level information per pixel. The dimensions of
each image vary slightly because the images have
been resampled and subjected to unmodeled geo-
metric and photometric distortions that simulate
actual operating conditions. A later set of undis-
torted images was provided, which we plan to use
for model refinement.

3 Model Acquisition Tasks

3.1 Line Segment Extraction

Motivation. To help bridge the huge represen-
tational gap between pixels and site models, fea-
ture extraction routines are applied to produce sym-
bolic, geometric representations of potentially im-
portant image features. Many algorithms for ac-
quiring building models rely on extracted straight
line segments.

Algorithm. We use the Boldt algorithm for ex-
tracting line segments [2]. At the heart of the
Boldt algorithm is a hierarchical grouping system
inspired by the Gestalt laws of perceptual organi-
zation. Zero-crossing points of the Laplacian of the
intensity image provide an initial set of local in-
tensity edges. Hierarchical grouping then proceeds
iteratively; at each iteration edge pairs are linked
and replaced by a single longer edge if their end
points are close and their orientation and contrast
values are similar. Each iteration results in a set of
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Figure 2: Line segments extracted from Figure 1

increasingly longer line segments.

Our current implementation of the Boldt algorithm
cannot handle full-sized 1320 x 1035 images. For
this reason, the following procedure was performed
for each image J1-J8. First, image resolution was
reduced by half using Gaussian filtering and sub-
sampling. The reduced image was then cut into
overlapping subimages that were processed sepa-
rately by the Boldt line extraction algorithm. All
line segments found were translated and scaled back
into the original image coordinate system, and fil-
tered so that all line segments in the final set had
a length of at least 10 pixels long and a contrast of
at least 15 grey levels.

Results. This procedure produced roughly 2800
line segments per image. Figure 2 shows a rep-
resentative set of lines, extracted from the image
shown in Figure 1. Breaking each image into over-
lapping pieces introduced some artifacts into the
line data. In particular, lines are fragmented at
subimage boundaries, and lines lying totally within
an overlapping area are duplicated. No attempt
was made to post-process the line data to remove
these artifacts, and the performance of subsequent
algorithms did not appear to be degraded.

3.2 Camera Resection

Motivation. Camera resection (calibration) is a
precursor for many site modeling tasks. Algorithms
for camera resection traditionally use a set of 3D-to-
2D feature correspondences to solve for the internal
(lens) and external (pose) parameters of the camera
for each image, but we use the term in an extended
manner to describe any process that determines the
projective relationship between image and scene, or
between images. All of the algorithms discussed in



this paper represent camera parameters using a 3x4
projective transformation matrix (sometimes called
a Direct Linear Transform or DLT matrix). This
representation makes no distinction between inter-
nal and external parameters.

Algorithm. Ideally, images to be used for site
modeling purposes would be resected prior to the
application of image understanding modules for au-
tomated building acquisition. Indeed, that is the
goal of the upcoming ARPA/ORD Model Sup-
ported Positioning (MSP) project. The model
board images were not supplied with an accurate
set of camera parameters, however.

We originally formed DLT matrices for images J1-
J8 using the resected camera parameters provided
with version 1.0 of the RCDE (RADIUS Com-
mon Development Environment) software package
[6]. The RCDE camera parameters worked fine for
building detection and epipolar matching, but the
building triangulation results were not very accu-
rate when compared with corresponding 3D ground
truth measurements. An investigation into the
cause showed that the RCDE resections used a set
of incorrectly measured ground truth points that
was distributed with an early version of the Model
Board 1 data set. The faulty resections will be cor-
rected in version 2.0 of the RCDE.

To get more accurate triangulation results, we re-
sected the images ourselves by directly estimating
the 11 free parameters of the DLT matrix for each
image. Matrix elements were computed by setting
the lower right-hand element of the DLT matrix to
1, then estimating the remaining elements using an
iterative least squares procedure to minimize the
sum of squared residual errors between projected
ground truth points (the correct ones) and their
hand-selected image locations.

Results. Table 1 shows the average residual error
for the DLT resections we performed. The residual
error for each image is in the 2-3 pixel range, repre-
senting the level of unmodeled geometric distortion
present in each image. Since the ground scale dis-
tance is 18 inches, this corresponds to a backpro-
jection error of roughly 3-4.5 feet in object space.
This is a significant amount of error, and presents
a good test of system robustness. As mentioned
earlier, model refinement procedures will later be
applied using an undistorted set of images.

Table 1: RMS errors (in pixels) for J1-J8 resections.

image number || J1 | J2 | J3 | J4
RMS error 1.95  1.93 | 2.72 | 2.38

image number || J5 | J6 | J7 | J8
RMS error 2.25 | 2.87 | 2.38 | 2.04

3.3 Building Detection

Motivation. The goal of automated building de-
tection is to roughly delineate building boundaries
that will later be verified in other images by epipo-
lar feature matching and triangulated to create 3D
geometric building models.

Algorithm. The building detection algorithm is
based on finding image polygons corresponding to
the boundaries of flat, rectilinear rooftops in the
scene. The algorithm is described in detail else-
where in these proceedings [4]. Briefly, possible
roof corners are identified by convolution with a
set of oriented corner templates that respond to
perspective projections of flat, orthogonal rooftop
corners in the scene. Perceptually compatible cor-
ner pairs initiate a search for supporting line seg-
ment data. All corners and supporting lines are
entered into a feature-relation graph and weighted
according to the amount of support they receive
from the low-level image data. Potential building
roof polygons appear as cycles in the graph; vir-
tual corner features may be hypothesized to com-
plete a cycle, if necessary. Rooftops are finally ex-
tracted by a graph-theoretic algorithm that parti-
tions the feature-relation graph into a set of max-
imally weighted, independent cycles representing
closed, high-confidence building roofs.

Results. The building detector was run on image
J3. This happens to be a near-nadir view, but noth-
ing in the code precludes using one of the oblique
views instead (see [4]). Roof detection is computa-
tionally expensive due to low-level feature extrac-
tion and the rapid growth of the feature-relation
graph with image size. For this experiment the
image was partitioned into nine separate chunks,
loosely representing different “functional areas”. To
further speed up processing time, only templates for
finding corners oriented with respect to the predom-
inant N-S, E-W grid plan of the scene were used.

The roof detector generated 40 polygonal rooftop
hypotheses. Most of the hypothesized roofs are
rectangular, but six are L-shaped. Outlines of the
extracted rooftops are shown in Figure 3. Alpha-
betic labels key into the discussion below. First,
note that the overall performance is quite good for
buildings entirely in view. Most of the major roof
boundaries in the scene have been extracted, and
in the central cluster of buildings (see area A in
Figure 3) the segmentation is nearly perfect.

There were some false positives — polygons ex-
tracted that do not in fact delineate the bound-
aries of a roof. The most obvious example is the
set of overlapping polygonal rooftops detected over
the large building with many parallel roof vents
(marked B in Figure 3). Note that the correct outer



Figure 3: Roof hypotheses extracted from image J3. Alphabetic labels are referred to in the text.

outline of this building roof is detected, however.
The set of parallel roof vents on this building, cou-
pled with the close proximity of other buildings and
three tall smokestacks (and their shadows!) that oc-
clude and fragment the building boundary in many
of the images, make this one of the most challenging
buildings in the site for rooftop detection, epipolar
matching and intensity mapping.

There are also some false negatives, which are build-
ings that should have been detected, but weren’t.
The most prevalent example of this is a set of build-
ings (see C) that are only partially in view at the
edge of the image. The current system is built im-
plicitly around the idea of detecting complete build-
ing models; partial building structure information
that is extracted is not carried along. Although the
subsequent epipolar feature matching and multi-
image line triangulation routines are already able to
handle such building ”fragments”, additional code
would be necessary to merge the partial building
wireframes produced from different images into a
single building model.

Label D marks a false negative that is in full view.
Two adjacent corners in the rooftop polygon were
missed by the corner extraction algorithm. Al-
though a top-down virtual feature hypothesis can
be invoked to insert a single missing corner in an
incomplete rooftop polygon, there is no recovery
mechanism when two adjacent corners are missing.
It should be stressed that even though a single im-
age was used here for bottom-up hypotheses, build-
ings that are not extracted in one image will often
be found easily in other images with different view-
points and sun angles.

There are several cases that cannot be strictly clas-
sified as false positives or false negatives. Several
split-level buildings appearing along the right edge
of the image (e.g. E) are outlined with single poly-
gons rather than with one polygon per roof level.
Some peaked roof buildings were also outlined, even
though they do not conform to the generic assump-
tions underlying the system.



3.4 Multi-image Epipolar Matching

Motivation. After detecting a potential rooftop
in one image, corroborating geometric evidence is
sought in other images (often taken from widely dif-
ferent viewpoints) via epipolar feature matching.

Algorithm. The key problem in epipolar match-
ing is disambiguation of multiple potential matches.
One way to avoid ambiguity is to match higher-level
structures that are more distinctive. Direct imple-
mentation of this apprach is problematic, however,
since failure to extract the high-level structure in
another image will cause a failure to find a match,
even when partial low-level evidence for the match-
ing structure is available.

We match rooftop polygons by searching for each
component line segment separately and then fusing
the results. For each polygon segment from one im-
age, an appropriate epipolar search area is formed
in each of the other images, based on the known
camera parameters (resected DLT matrices) and
the assumption that the roof is flat. This quadri-
lateral search area is scanned for possible match-
ing edges, each potential match implying a differ-
ent roof height in the scene via a simple cross ratio
calculation. Results from each line search are com-
bined in a 1-dimensional histogram, each potential
match voting for a particular roof height. Each vote
is weighted by compatibility of the match in terms
of expected line segment orientation and length. A
single global histogram accumulates height votes
from multiple images, and for multiple edges in a
rooftop polygon. After all votes have been tal-
lied, the histogram bucket containing the most votes
yields an estimate of the roof height in the scene and
a set of correspondences between rooftop edges and
image line segments from multiple views.

Results. For the Model Board 1 experiment, the
minimum and maximum values for the epipolar
height histogram were chosen based on the range of
Z-coordinates present in the set of measured ground
truth points. The histogram contained 24 buckets
with a height range of roughly 12 feet per bucket.
After epipolar voting was completed for a rooftop
polygon, correspondences were extracted from the
histogram bucket containing the highest number of
votes and those buckets immediately adjacent to it.

Epipolar matching of a rooftop hypothesis is consid-
ered to have failed when, for any edge in the rooftop
polygon, no line segment correspondences are found
in any image. This criterion was chosen because
the 3D line triangulation algorithm will fail to con-
verge in this case. Based on this criterion, epipo-
lar matching failed on eight rooftop polygons. Six
were either peaked or multi-layer roofs that did not
fit the generic flat-roofed building assumption, and

the other two were building fragments with some
sides shorter than the minimum length threshold
on the line segment data.

At this stage we also removed six obviously incor-
rect building hypotheses by hand. Five of them
comprised the set of overlapping polygons within
the building labeled B in Figure 3. The sixth was
the fenced in area appearing directly below label D
in that image. We believe that pointing to building
hypotheses that are presented by the system to ei-
ther accept or reject them is an acceptable level of
interaction when creating a new site model. How-
ever, we are actively investigating methods for de-
tecting and removing such mistakes automatically.

3.5 Multi-image Line Triangulation

Motivation. Multi-image triangulation is per-
formed to determine the precise size, shape, and
position of a building in the local 3D site coordinate
system. Object-level constraints such as perpendic-
ularity are imposed for more reliable results.

Algorithm. We have implemented a constrained,
nonlinear estimation algorithm for simultaneous
multi-image, multi-line triangulation of 3D line
structures with object-level constraints. This algo-
rithm is used for triangulating 3D rooftop polygons
from the line segment correspondences determined
by epipolar feature matching.

The parameters estimated for each rooftop edge are
the Pliicker coordinates of the algebraic 3D line co-
inciding with the edge - specific points of interest,
like vertices of the rooftop polygon, are computed
as the intersections of these infinite algebraic lines.
Pliicker coordinates are a way of embedding the 4-
dimensional manifold of 3D lines into R®. Each line
is represented by a pair of 3-vectors (a, b) such that
a+-a=1and a-b=0. Vector e is the unit orien-
tation vector of the line, and b is the moment vector
of the line about the origin (it is normal to the plane
containing both the line and the origin, with length
equal to the distance of the line from the origin).
Although the Pliicker representation requires 6 pa-
rameters to be estimated for each line rather than
4, it simplifies the representation of geometric con-
straints between lines. For the generic flat-roofed
rectilinear building class being considered here, we
specify a set of constraints to ensure that pairs of
adjacent lines in a traversal around the polygon are
perpendicular, that all lines are coplanar, and that
all lines are perpendicular to the Z-axis of the local
site coordinate system. These conditions are lin-
ear and quadratic constraints when represented as
functions of the Pliicker coordinates.

An iterative, nonlinear least-squares procedure de-
termines the Pliicker coordinates for all lines simul-



Figure 4: Reprojection of 3D triangulated rooftops back into image J3 (compare with Figure 3.) Numeric labels
mark 21 roof vertices where ground truth measurements are known.

taneously such that all the object-level constraints
are satisfied and an objective “fit” function is min-
imized that measures how well each projected alge-
braic line aligns with the 2D image segments that
correspond to it. A number of different objective
measures are being considered; the current one is
a function of the sum of squared distances from
each projected infinite line to the endpoints of corre-
sponding 2D line segments in the image. Nonlinear
estimation algorithms typically require an initial es-
timate that is then iteratively refined. We used the
original rooftop polygon extracted by the building
detector, and the roof height estimate computed by
the epipolar matching algorithm, to generate an ini-
tial, flat, 3D roof polygon.

After triangulation, each 3D rooftop polygon is ex-
truded down to the ground to form a volumetric
model. For the Model Board 1 site we represented
the ground as a horizontal plane with Z-coordinate
value determined from the ground truth measure-
ments. More generally, we will soon be combining
our symbolic building extraction routines with the

digital terrain maps produced by the UMass Terrain
Reconstruction System [7].

Results. Outlines of the final set of triangulated
rooftops are shown in Figure 4. The rightmost
polygon in the image is noticeably incorrect. This
polygon actually corresponds to a split-level build-
ing containing two roofs at different heights in the
scene. Most of these split-level buildings were auto-
matically filtered out during epipolar matching, but
this one managed to survive. Determining how to
automatically detect and remove such errors is an
ongoing research issue — there is information con-
tained in the epipolar histograms and triangulation
residuals that has yet to be taken advantage of.

To evaluate the 3D accuracy of the triangulated
building polygons, 21 roof vertices were identi-
fied where ground truth measurements are known.
These locations are labeled in Figure 4 with numeric
indices that are keyed to the file of Model Board 1
ground truth measurements. Table 2 shows the Eu-
clidean distances between triangulated polygon ver-



tices and their ground truth locations The average
distance is 4.31 feet, which is reasonable given the
level of geometric distortion present in the images
(see Section 3.2).

Table 2: Euclidean distance (in feet) between triangulated
and ground truth building vertex positions. Numeric indices
correspond to the labeled positions in Figure 4.

index error || index | error || index | error
10 6.21 41 | 3.53 69 | 2.78
17 1.20 42 | 5.21 70 | 2.12
18 | 13.70 43 | 4.70 71 | 2.62
22 3.41 47 | 3.88 74 | 2.62
37 6.75 49 | 4.22 75 | 4.87
39 3.59 67 | 3.85 79 | 2.30
40 4.30 68 | 4.18 90 | 4.58

It is instructive to decompose the distance error
into its horizontal and vertical components. The
average horizontal distance error is 3.76 feet, while
the average vertical error is only 1.61 feet. This
is understandable, since all observed rooftop lines
are considered simultaneously when estimating the
building height (vertical position), whereas the hor-
izontal position of a rooftop vertex is primarily af-
fected only by its two adjacent edges.

Also note that the error associated with point 18
appears to be an outlier - it is twice as large as
the next largest distance. The building was not tri-
angulated well, due in part to its extremely close
proximity to a neighboring building, which inter-
feres with correct matching and triangulation. It is
no coincidence that the vertex error computed for
the neighboring building is the second largest error.

3.6 Projective Intensity Mapping

Motivation. Projective mapping of image intensi-
ties (rendering) onto polygonal building model faces
enhances their visual realism and provides a conve-
nient storage mechanism for later symbolic extrac-
tion of detailed surface structure.

Algorithm. Planar projective transformations
provide a mathematical description of how surface
structure from a planar building facet maps into
an image. By inverting this transformation using
known building position and camera DLT matrices,
intensity information from each image can be back-
projected to “paint” the walls and roof of the build-
ing model. This is performed for multiple images,
leading to a library of intensity maps for all building
facets, under a variety of viewing conditions.

By storing surface information with the object,
intensity mapping provides a convenient storage

method for later symbolic extraction of detailed sur-
face structures like windows, doors and roof vents.
Furthermore, this subsequent processing becomes
greatly simplified. For example, rectangular lat-
tices of windows or roof vents can be searched for in
the unwarped intensity maps without complication
from the effects of perspective distortion. Secondly,
specific surface structure extraction techniques can
be applied only where relevant, i.e. window and
door extraction can be focused on building wall in-
tensity maps, while roof vent computations are per-
formed only on roofs. This is one component of
an extended effort on our part towards automatic
recognition of general object classes without requir-
ing significant effort by the user, e.g. recognizing
classes of doors, windows, etc., and eventually vehi-
cles, roads, and most of the object types expected
in these domains.

Results. For each of the 25 volumetric building
models, a set of intensity maps was generated for
each planar facet by projectively mapping intensity
values from the images in which the facet is visible.
The best intensity map for each facet in terms of
resolution and contrast was chosen and stored with
the model. Figure 5 shows an example of the inten-
sity information stored with each building model.
Since multiple images are used, intensity informa-
tion from all faces is available even though they are
not all visible from any single view.

Figure 5: Intensity map information is stored with the
planar facets of a building model.



The intensity-mapped building models are being
used to construct a graphical site model that can
be examined interactively on an SGI workstation.
A simulated video “fly-through” of the site is also
being produced, to demonstrate the level of real-
ism achievable by these modeling techniques, and
to investigate the use of visualization techniques for
interactive evaluation of modeling results. Future
work will be directed towards combining intensity
information from multiple views of each polygonal
building facet to remove visual artifacts caused by
shadows and occlusion and to potentially increase
the clarity of the surface intensity maps using super-
resolution fusion techniques.

4 Conclusion

A set of IU algorithms for automated site model ac-
quisition was presented. The algorithms currently
assume a generic class of flat roofed, rectilinear
buildings. When run on image J3 of the Model
Board 1 imagery, an automated building detector
produced 40 rooftop hypotheses. Supporting evi-
dence was located in other images via epipolar line
segment matching, and the precise 3D shape and
location of each building was determined by con-
strained multi-image line triangulation. Through a
process of filtering and attrition, we ended up with
25 building models that represent most of the cen-
tral buildings in the site. Projective mapping of
intensity information from the images onto these
polyhedral models results in a compelling site model
display that can be interactively explored on the
SGI using fly-through graphics.

The algorithms described here are part of a larger
system being developed at UMass for site model-
ing applications [3]. The UMass design philoso-
phy emphasizes model-directed processing, rigorous
3D perspective camera equations, and fusion of in-
formation across multiple images for increased ac-
curacy and reliability. Acquired site models will
be used for automated model-to-image registration
and resection of new images [1]. Proper registration
between an incoming image and a stored geometric
site model determines the position and appearance
of model features in the image. The model can then
be overlaid on the image to aid visual change de-
tection and verification of expected scene features.
Two other important site modeling tasks are model
eztension — updating the geometric site model by
adding or removing new buildings based on the re-
sults of change detection — and model refinement —
iteratively refining the shape, placement and surface
structure of building models as more views become
available [5]. Model extension and refinement are
expected to be ongoing processes that are repeated
whenever new images become available, each up-

dated model becoming the current site model for
the next iteration. Thus, over time, the site model
will be steadily improved to become more complete
and more accurate.
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Abstract

A system has been developed to acquire, extend and
refine 3D geomeliric site models from aertal imagery.
This system hypothesize potential building roofs in an
image, automatically locates supporting geomeiric ev-
idence in other images, and determines the precise
shape and position of the new buildings via multi-
image triangulation. Model-1o-image regisiration tech-
niques are applied to align new, incoming images
against the site model. Model extension and refine-
ment procedures are then performed to add previously
unseen buildings and to improve the geometric accu-
racy of the existing 3D building models.

1 Introduction

Acquisition of 3D geometric site models from aerial
imagery is currently the subject of an intense research
effort, sparked in part by the ARPA/ORD RADIUS
project (3, 4, 5, 8]. We have developed a set of im-
age understanding modules to acquire, extend and re-
fine 3D volumetric building models, and to provide a
digital elevation map of the surrounding terrain. Sys-
tem features include model-directed processing, rigor-
ous camera geometry, and fusion of information across
multiple images for increased accuracy and reliability.

Site model acquisition involves processing a set of
images to detect buildings and to determine their 3D
shape and placement in the scene. The site models
produced have obvious applications in areas such as
surveying, surveillance and automated cartography.
For example, acquired site models can be used for
model-to-image registration of incoming images, thus
allowing the model to be automatically overlaid on
each image as an aid to visual change detection and
verification of expected scene features. Two other im-
portant site modeling tasks are model extension — up-
dating the geometric site model by adding or removing
buildings based on the results of change detection -
and model refinement — iteratively refining the shape,
placement and surface structure of building models as
more views become available. Model extension and

*This work was funded by the RADIUS project under
ARPA/Army TEC contract number DACA76-92-C-0041 and
by ARPA/TACOM contract DAAE07-91-C-R035.

refinement are ongoing processes that are repeated
whenever new images become available, each updated
model becoming the current site model for the next
iteration. Thus, over time, the site model is steadily
improved to become more complete and more accu-
rate.

This paper focuses on algorithms for automated
building model acquisition and extension. To main-
tain a tractable goal for our research efforts, we have
chosen initially to focus on a single generic class of
building models, namely flat-roofed, rectilinear struc-
tures. The simplest example of this class is a rectan-
gular box-shape; however other examples include L-
shapes, U-shapes, and indeed any arbitrary building
shape such that pairs of adjacent roof edges are per-
pendicular and lie in a horizontal plane. Acquisition
of an initial site model is treated in Section 2, followed
by model extension in Section 3. This paper concludes
with a brief summary and a statement of future work.

2 Site Model Acquisition

The building model acquisition process involves
several subtasks: 1) line segment extraction, 2) build-
ing detection, 3) multi-image epipolar matching, 4)
constrained, multi-image triangulation, and 5) projec-
tive intensity mapping. These algorithms will be pre-
sented by way of an experimental case study using
images J1-J8 of the RADIUS model board 1 data set.
Figure 1 shows a sample image from the data set. Each
image contains approximately 1320 x 1035 pixels, with
about 11 bits of gray level information per pixel. Un-
modeled geometric and photometric distortions have
been added to each image to simulate actual operating
conditions. The scene is a 1:500 inch scale model of an
industrial site. Ground truth measurements are avail-
able for roughly 110 points scattered throughout the
model, which were used to determine the exterior ori-
entation for each image. The residual resection error
for each image is in the 2-3 pixel range, representing
the level of unmodeled geometric distortion present in
each image. This corresponds to a backprojection er-
ror of roughly 3-4.5 feet in (simulated) object space.
This is a significant amount of error that presents a
good test of system robustness.



Figure 1: A sample image from Model Board 1

2.1 Line Segment Extraction

To help bridge the huge representational gap be-
tween pixels and site models, feature extraction rou-
tines are applied to produce symbolic, geometric rep-
resentations of potentially important image features.
The algorithms for acquiring building models rely on
extracted straight line segments [2]. At the heart of
the Boldt algorithm is a hierarchical grouping system
inspired by the Gestalt laws of perceptual organiza-
tion. Zero-crossings of the Laplacian of the intensity
image provide an initial set of local intensity edges. Hi-
erarchical grouping then proceeds iteratively; at each
iteration edge pairs are linked and replaced by a sin-
gle longer edge if their end points are close and their
orientation and contrast values are similar. Filtering
to keep line segments with a length of at least 10 pix-
els and a contrast of at least 15 gray levels produced
roughly 2800 line segments per image. Figure 2 shows
a representative set of lines extracted from the image
shown in Figure 1.

2.2 Building Detection

The goal of automated building detection is to
roughly delineate building boundaries that will later
be verified in other images by epipolar feature match-
ing and triangulated to create 3D geometric build-
ing models. The building detection algorithm is
based on finding image polygons corresponding to
the boundaries of flat, rectilinear rooftops in the
scene [6]. Briefly, possible roof corners are identified
by line intersections. Perceptually compatible cor-
ner pairs are linked with surrounding line data, en-
tered into a feature-relation graph, and weighted ac-
cording to the amount of support they receive from
the low-level image data. Potential building roof
polygons appear as cycles in the graph; virtual cor-
ner features may be hypothesized to complete a cy-
cle, if necessary. Rooftops are finally extracted by
partitioning the feature-relation graph into a set of
maximally weighted, independent cycles representing
closed, high-confidence building roofs.

Figure 3 shows the results of building detection on
image J3 of the model board | data set. The roof
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Figure 2: Line segments extracted from Figure 1

detector generated 40 polygonal rooftop hypotheses.
Most of the hypothesized roofs are rectangular, but
six are L-shaped. Note that the overall performance
is quite good for buildings entirely in view. Most of
the major roof boundaries in the scene have been ex-
tracted, and in the central cluster of buildings (see
area A in Fig. 3) the segmentation is nearly perfect.

There were some false positives, i.e. polygons ex-
tracted that do not in fact delineate the boundaries of
aroof. The most obvious example is the set of overlap-
ping polygonal rooftops detected over the large build-
ing with many parallel roof vents (area B) Note that
the correct outer outline of this building roof is de-
tected, however. There are also some false negatives,
which are buildings that should have been detected,
but weren’t. The most prevalent example of this is
a set of buildings (area C) that are only partially in
view at the edge of the image. Label D marks a false
negative that is in full view. Two adjacent corners in
the rooftop polygon were missed by the corner extrac-
tion algorithm. It should be stressed that even though
a single image was used here for bottom-up hypothe-
ses, buildings that are not extracted in one image will
often be found easily in other images with different
viewpoints and sun angles.

There are several cases that cannot be strictly clas-
sified as false positives or false negatives. Several
split-level buildings appearing along the right edge of
the image (area E) are outlined with single polygons
rather than with one polygon per roof level. Some
peaked roof buildings were also outlined, even though
they do not conform to the generic assumptions un-
derlying the system.

2.3 Multi-image Epipolar Matching

After detecting a potential rooftop in one image,
corroborating geometric evidence is sought in other
images (often taken from widely different viewpoints)
via epipolar feature matching. Rooftop polygons are
matched by searching for each component line seg-
ment separately and then fusing the results. For each
polygon segment from one image, an epipolar search



Figure 3: Roof hypotheses extracted from image J3. Alphabetic labels are referred to in the text.

area is formed in each of the other images, based on
the known camera transformations and the assump-
tion that the roof is flat. This quadrilateral search
area is scanned for possible matching line segments,
each potential match implying a different roof height
in the scene. Results from each line search are com-
bined in a 1-dimensional histogram, each match voting
for a particular roof height, weighted by compatibil-
ity of the match in terms of expected line segment
orientation and length. A single global histogram ac-
cumulates height votes from multiple images, and for
multiple edges in a rooftop polygon. After all votes
have been tallied, the histogram bucket containing the
most votes yields an estimate of the roof height in the
scene and a set of correspondences between rooftop
edges and image line segments from multiple views.

Epipolar matching of a rooftop hypothesis is con-
sidered to have failed when, for any edge in the rooftop
polygon, no line segment correspondences are found in
any image. Based on this criterion, epipolar match-
ing failed on eight rooftop polygons. Six were either
peaked or multi-layer roofs that did not fit the generic
flat-roofed building assumption, and the other two
were building fragments with some sides shorter than
the minimum length threshold on the line segment
data. At this stage, six incorrect building hypotheses
were removed by hand; detecting and removing such
mistakes automatically is being actively investigated.

2.4 Multi-image Line Triangulation

Multi-image triangulation is performed to deter-
mine the precise size, shape, and position of a building
in the local 3D site coordinate system. A nonlinear
estimation algorithm has been developed for simul-
taneous multi-image, multi-line triangulation of 3D
line structures. Object-space constraints are imposed
for more reliable results. This algorithm is used for
triangulating 3D rooftop polygons from the line seg-
ment correspondences determined by epipolar feature
matching. Outlines of the final set of triangulated
rooftops are shown in Figure 4.

The parameters estimated for each rooftop edge are
the Plicker coordinates of the algebraic 3D line coin-
ciding with the edge - specific points of interest, like
vertices of the rooftop polygon, are computed as the
intersections of these infinite algebraic lines. Plicker
coordinates are a way of embedding the 4-dimensional
manifold of 3D lines into R®. Although the Pliicker
representation requires 6 parameters to be estimated
for each line rather than 4, it simplifies the represen-
tation of geometric constraints between lines. For the
generic flat-roofed rectilinear building class being con-
sidered here, we specify a set of constraints to ensure
that pairs of adjacent lines in a traversal around the
polygon are perpendicular, that all lines are coplanar,
and that all lines are perpendicular to the Z-axis of
the local site coordinate system. An iterative, non-
linear least-squares procedure determines the Pliicker



Figure 4: Reprojection of 3D triangulated rooftops back into image J3 (compare with Figure 3).

coordinates for all lines simultaneously such that all
the object-level constraints are satisfied and an ob-
jective “fit” function is minimized that measures how
well each projected algebraic line aligns with the 2D
image segments that correspond to it.

After triangulation, each 3D rooftop polygon is
extruded down to the ground to form a volumetric
model. For the Model Board 1 site, the ground was
represented as a horizontal plane with Z-coordinate
value determined from the ground truth measure-
ments. More generally, the system will soon be using
digital terrain maps produced by the UMass Terrain
Reconstruction System[9)].

To evaluate the 3D accuracy of the triangulated
building polygons, 21 roof vertices were identified
where ground truth measurements are known (num-
bered vertices in Figure 4). The average Euclidean
distance between triangulated polygon vertices and
their ground truth locations is 4.31 feet, which is rea-
sonable given the level of geometric distortion present
in the images. The average horizontal distance error
is 3.76 feet, while the average vertical error is only
1.61 feet. This is understandable, since all observed
rooftop lines are considered simultaneously when esti-
mating the building height (vertical position), whereas
the horizontal position of a rooftop vertex is primarily
affected only by its two adjacent edges.

2.5 Projective Intensity Mapping

Backprojection of image intensities onto polygo-
nal building model faces enhances their visual real-
ism and provides a convenient storage mechanism for
later symbolic extraction of detailed surface structure.
Planar projective transformations provide a locally
valid mathematical description of how surface struc-
ture from a planar building facet maps into an image.
By inverting this transformation using known building
position and camera transformations, intensity infor-
mation from each image is backprojected to “paint”
the walls and roof of the building model. Since mul-
tiple images are used, intensity information from all
faces is available, even though they are not all visi-
ble from any single view (see Figure 5). The resulting
intensity mapped site model can then be rendered to
predict how the scene will appear from a new view,
and on high-end workstations realistic real-time “fly-
throughs” are achievable.

3 Site Model Extension

The goal of site model extension is to find unmod-
eled buildings in new images and add them into the
site model database. The main difference between
model extension and model acquisition is that now
the camera pose for each image can be determined via
model-to-image registration. Our approach to model-
to-image registration involves two components: model
matching and pose determination.



Figure 5: Intensity map information is stored with the
planar facets of a building model.

The goal of model matching is to find the corre-
spondence between 3D features in a site model and
2D features that have been extracted from an im-
age; in this case determining correspondences between
edges in a 3D building wireframe and 2D extracted
line segments from the image. The model matching
algorithm described in [1] is being used. Based on a
local search approach to combinatorial optimization,
this algorithm searches the discrete space of correspon-
dence mappings between model and image features for
one that minimizes a match error function. The match
error depends upon how well the projected model ge-
ometrically aligns with the data, as well as how much
of the model is accounted for by the data. The result
of model matching is a set of correspondences between
model edges and image line segments, and an estimate
of the transformation that brings the projected model
into the best possible geometric alignment with the
underlying image data.

The second aspect of model-to-image registration is
precise pose determination. It is important to note
that since model-to-image correspondences are being
found automatically, the pose determination routine
needs to take into account the possibility of mistakes
or outliers in the set of correspondences found. The
robust pose estimation procedure described in [7] is
being used. At the heart of this code is an iterative,
weighted least-squares algorithm for computing pose
from a set of correspondences that are assumed to be
free from outliers. The pose parameters are found by
minimizing an objective function that measures how
closely projected model features fall to their corre-
sponding image features. Since it is well known that
least squares optimization techniques can fail catas-
trophically when outliers are present in the data, this
basic pose algorithm is embedded inside a least me-
dian squares (LMS) procedure that repeatedly sam-
ples subsets of correspondences to find one devoid of
outliers. LMS is robust over data sets containing up to
50% outliers. The final results of pose determination
are a set of camera pose parameters and a covariance
matrix that estimates the accuracy of the solution.

3.1 Model Extension Example

The model extension process involves registering a
current geometric site model with a new image, and
then focusing on unmodeled areas to recover previ-
ously unmodeled buildings. This process is illustrated
using the partial site model constructed in Section 2,
and image J8 from the Radius Model Board 1 dataset.

Results of model-to-image registration of image J8
with the partial site model can be seen in Figure 6,
which shows projected building rooftops from the site
model (thin) overlaid on the image. Image areas
containing buildings already in the site model were
masked off, and the building rooftop detector was run
on the unmodeled areas. The multi-image epipolar
matching and constrained multi-image triangulation
procedures from Section 2 were then applied to verify
the hypotheses and construct 3D volumetric building
models. These were added to the site model database,
to produce the extended model shown in Figure 6
(thick lines). The main reason for failure among build-
ing hypotheses that were not verified was that they
represented buildings located at the periphery of the
site, in an area which is not visible in very many of
the eight views. If more images were used with greater
site coverage, more of these buildings would have been
included in the site model.

4 Summary and Future Work

A set of IU algorithms for automated site model
acquisition and extension have been presented. The
algorithms currently assume a generic class of flat
roofed, rectilinear buildings. To acquire a new site
model, an automated building detector is run on one
image to hypothesize potential building rooftops. Sup-
porting evidence is located in other images via epipo-
lar line segment matching, and the precise 3D shape
and location of each building is determine by multi-
image triangulation. Projective mapping of image
intensity information onto these polyhedral building
models results in a realistic site model that can be
rendered using virtual “fly-through” graphies. To per-
form model extension, the acquired site model is reg-
istered to a new image, and model acquisition pro-
cedures are focused on previously unmodeled areas.
In an operational scenario, this process would be re-
peated as new images become available, gradually ac-
cumulating evidence over time to make the site model
database more complete and more accurate.

Several avenues for system improvement are open.
One high priority is to add capabilities for detecting
and triangulating peaked roof buildings. Another sig-
nificant improvement would be extending the epipo-
lar matching and triangulation portions of the system
to analyze why a particular building roof hypothesis
failed to be verified. There are many cases where the
rooftop detector has outlined split-level buildings with
a single roof polygon; automatic detection of these sit-
uations, followed by splitting of the rooftop hypothesis
into two separate hypotheses, would result in an im-
provement in system performance.

These symbolic building extraction procedures will
soon be combined with a correlation-based terrain ex-
traction system [9]. The two techniques clearly com-



Figure 6: Updated site model projected onto image J8.

plement each other: the terrain extraction system can
determine a digital elevation map upon which the vol-
umetric building models rest, and the symbolic build-
ing extraction procedures can identify building occlu-
sion boundaries where correlation-based terrain recov-
ery is expected to behave poorly. A tighter coupling of
the two systems, where an initial digital elevation map
is used to focus attention on distinctive humps that
may be buildings, or where correlation-based recon-
struction techniques are applied to building rooftop
regions to identify fine surface structure like roof vents
and air conditioner units, may also be investigated.
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Abstract

When a disparity map is computed from widely
separated images the perspective distortion
may result in a large number of false matches
and poor reconstruction accuracy. This pa-
per describes three image matching algorithms
designed specifically to process images taken
from widely varying viewpoints. They include a
new match score, and modifications to standard
subpixel and hierarchical matching techniques.
The algorithms are incorporated into a stereo
analysis package and the system is tested by
processing a sequence of simulated images with
base-to-height ratios that varied between 0.25
and 2.25, and a single pair of high altitude im-
ages with a base-to-height ratio of 0.63. Anal-
ysis of the simulated data showed that when
these algorithms are implemented the recon-
struction accuracy remains independent of the
base-to-height ratio.

1 Introduction

For applications such as unmanned ground ve-
hicles, stealth navigation, RADIUS, and sen-
sor fusion, terrain maps must be reconstructed
from images gathered from distant reconnais-
sance sources. These images present unique
problems for terrain reconstruction systems be-
cause of their oblique viewing geometry and the
associated large base-to-height ratios. In this
paper, algorithms designed specifically to pro-
duce accurate elevation maps from image pairs
with a large base-to-height ratio are discussed.
It is assumed that the camera parameters and
poses are known, and the discussion is focused
on developing methods for computing a dis-
parity map. The discussion is further limited
to terrain in which the characteristic dispar-
ity of an object is roughly proportional to its

*Sponsored by a grant from the Office of Naval Re-
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horizontal dimensions (i.e., objects that cover
a large area have large disparities and objects
that cover a small area have small disparities),
the surfaces are highly textured, and most sur-
face features are visible in both images. In ad-
dition, attention is given mainly to retrieval ac-
curacy; at this time computation speed is not
considered.

When image matching is used to compute a dis-
parity map, a dilemma occurs when the size of
the correlation mask is selected. To increase ro-
bustness to random noise, the mask should be
as large as possible, and to minimize the effects
of projective distortion, the mask should be as
small as possible [Mostafavi, 1978]. To help de-
velop algorithms that balance these competing
factors we take advantage of the fact that pixels
near the mask center are less affected by projec-
tive distortion. The weighted cross-correlation
match score (described in Section 2) and the
subpixel image matching technique (described
in Section 3) are designed specifically to place
more emphasis on the pixels near the center of
the correlation mask. In addition, a hierarchi-
cal matching scheme is discussed Section 4 that
iteratively corrects for perspective distortion.

2 Weighted correlation mask

Starting with two views of an object (labeled R
and L), the goal of image matching is to find
pixel pairs (one in the R image and one in the L
image) that view the same spot on the object.
In the matching process a series of match scores
p(2,7,0%,87), 0% = 8imin---0imaz and 85 = §imin-
-*0Jmaz is computed between a window of pixels
(correlation mask) centered at pixel (Z,j)g in
the R image and a similar mask centered at
(¢4 07,7+ 67) L in the L image. By convention,
disparities (8, §7) are defined relative to a fixed
position in the R image, and a variable position
in the L image. Next, the optimal disparity



(8*,d35*) corresponding to the best match is
selected. If (8¢*,85*) satisfies the condition that
(3,7)r and (i + 8%*,j + 65*)L view the same
spot on the object, the best match is said to be
correct; otherwise, a false match has occurred.
False matches occur when noise or distortion
lowers the match score for the correct disparity
and/or raises the match score for an incorrect
disparity in such a way as to cause the wrong
disparity to be selected.

One of the most robust and commonly used
match scores is the cross-correlation coefficient
p(3,7,8%,87) between a rectangular mask cen-
tered at (Z,j)r and a similar mask centered at
(i + 83,5 + 67)1. By definition p(3, j, 6%, 67) is
given by

p(i’j: o1, 5.7) = (1)
Cov [IR(Z1 .7)) IL("’ + 67’: .7 + 6.7)]
VVar[Ig(i,§)|Var [IL(i + &3, 5 + 65)]

where Ig(i,j) and IL(i,j) are pixel intensi-
ties, Cov(Igr(2,3), I(i + 83,7 + d5)] is the co-
variance between masks, and Var [Ir(%, j)] and
Var [IL(i+ &i,j + 87)] are the variances within
each mask [Cochran and Medioni, 1992]. In
this formula, p(%, 7, §%,87) does not depend on
the positions of the pixels within the mask,
and all pixels contribute equally to the match
score. Pixels near the center of the mask, how-
ever, are less affected by perspective distor-
tions, and more emphasis should be given to
these pixels. This can be done by assigning a
weight to each pixel that depends on its posi-
tion within the mask. Thus, the weighted av-
erage E[Igp(Z,7); A) of the pixel values within
an arbitrarily shaped mask @ centered at pixel
(ir ])R is

E[Ir(i,§); Al = 1\,2211?(1’,1’):‘1(z Z,i-1)

where (v, ') € Q, A(Z - ¢/, j — 7') are the mask
weights that depend on the distance from sum-
mation index (7/,)') to the mask center (%,7),
and N is the total number of pixels within
the mask. Furthermore, to ensure that the
mask does not attenuate or amplify the image,
the weights are normalized so that the average
weight is unity.

1= —ZZA(z’,J')

Likewise, the weighted variation at pixel
('L’, ]I)R is Iﬁ(zlr ]I)A(i—z,) j_],) -E [IR(Z, ])l A]r

and the weighted variance Var [Igr(%, j); A] and
covariance Cov[Ir(3,7), IL(i + 87,7 + &3)] are
given by

Var(Ir(,7); Al =
ZZ [IR(zltJ'
FU

and
Cov[Ig(3,7), IL(i + 8i,5 + 87); Al =

N-1"

)AG -7, - 1) - E[Ir(i,5); A]®

—ZZ

[IR(z', J’)A(i -, - J’) - E[Igr(3,5); A]]
[(Io(v + i, + 85)A(i - 2,5 - ) -
E[IL(i+4 04,5 + &5); A])

and the weighted cross-correlation match score
is given by

p(i,3,04,05; A) = (2
Cov [IR(i: .7)1 IL(i + 6i) .7 + 6.7)1 A]
VVar[Ir(,7); A]Var [I (i + 8%, 7 + 67); A]
For the analyses presented in this paper two

weighting functions are use, Gaussian weights
given by

A(i-,j-1)= 27;2-: L. 21;2: L
N 2n!
(n—i+d)! (n+:i-17)!
2m!

m-it ) (m+i-7)

and uniform weights given by A(i—7/,j—7') = 1,
for -n < (i-7%) < nand -m < (j -
7) € m. Note that when the uniform weights
are used, the weighted cross-correlation match
score (Equation 2) reduces to the conventional
cross-correlation match score (Equation 1).

By assigning a weight of zero to all pixels that
lie outside @, the array of weighted averages
E(I; A) for all pixels in an image may be com-
puted by convolving I with the kernel A and
dividing by N.
E(I;A) = —11\7] *x A

Similarly, the computation formulas for the
variance array Var(/; A) and covariance array

Cov(Igr,S(IL,0%,85; A) are

Var(/; A) = Nl [12 - —(I * A) ]

(3)



and

Cov(Ig, 5(IL,68%,85); A) =

1 . o
N-o1 [(IR -S§(I,6i,07)) A% -

3 Urs 4) - (S, 5i,85) 4)|

where S(Ir,d%,87) is an operator that shifts
an image by 47 pixels in the i-dimension and
dj pixels in the j-dimension. Implementation
of the shift operator is important to the per-
formance of the subpixel image matching algo-
rithm (see Section 3 for details).

If the surface is stationary or the images are
taken simultaneously, the computations may
be simplified by applying epipolar constraints
[Slama, 1980]. By resampling the R and L im-
ages so that each image line corresponds to an
epipolar line, the vertical component of the dis-
parity becomes identically zero, i.e., 5 = 0, for
all (2, 7). In the following sections it is assumed
that the epipolar constraints apply, thus §j is
dropped from all equations and 47 is replaced

with 4.

3 Subpixel image matching

Reconstruction accuracy depends directly on
the disparity map accuracy; therefore, signif-
icant improvements can be achieved by com-
puting disparities to subpixel accuracy. Sub-
pixel registration schemes rely on the assump-
tion that near the true disparity 4, the com-
puted match scores are estimates of a smooth
function p(8) [Faugeras, 1993]. Thus, an es-
timate of the optimal disparity ¢* is found by
approximating 5(6) with a model f(9; co, ¢1, ),
solving for the coefficients ¢y, ¢, - - -, and setting
&* to the value of § that optimized the model,
f/(8%; co, €1, ---) = 0. For the subpixel matching
algorithm described below, a parabolic model
f=co-6%+4¢c; -6+ cyis used; and 4* is found
by solving a least squares problem for the coeffi-
cients (co, 1, c2) and then setting * = —2¢,/cg
[Tian and Huhns, 1986). The error sources as-
sociated with this scheme are modeling error
(i.e., the difference between 5(4) and f(4)) and
contamination of pixel values by random noise.
A detailed analysis of the effect of these error
sources is beyond the scope of this paper. How-
ever, it is important to note that the effects of
modeling errors and random noise become more
pronounced as § moves away from § (the true
disparity).

Typically, match scores are evaluated at a se-
ries of integer disparities about the previous
best guess of the true disparity 5. If the in-
terval is too narrow, an insufficient number of
samples are used to estimate the location of
the peak; and if the interval is too wide, the
match score estimates at the ends of the in-
terval may not be statistically significant. In
either case, the location of the peak is poorly
defined. For example, if § = §5+[-2, 1,0, 1,2)
then only 5 observations are used to compute
3 parameters. If the range is extended to
0 =d5+[—4,-3,-2,-1,0,1,2, 3,4] the number
of samples is increased to 9, but large modeling
and random noise errors at the ends of the in-
terval may contaminate the match scores used
to estimate the location of the peak.

One method for solving this problem is to use
a smaller disparity search range and evaluate
the match scores at subpixel intervals. If the
desired width of the search range is approxi-
mately 1.5 about the previous best guess 4
and the interval between pixels is split p times,
where p is an odd integer, the search range is

. 3p+1 n
% ( 2p )+p’

n=0,--,3p+1

For example, if p= 5 the disparity values are
i=68+[-8, -5 -50,3,% 8 and 17
match scores in an interval 3.2 pixels wide are
used to estimate 7*.

In the computational formulas (Equation 3) the
disparities are not specified directly. Instead
a subpixel shift operator S(I,4,0) is used to
shift the entire image by d pixels in the i-
dimension before the convolutions with A and
A? are computed. The shift operation is imple-
mented by convolving I;, with an asymmetric
kernel By, i.e., S(IL,8,0) = IL x Bs. For ex-
ample, if § = 1.2, then Bs; = (0.2, 0.8, 0, 0, 0);
and if § = ~0.9, then B; = (0, 0, 0.1, 0.9, 0).

4 Pyramid processing

When imaging terrain it is generally true that
large objects have large disparities and small
objects have small disparities. When the res-
olution of the R and L images are reduced,
smaller features disappear. Thus, only small
scale disparities are lost when the low resolu-
tion images are correlated. Once the large scale
disparities are recovered, the small scale dis-
parities are recovered by processing the high
resolution images and restricting the disparity



search to perturbations about the previously re-
covered disparities. This refinement process re-
sults in a significant reduction in the amount
of computation, which in addition to saving
time also reduces the chance of encountering
false matches. The sequential processing from
low to high resolution image pairs is referred to
as hierarchical, or pyramid processing [Anan-
dan, 1989]. Note that pyramid schemes will
fail when small features have large disparities
(e.g., telephone poles). This happens because
in the low resolution images small features are
not visible and in the high resolution images
the disparity search range is not sufficient to
match the feature.

An image pyramid is a set of images (%), 7(1) ...
of progressively diminishing resolution that are
derived from a common parent image I. Reso-
lution reduction is accomplished by smoothing
and the previous layer and then selecting every
other pixel. For the data presented in this pa-
per, 4 level pyramids are used, the images are
reduced by convolving with a 3 x 3 Gaussian
kernel and selecting every other pixel.

Starting with the lowest resolution images (at
the top level), an iterative process is carried
out in which a disparity map is computed, ex-
panded to match the size at the next lower level,
and refined. This process continues until the fi-
nal disparity map at the base level is computed.
The disparity search range at all levels, except

the top level, is = (3&) (p is the interval split-
ting factor described in Section 3). The dispar-
ity search range at the top level is set so that

the disparity range at the bottom will cover the
anticipated range.

At pyramid level %k, the initial disparity ar-
ray Dc(,k) is formed by copying the disparities
computed at the previous level D(**1) into ev-
ery other entry in D(k), ie., D(k)(2i 24), =

DU+1)(3, 7), filling in the missing values in D( )
by linear interpolation, and then rnultlpiymg
the entries in D((,k) by two. Next, we could sim-
ply use D{(Jk) to initialize the disparity search
at level k, and compute the disparity array
D) directly by matching Igc) and Il(;k) with
the search range at pixel (z, 7) given by

;4 3p+1\ n
D) i j —(—>+~,n=0,-~,3 S (1
$.1)- (B )+ p+1 (4)

Or better yet, we could unwarp [ ge) by making
the substitution

19G,5) = 16+ DF G, 5),5)  (5)
(k)

for all pixels in I}, then compute an incremen-
tal disparity array AD*)(4, j) by matching I}, (k)

and Igc) (which has just been unwarped) with
the search range at pixel (7, j) given by

3p+1) n
- +—-n=0,---3p+1 6
( 1)+ 2 p (6)

and finally update the initial guess to form the
disparity array at level k.

D® (i, 5) =

D (i, 5) + ADW(, 5).  (7)

This procedure removes the perspective distor-
tion associated with larger features. Before un-
warping [ 1t )(z 7) and I(k)(z+D(k)(z 7),7) view
the same general spot on the surface. Whereas,
after unwarping the large scale disparities are

removed and I( )( ,J) and I( )(z j) view the
same general spot on the surface. Using D‘(J )
to unwarp I} (k) is similar to the method pro-
posed by Schenk et al. (1980) in which D[()k} is
used to compute an approximate orthonormal

image pair from 11(1 and I} () and then AD(*)
is computed by matching the approximate or-
thonormal images.

5 Terrain reconstruction

The following is a description of the basic steps
taken by the terrain reconstruction system (for
a detailed description see Schultz (1994)).

1. Resample the raw R and L images into
epipolar coordinates.

2. Create n level image pyramids Iy (0), Ig‘_l)
and IS]) I}Jn 1) (see Section 4 for details).

3. Compute the top level disparity map

D(-1) from Ig‘"l) and Ig‘—l) using the
weighted cross-correlation match score,
subpixel image matching, and hierarchical
techniques described in Sections 2, 3, 4.

4. Initialize the level counter £ = n — 2.

5. Create the initial guess D((,k} by expanding
Dk,

6. Unwarp I( ),



7. Compute the incremental disparity map
AD™ by matching I&) and I{¥.

8. Update the disparity map D(*) = D((,k) +
AD),

9. Test for the bottom level. If £ > 0, decre-
ment the level counter k = k — 1 and go to
step 5, otherwise continue.

10. At the base level, calculate the world
coordinate vector i(i,]’) = (Xg')(i,j),
Y6, 5), 20(i,§)) for pixels where
DO)(3, ) exists. This is done by solv-
ing the stereo observation equations for all

pixel pairs where a correspondence exists
[Slama, 1980].

11. Create the orthonormal elevation map Z
and image / by resampling the elevations
Zg)) and pixel intensities Igj) onto a regu-

larly spaced grid in world coordinates.

6 Results

The terrain reconstruction system was tested
by processing three sequences of simulated im-
ages and one real image pair. To evaluate the
performance of system as a function of base-
to-height ratio b/h, and with and without the
weighted correlation mask and subpixel image
matching algorithms, a series of simulated im-
ages were analyzed. For each simulation the
camera models and locations along with a ran-
dom surface were specified, and an R and L
image pair synthesized using a ray tracing pro-
gram. Then from the camera models and syn-
thesized images, the surface was recovered and
compared to the original simulated one. The
same random surface (shown in Figure 1) was
used for all simulations. The horizontal dimen-
sions of the surface is 1m X 1m, the rms sur-
face height is 1.33cm, and the surface height
spectrum is proportional to k~%cm~!, where
k is the spatial frequency. Furthermore for
all simulations, the cameras were located 10m
above the surface, the focal length and orien-
tation of the cameras were adjusted so that
the entire surface fit within the camera field-
of-view, and the optic axis passed through the
center of the surface. A series of nine syn-
thesized image pairs were generated for b/h =

(0.25,0.50, 0.75,1.00, 1.25,1.50, 1.75, 2.00, 2.25).

The simulated image pair for /h = 2.25 is
shown in Figure 2. The affects of perspective
distortion are clearly visible in this image pair.

The sequence was processed by the terrain re-
construction system described in Section 5 for
three sets of parameters, (1) Gaussian weights
and p = 9, (2) uniform weights and p = 9, and
(3) uniform weights and p = 1.

=
<. o) RS S
<@

IS o

Figure 1: The random surface used in all simula-
tions.

Reconstruction errors are reported in terms of
the percent of the scene recovered » and the
normalized elevation error s. The normalized
elevation error s is the standard deviation of
the elevation errors for all nodes where an ele-
vation was computed, divided by a normaliza-
tion factor sy, i.e.,

s = lSTDEV (2(1,]) - 7(2).7))
So

where the standard deviation STDEV is com-
puted only for nodes where the recovered ele-
vations Z(%, j) exists (see Section 5, Step 11),
Z(i,§) are the known elevations, and so is a
normalization factor that compensates for the
natural improvement of vertical resolution with
b/h. The length sq is equal to the height of the
volume traced out by the intersection of the
field-of-view of the pixels at the center of the R
and L images [Matthies and Shaffer, 1987].

The simulation results are summarized in Fig-
ure 3, where 7 and s are plotted as a function of
b/h for the three sets of parameters described
above. Inspection of Figure 3 reveals that when
the weighted cross-correlation match score and
subpixel image matching algorithms are imple-
mented, r and s do not depend on b/ for values
of b/h at least as large as 2.25. If instead, a con-
ventional cross-correlation match score is used,
T remains constant and s grow slowly with b/h.
If, in addition, integer image shifts are used
instead of subpixel shifts, » and s grow more
quickly with b/h.



Figure 2: Synthesized image pair with a 2.25 base-to-height ratio showing a significant amount of perspective

distortion.
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Figure 3: The percent recovered (r) and normalized reconstruction error (s) as a function of base-to-height
(b/h) ratio for Gaussian weights and p = 9, uniform weights and p = 9, and uniform weights and p = 1.

In addition to the simulated data, a pair of
high altitude photographs shown in Figure 4
of a building, parking lot and surrounding ter-
rain of the Martin Marietta UGV site also were
processed. The digitized images along with the
camera parameters were supplied by the U. S.
Army Topographic Engineering Center. The
first of these images was arbitrarily assigned
to the R image, while the other one was as-
signed to the L image. The image pair was then
processed using the terrain reconstruction algo-
rithms described above. The images were taken
with the cameras looking straight down, with a
base-to-height ration of 0.6295. Four level pyra-
mids, Gaussian weights, and subpixel matching
with p = 5 were used. At the top level the dis-
parity search range was set to (—12%, 13%), and
the window sizes for the 4 levels were 5x5, 9x7,
13x11 and 25x 21.

The reconstructed orthonormal elevation map
Z and image I are shown in Figure 5. Fig-

ures 4 and 5 appear to be rotated and reversed
relative to each other because the high altitude
images come from digitized negatives and the
orthonormal views are displayed in world coor-
dinates. Figure 6 shows rendered views of three
areas in the test site—the building, parking lot,
and a rock formation. In the rendered view of
the building, sharp boundaries, especially cor-
ners, are not accurately reconstructed. How-
ever, many details of the structure, such as the
flat roof and ventilation equipment, are clearly
visible. In the rendered view of the parking
lot, the basic shape of the cars are visible, how-
ever, the light pole is missing (only its shadow
remains). This is an expected artifact because
the light pole is a small feature with a large dis-
parity. In the rendered view of the rock forma-
tion, there does not appear to be any artifacts.
This part of the test site has ideal conditions for
terrain reconstruction. Notice that the shading
on the rocks, vegetation, gully and bare ground



Figure 5: The elevation map and orthonormal view of the test site.

are consistent with the shapes of these objects.

7 Conclusions

The algorithms described in this paper were de-
signed specifically to reconstruct terrain from
oblique views. Based on analyses of simulated
and real data, it appears that terrain can be
successfully reconstructed from images taken
from widely varying viewpoints. These pro-
cedures are especially valuable in operational
scenarios, such as stealth navigation and un-
manned ground vehicles, where terrain maps
must be reconstructed from image data gath-
ered from distant reconnaissance sources. We
are currently setting up a series of laboratory
experiments to evaluate the performance of the
terrain reconstruction system under a variety of
operational conditions including b/h, lens fo-
cal length, and terrain type. In additions we
are in the process of integrating the terrain re-
construction and the UMass automatic building

model acquisition systems [Collins et al., 1994,
Jaynes et al., 1994].
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Task Driven Perceptual Organization for Extraction of Rooftop Polygons*

Christopher Jaynes, Frank Stolle and Robert Collins

Abstract

A new method for extracting planar polygonal rooftops
in monocular aerial imagery is proposed. Through bottom-
up and top-down construction of perceptual groups, poly-
gons in a single aerial image can be robustly extracted.

Orthogonal corners and lines are extracted and hier-
archically related using perceptual grouping techniques.
Top-down feature verification is used so that features,
and links between the features, are verified with local in-
formation in the image and weighed in a graph structure
according to the underlying support for each feature.

Cycles in the graph correspond to possible building
rooftop hypotheses. Virtual features are hypothesized
for the perceptual completion of partial rooftops. Ex-
traction of the “best” grouping of features into a build-
ing rooftop hypothesis is posed as a graph search prob-
lem. The maximally weighted, independent set of cycles
in the graph is extracted as the final set of roof bound-
aries.

1 Introduction

Extraction of polygonal structures from an aerial image
is an important step in building detection and model
construction. We would like to determine the shape
and location of buildings within an aerial image robustly
and accurately by extracting the polygons that define
rooftop boundaries.

Industrial and urban centers are typically complex
and cluttered with structure. Occlusions, strong per-
spective effects, and variable lighting conditions are a
few of the problems when dealing with aerial imagry of
typical urban centers. Despite these difficulties, a suc-

*This work was funded by the RADIUS project under
ARPA/Army contract TEC DACA76-92-C-0041 and also by the
National Science Foundation grant No. CDA-8922572

cessful system will discover rooftops that can be used
for further image understanding tasks.

2 Task Driven Organization

The power of perceptual organization for the extrac-
tion of structure in natural scenes is well know. [?, 4,
6] In our approach, low level features are perceptually
grouped to form collated features which are then used to
hypothesize the final groupings. However, besides this
bottom-up approach, each level of the hierarchy may
search for features in a task driven, top-down manner.
Grouping choices are driven by the goal of the system
and the domain. We apply task driven perceptual orga-
nization to the process of polygonal rooftop extraction
from aerial imagery.

2.1 Overview

The system proceeds in three steps; low level feature
extraction, collated feature detection, and hypothesis
arbitration. Each module generates features that are
used at during the next phase and interacts with lower
level modules through top-down feature extraction.

The low level features in this system are perspective
image projections of orthogonal corners and straight
line segments in the scene.! Mid-level collated features
are sequences of corners and lines that are grouped to-
gether to form chains. High-level polygon hypotheses
are formed from closed chains.

Because single collated features can be part of sev-

"eral closed polygons, the final set of closed polygons

must be searched for the “best” independent set of closed
chains. This is done using certainty measures that are

! That is, while the corners are orthogonal in the world they
are not necessarily orthogonal in the image. The prespective pro-
jection is known and the shape of the image corner is computable.



maintained throughout the entire grouping process. As
each feature is extracted it is assigned a certainty; the
final grouping choice is then found as the independent
set of closed chains that maximizes the overall certainty.

2.2 The Feature Relation Graph

Features and their groupings are stored in a graph struc-
ture called the feature relation graph. Low level features
are nodes in the graph, and binary relations between
features are represented with an edge between the cor-
responding nodes. Both nodes and edges are assigned
a certainty that reflects the confidence of a feature or a
feature grouping.

Cycles in the feature relation graph represent grouped
polygon hypotheses. The maximally-weighted, set of in-
dependent cycles is then extracted from the feature re-
lation graph to discover a set of independent high con-
fidence rooftop polygons.

Feature Relation Graph
G=V.E

Figure 1: Features are stored in the feature relation
graph. Low level features are represented as nodes, col-
lated features as paths, and final polygons as closed cy-
cles.

3 Low Level Feature Extraction

Because we are interested in the detection of human-
made structure, orthogonal corners and straight lines
were used as low level features. The low level features
that are originally extracted are used to form collated
features.

3.1 Straight Lines

Straight lines are extracted using two different methods.
The primary, bottom-up method for extracting low level
straight line features is the Boldt algorithm [1]. This
algorithm hierarchically groups edgels into progressively
longer line segments based on proximity and collinearity

constraints. Figure 2 shows the Boldt lines extracted

from a typical aerial urban scene.

L

Figure 2: Boldt Lines

Boldt lines are assigned a certainty measure that
is calculated during their extraction. The line certainty
depends primarily on the contrast of the edge and on the
least-squares residual error of the line fit to the grouped
edges. For a detailed description of Boldt line certainty,
see [1].

Another line detection scheme is used for top-down
grouping verification. These local lines are extracted
when possible groupings between features are being con-
sidered. This approach focuses the power of perceptual
grouping to a predictive task and avoids reliance on sin-
gle, globally extracted features.

For example, while attempting to construct a chain
feature, it is necessary to discover ad verify if a local line
lies between two corners. Each pixel in the image along
a connecting line between the two corners is classified
as a supporting edgel or nonedgel according to the im-
age intensity gradient, as computed by an oriented So-
bel mask, and the variance in the gradient magnitude.
This is performed within a rectangular search window
between the two corner features.

The final strength of the local line is determined by
dividing the number of edgels, L, by the number of pix-
els in the search line, N. This value is thresholded in
order to determine if there is enough edgeness to con-
sider this to be a line. For the results shown here a line
threshold of 70% was used.

These local lines are used to verify that a grouping
hypothesis, between two corners for example, is justified
by evidence in the image. Figure 3 shows a top-down
line search between two corner features. The certainty
of local lines is based on the contrast of the edge and the
percentage of the search window that can be classified
as a line.
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Figure 3: The local line finder is invoked by higher level
processes to encourage possible groupings.

Pixels Classified as Edgels

3.2 Orthogonal Corners

Our domain assumption is that rooftop polygons will
be produced by flat horizontal surfaces with orthogonal
corners. This describes a large majority of the building
roofs in urban and industrial centers. Therefore, cor-
ner features are orthogonal and parallel to the ground
plane in the 3D world. Of course, the apparent shape of
an orthogonal corner in the image is not invariant un-
der perspective projection, but varies predictably with
respect to image position.

To further simplify processing, we assume that a ma-
jority of the buildings are aligned according to an ap-
proximate city grid. This assumption reduces the set of
orthogonal roof corners to be considered to only four,
which for the purposes of this paper are labeled North-
East, NorthWest, SouthEast and SouthWest. The rela-
tive orientation of the city grid with respect to the cam-
era completely determines how these four cardinal cor-
ner types will appear in the image. Currently, we com-
pute this orientation from the given camera pose; how-
ever the city-grid orientation can also be computed more
generally using vanishing point analysis [5]. Once this
orientation information is known, the perspective trans-
formation mapping 3D orthogonal corners into 2D im-
age corners can be determined, and ideal corner masks
can be generated to accurately extract these important
low level corner features.

Four different corner masks are generated. Warping
is performed by mapping the lines that define the or-
thogonal corner through the perspective transformation
and into the new expected corner angle. This transfor-
mation is performed to sub-pixel accuracy.

The four masks are used to detect each of the pos-
sible orientations of a roof corner and to classify the
corner’s type. Corner types are important for later per-
ceptual grouping of compatible corners.

The final masks, then, are typical n x n ideal corner
detectors that are convolved with the image. In the re-
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Figure 4: An original 5 x 5 mask and the corresponding
perspectively transformed mask that is convolved with
the image.

sults shown here 7 x 7 masks were used. Masks of this
small size do well in localizing corners and in detect-
ing non-obvious corners (see section 6), however they
are sensitive to noise. The performance of template-
based corner detection in grey level images with respect
to detection, localization, and stability is discussed in
[7). In our system, we allow a large number of false
positives when detecting corners and rely on the higher
level grouping processes to discard incorrect low level
features.

Once constructed, each mask is convolved with the
image and the correlation value at each pixel in the im-
age stored. The correlation measure is used as the mea-
sure of “cornerness” of each image pixel and is normal-
ized by the maximum change in grey levels in the image
over the size of the mask. Normalization is needed be-
cause the corners in typical aerial imagery range from
high contrast to very dim. The correlation measure at
each pixel is the certainty value for the corresponding
orthogonal corner feature that is placed into the feature
relation graph.

After convolution of each corner mask with the im-
age, a large array of mask responses will be obtained. A
large number of false positives are eliminated by thresh-
olding the absolute value of the mask response. For the
experiments an empirical threshold of 60% on corner
uncertainty was used. Finally, non-maximal suppres-
sion over a 7 x 7 window of pixels is used to eliminate
neighboring pixels that respond to the corner mask only
partially. Figure 5 shows the results of orthogonal cor-
ner detection in an aerial scene.



Figure 5: Orthogonal Corners

4 Collated Features

Collated features are constructed from sets of lines and
corners extracted from the image. A collated feature
is a sequence of perceptually grouped corners and lines
that form a chain. A valid chain group must contain
an alternation of corners and lines, and can be of any
length.

Low level features are grouped together according
to the standard perceptual parameters of smoothness
and symmetry. When such a group is formed, the cor-
responding nodes in the feature relation graph are con-
nected with an edge. Paths in the feature relation graph
become the chain features.

If a low level feature that is needed to complete a
strong perceptual group is missing, a top-down feature
detector is invoked and the missing feature is searched
for in the image. Currently, the system is able to invoke
the local line detector to complete a link of two corners
if the lines extracted previously were insufficient.

4.1 Feature Groups

Standard perceptual grouping techniques are applied to
the low level features in an attempt to group compatible
corners and the line between them. These corner-line-
corner triples are the “links” that, when followed as
paths in the feature relation graph, form chains. Each
link can be thought of as a polygon edge hypothesis,
while chains are pieces of a polygon hypothesis. Closed
chains are a special case and are treated as completed
polygon hypotheses.

In order for a link to be formed, three conditions
must be met (Figure 77). Given two orthogonal cor-
ners, they must first be of compatible types, where com-
patibility is defined according to corner type and axis
information. For example, the east-pointing axis of a
NorthWest corner cannot be grouped with a corner of
type SouthWest. It is also not possible for a corner to

be grouped with another corner of the same type. Sec-
ondly, grouped corners must be in proper spatial align-
ment with respect to each other. That is, correspond-
ing axes of two corners to be linked must be roughly
collinear. Finally, a perceptual link can be formed only
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Figure 6: Perceptual grouping of low level features. (a)
Incompatible corner types disallow group. (b) Improper
alignment of corners. (c) Valid group, supported by line
evidence.

if there is evidence for a supporting straight line between
the corners. Figure 7 shows an example of perceptually
grouped corners.

Figure 7: Perceptually Grouped Corner Pairs (Links)

To compute the certainty of a particular chain fea-
ture the weight of the corresponding path in the feature
relation graph is computed. The certainty of a chain is
the sum of the certainties of its parts. Thus, given chain
C of length n, the certainty is computed as:

n n-1
K(C) = m(w)+ ) r(e:) (1)

1=0 1=0

where v; is node i in the path corresponding to C, e; is
edge 7, and x(F) denotes the certainty of feature F.

5 Polygon Groupings

Extraction of final rooftop polygons proceeds in two
steps. First, all possible polygons are computed from
the collated features. Then, polygon hypotheses are ar-
bitrated in order to arrive at a final set of non-conflicting,
high confidence rooftop polygons.

Polygon hypotheses are simply closed chains, which
can be found as cycles in the feature relation graph. All



of the cycles in the feature relation graph are searched
for in a depth first manner.

While searching for closed cycles, the collated fea-
ture detector may be invoked in order to attempt clo-

sure of chains that are missing a particular feature.@'E\

system then searches for evidence in the image that such

a virtual feature can be hypothesized. Virtual features

are hypothesized according to the parameters of per-
ceptual completion. If a cycle is missing a single corner,
for example, a virtual corner will be hypothesized at
a position that is constrained both by symmetry and
smoothness. Currently, the system is able to hypothe-
size virtual corners and then invoke lower level feature
detectors to confirm the hypothesis.

After addition of a virtual corner, the image is searched

by the local line finding algorithm for line data that sup-
ports this hypothesis. In the event that the evidence is
sufficient, the new corner is generated as a low level
feature and used to complete the cycle in the feature
relation graph.

In this way, high level features do not rely on the
original set of features that were extracted from the im-
age. Rather, as evidence for a polygon accumulates,
tailor-made searches for lower level features can be per-
formed. This type of top-down inquiry increases the
robustness of the system.

Once discovered, all cycles are stored in a depen-

dency graph where nodes represent complete cycles. Nodes

in the dependency graph contain the certainty of the
cycle that the node represents. An edge between two
nodes in the dependency graph is created when cycles
have lower level features in common. The final set of
polygons then, must be the set of nodes that are both
independent (have no edges in common) and of maxi-
mum certainty.

A set of polygon hypotheses extracted from a typ-
ical image is shown in figure 5. Notice that, with the
generation of virtual features such as corners, we are
able to complete a polygon that is partly occluded by a
neighboring building.

6 Results

In addition to the examples used above, two more ex-
amples are shown in order to demonstrate the system’s
robustness. Both of the images that were used had a va-
riety of buildings, shadows, and many of the difficulties
typically found in aerial imagery.

Figure 8: Cycles are extracted from the relation graph
and placed, as nodes, into a dependency graph. The
maximum independent set of nodes in the dependency
graph is the final grouping choice.

Figure 9: A set of polygon hypothesis extracted from
the feature relation graph. When neighboring rooftops
partially occlude a polygon, as in the above image, a
virtual feature may be generated at the missing corner
which can create final polygons that overlap in the 2D
projection.

The images used are part of the RADIUS (Research
and Development for Image Understanding) model board
imagery. As before, the camera model and pose for each
image is known. Both images were captured at an ap-
proximate height of 10,000 feet above the ground plane.
The ground truth data supplied with the model board
imagery is used to estimate the accuracy of the system.
System accuracy was characterized in several ways:

e Polygons detected versus the true polygons compris-
ing buildings in the image.

o Number of polygon vertices versus number of vertices
in building rooftops.

e Average distance between polygon vertices and ground
truth rooftop vertices.

Several points, at known rooftop corners in the world
were selected for a more detailed performance analysis
of the system. Each ground truth point was projected



into the image using the known camera pose. The Eu-
clidean image distance between the ground truth image
corner and the extracted polygon corner was computed
as the lower bound on the true 3D positional error?

This distance gives us an estimate of the polygon
placement accuracy with respect to the actual building
position and the estimated pose parameters.

6.1 First Test Image

The first example image[ 10] contains six distinct build-
ings of varying sizes. The strong shadows and different
rooftop heights make this an interesting image for test-
ing purposes. Nine ground truth points were used for an
estimation of system accuracy. The low level features
extracted are shown in figure 11. The value of virtual
feature extraction is shown by building A. A shadow
falls across a corner of the building and important low
level information is missing. The corners are perceptu-
ally grouped and a final set of polygons is generated.
The results of the test are shown in figure 12.

Results for Example 1
Rooftops Detected 100.0 %
Vertex Coverage (No virtual features) 88.5 %
Vertex Coverage (With virtual features) | 100.0 %
Avg. Vertex Displacement (Pixels) 3.6

Figure 10: Image used in the first test sequence

6.2 Second Test Image

The second example image contains seven buildings of
different sizes and complex shapes. Buildings E and F
are very close but are known to be distinct structures.
Eight ground truth points were selected for accuracy
analysis. As before, the system was run on the image
and the performance was analyzed.

2 At this point, 3 dimensional position of the extracted poly-
gons is not available.

Figure 11: Low level features extracted from the first
image: Boldt line data and orthogonal corners.

Figure 12: Perceptually grouped corners and the final
set of polygon hypotheses

Results for Example 2

Rooftops Detected 78 %
Vertex Coverage (No virtual features) | 86.8 %
Vertex Coverage (With virtual features) | 92.1 %
Avg. Vertex Displacement (Pixels) 4.74

Both buildings D and C were not entirely extracted.
That is, the final polygons do not match the shape of the
underlying structure. Building C is a two level structure
and the system failed to discover the lower level rooftop
boundary on the right. The corner detector failed to
extract crucial low level features at the junction of the
two roof heights.

Although the features were extracted on a similar
structure to the right of building D, they were not well
localized. With small structure, placement error be-
comes a problem and grouping is difficult. The orthog-
onal corner detector was designed to extract dihedral
corners but can easily be extended to incorporate sun

Figure 13: Second test image



Figure 14: Low level features extracted from the second
test image. Boldt line data and orthogonal corners.

angle information for trihedral corner detection. (See
Section T7)

Figure 15: Perceptually grouped corners and the final
set of polygon hypothesis

7 Conclusions and Future Work

The results from the proposed approach are encourag-
ing. The system is expected to perform similarly on
other aerial images and is currently being tested on a
wide variety of aerial photos.

Currently, polygon detection is a piece of the larger
aerial image understanding system being developed at
U. Mass, Amherst under the RADIUS project. The
hypothesized rooftop polygons are verified and refined
through multi-image triangulation which computes a
height for each polygon in the world. The final set of
polygons are extruded to the ground plane for a final
volumetric model of buildings.

An improved corner detection mask, that incorpo-
rates shadow angles from known sun position, will be
constructed. Better methods for solving the maximum
independent set problem will be explored, including ap-
proximation techniques such as simulated annealing.

The task driven approach to perceptual organization
will be expanded to cover more general image under-
standing tasks. Relaxing restrictions such as flat roofs
and orthogonal corners will be investigated so that a

more general module can be used to group general struc-
tures in aerial imagery.
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Abstract

This paper presents two different algorithms for
reconstructing 3D points from two sets of noisy
2D image points without knowing point corre-
spondences given the corresponding poses from
the two images. We first present a new way to
form a 2D similarity function between two points
from two images via 3D pseudo-intersection.
Based on principles of proximity and exclusion,
the first algorithm uses a new affinity measure
between 2D image points from two different im-
ages and a competition scheme to establish im-
age point correspondences and recover their cor-
responding 3D points simultaneously. Based on
an optimal graph theoretic approach, the second
algorithm uses the similarity function to construct
a bipartite graph, builds a corresponding flow net-
work, and finally finds a maximum network flow
that determines the correspondences between two
images. The two proposed algorithms have been
applied to aerial images from the ARPA RADIUS
project. Experimental results have shown that
the proposed algorithms are robust.

1 Introduction

A fundamental and important problem in com-
puter vision is to build 3D models of objects and
scenes from a sequence of images. So far, exten-
sive research has been done to develop robust al-
gorithms in this area [1-16], including monocular
motion sequences, stereo pairs, and a set of dis-
tinctive views. The basic principle to deal with
this problem is a triangulation process. For a gen-

*This work was funded by the RADIUS project under
DARPA/Army contract number TEC DACA76-92-C-0041
and also by the National Science Foundation grant No.
CDA-8922572.

eral triangulation process, it is assumed that the
intrinsic (lens) parameters and extrinsic (pose)
parameters of each camera are known, or that the
3 x 4 projective transformation matrix which rep-
resents a relationship between a 3D point and its
corresponding 2D point is known (as in the RA-
DIUS project). Usually, 2D features are extracted
first such as corners, curvature points, and lines
from each frame of an image sequence. Then, the
correspondence of these features is established be-
tween any two successive frames, i.e., the corre-
spondence problem. Finally, the 3D information
is recovered from these 2D correspondences in the
image sequence. The two most extensively used
triangulation algorithms are point-based triangu-
lation and line-based triangulation. The reason to
use image lines as an alternative to image points
is that lines provide a more stable image feature.

Unfortunately, this basic triangulation process as-
sumes the correspondence problem has been re-
solved. This has caused criticism and doubts
about feature-based methods because the process
of finding 2D image feature correspondences is
time consuming and is difficult to implement re-
liably. This paper addresses this problem.

In recent years, much work has been done on a
variety of correspondence problems [5-16]. Many
researchers have worked on the problem of mo-
tion estimation without correspondences [5-9,12-
16]. Aggarwal et al [8] gave an excellent review
of the correspondence problem. Aloimonos, et al.
[11], presented an algorithm to estimate 3D mo-
tion without correspondences by combining mo-
tion and stereo matching. Recently, Huang and
his research group [7,15-16) presented a series of
algorithms to estimate rigid-body motion from
3D data without matching point correspondences.
Goldgof et al. [7] presented moment-based algo-



rithms for matching and motion estimation of 3D
points or lines sets without correspondences and
applied these algorithms to object tracking over
the image sequences. Lee et al. [9] proposed an
algorithm to deal with the correspondence prob-
lem in image sequence analysis.

Objects in the world can be nonrigid, and an ob-
ject’s appearance can deform as the viewing ge-
ometry changes. Consequently, much work has
also been done that addresses the problem of cor-
respondence and description by using deformable
models[10-11,17-19]. Scott and Longuet-Higgins
[10] developed an algorithm to determine the pos-
sible correspondences of 2D point features across
a pair of images without any other information
(in particular, they had no information about
the poses of the cameras). They first incorpo-
rated a proximity matrix description which de-
scribes Gaussian-weighted distances between fea-
tures (based on inter-element distances) and a
competition scheme allowing candidate features
to contest for best matches. Then they used the
eigenvectors of this matrix to determine corre-
spondences between two sets of feature points.
Shapiro and Brady [11] also proposed an eigen-
vector approach to determining point-feature cor-
respondence based on a modal shape description.
Recently, Sclaroff and Pentland [19] described a
modal framework for correspondence and descrip-
tion.

In this paper, we first investigate the problem of
determining image point correspondences given
the poses of two images while simultaneously com-
puting the corresponding 3D points. Here, cam-
era pose consists of an orientation R; and a 3D
position 7; which map the world coordinate sys-
tem to the camera coordinate system. The prob-
lem can be formulated as follows:

Given two sets L and R of 2D image points
from two images I; and I,: L = {p}(u;,v) |
pi € I,i = 1,2,..,n} and R = {pj(u;,v;)
| pj € I, j = 1,2,...,n,}, and two correspond-
ing poses (Ry,7) and (R,,T,) for the two images
I, and I, the goal is to compute a set of 3D points
Py(z4,¥0r %) (9 = 1,2,..,n, n < min{n,n,})
representing n correspondences between L and R
without knowing in advance the image point cor-
respondences.

First we present a new way to form a 2D similar-
ity function between two points from two images

T
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Figure 1: A triangulation process for a pair of images.

via 3D pseudo-intersection. Then we present two
different algorithms for reconstructing 3D points
from noisy 2D image points without knowing the
point correspondences. The first algorithm uses
a new version of an affinity measure to extend
the work in [10] via the principles of proximity
and exclusion. Our second algorithm is based
on an optimal graph theoretic approach using the
similarity function to construct a bipartite graph,
build a corresponding flow network, and finally
find a maximum network flow that determines the
correspondences between two images. The two
proposed algorithms have been applied to aerial
images from the ARPA RADIUS project. Ex-
perimental results have shown that the proposed
algorithms are robust.

2 2D similarity function via 3D
pseudo-intersection

Given two poses (R, 1) and (R,, ;) from two im-
ages I, and I,, for any pair of 2D points p} and
p; (i=12,.. m; j=1,2, .. n,) from I; and
I,, there exist two 3D lines L; and L, such that
L, passes through points p} and 7, and L, passes
through points p] and 7, as shown in Figure 1.
L, and L, are the projection lines of points p! and
P}, respectively.
Suppose each projection line L, (k = 1,2) is de-
fined as
z-z - z—2z
- k_ Y~ Y _ k (1)
zk uyk Uzk

. . . . -
with unit direction vector u; =(uzs, uys, k)T



Consider first how to compute an optimal 3D
pseudo-intersection point P,(z,,y,,z,) with the
smallest sum of distances from P,(z,,y,,2,) to
two lines L, and L,;. The error function can be
defined (7] as

[(z, - zk)“rk = (yq - Vi) Uzi)?
+(zq — za)uak — (2 — z)uas]’  (2)

+[(yq = W)tk — (2 — 2 )uge]?
After settmg = gy_z = g—fq = 0, we ob-

tain the optlma.l 3D pseudo—mtersectlon point
Po(zq) Y41 25)[7]

- B3] o

where
“:k +ud, —UgplUyr  —UzkUsi
Ay = [ —Ugp Uy ul, +ul, —Uyg Usk ]
—UzpUsk —UypUsk ‘!l.:k + u:k

If p! and p} are the corresponding image points
from two successive images I; and I,, then P, is
the real 3D point recovered by the traditional tri-
angulation algorithm. However, there are three
cases that are exceptions (1) no 3D point could
be obtained for p! and p}, because the two 3D
lines L, and L; are para.llel (2) an 1ncorrect ‘neg-
ative” 3D point could be obtained for p} and P
due to the two 3D lines L, and L, intersecting
behind one or both cameras, as shown in Figure
2; (3) a wrong “epipolar” 3D point P, is obtained
corresponding to p! and p}, due to incorrect cor-
respondences, e.g. p! could appear to correspond
to either p} or p;, as shown in Figure 3. This case
shows that a point p! in image I; could intersect
with the projection line of more than one image
point in image I,.

The first case, with parallel projection lines, is ex-
ceedingly rare, but is easily be detected by exam-
ining whether there exists a solution for Equation
(3). It also can be detected by examining whether
the directions of the projection lines L, and L, are
the same.

For the second case, as all pairs of image points
from two images are considered as possible corre-
spondences, some of those will intersect in their
negative directions and satisfy the minimal dis-
tance condition to lines L, and L4, but are incor-
rect. Fortunately, it is easy to detect this kind of

Figure 2: A wrong “negative” 3D point corresponding
to a pair of image points.

negatxve 3D point by exa.mining the directions

of rays 7p} and -r,P or -r,p, and 'r,P to make sure
that they are the same.

The third case is caused by an incorrect corre-
spondence, often due to ambiguity. For example,
as shown in Figure 3, suppose p! corresponds to
p; with P, as the correct 3D point. However,
the known poses specify epipolar lines, and since
p., lies on the known epipolar line of p} in image
I., then p! and pI, could intersect at a 3D point
P,. However, this kind of ambiguity might be de-
tected because p!, might correspond to point P,
appearing in image I;. For this case, the maxi-
mum correspondences could be detected for two
sets of points, i.e., p} corresponds to pj and p,
corresponds to p’,. Unfortunately, if the point P
doesn’t appear in the first image I, it is difficult
to resolve this inherent ambiguity. In such situ-
ations, a third image would greatly reduce such
ambiguities.

For any pair of image points (p},p}), we project
the “pseudo-intersection” point P, into the two
images I, and I,, then get the two projected image

points p,( u}, v;) and p} ( u}, v}):

u' =S (Ri(Pg)+7i)e

‘ zi Ry Pq +Ti)s

l_Sy‘ gl }P; i‘f‘x

s RABN, (4)
]

'

—Sz] R, Pq +7Tr)s

R, (Pg)+Te
5 =53 (Re (P +ro)s

where S,; and S,; are the intrinsic camera scale
factors along the “u” and “v” directions on the
image plane I;, and S,; and S,,,- are the intrinsic
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Figure 3: A wrong “epipolar” 3D point corresponding
to a pair of image points.

camera scale factors along the “u” and “v” direc-
tions on the image plane I,.

Finally, we compute the error functions E,!,. and
E.:
i

A 2D similarity function sf(p, p}) is defined as

o1 (8},25) = Bl + By = 1} = ol s + 15 = 2§ I

The criterion underlying s f(p}, p}) is that the best
estimate for any 3D pseudo-intersection point is
the point that minimizes the sum of the least-
squares distances between the predicted image lo-
cation of the computed 3D point and its actual
image locations in the first and second images. if
sf(p},p;) = oo, it means that p} is not similar
at all to p}; if sf(pi,pj) = 0, it means that p} is
perfectly similar to p}.

The next two sections present two algorithms for
determining point correspondences using the sim-
ilarity function sf(p}, p}).

3 Algorithm based on principles of
proximity and exclusion

Following the basic idea in Scott and Longuet-
Higgins’ work[10], we uses pose information to
achieve a new powerful version of proximity ma-
trix. The first step is to detect any “negative” 3D
point P, and construct a n; X n, proximity matrix

H of a Gaussian-weighted error function H;; (i =
1,2, .., m; 7 =1,2, .., n,) using the similarity

function
H;j = e~ *1#h#})/30°

where ¢ is the control parameter for the degree of
spatial interaction between the two sets of image
points.

The second step is to perform a singular value
decomposition (SVD) of H, i.e.

H=UDVT

where U and V are orthogonal matrices, and D is
a diagonal matrix in which the nonnegative singu-
lar values appear along its diagonal in descending
numerical order.

The final step is to compute the correlation be-
tween U’s rows and V'’s columns and obtain an
association matrix A:

A=UIVT =yuvT

where superscript T denotes the transpose of a
matrix. J was obtained by replacing each diag-
onal element in D by a 1, i.e. I is an identity
matrix. Each element A;; indicates the strength
of attraction between p} and p;. If A;;=1, there
is a perfect correspondence between p! and p;; if
A;;=0, there isn’t any affinity between p} and p]
at all. The affinity between p} and pj is strong
only if A;; is largest in both its row and its col-
umn.

4 Algorithm based on maximum
network flow

The problem of triangulation without correspon-
dences seems on the surface to have little to do
with flow networks, but it can in fact be reduced
to a maximum-flow problem. In this section, we
show how the problem of triangulation without
correspondences is formulated as a maximum flow
problem on a flow network.

Given the two sets of points L = {p} | i =
1,2,..,n} from j and R = {p} | j = 1,2,...,7,
from I,, then an undirected bipartite graph G
(V, E) can be constructed as follows: V = L
R,E = {e;;} in which each edge ¢;; (i = 1,2,
v gy J = 1,2, ..., n,) with a unit weight corre-
sponds to a weighted link between p! in I, and 2



in I, if the “distance” between them, defined as
sf(p},p}) is less than threshold Ty, and the cor-
responding optimal 3D pseudo-intersection point
P, computed by equation (3) is not “negative”.
Here, the threshold T; is chosen empirically. Ob-
viously, the graph arising in such a case is a bi-
partite graph by construction, since two points in
the same image cannot be linked.

Furthermore, from graph theory, we know that
given an undirected graph G = (V, E), a match-
ing is a subset of edges M C FE such that for all
vertices v € V, at most one edge of M is inci-
dent on v. A vertex v € V is matched by M if
some edge in M is incident on v; otherwise, v is
unmatched. A mazimum matching is a matching
of maximum cardinality, that is, a matching M
such that for any matching M’, we have | M |
> | M' |. Therefore, the problem of triangula-
tion without correspondences can be considered
as the problem of finding a maximum matching
in a bipartite graph G.

In order to reduce the problem of a maximum
matching in the bipartite graph G to a maximum
flow problem in the flow network G’, the trick is
to construct a flow network in which flows cor-
respond to correspondences. We build a corre-
sponding flow network G’ = (V’, E') for the bi-
partite graph G as follows: Let the source s and
sink ¢ be new vertices not in V, let V' = VU({s, t},
and let the directed edges of G’ be given by

E'= {(s,u):ue€ L}U{(u,v):u€L,vER,
(u,v) € E}U{(v,t): v € R}

and finally, assign unit flow capacity to each edge
in E'.
The following theorem [21] shows that a matching

in G corresponds directly to a flow in the corre-
sponding flow network G'.

Theorem 1 Let G = (V, E) be a bipartite graph
with vertez partition V = LU R, and let G' =
(V', E') be its corresponding flow network. If M
1s a matching in G, then there is an integer-valued
flow f in G' with value | f |=| M |. Conversely,
if f is an integer-valued flow in G', then there is
a matching M in G with cardinality | M |=| f |.

Intuitively, a maximum matching in a bipartite
graph G corresponds to a maximum flow in its
corresponding flow network G'. If so, the cor-
respondence problem is equivalent to finding the

maximum flow in G’ = (V’, E'), and we can com-
pute a maximum matching in G by finding a max-
imum flow in G’. It has been shown [21] that if
we use the Ford-Fulkerson method, the maximum
flow f computed by it can ensure that | f | is
integer-valued, and the cardinality of a maximum
matching in a bipartite graph G is the value of a
maximum flow in its corresponding flow network
G'. Therefore, the correspondence problem can
be exactly reduced to finding the maximum flow
in G'. Specifically, our algorithm has the follow-
ing steps:

The first step which is the same as in the first
algorithm, is to compute sf(p}, p;) for all possi-
ble pairwise matches between any pair of image
points (p},p}). Then, the second step is to gen-
erate a bipartite graph G = (V, E),V = LUR,
where L and R are disjoint and all edges in E go
between L and R, such that if sf(p,p]) < Ty,
then there exists an edge in E from p} to p}. The
third step is to build the corresponding flow net-
work G’ = (V', E') using the above process. The
final step is to use the Ford-Fulkerson method to
efficiently obtain a maximum matching M from
the integer-valued maximum flow. A complete de-
scription of their algorithm can be found in [21]
and will not be given here.

Since any matching in a bipartite graph G has
cardinality at most min(| L |,| R |) = O(| V' |),
the value of the maximum flow in G' is O(| V|
)=0O(n; + n,). We can therefore find a maxi-
mum matching M in a bipartite graph G in time
O(| VE |). For each vertex, the number of edges
which is incident on the vertex can be considered
as a constant. Thus, the time complexity is ap-
proximately O(] V |*)= O((m + n.,)?).

5 Experimental Results

In this section, we will illustrate the two algo-
rithms and demonstrate their performance on im-
ages J1 and J2 (shown in Figure 4) from the RA-
DIUS “Model Board 1” set.

In order to demonstrate the robustness of the two
algorithms, they were compared in the presence
of noise. In general, there are two sources of error
which contribute to the error of 3D points recov-
ered from two images: (1) localization errors of
the 2D image points and (2) errors in the estimate
of the intrinsic and extrinsic camera parameters.



Figure 4: A pair of RADIUS images.

The contribution of the error of the 2D image
points from two images is complicated. To aid
the error analysis in determining the correspon-
dences between the two images shown in Figure
4, 32 ground truth corner points were selected and
projected into each image as shown by the white
dots. The image point locations from each im-
age were corrupted by Gaussian noise. Noise for
each image point location was assumed to be zero-
mean, identically distributed, and independent.
The standard deviation ranges from 0.5 pixel to
4.0 pixels. For each level of noise, 100 noisy sam-
ple sets were created and the two algorithms were
run on each of the samples. From each sample
run, the number of incorrect correspondences and
the squared distance error between the triangu-
lated point position and its ground truth position
were computed. The average number of incorrect
correspondences and average triangulation error
for each noise level are shown in Figures 5-6, re-
spectively. The experiments have shown that the
two algorithms work very well if there is no dif-
ference in sizes of image points from two images,
i.e. for two images, each 3D point to be recovered
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Figure 5: Comparison of number of correct correspon-
dences for the two algorithms as a function of noise.

appears in each image and only their correspon-
dences are unknown.

In order to show how the number of incorrect cor-
respondences is affected by the number of miss-
ing points (i.e. no correct correspondence in the
other image), new data sets were created by ran-
domly deleting some percentage of image points
from the same two sets of 32 image points used
above. Also, four levels of Gaussian noise from 1
pixel to 4 pixels were added to these new data sets.
The average number of incorrect correspondences
over 100 sets of samples for each noise level were
computed. Figures 7 and 8 show how the per-
formance of the two algorithms was affected by
the number of missing points and the noise. Our
experiments have shown that the two algorithms
can tolerate a difference in the number of image
points from two images and are robust against a
reasonable level of noise.

The experimental results [20] also show that it
is very difficult to choose an appropriate value
for the parameter o in the first algorithm and a
o that is too large can not be chosen. For the
first algorithm to work well, a sufficiently large o
must be chosen, yet it must not be too large since
thsi would drive the smaller singular values to-
wards zero. If this occurs, the association matrix
becomes unstable. This conforms the conclusion
reached in [11].

The second algorithm utilizes a threshold T; on
the error function to build the initial bipartite
graph. This threshold must be chosen empiri-
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Figure 6: Average triangulation error for the two al-
gorithms.
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Figure 7: Comparison of number of incorrect corre-
spondences for the first algorithm.
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Figure 8: Comparison of number of incorrect corre-
spondences for the second algorithm.

cally. Our experiments showed that it is crucial to
choose an approriate value for the threshold Tj.

6 Conclusions and Future Work

Based on a similarity function between two points
from two images via 3D pseudo-intersection, this
paper present two different algorithms to recon-
struct 3D points from noisy 2D image points with-
out knowing the point correspondences. The first
algorithm is based on a principle of proximity and
a principle of exclusion. It first builds a proxim-
ity matrix to represent the affinities, then does
a SVD decomposition of the proximity matrix
to get an association matrix, and finally obtains
the correspondences from the association matrix.
The second algorithm first reduces the problem
of triangulation without correspondences to that
of a maximum matching problem of the bipartite
graph, then reduces the maximum matching prob-
lem to a maximum flow problem of the flow net-
work, and finally determines the correspondences
by finding a maximum network flow from the flow
network.

The work presented in this paper compared the
two algorithms, in terms of robustness with re-
spect to noise and the difference between the set
sizes of image points from two images. The ex-
periments showed that the two algorithms are ro-
bust. The two algorithms do have several ad-
vantages: (1) they can automatically detect the
outliers from the 2D image points from a pair
of images by thresholding the error function for
left and right pseudo-intersection projections; (2)
they are not too sensitive to noise or the difference
between the set sizes of image points from two im-
ages; (3) their computational complexity is low;
(4) they can be expanded to reconstruct 3D lines
from noisy 2D image lines. From the preliminary
experiments conducted thus far, it appears that
there is only a small difference between the two
algorithms relative to the difference in the size of
the point sets. However, there are several reasons
to choose the network flow algorithm over the first
one: (1) potential instabilities in the association
matrix (as described earlier); (2) computational
consideration in the association matrix; (3) the
network flow is easily extended to multiple im-
ages.

For the two algorithms, however, there is some in-
herent ambiguity which cannot be distinguished.



For such cases, additional images are needed.
Currently, reconstruction from 2D image points
and lines without correspondences is a component
of the image understanding system being devel-
oped at our computer vision lab under the RA-
DIUS project.

In the future, we are examining ways of modi-
fying the second algorithm so that the threshold
T; is not needed. This will involve introducing
mechanisms for weighting in the matching prob-
lem and the maximum flow formulation. Further-
more, this algorithm will be extended to perform
triangulation from multiple images without know-
ing the correspondences.
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