“)

An Event-Based
Software Integration Framework

Daniel J. Barrett
Lori A. Clarke
Peri L. Tarr
Alexander E. Wise

CMPSCI Technical Report 95-48
May 19, 1995

Laboratory for Advanced Software Engineering Research
Computer Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

This work was supported by the Advanced Research Projects Agency under grant F30602-94-C-0137.

An Event-Based Software Integration Framework®

Daniel J. Barrett Lori A. Clarke Peri L. Tarr
Alexander E. Wise
Laboratory for Advanced Software Engineering Research
Computer Science Department
University of Massachusetts
Ambherst, MA 01003
E-mail: {barrett,clarke,tarr,wise}@cs.umass.edu

Version 3.01
May 19, 1995

Abstract

Although event-based software integration is one of the most prevalent approaches to loose
integration, no consistent model for describing it exists. As a result, there is no uniform way to
discuss event-based integration, compare approaches and implementations, specify new event-
based approaches, or match user requirements with the capabilities of event-based integration
products. We attempt to address these shortcomings by specifying a generic, event-based inte-
gration framework that provides a flexible, object-oriented model for discussing and comparing
event-based integration approaches. The framework can model dynamic and static specifica-
tion, composition and decomposition, and can be instantiated to describe the features of most
common event-based integration approaches. We demonstrate how to use the framework as a
reference model by comparing and contrasting three popular integration mechanisms: FIELD,
Polylith, and CORBA.

Keywords: integration, interoperability, event-based notification, reactive integration, reference
model, FIELD, Polylith, CORBA

1 Introduction

Integration, the process by which multiple software modules (programs, subprograms, collections of
subprograms, etc.) are made to cooperate, is a serious concern in the construction of large software
systems. Approaches to integration range from loose, in which modules have little or no knowledge
of one another, to tight, in which modules require much knowledge about one another. The looser
the integration, the less impact there is on a system when modules are added or changed. Event-
based integration, in which modules interact by announcing and responding to occurrences called
events, is perhaps the most prevalent loose integration approach — more than fifty event-based
integration products are available today (e.g., [CCC*93, Dig, Ger89, JR93, Pat93, Pur90, Rei90]).

tSupersedes the version of September 19, 1994.
*This work was supported by the Advanced Research Projects Agency under Grant F30602-94-C-0137.

Unfortunately, no consistent model for describing event-based integration exists; in fact, there is
not even a consistent vocabulary for discussing it. For example, a set of interacting software modules
might be called programs, modules, tools, applications, processes, process groups, clients, objects,
information objects, components, tasks, senders/recipients, agents, actors, or function hosts. These
software modules may interact via events, messages, announcements, notices, performatives, data,
solution information, or requests; and these may be routed by a message server, broadcast server,
server process, manager process, event manager, object request broker, distributor, or software bus.
Often there are subtle semantic differences between the concepts that these terms represent, but
the differences and similarities are hard to discern.

Since there is no consistent model for describing event-based integration, it is hard to cap-
ture one’s integration requirements and match them with those offered by various event-based
approaches. Thus, it is difficult to choose a suitable approach; and if no existing approach is suit-
able, it is difficult to specify a new one. It is also difficult to identify the similarities and differences
of various event-based approaches in order to support interoperability among them.

In this paper, we attempt to address these shortcomings by specifying a generic, event-based
integration framework. This framework is not “yet another” loose integration system; rather, it is
a high-level, general, and flexible reference model with several purposes:

e To identify common components found at the heart of event-based software integration and
to define a precise and consistent vocabulary for discussing them.

e To serve as a basis for comparison of specific event-based integration mechanisms and, as a
consequence, to facilitate interoperability among them.

e To provide insight into what is required for high-level communication between software mod-
ules.

The framework models only event-based software integration. It is not intended to model other
integration techniques, such as various kinds of procedure call (e.g., single program, remote proce-
dure call), shared repository or central database (e.g., ECMA PCTE [LM93], EAST [GLST95)),
and stream-based (e.g., pipes). It is unrealistic to expect a single model to subsume all possible
integration models. The framework, however, does support many common and useful integration
models.

We begin in Section 2 by describing related work in event-based software integration. Section 3
gives a brief overview of the framework. Section 4 defines a descriptive type model that is utilized in
the detailed description of the framework, which follows in in Section 5. Section 6 demonstrates the
framework’s effectiveness by describing and comparing three existing integration products: FIELD
[Rei90], Polylith [Pur90], and CORBA [CCC*93)]. Finally, an appendix describes the type model
in detail.

2 Related Work

Existing approaches to event-based software integration can be examined across at least four or-
thogonal dimensions: methods of communication, specification of modaule interactions, static versus
dynamic behavior, and module naming issues.

Methods Of Communication: Two primary methods of communication among software mod-
ules are point-to-point and multicast. Point-to-point means that data is sent directly from one
software module to another. Two common point-to-point approaches are procedure call' and
application-to-application. A procedure call sends procedure parameters from a software module
known as the caller to another known as the callee, optionally returning a value to the caller. In the
application-to-application approach, application programs have unique ID’s and transmit messages
to one another using these ID’s as addresses. This approach is the basis of the CORBA specifi-
cation [CCC*93). It is also common on personal computers, since the simplifying assumptions of
“one user per machine” or “one invocation of a given program at a time” can often be made (e.g.,
[App91, Com91]).

Multicast means that data is sent from one software module to a set of other software modules.
Two popular multicasting approaches are implicit invocation and the software bus. In the implicit
invocation approach, the sender is unaware of the recipients. Software modules express their interest
in receiving certain types of data that are then routed, usually by a server, to the appropriate
recipients. Implicit invocation, originally called selective broadcast, was pioneered by FIELD
[Rei90]. Today, implicit invocation is used in many commercial products such as Hewlett-Packard’s
SoftBench [Ger89], Sun’s ToolTalk [JR93] and DEC’s FUSE [Dig]. It has also been added to
some programming languages (e.g., [NGGS93]). In the software bus approach, software modules
have their inputs and outputs bound to the channels of an abstract bus. Data sent to a bus
channel is received by all tools with an input bound to that channel. A key feature is that bus
connections can be rearranged without modifying the tools. An example of a software bus is
Polylith [FHC+93, Pur90].

Our framework models the whole spectrum of point-to-point, multicast, and broadcast commu-
nication. The distinction between these three methods becomes moot in a dynamic model where
the number of recipients may change. Point-to-point and broadcast are modeled as special cases of
multicast to a single recipient and to all recipients, respectively.?

Specification Of Module Interactions: Different integration approaches specify module inter-
actions at various levels of abstraction, ranging from low-level to high-level. At the lowest level, the
source code of each module is modified to allow the module to communicate with other modules,
and there is no explicit specification of interactions that exists outside the modules. A higher-level
approach is encapsulation, or wrapping. Instead of (or in addition to) modifying the source code of

!Procedure call is not itself an event-based mechanism, but it is often used to transmit messages between modules
in event-based systems.
3 An implementation, however, may optimize point-to-point, multicast, and broadcast differently.

a module, an additional layer of software, called a wrapper, is created for the module. A wrapper
provides a module with an abstract interface of input and output operations, and all communi-
cation to and from the associated module is accomplished via that interface. ToolTalk [JR93],
for example, combines source code modification with simple encapsulation that specifies module
input and output operations. SoftBench [Ger89] provides a more powerful, procedural encapsula-
tion language [Fro89] that is rich enough to make source code modification unnecessary. Inscape
[Per89] provides a language of input and output operations plus preconditions and postconditions
on them, supporting automated reasoning about module correctness.

The next level of abstraction is the specification of not only the module interfaces but also the
connections between modules. Polylith [Pur90] uses a module interconnection language (MIL) to
specify direct connections between the inputs and outputs of module interfaces. For example, MIL
can specify that a particular output of one module’s interface is routed directly to a particular
input of another module’s interface.

The highest level of abstraction, software architecture, adds support for the specification of many
types of connections, usually called connectors. (Polylith, in contrast, provides only two types
of connections: unidirectional and bidirectional data transmission, with no additional semantics.)
Connectors are often first-class entities and may be user-specified. Meld [KG87], ACME [AG94],
and Rapide [LKA*95] are examples of software architecture models. Software architecture models
address a higher level of abstraction and a broader range of architectures than our framework
does. Thus, the two approaches are not directly comparable. In particular, software architecture
presupposes important details that our framework explores. For example, ACME has been used to
model a simple “event-based” architecture [GAQ94], but at a very high level that does not address
many features found in existing event-based systems (e.g., rich support for dynamism, delivery
constraints, and message transforming functions, as described in Section 5).

Our framework is independent of the method of specifying module interactions, be it source
code modification, encapsulation, or external specification.

Static vs. Dynamic Behavior: Different integration approaches support varying degrees of
static and dynamic specification of their behavior. There are advantages and disadvantages to
each kind of specification. Static specification is more easily checked for correctness than dynamic
specification, but it is severely limited in flexibility. In contrast, dynamic specification allows
module behavior and/or interconnections to be changed while the modules are executing; however,

reasoning about the behavior of large, dynamic systems can be very difficult.

The original Polylith [Pur90] supported only static specification of interactions, as modules had
to be terminated and restarted to change their interconnections.®* The SDL BMS [Bar93] supports
only dynamic specification of interactions, allowing modules to register and unregister for service
dynamically. ToolTalk [Sun92] supports both static and dynamic specification of interactions.
Qur framework models both static and dynamic specification of behavior.

3The latest specification of Polylith models dynamism (e.g., [PH91]).

Naming Issues: In order for a module to receive messages, it must somehow be identifiable.
There is a spectrum of approaches to identifying modules, ranging from abstract to primitive. At
the “abstract” end of the spectrum, senders are completely unaware of the names and locations
of recipients. Naming issues are typically handled by a message server that locates each module
receiving a multicast message. For example, FIELD [Rei90] modules do not have explicit names;
instead, each software module registers message patterns with the message server, denoting the
types of messages that the module wants to receive. Senders broadcast their messages blindly,
without knowledge of any recipients, and the message server delivers to each module only those
messages matching the module’s message patterns.

At the next lower level of abstraction, senders still need not know the names and locations of
recipients, but they must know references to those names, called aliases. (Aliases may themselves
be names.) For example, ISIS [Bir93] allows multiple modules to be grouped under an alias, so
any message sent to that alias is transparently forwarded to all members of the group.

At the next lower level of abstraction, senders must know the exact names of recipients.
CORBA [CCC+93] requires each software module to have a globally unique name, and each mes-
sage must contain its intended recipient’s name. ARexx [Com91] modules have globally unique
names, but each message does not contain the recipient’s name; instead, the name is used once to
open a communication channel between sender and receiver. Both CORBA and DCE [BGH*93]
use name servers to locate receivers that are distributed on multiple machines.

At the “primitive” end of the spectrum, senders must know the exact names and locations
of recipients. Such approaches are rare nowadays, since this degree of knowledge among modules
increases coupling and therefore conflicts with the benefits of loose integration.

Our framework can model all of these methods of naming.

3 Overview of the Framework

This section presents a brief, high-level overview of the generic, event-based integration framework,
in preparation for a detailed description in Section 5. We begin with a motivating discussion of
participants and the four framework components. After that, we discuss how the framework is
actually used to model integration approaches.

Participants and Framework Components: In the framework, depicted in Figure 1, one or
more modules, called participants, transmit and/or receive pieces of information, called messages,
in response to occurrences, called events. Participants that transmit messages are called informers,

and those that receive messages are called listeners. A participant may be both an informer and a
listener.

Participants interact by way of four types of framework components: registrars, routers, message
transforming functions, and delivery constraints. Before a participant can transmit or receive any
messages, it must register its intent to do so via a registrar. Participants may also unregister
and re-register as needed. Using information from the registrar, a router delivers messages from

| register} <register |
Registrar
Informer Listener
(Participant) (Participant)
Router
Ui

Figure 1: Relationships among informer, listener, registrar, router, message transforming functions
(MTF’s) and delivery constraints (DC’s).

informers to their intended listeners.

The framework allows the content and/or routing of messages to be modified after the messages
are sent but before they are received. Message transforming functions (MTF’s) defined within a
router can dynamically alter messages sent to listeners. A simple type of MTF commonly found
in integration products is a filter, which selectively accepts or rejects messages from a listener’s
incoming message stream if they satisfy certain criteria. Another is an aggregator, which transmits
a new message whenever a particular sequence of incoming messages is detected.

Rules of message delivery, called delivery constraints, may also be defined within routers. For
example, a constraint can specify that all messages must be received in exactly the order they are
sent, or that messages must arrive within a certain period of time.

The framework supports the description of groups. A group is a set of participants and/or
framework components that may be logically treated as a unit. Groups permit the framework to
model composition and decomposition. For example, a group containing a registrar, router, and
set of participants could itself register as a participant. Groups can also be used to support aliases,
allowing multiple modules to be accessed together using a single name. Modules can be added to,
removed from, or replaced in the group without changing the group name, further facilitating loose
integration.

In summary: registrars, routers, message transforming functions, and delivery constraints are
the components of the generic, event-based integration framework in which participants commu-
nicate. Each represents a basic aspect of integration. Participants are the interacting software
modules. Registration distinguishes modules that are interacting from those that are not. Routing
transmits data among participants. Message transforming functions modify data en route to their
destinations. Finally, delivery constraints control the delivery of data.

Using The Framework: As a reference model, the generic framework itself does not specify
implementation details such as particular registrars and routers, a method for turning software
modules into participants, or particular patterns of interaction between participants. Instead,

using a three-phase description process, these details are imposed on the framework to produce a
descriptive model of a particular software integration system. The descriptive phases are called
instantiation, adaptation, and configuration.

The instantiation phase is the process of describing the semantics of framework components,
including framework component types, particular instances of components, groups of components,
and policies for system behavior (e.g., how to handle delivery constraint violations). Instantiation is
important because it allows us to discover and model high-level similarities and differences between
event-based integration approaches, without getting bogged down with implementation details. We
call an instantiated framework an integration mechanism. The description of a mechanism is called
an integration mechanism specification. When it is unambiguous to do so, we use the simpler term
mechanism in place of “integration mechanism” in the previous definitions.

The adaptation phase is the process of describing methods for turning software modules into
participants that can interact within a mechanism. Such methods include modifying module source
code, linking with custom libraries, or wrapping modules in another layer of software (discussed
in Section 2). Many factors influence the choice of adaptation method, such as properties of the
message types, flexibility of message delivery, and degree of concurrency desired [NGGS93]. The
design decisions involved in choosing an adaptation method are well studied [NGGS93, SN92] and
thus not explored further in this paper.

The configuration phase is the process of describing participants and their permissible inter-
actions. For example, one can define participant types, participant instances, or that a given
participant instance can use a given type of MTF. Such a description is called a configuration
spectfication.

It is important to note the relationship between the configuration phase and registration. A
configuration specification describes the allowable interactions between participants. Registration
defines the current subset of allowable interactions that individual participant instances support.
A mechanism must provide a policy for handling the case where a participant attempts to register
information that violates the configuration specification.

4 A Descriptive Type Model

To facilitate the detailed discussion of the generic, event-based integration framework in Section 5,
we define a descriptive type model. This type model allows us to reason about the parts of the
framework as black boxes (abstract data types). It also provides a convenient way of representing
certain relationships between the various parts of the framework, as modeled by subtyping and
inheritance.

A type is defined as a named set of attributes, operations, messages, and roles. An attribute is
a named, typed value. An operation is a named, invokable entity. A message is a named, typed
unit of data. Roles are explained below. The attributes, operations, messages and roles of a type
are referred to collectively as its fields.

A type inherits all fields from all of its supertypes via multiple inheritance.* For example, if a
type ¢ has a supertype s, and s has an attribute a, then ¢ also has an attribute a. To avoid a cycle

in the type hierarchy (types have fields, and fields have types), the type MetaType is introduced as
the root.

The multiple inheritance model is extended through the use of roles, which are optional su-
pertypes. An instance of a type may choose, for each of its roles, whether or not to inherit all
fields of that role.® By default, a type inherits the fields of all of its roles. Roles are similar to
variants in a programming language (e.g., Ada [Bar84]). Roles are also similar to subjects in the
subject-oriented programming model [HO93]. Subjects allow a type ¢ to have multiple interfaces
(sets of fields), and a given instance of ¢ can appear to have any of those interfaces, depending on
who is accessing the instance. Similarly, roles allow types to have different interfaces, but unlike
subjects, the roles of a given instance are fixed. Thus, roles are weaker than subjects, but sufficient
for our descriptive type model.

Fields inherited from roles are named explicitly. If the fields of a role r are fy, fa,..., fi, and
instance ¢ chooses to inherit from role =, then #’s inherited fields are named r.fy,.f;, ..., 7. fi. For
example, suppose type Application Program has the roles Text_Editor, Compiler, and Debugger.
An instance of type Application Program, p, chooses to inherit from roles Text_Editor and
Debugger. If type Text Editor has operations Insert and Delete, and type Debugger has at-
tribute Current Breakpoint, then p has fields Text Editor.Insert, Text _Editor.Delete, and
Debugger.Current Breakpoint. An example of the use of roles is shown in Section 6.1.

Roles are a solution to the problem of allowing participants and framework components to use
the fields of multiple types without combinatorial explosion in the number of types. Continuing
the example above, a second instance of type Application Program, p’, can inherit a different
subset of roles than p does and still have the same type as p, even though its fields are different.
To accomplish this inheritance without roles, p and p’ either would have to be of different types or
would inherit fields that they do not need. For example, program p might have to inherit the fields
of the Compiler type unnecessarily. Note that roles do not subvert normal subtyping rules, since
roles can only add fields to a type, not remove them.

The type model supports queries over all instances of a type. Queries can be used for many
purposes, including determining the extent of one or more types (i.e., the set of all instances of the
type(s)), determining which types have an attribute with a particular name or type, or determining

which instances of a type have a particular attribute value.

Figure 2 illustrates how the parts of framework map to our descriptive type model.® Using
this type model, a router r, for example, is modeled as an instance of type Router or one of its

*By “nherits,” we mean the type is behaviorally a subtype; thus, the subtype has, at minimum, all fields of the

parent.
8Qssher and Harrison [OH90] use the term “role” differently to mean a collection of operation interfaces. Any type

supporting all operations of a role may be used in place of that role. Thus, their roles are higher-level abstractions

than types. Our roles are types. _ .
®Roles do not appear in the diagram because they are not first class; see type Framework.Type in Appendix A for

role-related operations.

MetaType

TYPe“(//’
S

Framework_Type

»~

Participant_Type

Object

Attribute Operation
Message

Registrar

Router Participant Delivery_Constraint

Informer Listener

Figure 2: ADT’s of the generic integration framework. Arrows point from supertypes to their

subtypes.

subtypes. A complete specification of the type model is found in Appendix A.

This type model is primarily a notation for discourse, not an implementation guide. Use of
this type model in an implementation would require specification of additional properties, such
as an inheritance conflict resolution policy, a definition of type equivalence, and constraints on
subtype/supertype relationships.

5 The Generic, Event-Based Integration Framework

This section provides an in-depth description of all parts of the framework. For each definition,
we include abbreviated information about the associated type in the type hierarchy: its name,
supertypes, and operation names (not including inherited operations).

5.1 Participants: Informers and Listeners

Type: Participant
Supertypes: 0Object
Operations: Set_Router, Get_Router, Set Registrar, Get Registrar

A participant is a software module that has been adapted to be compatible with a particular
integration mechanism. An informer (subtype Informer) is a participant that detects events and
sends messages, and a listener (subtype Listener) is a participant that receives messages. A
participant may be both an informer and a listener (by defining a subtype that inherits from both
Informer and Listener).

5.2 Events and Messages

Type: Message
Supertypes: Object, MetaType
Operations: Set_Parameter Value, Get_Parameter_.Value

An event is an occurrence such as the invocation of a program, the modification of a file, the
change of a participant’s state, or the sending of a message. Informers are notified of events by
some means that is outside of the framework. Messages are the manifestations of events in the
framework.

A criticism of event-based approaches in general is that they cannot handle pre-notification: that
is, notification about an occurrence before it happens. After-the-fact notification is not sufficient for
solving certain kinds of problems, such as consistency maintenance, in which consistency violations
must be prevented before they actually occur. Our framework supports the modeling of pre-
notification by specifying that “event z is about to occur” is itself an event.

A message (type Message) is information emitted by an informer in response to an event or
events. The common notion of message parameters (analogous to the formal parameters of a
subprogram) is modeled using attributes. For example, a message with parameters z and y is
modeled as an instance of a subtype of Message with corresponding attributes z and y. The
operations Set_Parameter_Value and Get_Parameter.Value provide a convenient shorthand for
setting and getting parameter values without using attribute-related operations directly. Note that
all parameters are attributes, but the converse is not necessarily true.

Type Message may have attributes to allow fine-grained control over the sending and receiving
of individual messages. Three useful attributes are:

e Delivery_Constraint, which specifies delivery constraints on this message. By default, the
value is “no constraints specified.”

e Synchronization, which represents whether the message can be sent synchronously, asyn-
chronously, or either. By default, the value is “either.”

e Access_Control, which specifies the listeners that are permitted to receive this message after
it is sent. The value implicitly determines whether this message is sent point-to-point or
multicast. By default, the value is “all listeners” (i.e., broadcast).

The values of these three attributes specify properties of message instances, rather than mes-
sage types, so an informer can choose different delivery constraints, synchronization, and/or access
control to apply to each message that it sends. We chose “per instance” specification over “per
type” specification of these attributes for increased flexibility when messages are sent, since the
former can model the latter, but not vice-versa. If desired, type-level specifications of delivery con-
straints, synchronization, and access control can be specified upon registration or in a configuration
specification. Consistency checking may be necessary to insure that these instance-level attribute
values do not conflict with other type-level and system-level specifications.

10

Another useful attribute for type Message is Event, which specifies the event that caused a
message to be sent. This attribute can be used to bridge the gap between events and messages,
giving listeners knowledge of events that have occurred.

5.3 Registrars

Type: Registrar

Supertypes: 0Object

Operations: Register_Informer, Register Listener Polling,
Register Listener_Active, Register MTF,

Register Delivery Constraint, UnRegister

Before a participant can send or receive any messages, its intent to do so must be registered
with a registrar. Information about a participant can be registered by that participant or by
another entity, such as another participant or a software developer. Both static (prior to participant
invocation) and dynamic (during participant execution) registration can be modeled.

Informers must register their intent to send messages, and listeners must register their intent to
receive messages. Informers can also register specialized delivery constraint, synchronization, and
access control information for each type of message they intend to send, providing the “per type”
control mentioned in Section 5.2.

All participant instances can register a variety of additional information. Participants can
register message transforming functions and delivery constraints that operate on messages they
send or receive. For example, a listener interested only in messages from a particular informer or
pertaining to a particular event can register an MTF that filters out all incoming messages not
matching those criteria. Registration is also the point at which participant instances select the
subset of roles from which they inherit, as described in Section 4. This allows participants to
utilize different sets of message types and operations as they are needed.

When a participant registers, it is returned a handle to an instance of type Router. The partic-
ipant calls that router’s Send and/or Receive’ operations to communicate with other participants.
The router can be a physical router or a logical router (e.g., a group of routers), and a registrar
can cause a participant’s router to be replaced by another router (e.g., for optimization purposes)
via the participant’s Set_Router operation.

When a participant registers, consistency checking may be necessary to insure that the partici-
pant’s request does not conflict with any other registrations. For example, if two different listeners
both register a delivery constraint to “receive messages of type t before any other listener receives
them,” the registrations cannot both be satisfied simultaneously.

"Except in the case of active message delivery, described in Section 5.4, in which no Receive operation is needed.

11

5.4 Routers

Type: Router
Supertypes: 0Object
Operations: Send, Receive, Message Waiting, Send_To_Router

A router’s purpose is to receive messages from informers and deliver messages to listeners. As
software modules register as informers and/or listeners, the registrar instructs the router to create
communication channels between those informers and listeners. A communication channel may be
as simple as a direct connection between an informer and a listener, or it may involve the dynamic
evaluation of message transforming functions and delivery constraints to determine the recipient of
a message.

The complete path of a message in an integration mechanism is as follows. Let L be the set of
all listeners and M be the set of all messages.

1. An informer sends a message m € M.
2. The message m is received by a router.

3. The router applies all applicable message transforming functions and delivery constraints to
message m, resulting in a partially ordered multiset ¥ = {(m,, 1), (m3,13), . . ., (M, k) }, with
my,my,...,m; € M and ly,l,...,l; € L. Note that m is not necessarily in {m,, m3, ..., mi}.

¥ is ordered because the evaluation of MTF’s and delivery constraints may impose an order
on the delivery of messages. X is a partial order because there may be many acceptable
orderings that satisfy the MTF’s and delivery constraints. By leaving the order as partial,
rather than having the router select one of the possible total orderings, we support parallelism
in the router, since incomparable elements of X can be delivered in parallel. ¥ is a multiset
rather than a set because there is no reason for the router to limit the number of times that
a particular message is sent to a particular listener.

4. The router delivers each message m; to listener /; in an order compatible with the poset ¥.

Routers support two models of message delivery: polling and active. In the polling model, a
listener invokes a router’s Receive operation to receive a message. In the active model, a listener
registers a custom “receive” operation, and whenever a message is ready to be delivered to the
listener, the participant’s router automatically invokes that operation. Each listener chooses one
or both of these delivery models at registration time. We chose to support both models of message
delivery at the framework level, rather than leave it as an implementation issue, because only
the polling model needs a router Receive operation, and the signatures of the two corresponding
registrar operations are different.

In many integration systems, the jobs of the registrar and router are incorporated into a single
component. In our framework, however, registrars and routers have sufficiently different semantics
to justify their separation. Registration is the act of obtaining permission to communicate. A

12

registrar can check whether the requested kind of communication violates some constraint. Rout-
ing is the act of carrying out communication. A router can check whether a particular message
transmission violates some constraint. Routers handle messages, but registrars do not. In addition,
routers are time-critical components: message transmission should proceed as quickly as possible,
often subject to real-time constraints. The granting of permission to communicate, however, is ar-
guably not as time-critical. In many integration products, registration is performed only once per
participant, whereas routing is performed many times per participant. Finally, a mechanism may
allow its number of registrars to be different from its number of routers. For example, a mechanism
with a single registrar may have multiple routers to optimize message transmission.

5.5 Message Transforming Functions

Type: MTF
Supertypes: 0Object
Operations: Transform

A message transforming function (MTF') transforms a message intended for a particular listener
into a sequence of messages intended for particular listeners. An MTF also has a state (the values
of its attributes) that can affect its output. Formally, let M be the set of all messages, L be the
set of all listeners, and S be the set of all MTF states. An MTF is a function

f:MxLxS—(MxL)"xS

where (M x L) is a sequence (possibly empty) of message/listener pairs.®

For the purposes of converting messages into other messages and/or re-routing them to other
listeners, messages and listeners are in the domain and range of an MTF so they can be changed by
the MTF. Having a state gives an MTF the ability to base its output on previously received messages
(e.g., on sequences of messages), not just the single message given as input. For example, if we
want an MTF that outputs a message m, whenever it receives the message sequence (m;, m,, m3),
then the MTF could change state on receipt of m,, change state again on receipt of m;, and then
output mg on receipt of mj. Of course, a simple MTF function could ignore its state information.
MTF’s are equivalent in power to on-line Turing Machines [Hen66).

Most integration products support some message transforming functions: most commonly, fil-
ters. FIELD [Rei90] listeners register message patterns (filters) to specify which kinds of messages
they receive. ToolTalk [JR93] allows listeners to register filters that accept or reject messages
based on their “class.” Bart [Bea92] uses “declarative glue” and relational algebra to design filters
that select relevant data. Policies in Forest [GI90] provide aggregation. A more subtle example of
aggregation is that of Odin [CO90], in which objects have multiple dependents, all of which must
(effectively) send an “up-to-date” message before the target object can send its own.

5We defined the output to be a sequence of messages, rather than a poset (which would match the router’s output),
because the responsibility of delivering messages in a particular order is ultimately the router’s. The delivery order
of the messages output by an MTF can later be modified by delivery constraints if desired.

13

5.6 Delivery Constraints

Type: Delivery_Constraint
Supertypes: 0Object

A delivery constraint is a property of message delivery that is enforced by a mechanism. Ex-
amples are order of delivery, timing of delivery, and atomicity properties (e.g., a message is de-
livered either to all or none of its intended listeners). Delivery constraints can be represented
by any of a number of formalisms, including temporal logic [Koy92] and partially ordered sets
[LKA*95, MPS91].

In the framework, a distinction is made between two classes of delivery constraints. A system
delivery constraint is one that applies to all messages sent in the mechanism. These constraints
often arise due to underlying physical constraints, such as “messages can be transmitted no faster
than 10 megabits per second.” A user delivery constraint may apply only to some messages sent

in the mechanism; for example, “Messages of type ¢ have higher priority than all other messages
and should be delivered first.”

It is possible for delivery constraints to be inconsistent with one another. A mechanism can
have policies for resolving such inconsistencies. In addition, violations of delivery constraints may or
may not be permitted by a mechanism. When permitted, a policy for responding to such violations
can be specified.

Delivery constraints are found in some integration products. ISIS [Bir93] has “message delivery
orderings” that enforce causal relationships between messages. Darwin [MR90] has system “laws”
that can specify message delivery rules. Consul [MPS92, MS92] has an “order protocol” that
enforces orderings on received messages. The Amiga Exec [Com92] allows listeners to be prioritized
for receiving messages. The router in Garlan and Scott’s extended Ada [GS93] delivers messages
to listeners in an order defined statically in the router’s source code. The hard and soft deadlines
of real-time systems also are examples of delivery constraints.

5.7 Groups

Type: Group
Supertypes: O0Object
Operations: Add Member, Remove Member, Is Member, Members. Of

Objects in the framework, such as participants and framework components, can be collected
into sets called groups and treated as a unit. The objects in a group are called its members. Groups
may themselves be members of other groups, but a group cannot contain itself directly or indirectly.
Groups may be empty. A simple example of a group is a mail alias, in which a single mail address
is used to represent a set of mail addresses, each of which may itself be an alias.

Groups can be used to support composition. For example, a set of registrars, routers, and partic-
ipants can form a group that itself registers to be a participant, as shown in Figure 3. Groups have
other uses as well; for example, the messages in a group could be considered logically equivalent.

14

Registrar 2

[Router 2

Registrar 1 7

Participant 3

Participant 1

Participant 2

I
I
I
I
I
I
I
—— e — — ———— — e]

Figure 3: Composition using groups. Registrar 1, Router 1, and Participants 1 and 2 form a group.
The group itself is registered as a participant with Registrar 2. Communication to and from the
group is accomplished by sending messages between the two routers, using the Send_To Router
operation.

It is possible to model groups indirectly using attributes; for example, a set of objects whose
types share an attribute could be considered a group. Attributes, however, do not have special
semantics associated with them, and issues such as naming and multiple group membership can
make an attribute-based grouping model awkward to use. Therefore, the framework models groups
explicitly.

Groups appear in various integration products, though generally only participant groups are
supported. ISIS [Bir93] provides support for several kinds of participant groups, in which the
members have varying degrees of awareness of each other. FIELD [Rei90] supports participant
grouping both explicitly (participants can limit the scope of their broadcasts to a select group)
and implicitly (all participants that register a given message pattern form a group). The Pilgrim
Event Notifler [Bha91] provides “subscription lists” as a grouping mechanism for listeners, and
a message sent to a list is routed to all of the list’s members. Schooner [HS92] and Cronus
[STB86] have multiple servers, each serving a group of participants. SoftBench [Ger89] tools can
encapsulate multiple participants, implicitly forming a group.

5.8 Specification of Mechanisms

Having defined the framework components, we now turn our attention to framework instantia-
tion. A mechanism is an instantiation of the generic framework. A mechanism specification is a
description specifying instantiated properties of a mechanism.

A mechanism specification is created by defining the types, instances, policies, and languages
that comprise an integration mechanism and distinguish it from other integration mechanisms.

15

Each of these definitions is elaborated below, using general descriptions and motivating examples.

e Define subtypes and restrictions (i.e., removal of unneeded fields) of framework components,
messages, and groups:

— Subtypes/restrictions of Registrar. For example, systems that combine the registrar
and router into a single component (e.g., [Pur90, Rei90]) can create a subtype that
inherits from both Registrar and Router.

— Subtypes/restrictions of Router. For example, Polylith [Pur90] uses the polling model
of message delivery, and Q [MOS90] uses the active model. The ARexx [Com91] router
is restricted to point-to-point communication, whereas FIELD [Rei90] permits multi-
casting. A message history mechanism can be modeled by creating a subtype of Router
with a History attribute, containing all messages the router has handled.

— Subtypes/restrictions of MTF and Delivery Constraint. For example, Consul [MPS92]
has four subtypes of message ordering constraints available.

— Subtypes/restrictions of Message. For example, FIELD messages are restricted to
strings, but ACA [WT90] messages are abstract data objects. Q has a Message sub-
type with a High-Priority attribute to represent important messages. ToolTalk [JR93]
messages are restricted to be sent asynchronously only, whereas Polylith supports both
synchronous and asynchronous communication.

— Subtypes/restrictions of Group. For example, ISIS [Bir93] groups can contain only
participants, and their members may or may not be aware of one another.

e Define instances of framework components and groups:

— Particular registrars and routers. For example, Soft Bench [Ger89] has only one router,
but Schooner [HS92] supports multiple routers.

— Particular message transforming functions. For example, particular Forest policies are
specified in “Policy Definition Files.”

— Particular delivery constraints. For example, Consul supports the definition of accept-
able partial orderings of messages.

— Particular groups (not involving participants). For example, in FIELD, the message
server could be modeled as a grouped registrar and router.

e Define policies for handling violations or resolving mismatches:

— Synchronization mismatches. For example, if an informer and listener with incompatible
Send and Receive synchronization attempt to communicate, some intermediate buffering
may be necessary.

— Access control violations. For example, Zephyr [DKE+89] uses the Kerberos [SNS88]
authentication system to enforce access control.

16

— Delivery constraint violations. For example, real-time systems specify that the violation
of a time constraint indicates either complete or partial failure of the system.

— Delivery constraint inconsistencies. For example, if two participants register conflicting
delivery constraints, at least one registration must be rejected.

— Mechanism specification violations. For example, if a component acts in a way contrary
to its specification, an exception could be raised.

e Define languages for describing MTF"s, delivery constraints, and queries. For example, the
MTF language of FIELD can describe only filters, Forest [GI90] can describe only aggrega-
tors (since a policy action can be either a single message or the empty message), and CORBA
[CCC+93] has no MTF language at all.

An initial mechanism specification statically describes the mechanism upon instantiation. If the
components of an integration approach can change over time, this is modeled simply by changing
the mechanism specification. For example, one might add new message transforming functions or
change the number of routers. Of course, arbitrary changes might introduce inconsistencies into
the mechanism, so some restrictions or consistency-checking may be necessary.

Mechanism specifications do not define participant-related information, such as participant
types and instances. These are given in configuration specifications, defined in Section 5.9.

5.9 Specification of Configurations

A configuration specification describes participants and their allowable interactions. A configuration
specification is created by defining types, instances, groups, and policies that pertain to participants.
Each of these definitions is elaborated below. A participant instance can register to support all, or
only a subset, of the defined interactions, but it cannot legally violate the configuration specification.
A configuration specification defines:

e Participant types. This includes each type’s attributes, operations, and allowable messages
and roles. For example, CORBA [CCC*93] has an Interface Definition Language for creating
participant types. :

e Participant instances. For example, Polylith [Pur90] participants (called “tools”) can be
defined as instances of types (called “modules”).

e MTF’s and delivery constraints (defined in a mechanism specification) that may be used
by participant types or instances. For example, Forest [GI90] policies are associated with
listeners.

e Group instances containing participants. For example, DEEDS [LLC*94] allows the specifi-
cation of particular groups of participants.

e A policy for handling configuration specification violations. For example, CORBA raises an
exception if a listener fails to respond to a message.

17

An initial configuration specification statically describes the configuration of the initial mech-
anism specification. Systems such as Polylith provide this feature. If an integration approach
supports dynamic reconfiguration of its participants, this is modeled simply by changing the con-
figuration specification. For example, a new participant type or instance could be added. Again,
changes to the configuration specification may need to be checked for consistency.

6 Case Studies

Many existing integration products can be viewed as instantiations of the generic, event-based
integration framework. We present reasonable mechanism specifications for three well-known in-
tegration approaches: the implicit invocation product FIELD [Rei90], the software bus product
Polylith [Pur90], and the object-oriented specification of CORBA 1.2 [CCC+93].% Once the three
mechanisms are mapped to the framework, the task of comparing and contrasting them becomes
much easier, as we demonstrate.

Comparison of integration mechanisms is an important, practical task for several reasons. It
is necessary at some level when deciding which of several mechanisms is most suitable for one’s
purposes. Our framework provides a useful level of abstraction for this comparison. In addition,
such comparisons can facilitate interoperability between integration mechanisms. By identifying
the components and functionality that are common among the mechanisms, attention is focused
on the core features of the mechanisms, allowing a software developer to exploit their similarities
and address their differences. As we shall see in our example, all three mechanisms have a readily
identifiable router component. One approach to interoperability would be to group the three router
types into a single router that can handle messages from all three mechanisms. On the other hand,
one of the mechanisms provides point-to-point communication, one provides multicast, and one
provides both. The framework calls attention to this important distinction that must be addressed
by any plan for interoperability among the three mechanisms.

This section utiliizes the framework types and operations defined in Appendix A.

6.1 FIELD

FIELD [Rei90] has a client-server architecture, as shown in Figure 4. Client programs, called tools,
broadcast messages anonymously by sending them to a central message server called Msg. Tools
specify the classes of messages that they want to receive by registering message patterns with Msg.
Msg delivers to each tool only the messages that match the tool’s message patterns. Messages can
be intercepted by a special tool, called the Policy tool, which takes user-specified actions on receipt
of those messages (reroute messages, replace them with other messages, etc.). These user-specified
actions, called policies, are external to tools, so no tool modification is necessary. An example
policy is, “exiting the text editor should cause an automatic recompilation of the program that was
edited.”

In terms of our framework, FIELD tools are participants. More specifically, they are subtypes

9Several additional features of CORBA 2.0 are noted as well.

18

Msg message server (Registrar + Router)

S—p

Y v

Y

Tool 1 Tool 2 Tool 3
(Informer) (Listener) (Listener)

Figure 4: The participants and components of FIELD. Tool 1 sends message m to Msg. Msg
routes the message to all tools that have registered a message pattern matching m. The Policy tool
is optional and not pictured.

of type Participant. Msg incorporates the functionality of both a registrar and a router and is
therefore a subtype of both Registrar and Router. Software modules are adapted into partici-
pants by wrapping or modifying their source code to make calls to Msg’s Router.Send operation
(FIELD’s MSGsend family of functions). All tools are automatically registered as informers on
startup; that is, the Registrar operation Register Informer is invoked automatically. A tool
registers as a listener by explicitly invoking the Register Listener_ Active operation (FIELD’s
MSGcallback family of functions). Before a tool can receive any messages, however, it must register
message patterns, since no patterns are registered by default.

Message patterns and policies are FIELD’s two types of MTF’s. Message patterns are filters,
represented by printf-style format strings [KR90]. When a listener registers message patterns, it
receives all messages that match those patterns. Message patterns are registered with Msg using
its Registrar operation Register MTF (FIELD’s MSGregister function).

The Policy tool is a special participant that reads and processes policies. It registers message
patterns with Msg to receive all messages that are relevant to its policies. A FIELD-supplied
system delivery constraint causes these messages to be sent synchronously to the Policy tool before
any other tool. While Msg waits for this synchronous message send to complete, the Policy tool
applies any relevant policies and sends any resulting messages to Msg. The Policy tool then
returns a result to Msg that indicates whether the original message should be sent to other tools
or discarded.

Since policies are MTF’s, and MTF’s reside in a router, we model the Policy tool as a grouped
registrar and router that itself registers as a participant with Msg. Policies are registered with the
Policy tool via its registrar’s Register MTF operation. Additional, limited delivery constraints can

be specified by giving priorities to policies, specifying their order of execution, and registering the

19

priorities with the Policy tool’s Register Delivery Constraint operation (the LEVEL keyword in
FIELD’s policy language).

FIELD supports participant grouping so that certain messages from one group member are
multicast only to the other group members, using the Group operation Add Member (FIELD’s
MSGconnect function). Configuration specifications in FIELD are not user definable; any partici-
pant can register any message pattern, join any group, etc. The only message type is String, and
message strings are converted into sequences of typed values by an MTF. The only configuration
specification violation handled by FIELD is the sending of a message that does not match any
registered message pattern; a reply of NULL is returned to the informer that sent the message.

Recall from Section 4 that roles are optional supertypes; that is, an instance can choose whether
or not to inherit from a role. As an example of the use of roles, consider FIELD’s Annotation
Editor [Rei95], a type of participant used for editing and/or browsing files. FIELD supplies four
different kinds of annotation editors:

1. annotedit, which lets the user edit text, edit annotations (placemarkers in the text for use
by other participants), and execute user commands;

2. aedit, a simplified annotedit with no annotation editing capabilities;
3. annotddt, an extended annotedit with additional debugger-related operations;

4. annotview, a browser without editing capabilities.

FIELD has only one Annotation Editor type, but it has the above four instantiations. To model
this structure with traditional multiple inheritance, one could use four types, one for each of the four
kinds of editors, as in Figure 5(a), inheriting various capabilities from supertypes (e.g., annotation
operations from type Annotator, editor operations from type Editor, etc.). Unfortunately, this
approach fails to model the fact that FIELD has only one Annotation Editor type. Alternatively,
one could use a single Annotation Editor type, Annotation Editor, and model the four kinds of
annotation editors as its subtypes, as in Figure 5(b). This approach, however has the unwanted
feature that all four subtypes will inherit operations that they might not need. For example, aedit
does not have any annotation features, but type aedit wastefully inherits from type Annotator.
Using roles, as in Figure 5(c), one can do away with the subtypes of Annotation Editor by allowing
instances to choose the supertypes from which they will inherit. For example, aedit would be an
instance of Annotation Editor that inherits fields only from the roles Editor and CommandTool.
Note that the use of roles is type-safe. No subtyping rules have been broken; rather, each instance
selects a subset of these optional supertypes and inherits only from them.

6.2 Polylith

Polylith has a software bus architecture, as shown in Figure 6. Individual programs, called tools,
connect their input and output ports to an abstract bus and send and receive messages on named
bus channels. A module interconnection language (MIL) is used to encapsulate external programs

20

Annotator Editor CommandTool DebugViewer Browser

B

annotedit aedit annotddt annotview

Annotator Editor CommandTool

N

(b) Annotation_Editor

DebugViewer Browser

annotedit aedit annotddt annotview

Annotator Editor CommandTool DebugViewer Browser

N

Annotation_Editor

Figure 5: Use of roles (c) versus separate types (a) and subtyping (b). Arrows indicate inheritance
from supertype to subtype.

Software Bus (Registrar + Router)
Bus channels
_________________ -
| m— r = |
| |
© 1:‘
4 =4 T =
2 f 2., &l. 3 ? 2,
3 31| 3} 3 311
[o Q.
i Zly Zly z|" Zly
| y | |
Tool 1 Tool 2 Tool 3
(Informer) (Listener) (Participant)

Figure 6: The participants and components of Polylith. A message m sent by Tool 1 on a given

bus channel is received by Tools 2 and 3 that are listening on that bus channel. Similarly, a message
n is sent from Tool 3 to Tool 2 along a different bus channel.

21

as tools, and then bind the output ports of tools to the input ports of other tools.!° Messages may
be of simple, structured, and pointer types.

In terms of our framework, Polylith tools are participants (subtypes of type Participant).
The bus incorporates the functionality of both a registrar and a router and is therefore a subtype of
both Registrar and Router. Software modules are adapted into participants by modifying their
source code to replace function calls with bus calls, and then creating a configuration specifica-
tion in MIL. Registration is accomplished with the Registrar operations Register Informer and
Register Listener_Polling. (These are both encompassed by Polylith’s mh_init function for the
initial registration and mh_rebind for re-registrations.) Unregistration is handled by UnRegister
(Polylith’s mh_rebind and mh_shutdown operations).!! Messages are sent and received using the
Router operations Send (Polylith’s mh_write function) and Receive (Polylith’s mh_read family
of functions).

Polylith supports no MTF’s except for the simple filtering provided by bus channels (i.e., a
listener connected to a set of bus channels receives only the messages on those channels). There are
no user-definable delivery constraints. Polylith has no explicit support for groups; the participants
connected to a bus channel could be considered an implicit “group,” but such groups cannot
then be members of other groups. Configuration specifications are written in MIL and define
participant types (called “modules” in Polylith’s terminology), participant instances (“tools”),
message types (“interface statements”), and the Access_Control attributes of message types (“bind
statements”) that specify which tools are connected to which bus channels. Polylith assumes that
the configuration specification is never violated; i.e., all specified interconnections are created, and
all messages are correctly formed. '

6.3 CORBA

CORBA, like FIELD, is a specification of a client-server architecture for software integration.
Unlike FIELD, however, all communication is point-to-point, not via multicast. CORBA'’s spec-
ification is much larger and more detailed than that of FIELD or Polylith, so the description of
its mapping to our framework is correspondingly longer.

In the CORBA model, shown in Figure 7, programs, called clients, transmit messages, called
requests, to uniquely identifiable, encapsulated entities, called objects. Objects respond to requests
by executing operations (also called services). Each object has a type, called its interface, that
defines the operations and attributes available to clients via that object. Operations are defined by
listing their signatures. Attributes are named values that are accessible via “get” and “put” opera-
tions. Interfaces are written in CORBA's Interface Definition Language (IDL). IDL is declarative
only, containing no control statements. Operations are implemented using a traditional program-
ming language, and a CORBA. implementation must provide a mapping (stub generation) between
that programming language and IDL. IDL supports various basic and structured types, multiple

19Ppolylith is not a bus in the hardware sense, since messages are not broadcast; they are either multicast or sent

point-to-point between tools.
1A single call of oh_shutdown by any participant unregisters all participants and shuts down the bus.

22

ORB (Registrar + Router)

—— — —
o c— — e,

——— — ~

~

= N
~
\\

Y

Client
(Informer)

\I‘\ \\
A

||]'l"
rl 1y

IDL
Object

(Listener)

Figure 7: The participants and components of CORBA.. A client sends a request, m, which is
routed to the intended object by an ORB. The object optionally returns a value, r, which is routed
back to the client by the ORB.

inheritance, and exceptions.

Clients communicate with objects indirectly via servers called object request brokers (ORBs).
ORBs provide transparent object location and delivery of requests. CORBA also specifies two
kinds of repositories: interface repositories, containing object interfaces, and implementation repos-
itories, containing information about the location of objects.

In terms of our framework,!? CORBA distinguishes two types of participants: clients and
objects (both subtypes of Participant). All clients are informers (and may also be listeners)
whose purpose is to send requests to objects. All objects are listeners (and may also be informers)
whose purpose is to respond to requests from clients. Clients may be objects and vice versa.

The CORBA “request” type is a subtype of Message with four additional attributes:
1. target object: a reference to the object intended to receive the request.
2. operation: the action to be taken by the receiving object.

3. A set of zero or more parameters of the operation. A parameter consists of a name, a value,
and a parameter attribute of IN, OUT, or INOUT.

4. request context: a set of name/value pairs, in which the values are strings, similar to
UNIX environment variables. A request context is described as “additional, operation-specific
information that may affect the performance of a request” [CCC*93].!3

'2CORBA does not specify most operation names, leaving them to be determined by each implementation inde-

pendently, so few mappings to CORBA functions are presented.
131t is unclear why request contexts are distinguished from operation parameters. This decision probably reflects

23

A software module is adapted to become a CORBA client by instrumenting its source code to
contact an ORB. A software module is adapted to become a CORBA object in two steps:

1. A software developer writes an IDL wrapper for the module, which is then compiled into
stubs.

2. A software developer either instruments the module’s source code to use CORBA types
and library functions, or writes a second set of stubs to interface the module with the IDL-
generated stubs.

ORBs serve as both registrars and routers and are therefore subtypes of both Registrar and
Router. As registrars, they permit objects to register their existence and clients to register their
interest in obtaining services from objects, using Register Informer and either of the operations
Register Listener Polling or Register_Listener_Active (depending on the CORBA imple-
mentation). As routers, ORBs route each client request to an object whose interface specifies that
it can satisfy the request. All requests are point-to-point between client and object with assistance
by an ORB.

CORBA provides no MTF’s. It may be possible for an object/participant to model an MTF,
but there is no ORB support for allowing such an object to intercept requests intended for another
object (e.g., to perform filtering).

CORBA defines two delivery constraints, called execution semantics, that can be associated
with a request:

1. At Most Once. If a request is successful, it is guaranteed to have been received by the intended
object exactly once. If a request is unsuccessful, an exception will be raised, and the request is
guaranteed not to have been received more than once (i.e., the object did not receive duplicate
requests). All OUT parameters of an unsuccessful request have undefined values. “At Most
Once” requests can be sent synchronously or asynchronously.

2. Best Effort. The request is sent asynchronously from client to object with no return value.
No guarantee is made that the request will be delivered successfully.

Delivery constraints are registered using the Register_Informer operation.

CORBA 1.2 has no explicit support for grouping objects. Implicitly, an ORB can be viewed
as a group of the objects that it directly manages. CORBA supports no operations, however, that
address all of the objects managed by an ORB. Alternatively, all CORBA objects of a particular
type — termed the extension of the type — can be viewed as a group. Any object in the group
can substitute for any other in a type-compatible manner.!* There appear to be no operations
supported by CORBA that operate on the extension of a type, however (e.g., multicasting a
request to all objects of a given type, or queries over all objects of a given type). CORBA 2.0

UNIX biases; i.e., as environment variables are distinguished from command-line arguments.
4This substitution may not be transparent, however, since the client may select an object (obtain an object

reference) using the object’s unique name.

24

provides explicit support for grouping using domains. A domain is a “set of objects sharing a
common characteristic or abiding by common rules” [LCC*95]. A domain may itself be an object
and a member of other domains, thereby supporting composition.

Configuration specifications for CORBA are written in IDL, and they specify only CORBA
object (participant) types.!® Policies for handling configuration specification violations are limited
to several standard exceptions (transient failure, object does not support operation, etc.). IDL
provides no way to specify the remaining parts of a configuration specification: MTF’s and delivery
constraints for participants, instances of participants, or groups.

6.4 Comparison

The features of FIELD, Polylith, and CORBA described in the case studies are summarized in
Table 1. The three integration mechanisms have a number of notable similarities, some of which
are apparent in Figures 4-7. All three mechanisms have readily identifiable participants that are
adapted by some combination of source code modification and wrapping. All of the mechanisms
combine the functionality of registrar and router into a single component. Finally, none of the
mechanisms provide queries over sets of objects, nor user-specifiable actions to handle configuration
specification violations.

The three integration mechanisms differ significantly as well. We characterize the differences
by noting major features of the framework that each mechanism does not support. FIELD has
only one message type (string), limited user-definable delivery constraints, and no notion of ex-
plicit configuration specifications. Polylith has no user-definable delivery constraints, no MTF’s
except filters, no explicit groups, and no manner of handling configuration specification violations.
CORBA has no multicasting, no MTFs, no user-definable delivery constraints, and no explicit
specification of integration object instances.

This comparison points out similarities and differences that are central to the underlying behav-
ior of these three systems, producing a clear, concise means of comparison between mechanisms,
without getting bogged down with implementation details. Each row of Table 1 emphasizes an
important interoperability issue. Similarities in a row indicate areas of high-level compatibility
between mechanisms. Differences in a row call attention to potential interoperability trouble spots,
such as the following:

o Of the three mechanisms, only CORBA does not support multicasting and filtering. Thus, in
order for participants from all three mechanisms to receive messages in a consistent manner,
an additional layer of abstraction around CORBA'’s routers (ORBs) may be necessary to
provide these features.

e All three mechanisms have different message types. Two points of contention are how
Polylith’s pointer types should be interpreted by the other mechanisms that don’t support
pointers, and how to handle structured types so FIELD can interpret them as strings.

15There is only a single Client type.

25

Feature FIELD Polylith CORBA

Participants Msg clients (executable | Bus tools (executable | Clients and objects (ex-
programs) programs) ecutable programs)

Adaptation Wrap or modify source | Wrap and modify source | Wrap and modify source
code code code

Registrar Msg message server Bus ORBs

Router Msg pattern matching | Bus ORBs
engine

MTPF’s Filters, policies Filtering by bus channel | None

Delivery Constraints || Policy priorities Not user definable At most once, best effort

Grouping Participant groups None Participant (object) and

router (ORB) groups,
called domains

Message Types String Simple, structured, and | Simple, structured, and
pointer types interface types

Message Sending Multicast Point-to-point, Point-to-point
multicast

Message Delivery Non-polling (passive) Polling (active) Unspecified

Configuration Spec Not user definable MIL specification IDL specification

Specify instances? No Participants No

Config Violation NULL return value None Predefined exceptions

Handling

Table 1: Features of FIELD, Polylith, and CORBA.

26

e If a FIELD or CORBA informer sends a message to a Polylith listener, and the message
gets lost in transit, Polylith has no means of announcing this failure, since it cannot handle
configuration specification violations. This is a problem because the informer expects to see
a NULL return value (for FIELD) or raised exception (for CORBA) if a message fails to
arrive.

7 Conclusions

By defining a generic, event-based integration framework, we have identified common components
of event-based integration and provided a means for understanding and discussing event-based inte-
gration approaches. The framework provides characterizations and formalizations of participants,
messages, registrars, routers, message transforming functions, delivery constraints, and groups. It
supports the specification of mechanisms and configurations and can model the dynamic and static
behavior of many diverse event-based integration approaches.

The framework is a powerful tool for comparing and contrasting integration mechanisms. We
have demonstrated this by modeling three different, popular integration approaches. More such
mappings are in progress. By highlighting significant similarities and differences between mech-
anisms, the framework provides guidance for choosing the most appropriate mechanism for one’s
needs. In addition, it aids interoperability by calling attention to areas of compatibility and concern
when planning an interoperability strategy. We plan to examine, via experimentation, the extent
to which this information can be used directly to support interoperability.

The framework is a reference model, not an implementation guide. An implementation would
need to elaborate important issues beyond the instantiation of the mechanism, such as an instance
model, runtime system semantics, and languages for MTF’s, delivery constraints, and queries. In
addition, while our ADT model provides a well-understood description of objects and their behavior,
it implies that many kinds of objects are first-class. This view may not always be desirable and may
need to be addressed directly in an implementation. We plan to investigate this tradeoff further.

We also intend additional exploration of scalability. The framework supports composition via
groups, allowing the model to scale. We plan to investigate to what extent this composition
translates to actual scalability of implementations.

Acknowledgements

We would like to thank Barbara Lerner, James Purtilo, and Steven Reiss for their insightful com-
ments on earlier versions of this manuscript.

27

A The Type Model

This appendix lists our abstract data types and defines the signatures and exceptions of their
operations. In Figure 2, the types in the Object subtree are instances of the types in the Type
subtree. Type Type contains most of the operations related to manipulating types. Subtype
Framework.Type adds role-related operations (for Participant, Registrar and Router types),
and subtype Participant_Type adds message-related operations (for Participant types). All

operation parameters are “in” parameters unless otherwise stated. Common exceptions such as

“permission denied” have been omitted.

1. MetaType (supertypes: none)

Type MetaType is introduced as the root of the hierarchy to avoid a loop in the hierarchy:
types have fields, and fields have types. Type MetaType always exists and cannot be removed
from the type hierarchy.

e Do_Query(t: MetaType; q: Query) return <MetaType>;

Retrieve information about a type or instance via associative access. No query language
is supplied by the framework; one must be defined in the mechanism specification.

The result of this operation is written as <MetaType> to indicate that a query can
return a value of any type. An instantiation would provide a more specific type instead
of <MetaType>.

2. Type (supertypes: MetaType)

e Create(supertypes: set of Type) return Type;
Create a type that is a subtype of supertypes. Initially, it has no attributes.
e Destroy(t: IN OUT Type);
Destroy a type, automatically unlinking t from all supertypes and subtypes.
Exceptions: t is the sole parent of another type and therefore cannot be destroyed.
e Link _To_Supertype(t: IN OUT Type; super: IN OUT Type);
Add type super as a supertype of the type t.
Exceptions: super is already a supertype of t, inheritance policy violation.
e Unlink From Supertype(t: IN OUT Type; super: IN OUT Type);

Remove type super as a supertype of the type t. It is not possible to unlink a type from
all of its supertypes except by invoking Destroy.

Exceptions: super is not a supertype of t, deleting super would detach t from the type
hierarchy.
e Supertypes_Of(t: Type) return set of Type;

Return all of t’s supertypes. t is always guaranteed to have at least one supertype, by
the semantics of Destroy and Unlink_From_Supertype.

28

e Subtypes_Of(t: Type) return set of Type;
Return all of t’s subtypes. If t has no subtypes, then the empty set is returned.
e Add_Attribute(t: IN OUT Type; a: Attribute);

Add the given attribute to the type t. A type cannot have the same attribute twice, nor
two attributes with the same name and the same type.

Exceptions: t already has the attribute a, t already has an attribute with the same name
and type as a.

e Delete_Attribute(t: IN OUT Type; a: Attribute);
Delete the given attribute from the type t.

Exceptions: a is not an attribute of t.

e Attributes_Of(t: Type) return set of Attribute;
Return all attributes of the given type. If t has no attributes, then the empty set is
returned.

e Attribute_From Name(t: Type; att_name: Attribute Name; att_type: Type)
return Attribute;
Return the attribute of the type t that has the given name and type.
Note that a type can have two attributes with the same name but different types. Thus,
the attribute type must be supplied as an argument in addition to the name. An instan-
tiation could disallow a type from having two attributes of the same name and different
types and thereby eliminate the att_type argument.
Exceptions: No such attribute found.

e Add_Operation(t: IN OUT Type; op: Operation);
Add the given operation to the type t. The same operation cannot be added twice,
and a type cannot have two operations with the same name and the same signature.
A type may have multiple operations with the same name and different signatures; i.e.,
overloaded operations.
Exceptions: op is already an operation of t, t already has an operation with this name
and signature.

e Delete_Operation(t: IN OUT Type; op: Operation);
Delete the given operation from the type t.
Exceptions: op is not an operation of t.

e Operations_Of(t: Type) return set of Operation;
Return all operations of the given type. If t has no operations, then the empty set is
returned.

e Operation_From Name(opname: Operation Name; op_type: Type)
return Operation;
Return the operation of the type t that has the given name and type/signature.

Note that a type can have two operations with the same name but different types.
Thus, the operation type must be supplied as an argument in addition to the name. An

29

instantiation could disallow a type from having two operations of the same name and
different types and thereby eliminate the op_type argument.

Exceptions: No such operation found.

e Identical(t1, t2: Type) return Boolean;

Determine whether two types are physically the same type.

3. Framework_Type (supertypes: Type)

Add Role(t: IN OUT Framework.-Type; super: Type);

Add type super as a role of the type t.

Exceptions: super is not a known type, super is already a role of t.
Delete_Role(t: IN OUT Framework Type; super: ije);
Remove type super as a role of the type t.

Exceptions: super is not a role of t.

Roles_Of(t: Framework.Type) return set of Type;

Return all of t’s roles. If t has no roles, then the empty set is returned.

4. Participant_Type (supertypes: Framework Type)

Add_Message(t: IN OUT Participant Type; msg: Message);

Add the given message to the type t. The same message cannot be added twice, and
a type cannot have two messages with the same name and the same attributes. A type
may have multiple messages with the same name and different attributes; i.e., overloaded
messages.

Exceptions: msg is already a message of t, t already has a message with this name and
attributes.

Delete_Message(t: IN OUT Participant Type; msg: Message);

Delete the given message from the type t.

Exceptions: msg is not a message of t.

Messages_Of(t: Participant_Type) return set of Message;

Return all messages of the given type. If t has no messages, then the empty set is
returned.

Message_From Name(msgname: Message Name; msg_type: Type) return Message;
Return the message of the type t that has the given name and type.

Note that a type can have two messages with the same name but different types. Thus,
the message type must be supplied as an argument in addition to the name. An instan-
tiation could disallow a type from having two messages of the same name and different
types and thereby eliminate the msg_type argument.

Exceptions: No such message found.

30

5. Object (supertypes: MetaType). Type Object is an instance of type Type.

e Create(t: Type) return Object;
Create a new object of type t.
e Destroy(obj: IN OUT Object);
Destroy an object.
Exceptions: Object is already destroyed.
e Set_Type(obj: Object; t: Type);
Set the type of object obj to be t. By default, the object loses the values of all of its
old fields.
Exceptions: Mechanism specification violation.
e Get_Type(obj: Object) return Type;
Get the type of object obj.

6. Attribute (supertypes: Object, MetaType)

e Create(n: Attribute Name; t: Attribute_Type) return Attribute;
Create a new attribute of the given name and type.
e Destroy(a : Attribute);
Destroy the given attribute.
Exceptions: Attribute is already destroyed, attribute sharing violation.
e Set_Value(a: IN OUT Attribute; v: Attribute Value),
Set the value of the given attribute to the given value.
Exceptions: Value out of range, type mismatch.
e Get_Value(a: Attribute) return Attribute_Value;
Get the value of the given attribute.
Exceptions: Attribute has no value.
e Equal(al, a2: Attribute) return Boolean,;

Determine whether two attributes have the same type and value.
7. Operation (supertypes: Object, MetaType)

e Create(n: Operation Name; t: Operation_Type) return Operation;

Create a new operation of the given name and type. The names and types of the
operands are the attributes of Operation_Type.

¢ Destroy is inherited from Object.

e Set_Operand_Value(op: Operation; param: Attribute Name; param type: Type;
value: param type);

A convenient renaming of

31

Attribute.Set_Value(
Type.Attribute_From_Name(op, param, param_type),
value) ;

e Get_Operand_Value(op: Operation; param: Attribute Name; param type: Type)
return param_type;

A convenient renaming of

Attribute.Get_Value(
Type.Attribute_From_Name(op, param, param_type));

8. Message (supertypes: Object, MetaType)

e Create(n: Message Name; t: Message_Type) return Message;
Create a new message of the given name and type. The names and types of the message
parameters are the attributes of Message_Type.

e Destroy is inherited from Object.

e Set_Parameter_Value(m: Message; param: Attribute Name; param type: Type;
value: param_type);

A convenient renaming of

Attribute.Set_Value(
Type.Attribute_From_Name(m, param, param_type),
value);

e Get_Parameter_Value(m: Message; param: Attribute Name; param_type: Type)
return param.type;

A convenient renaming of

Attribute.Get_Value(
Type.Attribute_From_Name(m, param, param_type));

If an instantiation disallows a type from having multiple attributes with the same name and
different types, then the param type argument can be eliminated from these operations.

Type Message has at least three attributes, as described in Section 5.2:

e Synchronization
e Access_Control

e Delivery Constraint
9. Participant (supertypes: Object). Type Participant is an instance of type Participant Type.

e Get_Router(p: Participant) return Router;

Return the router used by participant instance p.

32

e Set_Router(p: IN OUT Participant; r: Router);
Set the router used by participant instance p.
Provisions: Only a registrar can invoke this operation.

e Get_Registrar(p: Participant) return Registrar;
Return the registrar used by participant instance p.

e Set_Registrar(p: IN OUT Participant; r: Registrar);
Set the registrar used by participant instance p.

Provisions: Only a registrar can invoke this operation.

Subtypes of Participant: Informer and Listener. (No additional operations.)

10. Registrar (supertypes: Object) Type Registrar is an instance of type Framework Type.

¢ Register Informer(r: Registrar; i: Informer; roles: set of Type; msgs:
set of (Message, Delivery Constraint, Synchronization, Access_Control))
return Router;
Register an instance of an informer. The informer instance can choose to inherit op-
erations from only a subset of its type’s roles by specifying them as parameters. The
informer can also choose to support only a subset of its type’s messages and can vary
those messages’ delivery constraint, synchronization, and access control information.
The returned router has the Send function that the informer needs for communication.
(Note that this can be a logical router instead of a physical router.)

Exceptions: Configuration specification violation, type error.

o Register_Listener Polling(r: Registrar; 1: Listener; roles: set of Type)
return Router;
Register a listener to receive messages via polling. Message transforming functions can
be registered later to filter or otherwise modify the incoming messages. Like informers,
listeners can choose to inherit from only a subset of their type’s roles. If no roles are
specified, then by default, the listener inherits from all of its roles.
The returned router has the Receive function that the informer needs for communica-
tion. (Note that this can be a logical router instead of a physical router.)
Exceptions: Configuration specification violation, type error, polling model not sup-
ported.

¢ Register Listener_Active(r: Registrar; 1: Listener; roles: set of Type;
op: Operation);
Register a listener to receive messages actively. The given operation is invoked whenever
the listener has a message delivered. Message transforming functions can be registered
later to filter or otherwise modify the incoming messages. Like informers, listeners can
choose to inherit from only a subset of their type’s roles.

Exceptions: Active model not supported.

33

e Register MTF(r: Registrar; p: Participant; f£: MTF);
Register this MTF to be evaluated whenever a message is sent by p (if p is an informer)
or received by p (if p is a listener).

¢ Register MTF _Ordered(r: Registrar; p: Participant; f: MTF; i: Natural);
Register this MTF to be the ith MTF evaluated whenever a message is sent by p (if p
is an informer) or received by p (if p is a listener). The numeric positions of the original
ith, (i+1)st,... MTF’s of that participant (if they exist) are automatically incremented
by 1.
The order of evaluation of a participant’s MTF’s can be significant. If it is not, then
Register _MTF should be used instead of this operation.

Exceptions: Config specification violation

e MTFs_Of(r: Registrar; p: Participant) return sequence of MTF;

List the MTF’s associated with the given participant. This is necessary so a participant
can know the order in which its MTF’s are being evaluated so it can modify the sequence
with Register MTF_Ordered. Other information about a registrar can be obtained
using Type.Do_Query.

e Register_Delivery_Constraint(r: Registrar; d: Delivery_Constraint);
Register a delivery constraint. A delivery constraint is passed as a single parameter be-
cause it can be arbitrarily complex, containing information about messages, participants,
types, attributes, timing, and more.

Exceptions: Config specification violation, delivery constraint is inconsistent with a pre-
viously registered delivery constraint.

¢ UnRegister(...)

Each Register_xxx operation above has a corresponding UnRegister_xxx operation.
Exceptions: The information to be unregistered is not currently registered, config speci-
fication violation.

11. Router (supertypes: Object). Type Router is an instance of type Framework_Type.

e Message_Waiting(r: Router; 1: Listener) return Boolean;
Is a message waiting for the listener?

Exceptions: Polling model not supported.

e Receive(r: Router; 1: Listener) return Message;

Receive the next message intended for the listener. The decision of which message is
returned by Receive when called by listener 1 is dependent on 1’s registration informa-
tion, which caused particular router connections to be made, certain synchronization to
be in effect, etc.

Use of Receive implies a polling model for message delivery. For an active model, see
Registrar.Register_Listener_Active.

Exceptions: No message available, message type mismatch, polling model not supported.

34

e Send(r: Router; i: Informer; m: Message);

Send the message. Its delivery will proceed in whatever manner has been specified via
the caller’s registration information.

Exceptions: Listener not found, delivery constraint violated, message type mismatch.
¢ Send_To_Router(r1l: Router; r2: Router; m: Message);

Send a message from router ri to router r2.

Exceptions: Router r2 not found, send failed, delivery constraint violation.

Provisions: Only a router can invoke this operation.
12. MTF (supertypes: Object)

e Transform(f: MTF; m: Message; 1: Listener; mmew: OUT sequence of
Message; lnew: OUT set of Listener);

Apply the MTF to m and 1, returning m_new and 1_.new. The MTF’s state may change
as a result.

13. Delivery Constraint (supertypes: Object)
Delivery constraints have no operations of their own. Router.Send raises an exception when

a delivery constraint is violated.

14. Group (supertypes: Object)

e Add_Member(g: Group; obj: Object);
Add an object to a group.

¢ Remove Member(g: Group; obj: Object);
Remove an object from a group.

Exceptions: The object is not in this group.

e Is_ Member(g: Group; obj: Object) return Boolean;
Is the object a member of the group?

¢ Members_Of(g: Group) return set of Object;

List the members of a group.

15. Other types

Certain common types (e.g., integer, set, sequence, and various types of names) are used
in the ADT specification but are not formally defined.

35

References

[AG94] Robert Allen and David Garlan. Formal connectors. Technical Report CMU-CS-94-115,
Carnegie Mellon University, School of Computer Science, 1994.

[App91] Apple Computer, Inc. Inside Macintosk, volume VI. Addison-Wesley Publishing Com-
pany, Inc, New York, 1991. Chapters 4-8.

[Bar84] J. G. Barnes. Programming In Ada, page 153. International Computer Science Series.
Addison-Wesley Publishing Company, second edition, 1984.

[Bar93] Daniel J. Barrett. SDL BMS: A simple broadcast message server. Arcadia Document UM-
93-03, University of Massachusetts, Software Development Laboratory, Computer Science
Department, October 1993.

[Bea92] Brian W. Beach. Connecting software components with declarative glue. In Proceed-
ings of the Fourteenth International Conference on Software. Engineering, pages 120-137,
Melbourne, Australia, May 1992.

[BGH*93] M. Bever, K. Geihs, L. Heuser, M. Miihlhduser, and A. Schill. Distributed systems,
OSF DCE, and beyond. In A. Schill, editor, Lecture Notes in Computer Science Volume
781: DCE — The OSF Distributed Computing Environment. Springer-Verlag, 1993.

[Bha9l] Nehru Bhandaru. Pilgrim event notifier. Project Pilgrim working draft, November 1991.

[Bir93] Kenneth P. Birman. The process group approach to reliable distributed computing. Com-
munications of The ACM, 36(12):37-53, December 1993.

[CCC+93] Digital Equipment Corporation, Hewlett-Packard Company, HyperDesk Corporation,
NCR Corporation, Object Design, Inc., and SunSoft, Inc. The Common Object Request
Broker: Architecture and Specification. Object Management Group and X/Open, 1993.
Revision 1.2.

[CO90] Geoffrey Clemm and Leon Osterweil. A mechanism for environment integration. ACM
Transactions on Programming Languages and Systems, 12(1):1-25, January 1990.

[Com91] Commodore-Amiga Incorporated. Programmer’s Guide to ARezz and Disk, August 1991.
Part number AREXXO01.

[Com92] Commodore-Amiga Incorporated. Amiga ROM Kernel Reference Manual: Libraries. Ad-
dison Wesley Publishing Company, third edition, 1992.

[Dig] Digital Equipment Corporation. DEC FUSE: An open, integrated software development
environment. Product Information Sheet EC-F1550-48.

[DKE*89] C. Anthony DellaFera, John T. Kohl, Mark W. Eichin, Robert S. French, David C.
Jedlinsky, and William E. Sommerfeld. Zephyr notification service. Technical plan, Project
Athena, June 1989.

36

[FHC+93] Charles Falkenberg, Christine Hofmeister, Chen Chen, Elizabeth White, Joanne Atlee,

[Fro89]

Paul Hagger, and James Purtilo. The Polylith Interconnection System: Programming
Manual for the Network Bus. University of Maryland, College Park, 3.0 edition, September
1993. Draft.

Brian Fromme. HP Encapsulator: Bridging the generation gap. SoftBench Technical Note
Series SESD-89-26, Hewlett-Packard, November 1989.

[GAO94] David Garlan, Robert Allen, and John Ockerbloom. Exploiting style in architectural

[Ger89]

[GI90]

design environments. In David Wile, editor, Proceedings of the Second ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages 175-188, New Orleans, LA,
December 1994. ACM Press. Published as SIGSOFT Notes 19(5).

Colin Gerety. HP SoftBench: A new generation of software development tools. SoftBench
Technical Note Series SESD-89-25, Revision 1.4, Hewlett-Packard, November 1989.

David Garlan and Ehsan Ilias. Low-cost adaptable tool integration policies for integrated
environments. In SIGSOFT Proceedings, December 1990.

[GLST95] Bob Gautier, Chris Loftus, Edel Sherratt, and Lynda Thomas. Tool integration: Expe-

[GS93]

[Hen66]

[HO93]

[HS92]

[JR93]

[KG87]

[Koy92]

riences and directions. In Proceedings of the 17th International Conference on Software
Engineering, pages 315-324, 1995.

David Garlan and Curtis Scott. Adding implicit invocation to traditional programming
languages. In Proceedings of the 15th International Conference on Software Engineering,
1993.

F. C. Hennie. On-line Turing machine computations. JEEE Transactions on Electronic
Computers, EC-15(1):35-44, February 1966.

William Harrison and Harold Ossher. Subject-oriented programming (a critique of pure
objects). In Proceedings of the Eighth Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 411-428, October 1993. Published as
ACM SIGPLAN Notices volume 28, number 10.

Patrick T. Homer and Richard D. Schlichting. A software platform for constructing
scientific applications from heterogeneous resources. Technical Report 92-30, University
of Arizona, Department of Computer Science, November 1992.

Astrid Julienne and Larry Russell. Why you need ToolTalk. SunEXPERT Magazine,
pages 51-58, March 1993.

Gail E. Kaiser and David Garlan. Melding software systems from reusable building blocks.
IEEE Software, pages 17-24, July 1987.

R. Koymans. Specifying Message Passing and Time-Critical Systems With Temporal
Logic. Springer-Verlag, 1992.

37

[KR90] Brian Kernighan and Dennis Ritchie. The C Programming Language. Prentice-Hall,
second edition, 1990.

[LCC*95] BNR Europe Limited, Digital Equipment Corporation, Expersoft Corporation,
Hewlett Packard Corporation, IBM Corporation, ICL, plc, IONA Technologies, and Sun-
Soft, Inc. CORBA 2.0/Interoperability. OMG TC Document 95.3.xx, Object Management
Group, March 1995. Revised 1.8.

[LKA*+95] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan,
and Walter Mann. Specification and analysis of system architecture using Rapide. IJEEF
Transactions on Software Engineering, 1995. To appear.

[LLC*94] Tin-Peng Liang, Hsiangchu Lai, Nian-Shing Chen, Hungshiung Wei, and Meng Chang
Chen. When client/server isn’t enough: Coordinating multiple distributed tasks. Com-
puter, 27(5):73-79, May 1994.

[LM93] Fred Long and Ed Morris. An overview of PCTE: A basis for a portable common tool en-
vironment. Technical Report CMU/SEI-93-TR-01, Carnegie-Mellon University Software
Engineering Institute, March 1993.

[MOS90] Mark J. Maybee, Leon J. Osterweil, and Stephen D. Sykes. Q: A multi-lingual interprocess
communications system for software environment implementation. Technical Report CU-
CS-476-90, University of Colorado, Boulder, June 1990. Submitted to Software Practice
and Experience.

[MPS91] Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting. Consul: A communica-
tion substrate for fault-tolerant distributed programs. Technical Report 91-32, University
of Arizona, Department of Computer Science, November 1991.

[MPS92] Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting. Modularity in the
design and implementation of Consul. Technical Report 92-20, University of Arizona,
Department of Computer Science, August 1992.

[MR90] Naftaly H. Minsky and David Rozenshtein. Configuration management by consensus:
An application of law-governed systems. In Richard N. Taylor, editor, Proceedings of
the Fourth ACM SIGSOFT Symposium on Software Development Environments, pages
44-55, Irvine, CA, December 1990. ACM Press. Published as SIGSOFT Notes 15(6).

[MS92] Shivakant Mishra and Richard D. Schlichting. Abstractions for constructing dependable
distributed systems. Technical Report 92-19, University of Arizona, Department of Com-
puter Science, August 1992.

[NGGS93] David Notkin, David Garlan, William G. Griswold, and Kevin Sullivan. Adding implicit
invocation to languages: Three approaches. In Shojiro Nishio and Akinori Yonezawa, ed-
itors, Object Technologies for Advanced Software: Proceedings of the First JSSST Inter-
national Symposium, pages 489-510, Kanazawa, Japan, November 1993. Springer-Verlag.

38

[OHS0]

[Pat93]

[Per89]

[PHO1]

[Pur90)

[Rei90]

[Rei95)

[SN92]

[SNS88]

[STBS6]

[Sun92)

[WTS90)

Harold Ossher and William Harrison. Support for change in rpde3. In Richard N. Taylor,
editor, Proceedings of the Fourth ACM SIGSOFT Symposium on Software Development
Environments, pages 218-228, Irvine, CA, December 1990. ACM Press. Published as
SIGSOFT Notes 15(6).

Paul B. Patrick, Sr. CASE integration using ACA services. Digital Technical Journal,
5(2):84-99, Spring 1993.

Dewayne E. Perry. The Inscape environment. In Proceedings of the 11th International
Conference on Software Engineering, pages 2-12, 1989.

James Purtilo and Christine Hofmeister. Dynamic reconfiguration of distributed systems.
In Proceedings of the International Conference on Distributed Computing Systems, pages
560-571, 1991.

James M. Purtilo. The Polylith software bus. Technical Report UMIACS-TR-90-65,
University of Maryland, May 1990.

Steven P. Reiss. Connecting tools using message passing in the FIELD environment. JEEE
Software, July 1990.

Steven P. Reiss. FIELD: A friendly integration environment for learning and development.
Book manuscript, 1995.

Kevin J. Sullivan and David Notkin. Reconciling environment integration and component
independence. ACM Transactions on Software Engineering and Methodology, 1(3):229-
268, July 1992.

J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An authentication service for
open network systems. In Useniz Conference Proceedings, pages 191-202, Dallas, Texas,
February 1988.

Richard E. Schantz, Robert H. Thomas, and Girome Bono. The architecture of the Cronus
distributed operating systems. In Proceedings of the Sizth International Conference on
Distributed Computing Systems, pages 250-259, Cambridge, MA, May 1986.

SunSoft, Inc. ToolTalk 1.0.2 Programmer’s Guide. Sun Microsystems, Inc., 1992.

Andy Wilson and Bob Travis. Application control architecture specification. Digital
confidential and proprietary document, May 1990.

39

