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Abstract

Advanced database applications like office automation, CAD/CAM and Software Engi-
neering are characterized by the presence of long-duration, cooperative or multidatabase
tasks. These applications can be data-centric or process-centric or both. Extended
transaction models designed to address the requirements of these applications use a
data-centric approach and they do not have adequate implementation support. On the
other hand, workflow management as promoted by industry uses a process-centric ap-
proach. However, due to lack of concrete guidelines, they contain customized features for
modeling and executing applications. While they certainly have many practical features
that extended transaction models do not provide, they do not have adequate support
to satisfy the modeling & correctness requirements of advanced applications. To date,
no systematic studies have been undertaken to design proper support for these appli-
cations. This paper attempts to fill the lacuna by unifying the workflow and extended
transaction model based approaches in an effort to meet the needs of these applications.
By studying the requirements of different applications and the features provided by
current workflow systems as well as advanced transaction models we identify the mod-
eling features essential for supporting advanced database applications. We then provide
an implementation architecture and discuss mechanisms for adequately supporting the
identified modeling features.
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1 Introduction

In the last decade, there has been growing interest in advanced database applications like office au-
tomation, CAD/CAM and software engineering. These applications are characterized by the presence
of long-duration, cooperative or multidatabase tasks. Two approaches have emerged to tackle the needs
of such applications.

Adopting a data-centric approach, several advanced transaction models have been proposed [Elm92]
that relax the ACID (Atomicity, Modeling, Isolation and Durability) properties of traditional trans-
actions. By exploiting the semantics of the applications and using relaxed correctness criteria, these
advanced models provide special featiires to handle concurrency control and recovery. But only recently
have initiatives been taken to implement these models [GHKM94, BDG+94].

Adopting a process-centric approach, industry has been promoting workflow management as a tech-
nique for modeling, executing and monitoring such applications®. Aided by advances in client-server
computing and distributed database techniques, early office information systems evolved into work-
flow management systems. While several prototype and commercial workflow management systems
are available, due to lack of proper standards and guidelines, each provides its own set of features
for modeling and execution. Though they have many features to address the needs of real working
environments that extended transaction models fail to consider, they don’t have adequate support to
satisfy the modeling & correctness requirements of advanced applications. The deficiencies include lack
of support to keep track of data dependencies between different workflows, lack of support to control
concurrent accesses to objects managed by non-transactional resource managers?, lack of support for
cooperative activities, and insufficient support for recovery.

Even as researchers are trying to implement extended transaction models, workflow management
systems are evolving, primarily driven by industry. Unfortunately, very little has been done to study
the modeling/correctness aspects of workflow management systems and combining (process-centric)
workflow management with (data-centric) advanced transaction management. This paper attempts
to close the gap between the two approaches and provide guidelines essential for the development of
flexible and better workflow management systems. Recently, the authors of [Geo95] have provided a
broad overview of the state-of-the-art in workflow management. They have also discussed at a high-level
how some of the limitations may be overcome by the use of extended transactions. Our contributions
are complementary:

e We identify the modeling features essential for supporting advanced database applications by
studying requirements of different applications, features provided by current workflow systems
and advanced transaction models.

e We describe an implementation architecture and extensively discuss mechanisms to support the
identified modeling features (including those for concurrency control and recovery) in the context
of this architecture.

Thus our work also tries to address some of the concerns raised in [DGMH*93). In our discussion we

! A procedural description of how and what is to be performed to achieve work in termed as a workflow or a task. The

individual steps that comprise a workflow are termed activities. Activities may involve humans as well as programs.
2 A resource manager like a file system that does not provide concurrency control and recovery facilities.



will not be addressing other workflow management issues like security, monitoring and simulation.

The rest of the paper is organized as follows: Modeling and correctness requirements of different ad-
vanced database applications are studied in depth in section 2. Section 3 surveys some of the workflow
management systems in an effort to understand their limitations in modeling and executing applica-
tions. In section 4 we study some of the advanced transaction models and execution environments.
This helps us in identifying interesting concepts that can be used in workflow management systems.
Essential modeling features for workflow management systems are identified in Section 5. Section 6
discusses an implementation architecture and mechanisms to support the modeling features. Section 7
concludes the paper.

2 Modeling & Correctness Requirements of Applications

We study a small but representative application suite consisting of Office automation, CAD/CAM, and
CASE.

2.1 Office Automation

Figure 1 depicts the flow of control between activities in an office automation task for processing a
health insurance application (to reduce congestion, the flow of data is not shown). Activities access
resources from multiple sites and hence heterogeneity and interoperability are important issues. Some
of the activities themselves contain a task, resulting in nested tasks. As shown in the figure, there are
conditional executions based on the outcome of activities (termed value dependencies [DE89]). During
travel planning [WR92], only certain combinations of plane-car-hotel reservations are permitted. To
achieve this, a set of activities are grouped into an atomic-unit. The telecommunication applications
for service order provisioning [ANRS92] mostly contain activities which are transactions that in turn
can contain subtransactions with execution dependencies. The loan approval application considered
in [BDS*93] exemplifies inter-task data dependencies. Among other activities, a task contains a risk-
evaluation and a risk-update activity. To maintain correctness of execution, while a pair of tasks are
executing concurrently, the risk-evaluation activity of a second task can execute only after the risk-
update activity of the first task. Consider another application, reviewing bids from contractors for
projects in a consulting company. The activity review-bid is usually done in parallel for each bid
received. Since the number of bids received cannot be predicted, rather than specifying it statically
at task definition time it should be possible to dynamically determine the number of instances of the
review-bid activity to be executed in parallel.

Role modeling and task-definition updates must also be provided for. The person responsible for
executing a human activity is usually specified by a role rather than by name. Hence the organization
hierarchy is to be modeled using staff and roles names. Organizational changes require changes to
staff definitions. When staff definitions are changed, activities that are already being worked on by
a staff whose role has changed are to be handled properly such that inconsistencies are not caused.
To accommodate changes in task procedures, task definitions are modified periodically. While some
applications prefer that the new definition be used only for fresh instances, others require that even the
executing instances of the task follow the new definition in which case care should be taken to ensure
consistency and correctness.
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Next we discuss failure handling requirements for applications. Failures are of two types — sysiem
and logical failures. In the case of system failures, most applications require that the task be restored
to the most recent consistent state (forward recovery) so that work performed over long-durations
is not lost. To handle logical failures, usually an alternative action is taken by annulling the effects
of the executed activities using compensating activities. Here again if activities are nested, then some
applications require that the parent activity be compensated with a single action whereas others require
that each of the child activities be compensated individually. If compensating activities cannot be
specified then locks are to be held for the required duration of atomicity & isolation. When it is
difficult to specify compensating activities or when system failures are too complex to handle (so
that a task cannot be restored to a consistent state), tasks are dynamically modified (individually) by
administrators to restore consistency.

From the above discussion it can be clearly seen that due to the diverse nature of office automation
tasks there are a variety of requirements. We can summarize the following as the necessary features
to support office automation tasks (to specify task structures, consistency of data and correctness of
execution):

o Task Modeling

> data flow between activities
> execution dependencies between activities (control flow)

O value based
¢ conditional execution between activities
¢ multiple invocations of an activity

O state based (for transactional® activities)
O time based

> grouping one or more activities into an atomic-unit

3Transactional activities are those whose commit and abort events are visible outside. The resources are accessed from
a transactional resource manager.
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D> nested activities
> task completion (set of final activities)
> entity responsible for performing activity
O application program
O human role (staff definition & organizational hierarchy)
> modifying task definition

O applying new definition to future invocations only
O applying new definition to currently executing instances also

o Task Execution

o> handling inter-task data dependencies
> multi-system accesses
O interoperability
O heterogeneous data formats
O coordinating access to object at non-transactional resource managers

> system failures
O forward recovery
O dynamic modification of task (exception handling)

D logical failures
O applying compensating action and following alternate path
0O dynamic modification of task (exception handling)

2.2 CAD/CAM and CASE

CAD/CAM applications usually consist of designers cooperating to design and manufacture products
of different types while CASE applications consist of software developers cooperating to design, code
and test software. Since the requirements of CAD/CAM and CASE are similar, we discuss both the
areas in this subsection. Generic examples of CAD/CAM and CASE applications are shown in figure



2. In both the examples, the highlighted areas in the figure show activities which are to be executed
in a cooperative manner while the rest requires coordination as in the case of office automation tasks.
Design activities usually tend to be in groups and hence tasks are divided into subtasks, to form a
hierarchy. Note that these hierarchies correspond to the composition hierarchy of the objects being
designed and hence are different from the nested tasks discussed in the context of office automation.
The difference is that here an activity at the higher level is complete only if all the activities at the
next (lower) level are complete. As can be seen from the figure, drawings (objects), ideas, queries
and feedbacks are exchanged in a dynamic (unpredictable) manner between the various subtasks and
activities. Also some of the designs are done iteratively and hence there must be provision to backtrack
to a previous step (not global backtracking as in the case of checkpointing) to take a different approach
from that step. It is not possible to specify all these interactions and design iterations in a static task
definition. However there should be means to ensure that such a dynamic interaction does not produce
inconsistencies in the data accessed. In most cases it is also required that if an object is changed deep
down in the composition hierarchy, then checks are to be performed at successive higher levels to verify
if additional changes are required (changes have to percolate to higher levels). Details of these changes
are also to be reflected in the product manuals (external use) and design documents (internal use).

Based on the above details, it is easy to identify the following additional features (apart from those
identified earlier) needed to support CAD/CAM & CASE tasks:

o hierarchy of activities

e controlling the interleaving of object accesses
¢ facility to perform controlled backtracking

¢ facility to propagate changes

Additional discussion on correctness issues related to long-lived activities can be found in [MP90,
KS90, BK91, KP92).

3 Workflow Management Systems

In this section we will enumerate some of the salient features provided by current workflow management
systems for task modeling and managing task execution. This study will help us identify some of the
limitation of these systems. We will focus only on systems that handle production workflows [McC92]
since they provide better modeling and execution support than the rest.

3.1 Modeling and Execution Support

We first review prototype systems. APRICOTS [Sch93] is a prototype implementation of ConTracts
where a task/process (ConTract) is defined using sequential, parallel, branched or nested blocks (set of
steps) that can be enclosed in a transaction. Suspend, resume, activate, compensate and restart func-
tions are provided. Concurrent access of global data from different tasks is controlled using invariants
(predicates that check constraints). Forward recovery is provided via check-pointing of blocks. The
METEOR project [Kri95) has built a system for specifying and executing multi-system workflows that
may consist of both transactional and non-transactional tasks. It uses a two level approach to specify
and execute tasks — one at the workflow level (to control inter-task execution dependencies) and one
at the task level (to control local programs). Forward recovery and dynamic workflow modification

5
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are also supported. Other models and approaches for coordinating activities to handle workflow type
applications have been proposed in [DHL90, DHL91, GMGK*90].

Turning our attention to commercial workflow systems like FlowMark* [FD94], InConcert® [MS93]
and others [Hsu93, Hsu95)], the following is a list of features provided by them. They have been listed
in the same manner as the application requirements (see Section 2) for ease of comparison.

e Task Modeling

> data flow between activities:
O implicitly passing all data to all activities
O explicitly mapping data between activities
O controlled by check-in/check-out
> control flow between activities:
O value based (activity started only after preceding ones complete)
¢ conditional execution between activities
¢ multiple invocations of an activity
nested activities
correctness conditions for activities to start and finish
entity responsible for performing activity
O application program
O human role (staff definition & organizational hierarchy)
> modifying task definition
O applying new definition to future invocations only

vvyv

e Task Execution
D> email or database for transfer of data/control
> application client/agents to interact with entity responsible for performing activity

> system & logical failures
0O forward recovery
O dynamic modification of task (exception handling)

3.2 Standardization & Interoperability

In an attempt to standardize the features provided by workflow management systems, the workflow
management coalition (WfMC) has developed a reference model [Mem94)]. Its objective is to provide
interoperability between different workflow products and hence the main focus is on (i) describing a
common task definition model and (ii) describing components and interfaces for interoperability. The
task modeling features resembles the list of features we just enumerated. A generic architecture of

*From IBM, Germany
5From Xerox



a workflow management system based on the reference model is shown in figure 3. The application
programs that perform work for the various activities are usually managed by several application
agents. The workflow engine performs the navigation through the instances of task structures and
communicates with the application agent to perform the activity. To allow interoperability between
different workflow systems, several scenarios are also defined — process instances or activities to be
transferred between different workflow systems (i.e. a process instance started in one system continues
on another), tasks in one system to be executed on behalf of an activity in another system (nested
remote tasks), composing activities from different systems and finally synchronization of activities
across different systems. We return to this later when we discuss systems issues.

From our discussions thus far, it should be clear that workflow systems lack support for maintaining
data consistency in the case of concurrent coordinated tasks and provide very minimal support for
modeling and executing cooperative tasks. Some of these limitations have also been stressed in [Geo95).
A recent panel on workflow automation [DHM*95] concluded that modeling requirements for long-
running processes are complex and additional efforts are needed to address them.

4 Advanced Transaction Management

In this section we analyze some of the extended transaction models and execution environments. Apart
from analyzing the ability of these models to themselves model advanced applications, this will help
us determine ideas and concepts, especially from concurrency control, recovery and commit process-
ing perspective that can be used to improve modeling and execution support provided by workflow
management systems.

4.1 Analysis of Advanced Transaction Models

As a first step towards adapting concepts of advanced transaction models for workflow management,
we have attempted to classify these models into groups which have some common applicability. Due
to the nature of the models, some of them tend to fall in one or more groups and we have identified
such cases. To our knowledge there have been no attempts to perform such a classification of advanced
transaction models and this is one of the secondary contributions of our work. Before we get into the
details of our approach to classify these models, we list some of the advanced transaction models:

o Eztended Models: Nested Transactions [Mos81], Multi-Level Transactions [BSW88], Open nested
transactions [WS92]

o Relazed Models: Sagas (GMS87)], Nested Sagas [GMGK™*91], Flexible Transactions [ELLR90,
MRB+92, ZNBB94}, Split-Join Transactions [PKH88] , Poly Transactions [SRK92)

o Cooperative Models: Cooperative CAD Transactions [BKK85], Transaction Groups & extensions
[FZ88, Ska89, NZ90], Group Oriented CAD Transactions [KSUW85], Participant Transactions
[Kaigo]

Nested transactions was one of the first advanced models and it proposed hierarchical structuring
of transactions. This hierarchical structuring concept has been used later in many models like multi-
level transactions and open nested transactions for exploiting semantics of applications and improving
concurrency. Hence all these fall into the category of transaction models with hierarchical structures
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(Class B) as shown in in figure 4. Split- and join- transactions were then proposed to allows transac-
tions to pass uncommitted objects to other transactions. Since it is useful for cooperative tasks, this
model was later adapted in participant transactions to suit the requirements of software engineering.
These models fall into the category of transaction models for cooperation (Class C). Newer models for
cooperation have also been proposed that used hierarchical structures in some form and also allow
selective transfer/access of uncommitted objects between transactions. They fall into the intersection
of the two classes and they include cooperative CAD transactions, transaction groups, group-oriented
CAD transactions. To handle the autonomy requirements of multidatabase systems, newer transaction
models have been proposed like the polytransactions model. Though sagas was originally designed for
long-duration transactions it can be used for multidatabase applications [BST92]. Hence we have es-
tablished another class for these models called transaction models for multidatabases (Class A). Nested
Sagas is a hybrid model that was developed by combining sagas and nested transactions. Flex trans-
actions was designed in the context of multidatabases applications to allow hierarchical structuring of
tasks (subtransactions) with provisions to compensate and try an alternate (contingency) subtransac-

tion if a particular subtransaction fails. Both these models come under the intersection of classes A &
B.

Workflow systems must have provisions to define hierarchical tasks, facilitate coordinated access to
multiple systems, and should also allow controlled transfers/accesses to uncommitted objects between
users to support cooperative tasks. Hence the workflow model has been placed at the intersection
of all the classes. Using basic primitives from models in the different classes, it is possible to build
complex applications. A discussion on this is beyond the scope of the paper but details of achieving
this using the ACTA framework can be found in [CR94]. Workflows that use features of advanced
transaction models (structure and correctness requirements) are categorized as transactional workflows
[SR93]. Advantages and disadvantages of using some of these models to develop advanced applications



are presented in [Moh94].

4.2 Environments to Implement Advanced Models

ASSET [BDG+94] provides linguistic primitives to program extended transaction models. Other than
the traditional primitives like begin, commit, abort and wait, it provides primitives based on the ACTA
model such as delegate and permit that can be used to relax isolation requirements between tasks. In
contrast, TSME [GHKM94] uses a toolkit based approach to specify & construct application specific
extended transaction models. Transaction model designers provide new models and application pro-
grammers can write applications that use the models that are defined and supported. Other approaches
to implement advanced transaction models have also been suggested in [US92, ST94]. A preliminary
approach to integrate a semantic transaction manager and workflow manager has been suggested in
[BDS*93] where the former treats an entire workflow as a single transaction whose semantic properties
are to be exploited whereas the latter treats each task as an independent transaction and satisfies
the dependencies between the transactions. Advanced transactions models have been used to support
workflow applications [ANRS92], where flexible transactions have been developed to integrate multiple
independently developed applications.

In summary, extended transactions provide features to handle multi-system, hierarchical and co-
operation tasks. Some of these features can be incorporated into workflow management systems to
provide better modeling and correctness primitives and we discuss this in the next section.

5 Proposed Model

Based on our study of the application requirements and the features provided by workflow management
systems and advanced transaction models, we have analyzed and recommended modeling features
necessary for workflow systems. For each feature, we discuss the options (if any) needed to flexibly
specify the application requirements and the desired degree of correctness. Our objective is to group
together all the essential features, some of which are novel, while others are already available in various
systems.

5.1 Supporting Coordinated Tasks

Workflow systems provide good modeling features to handle most requirements in this category. Since
they do not address consistency, correctness and recovery issues, we have added some features. Control
flow (execution dependencies) in workflow management typically allows a task to start onmly after
the previous one has finished. Advanced transactions provide more options that are useful for certain
applications and hence we have included them. Inter-task dependencies and task-definition modification
issues are handled better in our model. Modeling primitives should be provided to specify the following:

¢ data flow between preceding-activity and succeeding-activity. Options are to be provided to im-
plicitly route task data to all activities (Read/Write mode specified) or ezplicitly specify routing (for
security reasons) or allow checkin/checkout based user access.

e control flow (execution dependencies) between preceding-activity and succeeding-activity. Options
are to be provided to specify them based on value (for conditional or multiple invocations), state



(only for transactional activities — commit-commit, commit-abort, etc.), outcome (success or failure
of an activity) and time (temporal-start, etc.).

e nested tasks: Options are to be provided to specify recovery action — if the task is to be compen-

sated by a single compensating action or multiple compensating actions are to be executed, one for
each child.

e atomic-units of activities: Guidelines are to be provided on whick activities can be chosen to
form a atomic-unit (e.g. activities that form a sequence in the task, or a random selection) and if
overlap of atomic units is permitted.

¢ inter-task dependencies: Options are needed to specify if the whole task or a spectfic set of
activities are to be serialized.

e correct execution of task — defining the start and finish activities or conditions on ezecution
states in case of transactional activities. Options are to be provided to specify is compensation is
required for all, some or none of the completed activities.

e correct execution of activity — defining the start and finish conditions and what action to take
if the conditions are not satisfied.

e entity responsible for executing an activity — a role or a program or both.

e task-definition modification: Options are to be provided to specify if the definition is to be
applied for future instances only or for current instances as well.

e staff-definition and organizational hierarchy. This defines the role names to be specified for
the entity responsible to execute an activity

e handling system failures: By default, forward-recovery is to be provided so that the task is
restored to a consistent state. Dynamic modification of task instances are to be allowed to handle
exceptions.

e handling logical failures: This is to be handled by specifying compensating activities. If it can
not be specified, dynamic modification of task instances should also be allowed.

5.2 Supporting Cooperative Tasks

Support for cooperation is clearly inadequate in workflow systems. Most of the primitives provided
here have their origins in the area of advanced transaction management where considerable work has
been done to support cooperative tasks. Since the notion of hierarchy, correct ezecution of an activity
and work performed by an activity is different from that of coordinative tasks, we define features for
each of them. Features are also provided to meet the special requirements for managing object accesses,
change propagation, selective backtracking and hierarchy modification. Additional modeling primitives
should be provided to specify the following:

o hierarchy of activities: The hierarchy specifies what activities exist at each level. (Activities at a
level are usually executed in parallel).

e work performed by each activity. a object (e.g. a module or a component) that is to be designed
is specified for each activity.

10



e correct execution of activity by defining a test-specification that is to be satisfied.
¢ managing concurrent object accesses: Options are provided to use one of:

> protocols: using information about state of object access and role responsible for creating that

state. (similar to automata that govern object accesses in [NZ90])
> semantic primitives: like form_dependency & permit, as described in ASSET.

e selective backtracking on errors (handling logical failures). This is essential if protocols are used
to control object accesses. (handling logical failures). Based on the history of object accesses all
designers who have accessed objects on the backtracking path will be notified.

¢ event based action: based on the occurence of specific events, actions like notification or triggering
an activity/task can be executed. This will facilitate propagation of object changes.

o hierarchy modification: (similar to task-definition modification). e.g. changing test specifications
or adding activities at any level.

5.3 Handling Interoperability & Heterogeneity

Important requirements for applications that access data from multiple systems include interoperabil-
ity between workflow systems and handling heterogeneous data formats of applications. In situations
where tasks/activities are coordinated across multiple workflow systems, several issues relating to data
flow, control flow, system & logical failures can arise. We have provided features and options that ad-
dress these issues. Another factor often disregarded by workflow systems is access to non-transactional
resource managers (e.g. file systems that manage spreadsheets, word-processing documents). Data con-
sistency requirements have to be clearly specified if concurrent access to object are allowed. Additional
modeling primitives should be provided to specify the following:
¢ interoperability between workflow systems: Since control crosses system boundaries, options
are to be provided for defining the following across boundaries — all or selective data transfer,
ezecution dependencies, task-definition modification, system and logical failures.

e heterogeneous application data formats: Options should be provided (in activity definition)
to specify the date ezchange standard (e.g. OLE) to. which the data must be converted before it is
provided to the next activity.

¢ non-transactional resource managers: Options are to be specified if objects accessed from such
resource managers should be locked, when and how changes and compensating actions are applied to
the objects.

5.4 Discussion

We have identified the essential modeling features to be provided by workflow systems to support
different types of advanced applications. We believe we have provided sufficient flexibility to specify
task structures and the desired correctness. Primitives mentioned here can be combined to develop
large complex applications, but they have to be used based on proper guidelines (care should be taken
such that incompatibilities do not occur) and the task definition-tool/compiler should enforce this at
task definition time. For example, care should be taken when primitives meant for coordinated and
cooperative tasks are combined. Due to space limitations a detailed discussion on this is beyond the
scope of the paper.

11
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6 Systems Issues

In this section we first present an implementation architecture that has been designed to support the
model we discussed in the last section. Based on this architecture, we then discuss schemes needed
to support each modeling primitive. Concurrency control, recovery and commit processing issues are
discussed when they arise.

6.1 Proposed Architecture

The workflow navigation manager (WNM) plays an important role in a workflow system by handling
task execution. While the execution dependencies here are typically based on results produced by an
activity, other applications utilize execution dependencies based on state. We have also seen that to con-
trol concurrent object accesses in cooperative applications, semantic primitives like form_dependency
and permit are useful. These features are better handled by a semantic transaction manager (STM).
Hence to ensure proper support for all the modeling features, our workflow engine architecture contains
both a workflow navigation manager and a semantic transaction manager. Applications using semantic
primitives do not directly communicate with resource managers, instead the requests pass through the
STM. Though preliminary ideas towards this approach have been presented in [BDS*93], there are
several other important issues which we discuss in this section. To facilitate forward recovery and en-
sure consistency of task definition and process instance data (status and results of activities/tasks) at

12



all times, a workflow database (WDB) is necessary to store the meta-information. To manage task exe-
cutions, the workflow navigation manager and the semantic transaction manager consult this database
and provide appropriate instructions to the application-agents and local resource managers respectively.
Data belonging to completed tasks are deleted from this database and archived periodically. Reliability
of this database is critical to the functioning of the system and these issue are discussed in [KAGM95].
To promote interoperability between workflow systems, our proposed architecture based on the WfMC
reference model is shown in figure 5. Based on this architecture we discuss implementation support
for all the features we discussed in the previous section. For workflows that will benefit from the use
of advanced transaction models, we believe that ACTA/ASSET based primitives should be used in
conjunction with concepts from advanced transaction models to provide flexibility in building complex
workflows rather than providing a library of extended transaction models (less flexible) that can be
used by the workflow designers. Since efforts are currently underway [CR95] to provide ACTA/ASSET
based primitives in industrial strength systems, we assume that the local resource managers can provide
such primitives.

6.2 Supporting Coordinated Tasks

o data flow: If ezplicit routing or smplicii-read is specified, WNM retrieves the objects from the WDB

" and supplies it to the application agent which in turn hands it over to the invoked application. In
the case of implicit-write, the WNM gives the application agent a write token for each object. Hence
if there are concurrent activities which modify the same object (like documents), object accesses
from them will be serialized to ensure data consistency. The checkin/checkout option is also handled
similarly. Transactional activities (defined by transactions) typically have data dependencies between
them and hence there is no need for specifying data flow.

e control flow: The WNM handles the value and outcome based dependencies. By referring to the
appropriate results and the task definition in the WDB, the WNM schedules the qualifying activities
and notes this fact in the WDB. The STM handles the state and temporal-state dependencies.
Scheduling strategies developed in [Kle91, ASSR93, G83, GHKM94, MLTA94] can be used for this
purpose. Task control can be passed between WNM and STM if for example there are value and
state based dependencies in the same task. Since all facts are noted in the WDB, even in case of
system failures, activities will not be missed or scheduled twice.

¢ nested tasks: When the parent activity is scheduled, the WNM recognizes from the task definition
that a subtask is to be invoked. All data available to the parent activity is made available when
control is passed to the subtask. The subtask is now executed just like a regular task. In case
of system failures, the subtask is restored to its latest consistent state (activity that was being
executed at time of failure). When the terminating activity of the subtask has finished, control is
passed along with the result to the parent activity. If there are logical failures within a subtask then
compensating actions are to be applied for all activities (including upper levels) until an activity from
which a different path can be taken is reached (achieved by using activity outcome dependency). If
there are logical failures after a subtask has executed then depending on the specification in the
task definition, the subtask is either compensated by a single action or by the invocation of a nested
compensation task which compensates each of the individual activities in the reverse order. Nesting
of transactional tasks is handled by the STM in the form of dependencies and hence there are no
new issues to be discussed.
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e atomic-unit of activities: In the case of non-transactional activities grouped into an atomic-unit,
the implementation is as follows: When each activity completes, the outcome is noted in the WDB
and when all the activities complete, a decision is made whether compensating actions are needed
for some of the completed activities (since certain activities could not complete successfully and the
atomic-unit has failed). If all of them are successful then the atomic-unit is successful. If several
transactional-activities are grouped into a atomic-unit, to maintain data consistency, their changes
can be made persistent only after determining the outcome of the activities. Hence locks are to be
held for all the transactions till a decision can be made. If it is decided that all transactions are
successful then a group-commit (as explained in ASSET) is used to make the changes persistent,
else all the changes are aborted. To prevent loss of work performed by all activities due to system
failure when the remaining activities are executed, the local resource managers should save the
changes persistently in a shadow area on the disk and apply it to the database only at group-
commit time. When the transactions are accessing resources from multiple resource managers, the
semantic transaction manager should ensure that the primitives are handled properly. Below we give
a simple algorithm to show how form_dependency (an ASSET primitive used in group-commit) can
be implemented across multi-systems:

form_dependency(GC, t;, ¢;)
S; = set of local sites of ¢;;
S; = set of local sites of ¢;;
At each site s in S; N S; do:
form_dependency(GC, ¢}, t!)

o inter-task dependencies: Inter-task dependencies are easier to enforce. Since the set of activities
which are dependent is specified, the WNM enforces dependencies by referring to the task histories
in the WDB. Activities are scheduled for execution based on the order determined by the first set
of dependent activities of tasks involved in the dependency. In the case of transactional activities,
ticket-based strategies described in [GRS94] can be used.

e correct execution of task: Here we will mainly discuss proper termination of tasks. Other correct-
ness issues (like system failures) are discussed wherever appropriate in the context of the rest of the
primitives. As soon as the WNM recognizes that the required final — set of activities (or final-set of
transactions states in case of transactional activities) is reached, the task is considered complete and
this fact is recorded in the WDB. If for any reason the task is to be aborted then activities which
are to be compensated (as indicated in the task definition) are automatically compensated to restore
consistency and the task is marked as aborted in the WDB. Execution of compensating activities
is recorded by the workflow engine in the WDB the same way the forward execution of activities
is recorded. Hence even if there are multiple system failures while compensating actions are being
executed, after restart, the system will be aware that it is performing backward recovery from logical
failures.

e correct execution of activity: Here we discuss recovery from application failures which are caused
by a system failure at the local systems (failure of application agent is discussed later) or a logical
failure within the application-program. Consider the failure of the local system while executing
an activity (application-program). Recovering from such a failure without causing inconsistency is
difficult because the internal state of the application-program at the time of system failure is not
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known. Numerous issues must to be considered to restore the consistency of the data accessed
by the application. Such a discussion is beyond the scope of this paper and techniques described in
[FaBK87] can be used. Logical failures in applications should be handled by applying the appropriate
compensating actions. In the case of activities which are transactional, such failures (aborts) are
usually handled by suitable commit/abort dependencies (handled by STM).

entity responsible for executing an activity: This is specified at task definition time. A role
that has been defined in the staff-database or an application-program with all its environmental
settings is specified to perform work for an activity. If the specified role does not respond within a
specified time, a superior role is to be notified to handle the activity.

task-definition modification: When a task-definition modification is complete, and if it to be
immediately applied to the executing instances of the task, then a integrity check is performed by
the system to see if inconsistencies (e.g. incorrect data/control dependencies) will be formed by doing
so. If there are violations, the role modifying the task-definition must be notified.

staff-definition and organizational hierarchy. Here again when there is a modification, the
system has to perform integrity checks to ensure consistency of data. For example, if activities
(work) have been assigned to a role, then the system will not allow elimination of that role until the
work is performed or assigned to some other role.

handling system failures:. Here we discuss mechanisms to recover from system failures. Since the
WDB contains state information of all tasks and activities, if there is a failure at the workflow engine
forward recovery is possible. Hence the information recorded in the WDB must reflect the actual
states. After a program terminates, the results are to be passed by the application agent to the
workflow engine which records it in the WDB. Consider the failure of the workflow engine followed
by the failure of the application agent. Unless proper care is taken, results of the programs that
completed execution between the two failures will be lost. Although the program has terminated
successfully, the state of the application as recorded in the WDB is still ‘executing’, which is an
inconsistency. Hence significant events that happen at the local systems are logged at the application
agent. Inconsistencies are still possible due to the window of time that exists between the actual
commit of the transaction(s) by the local resource manager and the instant when control returns
from the program to the application agent. If there is a failure during this window, the transactions
executed on behalf of the program have committed while this fact is not recorded at the application
agent which also fails. Hence a better alternative is to have the local database and the WDB perform
a two-phase commit to ensure that the result and the status of the activity is properly recorded in the
WDB. Though it is a good idea, a couple of problems have to be solved before it can be implemented.
The first problem is that not all local resource managers provide the two-phase commit interface and
even if they do, most do not yet conform with the XA interface standard proposed by X/Open
[X/092]. The second problem exists because of legacy applications. Since transactions are bundled
somewhere in the legacy code, it is not clear how many transactions each of these applications
contain and what is the status of each when a failure occurs. One solution to this is to provide
suitable wrapper or library routines that can capture commits/aborts.

handling logical failures:. A simple way of handling logical failures (resulting from unsuccessful
execution of activities) is to define tasks with suitable provisions to handle such failures. This is
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another instance where concepts from advanced transaction models (like flexible transactions) can
be used to develop applications by defining contingent activities. Using the ‘outcome’ primitive
for control flow, by compensating executed activities, alternative options can be explored. Another
option which current workflow systems. provide (also useful in case of system failures) is dynamic
modification of task instances (exception handling) to manually resolve the failure.

6.3 Supporting Cooperative Tasks

e hierarchy of activities: This provides the task definition for cooperative tasks and is stored in
the WDB. The STM ensures that all activities at a particular level are complete (they meet the test
specifications) before its parent activity (at the next higher level) is completed. Concurrency control
and recovery issues are discussed in the later primitives.

e work performed by each activity: The STM ensures that roles are properly notified about the
actions (e.g. all objects to be designed) they need to perform. This primitive works in conjunction
with the event based action, selective backtracking and hierarchy modification features. Hence even
after an activity has been completed (e.g. object has been designed) if changes are needed due to

" rollbacks or changes to other objects or changes in test specification, the roles responsible for the
activity are notified.

e correct execution of activity: An activity is considered complete when it meets the test specification®.
The test specification check can be performed automatically or manually.

e managing concurrent object accesses: Compatibility matrices, checkin/checkout schemes and
its extensions [KLMP84, RRD90], version based schemes and notify locks [GR91] are insufficient
for cooperative tasks since large environments have flexible concurrency and ordering (controlled
interleaving of object accesses) requirements to ensure global consistency of objects. We briefly

discuss how two schemes, one based on protocols (similar to automata based control as described in
[NZ90]) and the other based on ACTA/ASSET primitives work.

> protocols: At task definition time, protocols specify rules that govern object accesses at run time.
They allow task structures to be defined dynamically. Roles constantly read, modify and certify
that the objects meet certain specifications. Other roles can access the objects for viewing, if the
object meets certain specification (taken care of by the protocol), else there will be inconsistency.
Implementing these access protocols is similar to handling temporal-state dependency. Since
the STM can handle them, these protocols are enforced in coordination with the local resource
managers by accessing rules and history information from the WDB. Since changes are made
persistently by individual activities, selective rollback (discussed later) is needed if objects are to
be redesigned. ‘

> semantic primitives: Another option to control concurrent object accesses in cooperative envi-
ronments is through semantics-based ASSET primitives like form_dependency and permit. The
difference is that the type of interactions is actually governed by the designers dynamically. While
it allows more dynamic interactions than protocols, it is difficult to automatically enforce con-
straints on the interactions. At the activity level, if one activity (role responsible for the activity)

SThis is slightly different from exit conditions for activities in coordinated tasks. In the case of coordinated tasks
checks are used to ensure that the activity has been performed, whereas here the test specification is used to ensure the

consistency of the objects designed.
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Figure 6: Backtracking in Cooperative Applications

permits another to perform certain operations on some of its objects, then the STM will in turn
split this operation into permit() actions at the respective local resource managers. The actions
are then made persistent using group-commit.

¢ selective backtracking: Support for back-tracking is essential in workflow systems to handle co-
operative applications that use protocols for controlling object accesses. In cooperative applications,
if a designer backtracks, all other designers who made their decisions based on the outcome of the
activities that were backtracked have to be notified about those activities as shown in figure 6. The
STM refers to the history in the WDB and selects the entire tree of activities that evolved with the
backtracked activity as the root. The designers who were responsible for those activities are notified,
who in turn should backtrack or take appropriate action if needed. Other activities that are not part
of this tree are not affected. In all these primitives it is assumed that the local resource manager
provides facilities to persistently store local changes made by the activity (like a shadow portion on
the disk) so that changes are not lost due to local system failures.

¢ event based action: Both the STM and the WNM contain routines that can trap specific events
(as defined in the event-action database in the WDB). Thus changes to an object can be trapped
and the required designers notified or alternative actions can be performed automatically. Transitive
closure of event actions allows a change to be propagated along the hierarchy.

¢ hierarchy modification: Unlike task modification in coordinated tasks, these modifications go into
effect immediately. Depending upon the modification, appropriate roles are notified.

6.4 Other Features

¢ interoperability between workflow systems: The WFMC reference model allows transfer of
task/activity control between different workflow systems. When tasks are crossing boundaries, sys-
tem failures should not cause inconsistency. Hence our approach is to use a two-phase commit
between the WDB'’s of the two system to ensure that both the systems have consistent information
about the transfer. Since the reference model doesn’t specify the need for a WDB in the workflow
engine we feel it is essential in several ways to ensure data consistency. Data that is to be transferred
between the systems can be bundled along with control. Also if there are task/activity definition
modifications on one system, other systems which refer to those have to be notified to ensure the
overall consistency of task/activity definitions. System and logical failures are handle by the indi-
vidual systems as described earlier. If compensating actions are to be executed by different workflow
systems on behalf of a task, control is transferred between systems in the same manner as that of
regular task transfer.
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o heterogeneous application data formats: The workflow engine stores data in its own internal
format in the workflow database. To handle applications which accept data that conform to specific
standards (like OLE), the application agent will be responsible for converting the data into the
required standard before presenting it to the application. Hence the application agents should be
embedded with information about such information exchange standards.

e non-transactional resource managers: To ensure consistency in the case of concurrent accesses
to objects managed by non-transactional resource managers, we have explored the following options.
From the architecture point of view, the only option possible is to force object (program data and not
task data) accesses from the programs to pass through the application agent. The application agent
will provide the object if it is not locked or will delay/notify the entity responsible for performing the
activity. Two other options are possible which require additional information to be specified at task
definition time. One is to explicitly specify at definition time, the objects needed by the activity which
the application agent will track of at each site during execution. The second option is to disallow
concurrent execution of activity instances with the same definition. If instances of different activity
definitions try to access the same objects, the problem can be handled by providing a compatibility
matrix at task definition time based on the tuple (TaskID,ActivitylD, ObjectID,AccessMode). At
execution time, as and when activities start and terminate such tuples are added and deleted from
the WDB. If a conflict is detected the activity is blocked and the person is notified. Note that tasks
are not serialized, but only conflicting accesses are serialized. Executing compensating activities in
the case of resource managers which are not transactional is difficult since the local system does
not have its own log to restore before images if needed. As described earlier, a simple option is to
have object requests from applications to be trapped by the application agent, which can store a
before-image and restore it if compensation is required.

6.5 Discussion

A high level discussion on how advanced (customized) transaction models can be used to improve
the capabilities of current workflow systems is provided in [Geo95]. Our work complements this by
providing a fairly detailed description of an implementation architecture and mechanisms to support the
essential modeling primitives we have identified. Specifically we focused on correctness and consistency
problems in a variety of situations and provided schemes to handle them. Wherever appropriate, we
also discussed problems that arise in implementing these schemes. Other areas which current workflow
systems fail to address like performance and availability have not been discussed here. These issues are
discussed in [MAGK95).

7 Conclusions

Workflow management is emerging as a powerful tool to improve productivity of organizations. However
in its current state, it still lacks certain features that are essential for their functionality; especially
support for cooperative activities, ensuring consistency of data and correctness of execution. Since
these issues have been extensively investigated in area of advanced transaction management, in this
work we have cross fertilized the two areas to develop a model and an architecture that provides flexi-
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bility in defining tasks and specifying correctness and consistency requirements of advanced database
applications.

Our primary contributions are as follows. We have identified three important defining properties
for modeling — supporting coordinated tasks, supporting cooperative tasks and features to handle het-
erogeneity and interoperability. For each of them we discussed the required modeling primitives and
correctness options. We then described an implementation architecture on the lines of the reference
model provided by the workflow coalition. Our workflow engine contains a semantic transaction man-
ager along with a workflow navigation manager to handle all the different types of modeling primitives
we have identified. Based on this architecture we explained implementation mechanisms for each of the
modeling primitives. We discussed concurrency control, recovery and commit processing issues wher-
ever appropriate. We also discussed problems that can arise in implementing our schemes. A secondary
contribution of our work is the classification of advanced transaction models based on the functionality
they provide. Our future plans include building a prototype system based on this architecture to study
modeling, correctness and implementation issues when mobile users are involved, and when there are
network /site failures.

Workflow management is still in its infancy and we feel our work is among the first few steps in
an attempt to define concrete guidelines for improving the features offered by workflow management
systems. By no means is our work exhaustive and lot more efforts are needed both from research and
industry before workflow management systems become common place as database systems are today
in enterprise managernent.
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