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Abstract

Exploratory data analysis often plays a central role in the early stages of scientific inquiry. Models
of complex phenomena are built incrementally, based on suggestive patterns in data and iterative
refinement of plausible explanations. Unfortunately, exploration poses an explosive search problem. In
this paper we present a planning approach to the problem. We outline the motivation for this approach
and describe a planning system called Aide which we are developing to assist human analysts in
exploring data.
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1 Exploratory Data Analysis

Exploration often plays a central role in the early
stages of scientific inquiry. One can rarely pro-
duce models of complex, unfamiliar phenomena on
first contact with data. One must interpret sugges-
tive features of the data, observe patterns these fea-
tures indicate, and generate hypotheses to explain
the patterns. Successive steps through the process
can lead gradually to a better understanding of un-
derlying structure in the data [Hoaglin et al., 1983;
Good, 1983].

Exploratory data analysis (EDA) encompasses a
wide range of statistical tools [Tukey, 1977]. Sim-
ple exploratory results include histograms that de-
scribe discrete and continuous variables, schematic
plots that give general characterizations of relation-
ships, partitions of relationships that distinguish dif-
ferent modes of behavior, functional simplification
of low-dimensionality relationships, and two-way ta-
bles such as contingency tables. These partial de-
scriptions give different views of the data for a more
complete, refined picture of underlying patterns.

EDA techniques have found application across a
variety of scientific domains. In well-known stud-
ies, researchers have used EDA to attack problems
in grouping corporations [Chen et al., 1974], reduc-
ing TELSTAR data [Mallows, 1983], testing validity
of approaches to ozone reduction [Cleveland et al.,
1974], and examining disease characteristics [Diaco-
nis, 1985]. Our own use of EDA has led us to a better
understanding of complex AT systems [Cohen, 1995;
St. Amant and Cohen, 1994].

Viewed as search, EDA poses a difficult prob-
lem. Suppose we define search operators to be the
menu operations in a statistics package. We now
have a range of flexible, powerful possibilities avail-
able: arithmetic composition of variables, such as
those used in function finding; model-based vari-
able decomposition, as performed by linear regres-
sion; partitioning and clustering operations, such as
those used in numerical and conceptual clustering
systems; feature extraction operations such as sta-
tistical summaries; various transformation and data
reduction operations. Unfortunately, this power is
obtained at a price. The branching factor is large—
think of the number of menu options active at any
time. Furthermore, some operators may be repeated
indefinitely, giving an unbounded search space.

Though difficult and painstaking, exploration is
often manageable in human hands. Basic tech-
niques and strategies for EDA can be communi-
cated through textbooks in fairly straightforward
terms. Specific characteristics of exploration make

this possible: relatively few general principles guide
exploratory procedures; difficult problems are often
decomposed into smaller or simpler parts; explo-
ration is constructive, often relying on partial re-
sults and incremental improvement to reach solu-
tions. We can draw a natural analogy between ex-
ploration and planning.

We are developing an Assistant for Intelligent
Data Exploration (AIDE) to assist human analysts
with EDA [St. Amant and Cohen, 1995]. AIDE
adopts a script-based planning approach to au-
tomating EDA. Data-directed mechanisms extract
simple observations and suggestive indications from
the data. Scripted combinations of EDA operations
are then applied in a goal-directed fashion to gener-
ate simpler, deeper, or extended descriptions of the
data. Control rules guide the EDA operations, rely-
ing on intermediate results for their decisions. The
system 1s mixed-initiative, capable of autonomously
pursuing high- and low-level goals while still allow-
ing the user to guide or override its decisions.

The work presented here i1s based on a partially
complete implementation of AIDE. All the specific
mechanisms discussed have been implemented, and
we have used AIDE to perform preliminary explo-
ration on real data. We have not yet begun a sys-
tematic evaluation, however.

2 Themes in Exploration

Existing approaches to exploration fall into two
classes: autonomous machine discovery systems that
perform clustering or function-finding [Gennari et
al., 1989; Biswas et al., 1991; Langley et al., 1987;
Schaffer, 1990], and user-driven statistics packages.
These approaches occupy opposite endpoints on a
spectrum of control. In applying a machine discov-
ery system to a task, the user specifies the goals of
the analysis implicitly in the form of the data input
to the system. Opportunities for changing the goals
that guide exploration are limited. In a user-driven
statistical system, in contrast, the user has complete
control. Unfortunately, the burden is completely on
the user to guide the system through every decision
in the analysis.

We argue that a mixed-initiative system, in
which the user and a semi-autonomous system share
control, can produce better results than either act-
ing alone. Flexible control is the essential problem in
exploration. We can attribute much of the success of
the field of statistical consulting to the generality of
statistical problem solving strategies—in our terms,
the generality of control knowledge for data explo-



ration. Because statistical experts can often pro-
ceed with surprisingly little information about the
domain of the data [Thisted, 1986], we believe that
control knowledge, as opposed to domain knowledge,
is a large part of their expertise.

Furthermore, planning offers powerful insights
into the EDA process. While planning may initially
seem unsuited to a problem in which the nature of
desired results is often unknown, there are neverthe-
less strong similarities to EDA. EDA makes use of
general procedures and explicit intermediate goals,
derives results constructively, and relies strongly on
problem decomposition. Consider the alternative:
however sophisticated a statistical package may be,
it inevitably treats operations selected by the user
as independent of one another, though each result
may depend on the entire structure of earlier results.
EDA involves the selection of operations in light of
dependencies imposed by earlier actions and require-
ments of potential future actions—a fair description
of AT planning.

If we view EDA as a planning problem, we find
that the goals of exploratory procedures fall into
four general categories: description, simplification,
deepening, and extension. Procedures that meet de-
scription goals generate results directly interpretable
by human analysts, standard descriptive statistics
and structures such as means, histograms, and ta-
bles. Simplifying procedures facilitate description:
removing outliers from a relationship, for example,
simplifies the application of a functional description
to the relationship. Deepening procedures look be-
neath surface descriptions for further structure. Ap-
plying a deepening procedure is analogous to looking
through a microscope, trading a global perspective
for local detail. Searching for structure within clus-
ters and examining residuals for patterns are two
common examples of deepening. Finally, extension
procedures combine or extend local descriptions to a
larger context. Observing that one variable falls into
five clusters and another into four clusters 1s part of
description; observing that the clustering criteria are
similar and then consolidating the two descriptions
is a form of extension. We briefly return to these
ideas later in this paper.

3 Mechanics of Data Manipu-
lation

At the lowest level of representation we find sym-
bols, strings, and numbers, the atomic data col-
lected during an experiment. These elements are
stored in relational form. Exploration often ex-

ploits implicit knowledge about structure in data,
knowledge inconvenient to represent in pure rela-
tional form. In the relational representation used in
AIDE, dataset attributes may directly contain other
datasets. Attributes and datasets may be annotated
with relevant (e.g. meta-data) information. Special-
izations of the basic dataset give variables (univari-
ate datasets), relationships (multivariate datasets),
graphs (datasets/variables containing bivariate rela-
tionships), and more complex structures.

Three classes of primitive data manipulation op-
erations apply to a dataset: attribute transfor-
mations, dataset compositions/decompositions, and
dataset reductions. These operations are parame-
terized and may be combined in different ways for
surprisingly complex data manipulations.

An attribute transformation generates new at-
tributes for a dataset through the combination of
existing ones. Suppose that the “Persons” dataset
contains records of different persons, including at-
tributes “earned income” and “unearned income”.
Then we can generate a new attribute by addition,
calling the new attribute “total income”. While this
transformation combines two attributes to make a
third, we may also break down a single attribute
into two or more. We could find an example of
the latter type of attribute transformation in an at-
tempt to predict income as, say, a linear function of
age. “Total income” would then be separated into
“age-predicted” and “age-residual” values. Univari-
ate transforms, such as log transforms for symmetry,
are also useful attribute transformations.

A dataset decomposition divides the rows of a
datset into separate partitions, generating several
datasets from a single one. A dataset composition
performs the inverse operation. We may decompose
the “Persons” dataset, for example, by the attribute
“sex” for a closer view of the similarities and dif-
ferences between the sexes with regard to income,
as well as the behavior of income among men and
among women. The newly generated datasets re-
sulting from a decomposition are usually stored in a
new attribute of a new dataset.

A dataset reduction combines the elements of a
dataset into a single value, or a fixed number of val-
ues. For example, the mean statistic is a reduction of
a variable to a single value, while Pearson’s r reduces
a bivariate relationship to a single value. Reductions
can be more complex: we can view a simple linear
regression as reducing a relationship to a slope, an
intercept, a significance value, and so forth.

Designing a system around such general struc-
tures and operations is not simply an attempt at
conciseness or elegance. Rather, the design is geared



specifically toward the kinds of operations appropri-
ate for EDA. Consider generating a histogram for
a categorical variable z in dataset d. We select a
dataset decomposition that generates partitions of
d, one for each value of . Our operations now work
on the aggregation of these partitions in a new, com-
posite variable ' in a new dataset d'. An attribute
transformation of #’, which reduces each partition by
the count statistic, gives the height of each bin; an-
other transformation of z’ based on the mode statis-
tic gives a label to associate with each bin. These
distinct values and their counts can be displayed di-
rectly in histogram form.

We have developed a scripting language to im-
plement procedures like this one, based on work
in knowledge-based signal processing [Carver and
Lesser, 1993]. The histogram procedure is imple-
mented by the script in Figure 1.

Producing structures in this way has two ab-
stract benefits: complex procedures can often be
seen as natural extensions of existing procedures,
and natural connections between conceptually simi-
lar structures become clear. Consider now producing
a contingency table for # and y. We follow essen-
tially the same procedure as for the histogram, this
time simultaneously decomposing z and y, which
produces a two-dimensional dataset of partitions.
Again we transform by the count statistic. Calculat-
ing the z, y values for each bin involves an additional
step but is straightforward. The desired contingency
table data is the result, as shown in Figure 2.

By combining operators in higher-level scripts,
these procedures restructure the search space. The
problem shifts from selecting an appropriate primi-
tive operator to selecting an appropriate macro op-
erator. The introduction of macro operators allevi-
ates the search problem but unfortunately does not
eliminate it.

4 Plan Level Control

The scripts we have presented so far are more struc-
tured than the discussion has indicated. Scripts are
applied to satisfy specific goals. The histogram and
contingency scripts, for example, meet goals of de-
scribing data with specific properties. Beyond sim-
ple sequences of primitive operations, scripts com-
bine operations and subgoals using control con-
structs for sequencing, mapping, conditionalizing,
and iteration. These constructs give scripts the fla-
vor (and power) of a high level programming lan-
guage.

Given the addition of subgoals and appropriate

control constructs, we can view the histogram and
contingency scripts as instances of a more general
plan. We first break a relationship (univariate in the
case of the histogram) into smaller or simpler com-
ponents through a data decomposition. We then
describe each component, by application of one or
more reductions. We recombine the results (man-
aged automatically by the representation) to pro-
vide a description of the data. This plan is shown in
Figure 3.

This plan 1s more than a consolidation of the two
perhaps trivial procedures for building histograms
and contingency tables. It appears in different guises
in a variety of related situations. If we were to build
a box plot for a relationship between a discrete and a
continuous variable, we would simply use the calcu-
lation of letter values when describing each compo-
nent, rather than the “count” statistic used in the
original scripts.
of a continuous variable with respect to two dis-
crete variables, in a two-way table of means, then
we would simply bring this variable into the original
data decomposition, and calculate the mean of the
continuous variable per component in the descrip-
tion phase. Note the advantage of being able to mix
primitive operations, such as data decomposition,
with subgoals, such as selecting a descriptive reduc-
tion. More complex constructions are managed in
similar ways.

If we wished to see the behavior

Even at the more abstract level of planning we
still face a search problem. A large number of
plans may apply at any point. Two complementary
sources of knowledge come into play to guide plan
selection: indications and directives.

Indications are suggestive characteristics of the
data, most often involving evaluation of a statistic or
descriptive structure. Indications establish goals for
exploration. For example, curvature in the residuals
of a linear fit indicates that a higher order functional
fit may be appropriate. The indication establishes
the goal of finding this fit, which may grow into quite
an involved process. Indications constrain plan se-
lection based on internal characteristics of data.

Directives, in contrast, impose ezternal consider-
ations on exploration. Directives can supply knowl-
edge about properties that are not explicit in the
data. For example, a directive may inform AIDE
that a set of observations collected at hourly inter-
vals in a research lab can be viewed as a time series,
or that a plausible grouping of the observations is
into daytime and nighttime values, or that observa-
tions at 10:00AM may be unusual because of coffee
breaks. Directives can also supply knowledge about
desirable properties of descriptive results of explo-



(define-script variable-histogram-script (the-variable)

:satisfies (describe the-variable)
:constraints (. .<discrete values>.
:bindings
iscript (:sequence

(DECOMPOSE the-variable

#’ (lambda (x) x)

((partition-ds (partitions count value)))

:output partition-ds)

(TRANSFORM partition-ds

#’(lambda (partition)
(REDUCE partition ’count)))

(TRANSFORM partition-ds

#’(lambda (partition)
(REDUCE partition ’mode)))))

Figure 1: Histogram script

(define-script contingency-table-script (the-relationship)

:satisfies (describe the-relationship)
:constraints (. .<discrete values>.
:bindings

:script (:sequence

(DECOMPOSE the-relationship

((partition-ds (partitions count x y)))

#’(lambda (x y) (values x y))
:output partition-ds)
(TRANSFORM partition-ds #’(lambda (partition)

(REDUCE partition ’count))

:key (attributes partitions))
(TRANSFORM partition-ds #’(lambda (partition)

(REDUCE partition ’mode :key (attributes x)))

:key (attributes partitions))
(TRANSFORM partition-ds #’(lambda (partition)

(REDUCE partition ’mode :key (attributes y)))

:key (attributes partitions))))

Figure 2: Contingency table script

ration. For example, a common simplifying assump-
tion made in causal modeling is that relationships
between variables are linear [Glymour et al., 1987].
Appropriate exploration directives check for gross
departures from linearity and suggest appropriate
transforms.

Indications help generate descriptions suggested
by the data, while directives help generate descrip-
tions appropriate for the goals of the analysis. Both
guide plan selection by their presence in the goal and
constraint forms of each plan. This gives a static
control over plan selection: if a structure has a fea-
ture whose value is below a specific threshold, or
if the user has specified that a linear description 1s

desired, then some specific set of plans is selected.
Often, however, we find that the results leading to
some point in the analysis may influence the next
step we take. Focusing heuristics dynamically man-
age plan selection.

Focusing heuristics take advantage of the se-
quence of operations leading up to a specific decision
(the plan context) and the attributes associated with
the data under consideration (the data context) to
decide which of the applicable plans and structures
should be pursued, which delayed, and which aban-
doned. These heuristics search through the planning
and data hierarchy to provide the bridge from the
high level guidance of indications and directives to



(define-plan decompose-transform-reduce-script (structure)

(describe structure)
:constraints (. .<discrete values>.
:internal
:script

:satisfies

(:sequence

(decomposition reduction components)

(:subgoal (select-decomposition structure decomposition))
(:subgoal (apply-decomposition structure decomposition components))

(:iterate
(:sequence

(:subgoal (select-reduction decomposition reduction))
(:subgoal (transform-reduce components reduction))))))

Figure 3: Decomposition/description plan

the lower level of script operations. Focusing heuris-
tics are implemented as structures that are passed
from plan to plan, carrying relevant contextual in-
formation. Appropriate representation for their in-
ternal form is an open issue.

5 Discussion

We find that the planning representation captures
to a large extent the notion of statistical strategy
[Gale, 1986; Oldford and Peters, 1986; Hand, 1986].
In the AT and statistics literature, statistical strategy
refers to a formal description of the actions and de-
cisions to be made while using statistical methods in
the course of a study. The simple example strategy
we present here is one of several we are pursuing. It
should suggest the more complex chains of reasoning
AIDE is capable of carrying out.

Here is a more involved example, described at a
coarse level: A user begins with a dataset describing
the behavior of a system during an experiment. The
user generates a graphical, partial causal model of
the variables. As AIDE explores each relationship, it
finds that {z,y), given as a direct relationship in the
model, has a small negative correlation (in compar-
ison with other correlations), but strong indications
of clustering. AIDE partitions the relationship and
explores each. In one partition AIDE produces a
description of # and y as linear, with a high posi-
tive correlation; in the other partition z remains es-
sentially constant. AIDE explores other model rela-
tionships, checking whether similar partitioning and
descriptions hold, and finds that for several this 1s
the case. AIDE furthermore finds a binary variable
which closely matches the partitioned variable, as
can be seen in a contingency table. AIDE partitions
the entire dataset, with this evidence that the system

behaves qualitatively differently in the two subsets of
observations. All of these decisions are made visible
to the user, to be adjusted or possibly overridden.
Exploration continues.

Central to AIDE is the opportunistic, incremental
approach to discovery described by Tukey, Mosteller,
and other advocates of EDA. There are some obvious
difficulties with the approach: in many cases local
techniques can miss simple global patterns [Daniel
and Wood, 1980]; local techniques can lead to a
plethora of spurious results [Schaffer, 1990]; main-
taining consistency in an incrementally growing set
of descriptions can be difficult. Nevertheless, most
such objections apply only to a system that acts au-
tonomously, focuses on data but not on goals of the
analysis, and pursues exploration paths independent
of external context and context supplied by its own
actions. We have designed AIDE to address these
concerns.
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