Formalization and Application
of a Unifying Model

for Name Management

Alan Kaplan
Jack C. Wileden
{kaplan,wileden }@cs.umass.edu

CMPSCI Technical Report 95-60
July 1995

Convergent Computing Systems Laboratory
Computer Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

To appear in Proceedings of the Third Symposium
on the Foundations of Software Engineering
Washington, D.C., October, 1995

Formalization and Application of a Unifying Model

for Name Management*

Alan Kaplan and Jack C. Wileden
Department of Computer Science
University of Massachusetts
Ambherst, Massachusetts 01003 USA

Abstract

Name management is among the most basic founda-
tions of software engineering, since so many software
engineering tools and techniques fundamentally de-
pend upon manipulation of names and the entities
that they represent. While many individual tools and
techniques have included their own specialized, of-
ten elaborate and idiosyncratic, approaches to name
management, no unifying models for name manage-
ment currently exist. As a result, the individual
approaches are frequently complex and error-prone,
while attempts to integrate collections of software en-
gineering tools or techniques are often impeded by the
inconsistency and incompatibility of the name man-
agement approaches used in the individual compo-
nents of the collection.

In this paper we consider some examples in which
name management problems complicate software en-
gineering activities. In particular, we focus on context
control-related problems that often occur during soft-
ware development. We then outline a unifying model
of name management and show how its semantics can
be formalized using ewvolving algebras, an operational
semantics based on first-order logic. We also indicate
how the model can serve as a basis for both infor-
mal and formal reasoning methods that can help in
overcoming name management-related problems en-
countered by software developers.

* This material is based upon work sponsored by Texas
Instruments Inc. under grant SRA-2837024. The content does
not necessarily reflect the position or policy of Texas Instru-
ments and no official endorsement should be inferred.

1 Introduction

Name management — how a computing system allows
names to be established for objects, permits objects
to be accessed using names, and controls the avail-
ability and meaning of names at any point in time
— is fundamental to almost all aspects of computing.
Various uses for names, and various mechanisms for
supporting those uses, are found in nearly every do-
main of computing. Programming languages, oper-
ating systems, database systems, distributed systems
and networks are all examples of domains in which
diverse uses of names and a variety of name man-
agement mechanisms exist. Unfortunately, however,
the mechanisms provided in any single domain tend
to have various shortcomings. Moreover, when two
or more domains converge, these shortcomings are
often compounded by the incompatibility of the re-
spective approaches to name management employed
in the various domains, generally with problematic
results.

The importance of name management is particu-
larly evident in software engineering. Indeed, name
management is among the most basic foundations of
software engineering, since so many software engi-
neering tools and techniques fundamentally depend
upon manipulation of names and the entities that
they represent. For example, name management is
central to any tool or technique for configuration
management, compilation support, specification or
design, testing, reuse, module interconnection or any
aspect of programming (e.g., [27]). As a result, indi-
vidual tools and techniques for these and other soft-
ware engineering tasks each tend to include their own
approaches to name management. Since they are
not generally based on any fundamental conceptual
foundations for name management, however, these
approaches are frequently complex and error-prone.
Furthermore, because no unifying models or mecha-
nisms for name management currently exist, efforts to
integrate two or more software engineering techniques

or tools are often impeded by the inconsistency and
incompatibility of the name management approaches
used in the individual techniques and tools.

Problems that arise during software engineering ac-
tivities can often be traced to complexities or short-
comings in name management mechanisms. In the
end, such problems are generally the result of one
or more names not having the meaning that was ex-
pected. Sometimes a name has no meaning at all —
a misspelling is a trivial example of this case. The
resulting difficulties can be serious, but are usually
easy to locate and rectify. More problematic are the
cases where a name does have a meaning, but not
the one that was anticipated. The difficulties arising
from this kind of naming problem are often extremely
subtle, hard to locate and hard to repair, especially
in large and complex software systems.

The ubiquity of software engineering problems at-
tributable to complexities or shortcomings in name
management mechanisms has led us to embark on
a broad-based investigation of these topics. This
investigation has two primary facets. One facet is
the development of models that can serve as a ba-
sis for enumerating, explicating or evaluating various
approaches to various aspects of name management.
The long-range goal of this facet is to provide a foun-
dation for fundamental understanding of name man-
agement and its role in all domains of computing.
The other facet of our research is the definition and
implementation of, and experimentation with, proto-
type mechanisms for particular aspects of name man-
agement. Here the long-term goal is to provide a
comprehensive set of powerful, flexible, uniform and
broadly applicable mechanisms that will ease the con-
struction and maintenance of (especially large and
complicated) computing systems.

In this paper we begin by considering some ex-
amples in which name management problems com-
plicate software engineering activities. In particular,
we focus on context control-related problems that of-
ten occur during software development. With these
examples as motivation, we then outline PiccoLo,
a unifying model of name management, and show
how it provides insights into, and a basis for informal
reasoning about, name management mechanisms and
the problems that arise in their use. Next we show
how the semantics of the PiccoLO model’s concepts
can be formalized using evolving algebras, an opera-
tional semantics based on first-order logic. Finally, we
demonstrate how the formalization of the model can
serve as a basis for novel analysis techniques aimed at
overcoming name management-related problems en-
countered by software developers.

2 Examples

In this section we illustrate some of the ways in which
name management problems can complicate various
software engineering activities. We present three sim-
ple examples, employing three distinct name man-
agement approaches found in reasonably familiar sys-
tems representing three different aspects of software
development. While our three examples illustrate
only a small subset of the name management prob-
lems that can arise in practice, they nevertheless pro-
vide some indication of how serious and often subtle
the resulting difficulties can be.

2.1 Make

Our first example is based on an extremely simple use
of Make [7] (specifically, the Free Software Founda-
tion’s GNU Make [21]), a well-known and widely used
Unix! software engineering utility. Although Make is
a versatile and powerful tool with many features (see
[21] for details), in our example it is used, as it most
often is, to automatically determine which pieces of
a large program need to be recompiled, and then is-
sue commands to recompile them. Figure 1 depicts
the contents of an extremely simple Makefile that di-
rects the compilation (in this case, using C++) of
some tool as shown in the associated Unix subdirec-
tory and file structure.

VPATH = bin:.
tool: tool.C
CC tool.C -o tool

Makefile

O directory
A

. current working directory

Figure 1: Makefile and Unix Directory

Make, being a tool that incorporates other tools
(e.g., compilers, linkers) as components, is an exam-
ple of what we call a convergent computing system.
Hence our Make example illustrates how the inconsis-
tencies and incompatibilities among the name man-
agement mechanisms used by different components
can impede system integration. That is, while some
of the name management problems in Make arise from
the inadequacies of the mechanisms of the underlying
components, others can be traced to incompatibilities

LUNIX is a registered trademark of UNIX System Labora-

tories, Inc.

among the various components’ name management
mechanisms. The root cause of the latter kind of
problems is that several, often conflicting and some-
times related, mechanisms may be controlling the in-
terpretation of names appearing on any given line(s)
of the Makefile. In particular, even in our extremely
simple example, different mechanisms are associated
with the interpretation of names during Make’s de-
pendency and rule analysis phase and during execu-
tion of each Unix command and tool. As a result, it
is often not clear what interpretation will be used for
a given occurrence of a name in a Makefile.

Consider, for instance, the second line in our sim-
ple example Makefile, which defines a temporal re-
lationship between tool and tool.C, and the next
line in the Makefile, which specifies that tool.C is to
be (re)compiled if the specified temporal relationship
does not hold. If the compilation is successful, a new
executable named tool is created. It turns out that
interpretation of the occurrence of the name tool.C
on the second line is controlled by Make’s own name
management mechanism based on the current con-
tents of the VPATH variable (appearing on the first
line of the Makefile), while interpretation of the oc-
currence of that same name on the third line is inter-
preted in a way, defined by the C++ compiler, that
might be completely different. Thus, in general, it is
entirely possible that Make will use one set of files in
determining whether a relationship holds and a par-
tially or completely different set of files in performing
the compilation that is intended to re-establish the
relationship in the case that it does not hold. More-
over, during a particular execution of Make, various
tools may create newly named files or rename exist-
ing files, resulting in perhaps different and sometimes
unanticipated interpretations of names occurring in
a Makefile. The potential for serious and subtle dif-
ficulties is clear. Having the ability to specify that
the desired interpretations of distinct occurrences of
a given name are related, coupled with an analysis
capability able to assess the consistency of the inter-
pretations, could help to avoid some very subtle name
management-related problems.

2.2 Library Management in Ada

Our next example illustrates some shortcomings
found in management of Ada libraries. Although
fairly elaborate, Ada’s name management features ac-
tually provide relatively limited capabilities and as a
result can lead to serious and subtle problems dur-
ing construction or maintenance of Ada programs.
In particular, they are demonstrably insufficient as
a means for precisely and accurately specifying how

names are to be interpreted across package bound-
aries [26]. Ada’s approach to library management
has similar deficiencies. While the designers of Ada
recognized the need for a suitable mechanism for this
purpose, they provided few specifics for its semantics:

A single program library is implied for the
compilation units of a compilation. The pos-
sible existence of different program libraries
and the means by which they are named are
not concerns of the language definition; they
are concerns of the programming environ-

ment [6].
Library 1 Library 2 Library 3
package A is package A is with A, B;
eni A end A; procedure C
’ is
with A; begin
ackage B is
P . end C;
end B;

Figure 2: Ada Libraries

As an extremely simple example of some Ada li-
brary problems, consider a software system composed
of a collection of modules written in Ada and orga-
nized into three separate libraries, as shown in Fig-
ure 2. In this example, procedure C, in Library 3,
imports two packages, A and B. A particular client of
procedure C might wish to have it use package A de-
fined in Library 2 and package B defined in Library
1. Notice, however, that package B in Library 1 also
imports a package A. This raises some interesting is-
sues with respect to how individual packages spec-
ify the intended interpretations of names that they
employ. For instance, should the interpretation of
names A and B that is to be used by procedure C
in Library 3 be inherited by all other compilation
units defined in all libraries? Or, can different inter-
pretations be specified for individual libraries? Or,
is a combination allowed? Unfortunately, the lack
of a standard answer to these questions has resulted
in vendor-specific solutions that are neither general,
flexible, nor portable.

Such problems also complicate, and therefore in-
hibit, inclusion of packages that define overlapping
sets of names, which in turn can curtail software reuse
and limit the value of standard libraries. While the
provision of child libraries in Ada95 [15] ameliorates

such problems to some extent, in general, these and
other related difficulties are further evidence of how
inadequacies in name management aspects of library
management can lead to software engineering prob-
lems. Having a sufficiently powerful, general and flex-
ible conceptual foundation for rigorously specifying,
assessing and comparing policies used in different li-
brary management systems would be an important
step toward overcoming such problems.

2.3 Object-Oriented Databases

As a third example, we briefly consider some
name management issues arising in object-oriented
databases (under which heading we include persis-
tent and database programming languages). Systems
of this kind are of interest to software engineering not
only because of the challenges inherent in construct-
ing and maintaining them but also because much of
their promise lies in their ability to support complex
applications, including software engineering environ-
ments [25]. OODBs, however, raise a host of challeng-
ing research issues for name management. One reason
for this is that they are another example of convergent
computing systems, in this case representing the con-
vergence of the programming language domain with
the domains of database or operating systems. Just
as other aspects of inconsistency and incompatibil-
ity among their underlying domains, such as differ-
ences in paradigms and type models, have been char-
acterized as impedance mismatches in OODBs [28],
we consider the existence of, and the incompatibili-
ties among, multiple and separate name management
mechanisms in their underlying domains to be yet
another aspect of the impedance mismatch problem
in object-oriented databases. Here we mention only
three representative problems. A more extensive ex-
amination of these issues can be found in [17].

One of the primary goals of OODBs is to make
persistence an orthogonal property to type, thus ob-
viating the need, at least from the programmer’s per-
spective, for traditional file systems and (relational)
databases. A flexible and powerful approach to name
management is crucial, therefore, since diverse ap-
plications written in different languages need to de-
posit and access objects in the persistent store. One
shortcoming of name management, mechanisms found
in many current OODBs (e.g., the TI/Arpa Open
Object-Oriented Database [24]) is that their persis-
tent stores are restricted to a single, flat set of names.
This results in ad hoc naming conventions such as
suffixing users’ initials to mailbox objects or prefix-
ing vendors’ names to off-the-shelf objects, in order
to avoid name conflicts, and in the end unnecessar-
ily clutters the persistent store [1]. Another prob-

lem involves the time at which name interpretation
takes place. In OODBEs, interpretation of names for
persistent objects is often restricted to run-time. If
persistence is indeed orthogonal, then OODBs should
provide a range of name interpretation times match-
ing those provided by programming languages and
operating systems (e.g., composition, compile, link
and load time) [19]. Finally, OODB developers and
maintainers are provided with little, if any, support
for determining the name reference behavior for an
object. In order to determine this information, de-
velopers and maintainers face the tedious and error-
prone task of manually analyzing source code, con-
figuration scripts, etc. Thus, for example, having the
ability to query an object directly about its relevant
name reference behavior and having such information
uniformly accessible would be a valuable software en-
gineering aid.

3 Piccolo

As the examples in the previous section demonstrate,
various tools and systems used in software engineer-
ing employ distinct, specialized, often elaborate and
idiosyncratic, and sometimes multiple, approaches to
name management. As a result, these tools and sys-
tems can be difficult to use, and correct usage can
be hard to achieve and even harder to confirm. We
believe that this situation calls for improved sup-
port for reasoning about existing name management
mechanisms, and also for improved name manage-
ment mechanisms for use in both applications and
software tools.

An important step toward both of these objec-
tives would be a unifying model of name manage-
ment. To that end, we have developed the PiccoLo?
model. Because of the ubiquitous nature of names
in computing, there have been a number of for-
malisms involving or related to the use of names
(e.g., [4, 8, 16, 19, 20, 22, 26]). Such formalisms,
however, have generally been specific to individual,
or limited sets of, computation domains. PIiccoLO
generalizes various concepts found in many of these
models and extends them with additional features to
produce a unified perspective on a more complete set
of name management issues across a much broader
range of computational systems.

In the remainder of this section we briefly outline
the PiccorLo model and show how it can support
informal reasoning about name management-related
properties of software systems and tools. The next

2Precise Interface and Context Control in Object Libraries
and Objects

section describes a formalization of the model’s se-
mantics and demonstrates its potential as a basis for
formal reasoning and automated analysis tools.

3.1 Overview of the Model

The PiccoLo model is based on the following set of
fundamental name management concepts:

object: An item of interest in a given setting.

name: An identifier used to reference, access or ma-
nipulate an object.

binding: In its simplest, most basic form a
(name,object) pair. The availability of binding
(n,0) makes it possible to use name n to refer-
ence, access or manipulate object o. Bindings
may also include additional information, such as
type and mutability information (as, for exam-
ple, in Napier [5]).

binding space: A set of bindings that serves as a
collection of definitions for names.

context: A set of bindings that is available for use
in referencing, accessing or manipulating objects.
A context may consist of, or be formed from,
one or more binding spaces, or parts of bind-
ing spaces, or other contexts. PICCOLO’s ex-
plicit distinction between binding spaces, which
are primarily a means for organizing collections
of bindings, typically for user convenience, and
contexts, which a system uses in interpreting
names during its operation, significantly facili-
tates modeling of many name management ap-
proaches.

closure: In its simplest, most basic form an (object,
context) pair. Given the existence of the closure
(0,¢), it is possible for object o to use context
¢ in referencing, accessing or manipulating other
objects.

resolution: The action of returning an object when
given a name and a context.

As indicated above, one shortcoming of most exist-
ing models of name management is that they do not
carefully distinguish between the distinct, but clearly
related, concepts of binding space and context. An-
other shortcoming is the typical assumption that all
name management activities occur at one particular
time during the lifetime of a system. This makes it
difficult to model many complex situations, so the
P1ccoLo model provides a means for explicitly rep-
resenting distinct times at which name management
activities may occur:

epoch: An epoch denotes a particular time period
during which name management activities may
take place. The set of all epochs is modeled by
an enumeration such as £ = {ej,es,...}.

Given these fundamental concepts, the PiccoLo
model defines specific name management approaches
and mechanisms using the following two kinds of com-
ponents:

context formation template (CFT): A
collection of directives governing the formation
of contexts. In a typical approach to name man-
agement we can further distinguish between two
kinds of CFTs:

Requestor: A CFT Requestor (or CFTR) de-
scribes the context requirements for an ob-
ject. In particular, it specifies a collec-
tion of names referenced by the object. It
can additionally include directives indicat-
ing such things as preferred sources of def-
initions (i.e., binding spaces) for the ref-
erenced names and preferred times (i.e.,
epochs) for context formation or modifica-
tion steps.

Provider: A CFT Provider (or CFTP) de-
scribes the context definitions potentially
available from an object. Analogously to
CFTRs, it can additionally specify such
things as preferred targets (i.e., other ob-
jects) for these definitions and preferred
times for context formation or modification
steps.

context formation process (CFP): A procedure
that produces a context from an initial context
and one or more CFTs.

Applying the PiccoLo model involves defining a
specific set of epochs appropriate to the host system’s
context formation and manipulation needs, specific
kinds of directives that can appear in CFTs and one
or more specific CFPs. It also implies a suitable gen-
eralization of the concept of closure, such as the fol-
lowing;:

closure = (o, (C;, {CFT*,CFP"})) where C; repre-
sents an initial context, C F'T* represents a (pos-
sibly empty) set of context formation templates
for directing the incremental formation of future
contexts, and CF P* represents a corresponding
set of context formation processes that will be
directed by those CFTs during incremental for-
mation of future contexts.

3.2 Applications of the Model

We envision two major categories of use for the P1c-
cOoLO model. First, it can serve as a basis for an-
alyzing context control mechanisms and problems.
Careful description of a particular name management
mechanism in terms of PICCOLO’s constructs permits
rigorous reasoning about and comparison of various
existing, proposed or possible approaches. We give
examples of this use of the model later in this section,
where we use it in informal reasoning about some ex-
ample name management questions, and also in the
next section, where we base more formal analyses on
a suitably formalized version of the PICCOLO model.

Second, the PiccoLo model can serve as a foun-
dation for defining and implementing name manage-
ment mechanisms. By defining a mechanism using
the model, we can avoid ad hoc solutions, reason
about properties of a mechanism before implement-
ing it, and achieve uniformity in the functioning of the
mechanism. We have, in fact, used P1ccoLO as a ba-
sis for implementing a prototype user interface shell
for an object-oriented database system [17]. Being
based on the PiccoLO concepts, this shell provides
much more general and powerful name management
capabilities to users of the OODB than did its original
interface, or than are found in most such systems.

As a simple illustration of the PiccoLoO model’s
potential value to software developers, consider the
following informal reasoning about the interpretation
of names in the simple Make example of Figure 1.
Guided by the model, a developer would be more
likely to attempt to understand Make’s name man-
agement in terms of context formation epochs, name
resolution epochs, closures and which constructs in
a Makefile may have closures associated with them.
Pursuing this reasoning leads to several insights. One
insight is that there are two separate name resolu-
tion epochs associated with the actions of this simple
Makefile, one with dependency analysis and the other
with execution of the compile (CC) command. A re-
lated observation is that each name resolution epoch
has a corresponding context formation epoch. An
attempt to produce even an informal description of
the closure information associated with each epoch
reveals that, although they use essentially the same
CFP (based on traversing a search path to locate
bindings) and all the CFTPs are trivial (reflecting
the simplicity of access controls in the Unix file sys-
tem), their respective CFTRs are quite different: the
CFTR associated with the dependency analysis epoch
is derived from the value of the VPATH variable,
while the CFTR associated with the compilation is
essentially a pointer to the current working directory.
Pursuing this reasoning a step further reveals that the

interpretations of the two occurrences of the name
tool.C in the example Makefile will be the same,
which was presumably the developer’s intent. On the
other hand, similar reasoning also reveals that the
interpretations of the two occurrences of the name
tool will be different, with the first referring to the
existing object named tool in the directory (binding
space) named bin while the second will refer to a
new object that will be created in the current work-
ing directory as a side effect of the compilation. Since
this would not succeed in rectifying the dependency
failure that triggered the compilation, this is proba-
bly not what the developer intended. Applying even
such informal reasoning, under the guidance of the
concepts of the P1cCOLO model, can reveal the error,
assist the developer in revising the Makefile to cor-
rect it, and then serve as a basis for confirming that
the revised version does indeed realize the behavior
intended by the developer.

4 Formalization and Applica-
tion of Piccolo

As we have attempted to demonstrate in the pre-
ceding section, the concepts of the PIccoLo model
provide a useful framework for informal reasoning
about name management-related issues and problems
of interest to software engineers. Formalizing the se-
mantics of the PiccoLo model’s concepts, however,
makes them suitable as a basis for formal reason-
ing, and automated tools supporting such reasoning,
about name management aspects of software systems.
In this section we explore some of the benefits ac-
cruing from a formalization of Prccoro based on
one particular approach to formal semantics, namely
evolving algebras. We begin with a brief introduction
to evolving algebras, then consider some aspects of
an evolving algebra (EA) formalization of PIcCOLO,
including analysis opportunities arising from such a
formalization.

4.1 Overview of Evolving Algebras

Evolving algebras were introduced by Gurevich as
a framework for defining operational semantics [10].
The framework itself has evolved, its current defini-
tion being captured in [11]. Evolving algebras have
been used in defining formal semantics for several pro-
gramming languages, including C++ [23], Modula-
2 [12] and Prolog [3], for other aspects of compu-
tational systems, such as data models for object-
oriented databases [9], and for particular algorithms,
such as the Kermit communication protocol [13] and

Lamport’s bakery algorithm [2]. The formalism has
also been used as a basis for proving properties of sys-
tems (e.g., [2, 13]) and has been implemented in the
form of an interpreter [14] that can be used for in-
vestigating properties of EA descriptions of systems.
Among the advantages of the EA approach is the abil-
ity to formulate semantic definitions at multiple levels
of abstraction, so that different facets of a system can
be described at their respective “natural abstraction
levels” [11]. We have found this feature very useful
in formalizing the semantics of PICCOLO concepts, as
will be apparent in the examples of Section 4.2.

The evolving algebra formalism is based on multi-
sorted first order logical structures with partial func-
tions. The sorts are represented as universes of dis-
tinct atomic elements (or nullary functions). One im-
portant universe, for example, is Boolean, with ele-
ments true and false. A distinguished element undef
is considered to belong to every universe, such that
a function f is interpreted as being undefined at a
tuple @ if f(a) = undef.

An operational semantics is defined by an abstract
machine. An evolving algebra A is an abstract ma-
chine whose states consist of collections of elements
from the universes included in A and functions de-
fined on those universes. State transitions in A result
from the addition or deletion of elements or modifi-
cations to the definitions of one or more functions, or
both. The possible transitions of A are determined
by the initial state of A and a finite collection of tran-
sition rules, defined recursively as follows:

e Update rules have the form:
flat,...,an) := an+1

where each a; is a closed term (i.e., contains no
free variables) and evaluates to an element of the
appropriate universe. The meaning of the rule is
that the value of function f on tuple (a1,...,a,)
is changed to be a,y; in the next state of the
abstract machine.

e Guarded rules have the form:

if aop then Ro
elseif a; then R;

elseif a, then R,
endif

where each a; is a closed term evaluating to an
element of Boolean and each R; is a transition
rule. The meaning is that the R; for the smallest
J such that a; evaluates to true is executed. If
none of the a; evaluate to true, then no rules are
fired.

e A Rule block is a collection of transition rules:
Ri,...,Rn

where all the rules in the block are interpreted as
being executed simultaneously. Conflicts among
the rules (i.e., updating the same function at the
same step with different values) are not permit-
ted.

e FExtension rules have the form:

extend U by ei,...,e, with
Ri,..., R,

endextend

where U is a universe, ey, ..., e, represent newly
created elements of U, and R; are transition
rules, which (typically) use the newly created
elements of the universe as values in their cor-
responding terms.

Given an initial state and a set of transition rules,
a run of evolving algebra A consists of a sequence
of states, S;, resulting from successive application of
all transition rules defined in A. Static functions are
functions whose domains never change during a run,
while dynamic functions may be updated. In addi-
tion, external functions are provided as means of in-
teracting with the outside environment (e.g., I/0),
where their values are determined by some oracle.

This brief introduction to evolving algebras, while
sufficient for our purposes in this paper, glosses over a
number of technical points and omits several interest-
ing aspects of the formalism. The interested reader
is referred to [11] for a complete treatment.

4.2 An EA/Piccolo Formulation of
Name Management in Make and
Unix

To help illustrate our application of evolving alge-
bras to P1rccoro (i.e., EA/P1ccoLro), we return our
attention to the Make/Unix example first described
in Section 2.1 and later examined in Section 3.2. In
particular, we give a definition of an evolving algebra,
AMake/Unix; based on the PiccoLo model that for-
mally describes name management in Make and Unix.
Utilizing the EA formalism’s support for multi-level
descriptions, we first describe Ayrake/unix in terms of
some high level abstractions and then refine these ab-
stractions in order to provide more precise seman-
tics for context formation and context consistency in
Make and Unix.

4.2.1 Formal Semantics

With respect to the Make/Unix example, files, names,
directories and contexts are represented by the uni-
verses object, mame, bindingspace and context, re-
spectively. Furthermore, since directories (i.e., bind-
ing spaces) are nameable objects, bindingspace C o0b-
Ject. Bindings in Apjare/unix are represented by a
dynamic function, LookUp(bindingspace, name) —
object. Defining a name for a file (or a subdirectory)
in a directory is modeled by performing an update to
the LookUp function. Thus, for instance, the initial
state of the file system in our example is described by
the initial state, So, of Anjake/Unix, COntaining the ob-
jects by, b2, 01 and o2, and the functions LookUp, Abs
and Bin, that results from execution of the following:

extend bindingspace by b1, by with
extend object by 01,02 with
LookUp(b1, 001.cc) = 01
LookUp(b1,npiy) := b2
LookUp(bz, nioo1) i= 02
endextend
Abs := by
Bin := by
endextend

where b; € bindingspace, o; € object and nj € name.
The (nullary) dynamic functions Bin and Abs (i.e.,
the active binding space) are provided to hold the
current values for the bin and current working
directories, respectively, during a particular run of
AMake/Unix~

Next, we define a universe representing epochs:

ePOCh = {edacf7 €dany eiadb’ eiacf7 €ianry €cce, ehC}

where €da,; Tepresents a dependency analysis/context
formation epoch, eq,,, represents a dependency anal-
ysis/name resolution epoch, €iay,, lepresents an in-
voke action/define binding epoch, €ia.; TEPTesents an
invoke action/context formation epoch, e;,,. repre-
sents an invoke action/name resolution epoch, eccc
represents a context consistency check epoch, and
ene represents a halt condition epoch. Note that
the epochs e... and ep. are not actually a part of
Make’s name management mechanism. We include
them in our formulation, however, to indicate when
appropriate analyses may be performed. (An exam-
ple of such analyses is discussed in Section 4.2.4.) Fi-
nally, the dynamic function CurrentEpoch represents
the current epoch in a run of Ayjake/Unix, While the
static function NexztEpoch(epoch) — epoch computes
the successor to a given epoch. In particular, Sy con-
tains the following definitions of NeztEpoch and Cur-
rentEpoch:

NextEpoch (edacf) = €dapy NeatEpoch (edap,) := €ccc

NextEpoch (eccc) 1= €iagy, NexztEpoch (eiadb) = €iap

NextEpoch (eiacf) = Ciapy NextEpoch (eiay,) 1= €da,

f
CurrentEpoch = €dagg

To complete our preliminary EA /P1ccoro descrip-
tion of name management in Make and Unix, we need
to provide formal definitions of closure and name res-
olution. Recall that the P1ccoro definition of closure
calls for an “object o to use context ¢ in referencing,
accessing or manipulating other objects.” Represent-
ing closure in Make, however, is initially complicated
by the fact that there are no such “objects” per se. In-
stead, contexts (and directives for forming contexts)
are directly correlated with the different epochs that
occur in Make. Rather than clutter Ayfake/Unix With
artificial “objects,” we use epochs to represent ob-
jects in a closure. Thus, to model closures and name
resolution, we define the following external functions:

ContextDirective(epoch) — cft
ContextDefinedBy(epoch, cft) — context
Resolve(context, name) — object

where ContextDirective returns the CETs (where cft
is defined as a universe in Ayfare/Unix) at a particular
epoch, ContertDefinedBy forms a context based on
a given epoch and CFTs, and Resolve returns the
object bound to a name in a given context. If the
name is not found, undef is returned.

Through application of EA/PiccoLo, we can for-
mally describe the fundamental concepts of the ap-
proach to name management found in Make/Unix at
a fairly high level of abstraction. Although discern-
ing potential name management-related problems re-
quires some refinement of this abstraction (as we show
below), it should be evident that EA/P1ccoLo uni-
formly captures various features of name management
in Make/Unix in a more precise manner than the in-
formal use of PICCOLO presented in Section 3.2.

4.2.2 Name Management in Make/Unix

In this section, we refine Apjake/unix, thereby mov-
ing to a lower level of abstraction, and provide more
detailed EA/P1ccoro descriptions of context for-
mation, name resolution and binding definition in
AMake/Unix- First, we assume the initial state, So, has
been defined as described above. Next, Anjake/Unix 18
augmented with a binary function, Obj(epoch,name)
— object, which holds values for objects required by a
particular Make computation, and a unary function,
ContextIn(epoch) — context, which returns a context
at a particular epoch. The transition rule modeling
the use and manipulation of names in the Makefile
shown in Figure 1 is given below:

if CurrentEpoch = €dagp then
Context[n(edacf) =
C’onte:ptDeﬁnedBy(edaCf, ContextDirective(edaCf))
CurrentEpoch := NextEpoch(CurrentEpoch)
elseif CurrentEpoch = eq,,, then
Obj(edacf, Ngool) := Resolve(C’onte:ptln(edacf), Ngool)
Obj(edacf, Ngool.t) := Resolve(Context[n(edacf), Ngool.C)
CompleteResolution(nisol, Mtool.C)
elseif CurrentEpoch = Ciayy, then
extend object by newobj with
LookUp(Bin, nisol.c1) := newobj
endextend
CurrentEpoch := NextEpoch(CurrentEpoch)
elseif CurrentEpoch = Cia_; then
C’ontext[n(eiacf) =
ContextDefinedBy(eia , ContextDirective(eia,)
CurrentEpoch := NextEpoch(CurrentEpoch)
elseif CurrentEpoch = ej,,, then
Obj(eiacf7 Ngool) := Resolve(C’ontemt[n(eiacf), Ngool)
Obj(eiacf7 Niool.Ct) := Resolve(C’ontemt[n(eiacf), Ngool.C!)

CompleteResolution(nisol, Mtool.C)
endif

First, we choose to represent CFTs for Make/Unix
as lists of binding spaces and define a static func-
tion ContextDirective (epoch) — list[bindingspace],
initialized by the execution of:

a

ContextDirective (ed".:f) := Cons(bz, by, nil)
ContextDirective (e) := Cons(b1,nil)

The first rule corresponds to the VPATH specifica-
tion given in the Makefile, while the second rule rep-
resents the context directives for the C+4 compiler.

Next, we define ContextDefinedBy. In Make and
Unix, contexts are evaluated lazily — when a name is
resolved in a context, each binding space, in the list
returned by the ContextDirective, is searched until
either an object with the required name is found or
there are no binding spaces left to search. To model
this lazy evaluation approach to context formation,
the context returned by ContextDefinedBy is simply
the list of binding spaces. Thus, ContextDefinedBy is
equated with the value of ContextDirective:

This transition rule defines for each epoch (except
for e..c and epe, which are discussed in the next
section) how the state of Apfare/unix 18 changed to
reflect the effects of the various name management
operations. For example, when the CurrentEpoch
equals €qa , a new context is formed as dictated by
the function ContextDefinedBy (along with the values
of ContextDirective and CurrentEpoch). Similarly,
when CurrentEpoch equals eg,,,, the names n,ol
and neo).c are resolved using the context constructed
in the previous epoch. At the end of each epoch, Cur-
rentEpoch is updated via an invocation of the Nez-
tEpoch function. (The macro CompleteResolution in-
cludes an invocation of NextEpoch, as described in
Section 4.2.3.) Thus, in this refined EA/PiccoLo
formulation of Make/Unix name management, we
can see precisely how and when contexts are formed,
names are resolved and bindings are defined.

4.2.3 Understanding Context Formation in
Make /Unix

The next step in applying EA/PIccOLO to our ex-
ample is to further refine the various abstractions in
AMake/Unix- In particular, the functions ContextDi-
rective, ContertDefinedBy and Resolve were earlier
defined as external functions. Recall that this means
their values are determined by an entity or oracle out-
side the given abstract machine. In this section, we
replace these external functions with definitions of in-
ternal functions and, as a result, provide more precise
semantics for context manipulation in Make/Unix.

ContextDefined By(epoch, ContextDirective(epoch)) :=
ContextDirective(epoch)

Finally, we define Resolve and CompleteResolution
using (parameterized) macros.* The parameters to
the Resolve macro are a context and a name:

Macro obj := Resolve(context, name) =
if ResolveStep(name) = SetupResolve then
Path(name) := context
LookIn(name) := Car (context)
ResolveStep(name) := AttemptResolve
elseif ResolveStep(name) = AttemptResolve then
if Path(name) = nil then
obj := undef
ResolveStep(name) := CompleteResolve
elseif Path(name) # nil then
if LookUp(LookIn(name), name) = undef then
LookIn(name) := Car(Cdr(Path(name)))
Path(name) := Cdr(Path (name))
elseif LookUp(LookIn(name),name) # undef then
obj := LookUp(LookIn(name), name)
ResolveStep(name) := CompleteResolve
endif
endif
endif

3A list is represented as a universe in AMake/Unix' In ad-
dition, standard list operations, such as Cons and Car (with
their traditional meanings) are defined on elements in list.

4EA macros are simply a syntactic shorthand and,
therefore, do not affect the formalism’s computational
expressiveness.

As noted above, contexts are not actually formed
until a name resolution is performed. The Resolve
macro expands into a transition rule that describes
this approach to context formation. To resolve a
name (for an object), the body of the rule searches
each binding space, as specified by the context, until
either an object is found or there are no more binding
spaces left to search.

The CompleteResolution macro is parameterized
by the names being resolved:

Macro CompleteResolution(namer, names) =
if ResolveStep(namer) = CompleteResolve A
ResolveStep(names) = CompleteResolve then
ResolveStep(namer) := SetupResolve
ResolveStep(names) := SetupResolve
CurrentEpoch := NextEpoch(CurrentEpoch)
endif

It expands into a transition rule that synchronizes
completion of the activities performed by the transi-
tion rules produced by the Resolve macros (which are
executed simultaneously), then reinitializes the Re-
solveStep functions, and updates the CurrentEpoch
function appropriately by invoking NeztEpoch.

4.2.4 Formal Analyses

Recall that the epoch universe in Ayrake/unix included
two special-purpose epochs that do not have di-
rect correlates in the Make/Unix name management
mechanism. These epochs were added in order to
facilitate formal reasoning about our EA/PiccoLo
model of name management in Make/Unix. In par-
ticular, they are used to enable automated analyses of
the model using the EA Interpreter [14]. The epoch
eccc is used to indicate when a particular analysis
should be performed, and the epoch ey, is used to to
interrupt execution of Apfake/unix by the EA Inter-
preter when an analysis reports an inconsistency. For
example, suppose we wish to ensure that the set of
files used during Make’s dependency analysis is con-
sistent with the set used during compilation in our
example Makefile. More specifically, we want to de-
termine whether the files bound to the names tool
and tool.C during Make’s dependency analysis are
identical (in Unix terms, they have the same i-node
value) to the files bound to the same names during
compilation.

Using EA /P1ccoLO, we can formally represent this

assertion by augmenting Anfare/Unix With a transition
rule that will be executed when the current epoch is

eCCC .

if CurrentEpoch = eccc then
if ContestIn (e) = undef then
CurrentEpoch := NextEpoch(CurrentEpoch)
elseif Obj(edacfvntool) = Obj(eiacfvntool) A
Obj(edacfvntool.(]) = Obj(eiacfv ntool.C) then
CurrentEpoch := NextEpoch(CurrentEpoch)
else
CurrentEpoch = ey
endif
endif

The rule first checks that a context for the invoke
action epoch has indeed been defined. If it is defined,
then the consistency of the two contexts can be com-
puted by comparing the results of the most recent
resolutions of each name (which were preserved as
values of the Obj function) and determining whether
or not those resolutions returned identical objects. If
they did, then the contexts are consistent; otherwise,
the epoch ey is triggered and the EA Interpreter ex-
ecution of Apjake/Unix 18 interrupted.

As a preliminary experiment in automated anal-
ysis based on EA/P1ccoro, we applied the EA In-
terpreter to Apfake/unix- Executing the interpreter
permits a software developer to iterate over, as well
as examine and query, the states of an EA model.
When applied to the Ayrake/unix description of our
Make/Unix example, the interpreter detects a con-
textual inconsistency since the name tool is bound
to two different objects in the two different contexts.
Once alerted to this situation, a software developer
could rectify the problem in one of several ways. For
example, the tool file could be moved to the current
working directory, or the C++ compiler could define
a new binding to tool in the bin directory. Choosing
the former solution requires a change to Sy, repre-
sented by the following modification to the original
extension rule:

extend bindingspace by b1, by with
extend object by 01,02 with

LookUp(b1, niool) i= 02

endextend
endextend

After this change is made, the experiment can be
run again and, this time, the EA Interpreter reports
no context inconsistencies.’

5The complete versions of AMake/Unix to which the EA

Interpreter was applied in these experiments are available via
ftp. Contact either author for more information.

5 Summary and Conclusions

In this paper we have attempted to demonstrate the
importance of name management issues to software
developers, presented a unifying model of name man-
agement along with a formal semantics for its major
concepts, and indicated how the model can be used
as a foundation for reasoning about name manage-
ment mechanisms and their use in software tools and
applications.

Our EA/PiccorLo formulation of Make and Unix
offers a concrete demonstration of the model’s poten-
tial as a basis for formally describing and reasoning
about name management in a representative exam-
ple of a software engineering tool. More generally,
it demonstrates that such formulations can indeed
serve as a basis for formal analysis, which can aid
application developers in the design, implementation
and maintenance of software systems. While we have
shown only one example of one relatively simple anal-
ysis, it should be evident that the approach general-
izes to a variety of other useful analyses.

Although here we have focused only on how the
model can support analysis of existing name man-
agement approaches and problems arising from their
use, we strongly believe that new, improved mecha-
nisms for name management are also desirable, and
that our model could provide a rigorous basis on
which to develop them. In fact, as noted earlier,
we have already done some work along these lines.
The current prototype of the CONCH user interface
shell [17] for the TI/Arpa Open OODB [24] imple-
ments support for context and closure definition, in-
cluding simple CFT and CFP facilities, that directly
reflects the main concepts found in PiccoLo. The
resulting name management mechanism is uniformly
applicable from the C++ and the CLOS application
programmer interfaces to Open OODB, thus con-
tributing to multi-language interoperability [18] as
well as enhanced name management. Ongoing and
future work on the mechanisms facet of our name
management research program includes development
of similar support for PiccoLo-inspired capabilities
applicable to other classes of software systems and
tools, such as Make-like tools and software module
library systems. As demonstrated in this paper, the
PiccoLo model, particularly when formalized using
evolving algebras, seems to provide a sound basis for
such mechanisms. Work on this facet will also include
exploration of the scalability of our analysis technique
and concomitant work on specialized and optimized
analysis capabilities, inspired by the general model
but exploiting specific properties of particular name
management mechanisms in order to improve their
performance.

We are also continuing to evaluate and evolve the
Piccoro model itself as the central focus of our re-
search program’s models facet. The initial success of
the existing model as a basis for explaining, reasoning
about, designing, implementing and analyzing name
management mechanisms across a reasonably broad
range of system classes, and particularly convergent
computing systems, is quite encouraging. We are,
however, continuing to experiment with applying the
model to additional classes of systems in an effort to
further confirm, or find ways to extend, its general-
ity and applicability. We are particularly interested
in the prospect of making extended closure informa-
tion in a CFT/CFP-style format a standardly avail-
able part of the interface to objects in future software
systems. This would have significant potential for fa-
cilitating reuse, maintenance and interoperability. In
particular, it would provide a basis for overcoming
many of the name management problems associated
with program libraries, such as those discussed in Sec-
tion 2.2. This approach will only merit serious con-
sideration, however, when the generality and applica-
bility of the model have been adequately established.

Acknowledgements

The authors wish to thank Prof. Neil Immerman for
initially introducing us to evolving algebras. The au-
thors would also like to thank the Evolving Algebras
research group at the University of Michigan, and es-
pecially Jim Huggins, for their assistance.

References

[1] Andrews, T. Designing linguistic interfaces to
an object database or what do C++, SQL and
Hell have in common? In Fourth International
Workshop on Database Programming Languages
(New York, NY, Aug—Sep 1993), pp. 3-10.

[2] Borger, E., Gurevich, Y., and Rosenzweig, D.
The bakery algorithm: Yet another specification
and verification. In Specification and Valida-
tion Methods, E. Borger, Ed. Oxford University
Press, 1994.

[3] Borger, E., and Rosenzweig, D. A mathematical
definition of full Prolog. In Science of Computer
Programming. 1994.

[4] Comer, D. E., and Peterson, L. L. Understand-
ing naming in distributed systems. Distributed
Computing 3, 2 (May 1989), 51-60.

[5]

[6]

[7]

[9]

Dearle, A., Connor, R., Brown, F., and Mor-
rison, R. Napier88—A database programming
language? In Second International Workshop on
Database Programming Languages (June 1989),
R. Hull, R. Morrison, and D. Stemple, Eds.,
pp. 213-229.

DOD. Reference Manual for the Ada Program-
ming Language. United States Department of
Defense, Washington, D.C., Jan. 1983. (ANSI/
MIL-STD-1815A).

Feldman, S. Make — a program for maintain-
ing computer programs. Software-Practice and
Ezperience 9, 4 (Apr. 1979), 255-265.

Fraser, A. On the meaning of names in program-
ming systems. Communications of the ACM 14,
6 (June 1971), 409-416.

Gottlob, G., Kappel, G., and Schrefl, M. Seman-
tics of object-oriented data models - The evolv-
ing algebra approach. In Next Generation Infor-
mation System Technology, First International
East/West Database Workshop (Kiev, USSR,
Oct. 1990), J. Schmidt and A. Stogny, Eds.,
no. 504 in Lecture Notes In Computer Science,
pp. 144-160.

Gurevich, Y. Logic and the challenge of com-
puter science. In Current Trends in Theoretical
Computer Science, E. Borger, Ed. Computer Sci-
ence Press, 1988, pp. 1-57.

Gurevich, Y. Evolving algebras 1993: Lipari
guide. In Specification and Validation Methods,
E. Borger, Ed. Oxford University Press, 1994.

Gurevich, Y., and Morris, J. Algebraic op-
erational semantics and Modula-2. In First
Workshop on Computer Science Logic (1988),
E. Borger, H. K. Biining, and M. Richter, Eds.,
no. 329 in Lecture Notes In Computer Science,
pp. 81-101.

Huggins, J. Kermit: Specification and verifica-
tion. In Specification and Validation Methods,
E. Borger, Ed. Oxford University Press, 1994.

Huggins, J., and Mani, R. The evolving algebra
interpreter, version 2.0. University of Michigan,
1995.

Intermetrics, Inc. Ada 95 Rationale. Cambridge,
MA, Jan. 1995.

Johnston, J. The contour model of block struc-
tured processes. SIGPLAN Notices 6, 2 (June
1971), 55-82.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Kaplan, A., and Wileden, J. Conch: Experi-
menting with enhanced name management for
persistent object systems. In Sizth International
Workshop on Persistent Object Systems (Taras-
con, Provence, France, Sept. 1994).

Kaplan, A., and Wileden, J. C. PolySPIN:
An architecture for polylingual object-oriented
databases. Submitted.

Morrison, R., Atkinson, M., Brown, A., and
Dearle, A. On the classification of binding mech-
anisms. Information Processing Letters 34, 1
(Feb. 1990), 51-55.

Saltzer, J. Naming and binding of objects. In
Operating Systems: An Advanced Course, no. 60
in Lecture Notes in Computer Science. Spring-
Verlag, 1978, ch. 3A, pp. 99-208.

Stallman, R. M., and McGrath, R. GNU Make:
A Program For Directing Recompilation, 0.47,
for make version 3.72q beta ed. Free Software
Foundation, Cambridge, MA, Nov. 1994.

Stoy, J. Denotational Semantics: the Scott-
Strachey Approach to Programming Language
Theory. MIT Press, 1977.

Wallace, C. The semantics of the C++ pro-
gramming language. In Specification and Valida-
tion Methods, E. Borger, Ed. Oxford University
Press, 1994.

Wells, D. L., Blakely, J. A., and Thompson,
C. W. Architecture of an open object-oriented
database management system. Computer 25, 10
(Oct. 1992), 74-82.

Wileden, J. C., and Wolf, A. L. Object manage-
ment technology for environments: Experiences,
opportunities and risks. In Proceedings of the
International Workshop on Environments (Sept.
1989), no. 742 in Lecture Notes in Computer Sci-
ence.

Wolf, A., Clarke, L., and Wileden, J. A model
of visibility control. IEEE Transactions on Soft-
ware Engineering 14, 4 (Apr. 1988), 512-520.

Wolf, A., Clarke, L., and Wileden, J. The
AdaPIC tool set: Supporting interface control
and analysis throughout the software develop-
ment process. IEEE Transactions on Software
Engineering 15, 3 (Mar. 1989), 250-263.

Zdonik, S. B., and Maier, D. Fundamen-
tals of object-oriented databases. In Readings
in Object-Oriented Database Systems. Morgan
Kaufmann, 1990, pp. 1-32.

