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Abstract

This paper presents a compact Petri net representation for concurrent programs. These Petri nets are based on
task interaction graphs and, thus, are called TIG-based Petri nets (TPN)s. They form a compact representation by
summarizing the effects of large sequential regions of a program and making useful information about those regions
available for program analysis. TPNs and their associated analyses represent a tradeoff between encoding information
about program behavior in the program representation or in the analysis algorithms. To evaluate the cost-effectiveness
of this tradeoff, we have developed a flexible framework for checking a variety of properties of concurrent programs
using the reachability graph generated from a TPN. We present empirical results that demonstrate the benefit
of TPNs over alternate Petri net representations and discuss techniques to further reduce the cost of TPN-based
analysis.

1 Introduction

An important goal of software engineering research is to provide cost-effective analysis techniques that allow
developers of concurrent software to gain confidence in the quality of their programs. Researchers have proposed
a variety of techniques for analyzing concurrent programs. Although these techniques vary in the time and space
required for analysis, in the accuracy of their results, and in the types of questions that each can address, the nature
of this variation is not well-understood, particularly when the techniques are applied to real production software
systems. Most techniques have theoretical bounds that are daunting, but preliminary experimental results seem
to indicate that there are applications for which each might be cost-effective. One of the goals of our work is to
understand the practical limitations of a variety of static program analysis techniques as applied to ”real” programs.

We have developed a framework for experimenting with a variety of state space enumeration analyses based on
task interaction graphs (TIG)s [LC89] and Petri nets. Petri nets are a well-studied model for concurrent systems
[Mur89]. This paper presents a coarsened Petri net model, called TIG-based Petri nets (TPN)s, that is efficient to
construct. This model summarizes the effects of large regions of a program and makes useful information about those
regions available for program analysis. The result is a representation that is compact, but, unlike many state space
reduction techniques, there is no loss of information. The TPN representation appears to be amenable to reachability
analysis for larger programs than previously proposed Petri net reachability techniques.

The major limiting factor in performing state space analysis is the enumeration of the reachable program states.
Our hypothesis is that using a program model that reduces the size of the state space, even at the expense of
increased cost in analysis of reachable program states, will allow analysis of programs for which reachability analysis
is otherwise impractical. One of the goals of this research is to evaluate this hypothesis. In support of this we have
constructed a set of tools to gather data on TPNs and reachability graphs generated from TPNs. These tools accept
Ada programs, which explicitly denote tasks and use a rendesvous style of inter-task communication. We compare
our results to recent work on alternate Petri net representations for Ada programs.

In the following section, we describe the nature of the tradeoff between encoding program information in a model
versus in an analysis algorithm. Section 3 discusses related work. Section 4 provides a brief description of Petri

*This work was supported by the Advanced Research Projects Agency under Grant F30602-94-C-0137.



net and TIG models which, in Section 5, are combined into the TPN model. Section 6 describes analysis of state
reachability properties using TPNs. We discuss how reachability analysis of TPNs differs from reachability of most
other Petri net representations. We present empirical data on the size of the reachability graphs generated from
TPNs and on the cost of checking properties over those graphs. In section 7, we describe how TPNs can be reduced
prior to reachability analysis. Section 8 summarizes the contributions of this work and concludes.

2 Rationale

All static program analysis techniques gather information about executable program behavior by reasoning using
a model of program executions. Ideally, the model captures essential details of program executions that allow an
analysis algorithm to distinguish between executions that satisfy or fail to satisfy the property being analyzed. For
example, if we want to analyze a concurrent program for the absence of deadlock, the model should provide sufficient
information so that we can distinguish those executions that deadlock from those that do not.

In general, representing complete information about the possible executions of a program is infeasible. A program
can have an infinite number of executions, for example, if it contains an infinite loop. Thus, a program model
only captures partial information about the set of possible program executions. In some cases, even capturing the
appropriate partial program information can be impractical.

In designing program analyses, a tradeoff is made between the information encoded in the program model and
the computations that must be encoded in the analysis algorithm itself. In general, there are a number of different
ways we can choose to make this tradeoff. We can have large information rich models and relatively simple analysis
algorithms. Alternatively, we can have very lean models and complex analysis algorithms that derive the necessary
program information. The question is: what is the most cost-effective way to make this tradeoff. This question is
complicated by the fact that the answer may not be universal; it may depend on the program being analyzed and
the kind of analysis being performed.

The idea of shifting information between the model and analysis algorithms is not new. Early compilers used
control flow graphs (CFG)s whose nodes represented program statements annotated with simple forms of analysis-
specific information. The cost of data flow analysis grows rapidly with the number of CFG nodes and analyses over
these statement CFGs was expensive. Basic block CFGs [ASU85] were introduced to coarsen the statement-level
CFG by collapsing multiple nodes into a single node. This essentially shifted information from the CFG to the
analysis algorithms. The algorithms now had to compute and manipulate more complicated analysis-specific node
information. Thus, the decision was to reduce graph size at the expense of increasing the cost of processing each
individual CFG node. The payoff was a net reduction in total analysis cost, because the additional node cost was
more than compensated for by the reduction in the number of nodes processed.

The TPNs we present in Section 5 make a similar tradeoff; information is shifted from the TPN to the analysis
algorithms. The benefit of this tradeoff may vary with the program and analysis being considered. Therefore, we
demonstrate empirically that this results in a net reduction in analysis cost for a collection of different programs and
analyses. In fact, in many cases this tradeoff enables analysis of programs for which analysis of a statement-level
Petri net representation is infeasible.

3 Related Work

State space enumeration methods consider each reachable program state to determine whether a program satisfies
a given property [MR87, SMBT90, Tay83, YTL*95). Unfortunately, in general, as programs increase in size and
complexity, the state space grows exponentially and the space/time requirements of these analysis methods becomes
impractical. The state space considered by these methods can be reduced by maintaining only the parts of the state
space that are relevant to the analysis of a particular property, such as deadlock freedom [GW91, DBDS94]. For
some programs, state space reduction is able to decrease analysis cost considerably but, in general, the cost of these
techniques grows exponentially with the size of the program.

Symbolic model-checking techniques use a fix-point computation over an encoding of the state transition relation
to determine reachability of a given state [BCM*90]. For some systems this encoding is very compact, allowing
time-efficient analysis. Finding a compact encoding can be difficult, however, and for some systems no compact
encoding exists, resulting in a worst case state transition relation that is exponential in size.

Integer linear programming techniques avoid consideration of the state space entirely. They formulate a set
of necessary conditions related to the property of interest and analyze the satisfiability of those conditions by the
program [ABC*91]. Unfortunately, in the worst-case, the integer programming algorithm for performing this analysis
requires exponential time.



Data flow analysis techniques are one of the few concurrency analysis approaches that do not have exponential
cost [CK93, DS91, DC94, MR91]. These techniques formulate a set of conditions, related to the property to be
analyzed, as a set of data flow problems whose solution provides information about the validity or satisfiability of
those conditions by the program. These conditions must be strong, so that the number of spurious analysis results is
small. Finding conditions that are strong enough for the analysis problem at hand yet amenable to a polynomial-time
data flow formulation can be difficult.

Compositional approaches decompose the original analysis problem into smaller problems on which the above
techniques can be applied [YY91]. This approach relies on finding a decomposition of the original problem that
significantly reduces the cost of analysis for the subproblems. For many programs, such a suitable decomposition
may be difficult to find, if one exists at all.

It has been demonstrated that each of the analysis techniques described above is capable of cost-effectively pro-
ducing analysis results of sufficient accuracy to verify non-trivial properties of selected concurrent programs. Such
results are useful as an initial indication of the feasibility of an analysis technique. The cost of an analysis technique
can vary greatly from program to program. The control and communication structures that are used in real con-
current programs[And91] can also vary greatly. Therefore, a thorough understanding of the practical benefits of an
analysis technique requires evaluation of that technique over a wide range of real concurrent programs.

To date, there has been little empirical work in evaluating concurrency analysis techniques. Experimental results
suggest that despite the rapid growth of the state space, enumeration methods that consider the entire concurrent
program can be practical for small to medium size programs of moderate complexity [YTL*95] and that state space
reduction techniques can increase the size of the programs that can be considered still further [DBDS94]. A recent
study [Cor94] has compared the cost-effectiveness of state space enumeration, reduction, model-checking and integer
programming analysis techniques. Although the study considered only a small set of programs, one conclusion was
that state space enumeration techniques can be more effective for programs with relatively few tasks, where the tasks
contain significant control and data structures. The other techniques excelled when other types of programs were
analyzed. Clearly much more work is needed before we understand the relative strengths and weaknesses of each
analysis technique and before software developers are able to choose the most appropriate technique for the analysis
task at hand.

In this paper, we explore a technique that reduces the size of the program state space considerably; consequently,
a larger class of programs can be evaluated using this approach.

4 Background

This section defines general Petri net and TIG terminology and introduces a simple example to illustrate the
concepts presented in this paper. In principle, the models and algorithms described are applicable to programs
written in any procedural programming language that supports explicit tasking and rendezvous-style communication.
In this paper, we assume that the concurrent programs being modeled are Ada tasking programs.

Petri Nets

Definition 1 A Petri net is a directed bipartite graph that can be written as a tuple (P, T, F, My), where P is the
set of places, T is the set of transitions, F C (P x T) U(T x P) is the set of arcs, and My is the initial marking.

A marking is an assignment of an integer to each place in the net that represents the number of tokens at that place.
Tokens and markings are used to record the state of a Petri net. In this paper, all of the Petri nets discussed are
safe, having a maximum of 1 token per place. A marking is given by a k-vector, M, where k is the number of places
in the net and M(i) denotes the number of tokens at place i. Associated with each transition is a set of input places,
places at the head of incoming arcs, and output places, places at the tail of outgoing arcs. A transition is enabled if
each input place of the transition is marked with a token. An enabled transition fires by removing a token from each
input place and adding a token to each output place. A transition that is never enabled is called dead. A marking
of a Petri net is reachable if there exists a chain of transition firings that leads from My to the marking.

Figure 1 presents a simple Ada program that will be used as an example throughout the rest of the paper. Task
T1 of this example uses a select-else statement to poll for the presence of callers on entry a and, if none are present
blocks waiting for a caller on entry b. ’

Petri net models of concurrent programs have existed for some time; they are usually constructed from the set
of control flow graphs for the tasks of the program [MZGT85, MR87, PTY92, SMBT90]. We call a Petri net that
explicitly represents the possible control flow branch and merge points in each program task a control flow graph
Petri net (CFGPN). Figure 2 illustrates a typical CFGPN for the example, where rendezvous start and end are



task body T1is task body T2 is

begin begin
loop loop
select Tl.a;
accept a; T1.b;
else end loop;
accept b; end T2;
end select;
end loop;
end T1;

Figure 1: Ada tasking example
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Figure 2: Control Flow Graph Petri Net for example

represented by separate transitions. Places are depicted as circles and transitions are depicted as bars. We denote
start(end) of an entry call by the name of the entry subscripted by s(e), e.g., a,. We denote start(end) of an accept
statement by putting a bar over the name of the entry subscripted by s(e), e.g., @,. Note that in the example, the
output transition of the sel place leading to the @, place requires a token from the calling place in task T2; however
the output transition leading to the b, place requires no such token as it represents a control flow choice that is
internal to T1. Because the net represents control flow choices explicitly, the set of reachable markings that have
no successor marking is a conservative approximation of the set of program deadlock states. Reachability graphs for
this type of Petri net have been used to perform analysis of Ada tasking programs [MR87, SMBT90].
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Figure 4: TIGs for example

Task Interaction Graphs

TIGs have been proposed by Long and Clarke [LC89] as a compact flow graph representation for concurrent
programs. TIGs divide tasks into maximal sequential regions, where such task regions define all of the possible
behaviors between two consecutive task interactions. TIGs are a coarsened flow graph representation analogous to
basic block control flow graphs, where regions are blocks. Whereas basic block control flow graphs demark blocks by
labels and branches, TIGs demark regions by inter-task communication statements.

Definition 2 A task interaction graph (TIG) is a tuple (N, E, S, T, L, C), where N is the set of nodes representing
task regions, E : N — N is the set of edges representing task interactions, S € N is the start node, T C N is the
set of terminal nodes, L : E — Ziapet is a function assigning labels to edges, and C is a function assigning code
fragments to nodes.

The start node represents the region where task execution may begin and the terminal nodes represent regions where
task execution may end. Each node has a fragment of code associated with it that represents Ada statements in
the task region plus two types of non-executable statements, ENTER and EXIT, that mark region entry and exit
points. The ENTER and EXIT statements take the task interaction as an argument and EXIT takes a second
argument describing the successor TIG node. The edges of a TIG are labeled with the tasking interactions that
cause transitions from one region to another. Considering only Ada entry calls and accept statements, there are four
distinct kinds of tasking interactions: starting and ending an entry call, and starting and ending an accept statement.

As with all coarsened representations, we need to provide access to relevant information about program behavior
that has been abstracted in the representation. For TIGs, information about the potential for execution to perma-
nently block is required for certain analyses, such as checking for deadlock freedom. To support efficient analysis, this
information is summarized by labeling TIG edges as either blocking or non-blocking. If execution reaches an entry
call, accept statement, or select statement without an else or delay alternative, then execution of the task blocks
until another task reaches the rendezvous; edges representing these interactions are blocking. If execution reaches a
selective entry call or a select statement with an else or delay alternative, then execution of the task does not block
waiting for another task; edges representing these interactions are non-blocking.

To illustrate these ideas consider the initial region of T1, C(1) in figure 3. Region 1 is entered at the beginning of
the task and exits at the select statement. There are two exits out of this region: the first exit is on the start of the
non-blocking accept for a and the second is on the start of the blocking accept for b. A TIG represents the semantics
of control flow branching, such as the select-else statement, within a TIG node. The TIGs for tasks T'1 and T2 are
given in figure 4. Since a region represents all execution paths between a given task interaction and any succeeding
interactions, it is possible for program statements to be associated with multiple TIG nodes. In the example of figure
4, there are 3 edges corresponding to the statement EXIT(a;,2) in regions 1, 4 and 5. A TIG represents a single task
instance. The potential behaviors of a collection of tasks can be modeled by matching edges from different TIGs,
whose labels represent calls and accepts of the same task entry, for example a, and a,.
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Figure 5: Reduced TIGs for example

If the accept statement of a rendezvous has no accept body then we can reduce the size of the TIG representation
without loss of information. A single interaction, comprising both start and end of a rendesvous, is used to model
such an accept statement and any entry calls made on it. Since the accept statements given in task T1 of figure
1 have no accept bodies, the TIGs for tasks T1 and T2 can be reduced as shown in figure 5. We refer to these as
reduced TIGs and drop the subscripts when referring to interaction names in this context.

5 TIG-based Petri nets

Petri nets are one way to model the behavior of concurrent program; we propose a Petri net model for Ada tasking
programs that is constructed from a set of TIGs and therefore hides many of the details of task control flow.

Definition 3 A TIG-based Petri net is a tuple (P, T, F, My), where P = N is a set of TIG regions, TC Ex E
is a set of pairs of TIG edges, F C (P x T)U (T x P) is the set of arcs, and Mo = (S1,53,...,Sk) is the initial
marking representing the start nodes for each of the k tasks.

It is clear that a TPN maintains a strong relationship with the set of TIGs; each place in the Petri net has a one-
to-one correspondence with a task region and each transition represents a potential task interaction. Intuitively, the
TPN is a merge of a collection of TIGs where transitions represent joint communication events between some pair
of tasks. TPNs can be constructed using the following algorithm:

Algorithm 1 (TPN Construction)
Input:

A set of TIGs {T1, T3, ..., Ta}-
Oulput:
A TPN.

Main Loop:

Let Call, and Accept, be the labels of communication statements for an entry whose name is a. Let Src(z) and
Dest(z) be the source and destination TIG nodes for a TIG edge z.

(1) Mo =(51,53,...,5k)

(2) P= U?:lNi

(3) T=9

(4) for each edge, = € UL, E; A L(z) = Call, loop

(5)  for each edge, y € UL, E; A L(y) = Accept, loop

(€) T=TU(z,y)
(7) F = FU(Sre(z), T) U (Sre(y), T)U
(T, Dest(z)) U (T, Dest(y))
end if
end loop

A TPN mz.n'k.ing corre:&sponds to a program termination state if all the marked places correspond to terminal TIG
nodes. A similar algorithm can be used to construct a CFGPN from a set of task control flow graphs.



Reachability Graph

Figure 6: TIG-based Petri net and Reachability Graph for Example

Algorithm 1 constructs a Petri net that overestimates the possible task interactions of the program. All potential
task interactions are included as a result of the exhaustive matching of TIG edge labels; however, some of these
interactions may never be executed. Algorithm 1 is O(CA) where C is the set of entry call edges and A is the set
of entry accept edges in the set of input TIGs. The cost of the loop on line 4 is maximized when the total number
of TIG edges is split evenly between Calls of a and Accepts of a; since each task has at least one node and each
node has at least one incident edge, the cost of the loop on line 4 dominates. We note that, in general, the cost of
constructing the TPN will be much less than this bound. This is due to the fact that in most programs there are
multiple entries and calls and accepts to different entries will not match.

As we can see from Algorithm 1, the total number of places in a TPN is the sum of the number of nodes in the
TIGs representing the program. For every task interaction contained in a task there is a single TIG region, for which
the interaction is the entry point. The number of task interactions in a TIG is linear in the number of communication
statements in the task, as we can have at most 2 interactions for a single communication statement in the case of an
accept with a body. Thus the number of TIG nodes and hence the number of TPN places is linear in the number of
communication statements in the program.

In Algorithm 1, a TPN transition is created for each syntactic matching of edge labels. The potential for having
multiple TIG edges corresponding to a single call or accept statement in the source program, as described in section
4, results in additional TPN transitions. There are pathological examples where the number of TPN transitions used
to represent communication through a given task entry is quadratic in the number of call and accept statements of
that entry in the program. We note that many of these transitions are dead, and hence do not contribute to the
complexity of TPN based reachability analysis.

Continuing with our example, figure 6 illustrates the TPN constructed from the reduced TIGs in figure 5, where
the firable transitions and arcs are in bold and the dead transitions and arcs are dashed. This example illustrates a
number of the benefits of the TPN representation. Each task communication has a simple representation; a single
TPN transition that has calling and accepting input and output places. There is a single marked place in the set of
places associated with each task in the program that keeps track of the local state of each task. We have found that
the regular structure of TPNs simplifies reasoning about the correctness of the TPN representation and TPN based
analysis!. TPNs typically contain fewer places and transitions than CFGPNs. For comparison, the TPN for the
example in figure 1 has 6 places and 9 transitions. The example CFGPN in section 4 has 16 places and 13 transitions.
An Ada-net [SMBT90] is a CFGPN designed to model Ada programs. An Ada-net for this example has 21 places
and 16 transitions [For91]. In the next section, we will see that for a number of examples the smaller TPNs result in
a significant reduction in the size of the reachability graph.

6 Evaluating TPNs for Concurrency Analysis

Experimental evidence suggests that construction of the reachability graph is the limiting factor in performing
state reachability analyses; if we cannot build the program model then we have no hope of reasoning about it. If

1The structure and semantics of TPNs is also conducive to visualigation, but in program analysis applications the sige of the nets are
usually too large to allow for effective visualization of program behavior.



we can construct the reachability graph, then we at least have the opportunity to reason about desired program
behaviors. In fact, it is often practical to check the property of interest on each of the states in the graph. Thus, to
judge the effectiveness of TPNs as the basis for practical reachability analysis we need to consider both the benefit
of reducing reachability graph size and the (potential) increase in the cost of analyzing that graph.

In this section, we demonstrate that the size of a TPN-based reachability graph is much smaller than an equivalent
statement-level model derived from a CFGPN. We then discuss the cost of reasoning over these models. We present
algorithms for checking two different properties of concurrent programs over a TPN-based reachability graph. Finally,
we evaluate the cost of performing this reasoning both analytically, where possible, and empirically.

6.1 Methodology

We collect data on the size of TPNG, the size of reachability graphs, and the cost of two different analysis algorithms
applied to reachability graphs. This data was collected using the TPN toolset. With this toolset, constructing a TPN
from Ada source code involves executing the Arcadia [TBC+88] language processing tools to generate a collection of
CFGs. The CFGs are then converted to TIGs from which the TPN is constructed. Transformations can be applied
to reduce the size of the TPNs. A reachability graph is generated from a TPN using standard Petri net techniques
[MR87]. A variety of analysis algorithms can then be applied to the TPN-based reachability graph including checking
for deadlock freedom, checking for freedom from critical races, and performing data flow analyses to check for event
or state sequencing properties.

The goal of this work is to understand the circumstances under which TPN-based representations are beneficial
for concurrency analysis. For the purpose of comparative evaluation, we need an alternative approach against which
to measure potential improvements. Finding a suitable approach for comparison, however, is difficult for a number
of reasons.

A fair comparison requires that both techniques be equivalent in the kinds of information they model and the
kinds of analyses they support. There are a great variety of program models and analysis algorithms. As Corbett
discusses [Cor94], different models and algorithms can be sensitive to subtle variations in the input program. Thus,
a comparative evaluation can easily lead to unintended biasing of the results. Moreover, program analyses are not
useful in the abstract; their worth derives from application to "real” programs. So, it makes sense to compare the
effectiveness of analyses on "realistic” programs. While empirical evaluation of static concurrency analysis techniques
has increased in recent years, there is still relatively little data, especially for "realistic” programs. This is due, in
part, to the high cost of constructing a robust set of analysis tools with which to conduct such evaluations. Another
concern is, how to go about measuring the cost of analysis techniques for the purpose of comparing them. While
it may seem natural, from a users perspective, to compare analysis run-time, the results can be misleading. In
comparing two analyses by studying the time it takes to check the same behavior on the same program, we end up
comparing two "implementations” of the analyses. It can be difficult to tell whether the model, analysis algorithm,
or implementation decisions are the key factors in determining analysis cost. Unfortunately, for very different models
and reasoning algorithms there is no alternative. We cannot compare the models directly or analytically derive the
amount of work required to reason about the model.

We are fortunate to have access to analysis results from the TOTAL toolset [SMBT90]. TOTAL performs state
space analysis by constructing the reachability graph from a statement level Petri net model of Ada tasking programs,
called Ada-nets. Ada-nets are a kind of CFGPN since they explicitly represent control flow decisions in the structure
of the Petri net. We compare our empirical findings for TPN-based analyses to those for Ada-net-based analyses.
Given that TPNs and Ada-nets, and their reachability graphs, are equivalent in information content we can compare
the size of the models directly. Since the analysis algorithms traverse the reachability graphs and perform local
checking on each node, we can compare the cost of reasoning about reachable states directly. We use Ada-nets, their
associated reachability graphs, and the appropriate analysis algorithms for comparison.

Analysis data based on Ada-nets is available for four example Ada tasking programs [DBDS94, Sha93], BDS,
versions of Gas-1, Phils and the RW examples. BDS is a simulation of a border defense system [DBDS94]. It contains
15 tasks and has entry calls and accept statements nested within complicated control flow structures. Gas-1 are
versions of the. one pump gas-station example without deadlock and with the operator task unrolled to accept separate
customer er.xtnes [ABC*91]. Phils are versions of the basic dining philosophers example with deadlock [ABC*91).
RW are versions of the readers/writers example presented in [ABC*91]). The last three examples are scalable; for
the gas station the number of customers, for dining philosophers the number of philosophers and forks, and for
readers/writers the number of reader and writer tasks can all be varied.



Table 1: TPN and Ada-net data

Example | Tasks Ada-net TPN |
Petri net Reachability Graph Petri net Reachability Graph

Places Transitions | States Arcs Places Transitions | States Arcs “
BDS 15 107 135 - -
BDS opt 15 263 220 - - 96 128 | 285006 1952588
Gas-1 3 7 60 89 934 1764
Gas-1 3 opt 7 157 141 | 791563 293490 39 75 493 987
Gas-15 9 90 185 20141 50140
Gas-1 5 opt 9 313 309 - - 59 163 9746 26785
Phils 3 6 43 36 268 576
Phils 3 opt 6 72 54 | 18900 79083 25 24 84 186
Phils 5 10 71 60 11744 42440
Phils 5 opt 10 120 S0 - - 41 40 1653 6130
Phils 7 14 99 85 - -
Phils 7 opt 14 * * * * 57 56 32063 166502
RW 2/1 4 29 56 85 163
RW 2/1 opt 4 93 92 - - 17 48 41 119
RW 2/2 5 34 78 383 800
RW 2/2 opt 5 - - - - 20 66 175 692

RW 2/3 6 39 100 1413 3835 “
RW 2/3 opt 6 - - - - 23 84 609 3031
RW 3/2 6 39 95 1339 3644
RW 3/2 opt 6 138 143 - - 23 81 579 2884
RW 5/2 8 48 129 15221 50060
RW 5/2 opt 8 - - - - 28 111 5811 40660
RW 2/5 8 48 144 16433 53775
" RW 2/5 opt 8 - - - - 28 120 | 6229 43571

6.2 Building Reachability Graphs

"Reachability graphs for concurrent systems are well-understood. Reachability graphs are derived from Petri net
representations using the transitive closure of the Petri net firing rules over Mo, the initial marking.

Definition 4 A reachability graph is a directed graph (S, T, s, F) with a set of nodes S, called states, a set of
edges T, called transitions, a distinguished start state s € S and a set of terminal or final states F C S.

States of the graph are reachable markings of the Petri net. A transition in the reachability graph corresponds to
the firing of a single Petri net transition. The start state corresponds to Mp. Final states of a reachability graph
correspond to Petri net markings in which all of the marked places model the termination of a task.

The structure of a TPN is such that the number of marked places in any TPN marking is equal to the number of
tasks in the program. So, TPN markings can be represented as an array of elements of length equal to the number
of tasks in the program rather than as a bit vector of length equal to the number of Petri net places, which is needed

for general ordinary, safe nets. The reachability graph for the TPN in Figure 6 is given next to it, where nodes
represent TPN markings.

Evaluating the Size of Reachability Graphs

Table 1 presents data on the size of TPNs built from unreduced and reduced TIGs, in terms of places and
transitions, and on the sige of the corresponding reachability graphs, in terms of states and arcs. We indicate with
opt that the TIGs used to construct the TPN have been reduced as discussed in section 4. In this table, we use the
symbol - to indicate that the tools were unable to build the reachability graph for the example and the symbol * to
indicate that no experimental data are available. For scalable examples, the number of tasks is given to indicate the
scale of the program that was analyzed.

We present Ada-net results for the same examples. The two examples for which data are available from reachability
analysis of Ada-nets and TPNs are the Gas-1 3 and Phils 3 examples. Comparison of these data illustrates the
reachability graph compaction that can be gained by using TPNs; the number of states and arcs in the reachability
graphs are two orders of magnitude less for TPN-generated graphs. Although the maximum capacity of the TOTAL



toolset is not stated, programs whose reachability graphs are as large as 200000 states and 750000 arcs have been
analyzed [DBDS94). If we assume that reachability graphs are at least that large for the examples where reachability
graphs for Ada-nets could not be generated, then our results for the Gas-1 5, Phils 6, and Phils 7 examples also
show a compaction on the order of two orders of magnitude.

A major limiting factor in performing reachability analysis is the ability to construct the reachability graph, and in
this respect TPNs are superior to Ada-nets. Comparing TPNs and Ada-nets is fair because they represent equivalent
amounts of program information. In Section 7 we discuss extending the applicability of TPN and Ada-net analyses
by transforming the Petri nets prior to reachability graph construction.

6.3 Reasoning over Reachability Graphs

Analysis of TPNs involves first computing summary information and then checking the intended behavior over the
representation using the summarized information. For TPN-based reachability graphs a state in the graph represents
a collection of marked TPN places; the summary information for such a state is derived from the summary information
of the marked places. Different analysis algorithms will require different kinds of summary information.

Checking reachability properties of a program involves defining a property predicate that decides whether a TPN
marking satisfies the property in question. We evaluate this predicate for each state of the reachability graph to
determine if any reachable TPN marking violates the property. Property predicates make use of problem-specific
summary information. These predicates are defined to be conservative, in the sense that they never return a false
result when a marking corresponds to a state in which the property in question is true.

For many property predicates the summary information required is TPN place summary information. Thus, to
analyze different properties over a single reachability graph we need only compute different TPN summaries, rather
than reachability graph state summaries. This can yield significant savings in practice; the cost of state summaries
can be much more expensive than TPN summaries, and the cost of constructing the reachability graph can be
amortized over multiple analyses.

We illustrate summary information and property predicates by presenting two examples: checking whether a TPN
marking indicates the existence of a critical race in the program and checking whether a TPN marking corresponds
to a program deadlock state.

Checking for Critical Races

An important global property of concurrent programs is freedom from critical races. Write-write critical races
occur when tasks that define the value of a shared variable execute such that the writes in one task may either
precede or follow writes in another task. This can be problematic, as the value subsequently read from the shared
variable depends on the order of the writes.

Shared variables can be identified by scanning the set of variables defined and used by each task in the program.
For each shared variable and for each TPN place, we summarize whether a write to that variable is contained in the
program region corresponding to the place.

Definition 5 A critical race summary is bit-vector of length v, where v is the number of shared variables in a
program and a TRUE value in the ith element indicates a write to the ith shared variable.

We compute critical race summaries for each place in a TPN using a simple depth-first walk of the corresponding
code fragment. The total cost of computing all summaries is linear in the number of program statements.

Note that we can compute the summary information a priori of any analysis, and thus amortize that cost over
many analyses. Alternately, we can compute the summary information during analysis. The decision depends on
whether we will use each piece of summary information once or multiple times; in the latter case, pre-computing

summaries will reduce overall analysis cost. In the following, we have assumed that TPN summary information is
pre-computed.

The following algorithm determines whether a critical race on any shared variable occurs in a given TPN marking.

Algorithm 2 (Critical Race Property Predicate)
Input:

A TPN marking M = [sy, 33,..., 8] and critical race Summary information for each TPN place.
Output:

TRUE if the marking may correspond to a critical race.

10



Main Loop:
Let WriteFound be a bit-vector of length v that records writes to shared variables associated with the marked
places.

(1) WriteFound:= (0,0,...,0)
(2) foriin 1..vdo
(8) forjinl.kdo

(4) if Summary(M[j])[3] = 1 then
(5) if WriteFound[i] = 0 then
(6) WriteFound[i] = 1

else
(7) return TRUE

end if

end if
end for
end for

(8) return FALSE

Intuitively, for each shared variable, the algorithm checks whether some TPN place in the marking writes it; if so, it
records that fact. Upon encountering a write to a variable, if a write to that same variable has already been recorded,
then the algorithm indicates the potential for a critical race. A slight variant of this algorithm can be used to point
the user at regions of source code that may contain critical races. We note that other co-executability properties,
such as mutual exclusion, can be checked using similar property predicates.

Checking this property predicate for a given TPN marking requires O(vk) steps since the critical race summaries
are pre-computed.

To the best of our knowledge, checking for freedom from critical races is not implemented in the TOTAL toolset.
The approach described above, however, could be easily adapted to Ada-nets. Computing summary information
would proceed as in the case of TPNs. Once the summary information is computed, Algorithm 2 can be applied
to an Ada-net marking. Unlike TPNs, an Ada-net place corresponds to a single program statement; thus, the cost
of computing summary information for an Ada-net place will be cheaper than for a TPN place. The total cost for
computing all summary information, however, is linear in the number of program statements for either representation.
Thus, the cost of checking for critical races using either a TPN or Ada-net marking is equal.

Checking Deadlock

Freedom from deadlock is checked by determining that no combination of the individual task states for a reachable
TPN marking correspond to a program deadlock state. Conceptually, we need to look at all of the possible control
flow choices that can be made in the task regions associated with the marked TPN places. If we find a set of control
flow choices such that no pair of tasks can successfully communicate, then the current TPN marking may correspond
to a deadlock. TPN places summarize, through their associated TIG nodes, the control flow choices that need to be
considered to determine deadlock markings. For the TIG nodes associated with a TPN marking we reason about all
possible combinations of blocking exiting edges, where one edge is taken for each TIG node 2.

Definition 8 A choice combination for a TPN marking M = [s,, s3,..., 3] i3 a vector (e1,€a,...,ex) where e;
i3 an eziting blocking edge of the TIG region corresponding to place s;.

The choice combinations are easy to compute, but, in the worst-case, there can be many of them. Under standard
assumptions about program control flow branching, i.e., that the number of branches is bounded by some constant,
the number of exiting edges from a region is O(c), for some constant c. The total number of combinations of exiting
TIG edges across all k of the regions associated with a TPN marking is therefore O(c*).

Intuitively, a TPN marking corresponds to a potential program deadlock if the marking does not represent a
terminal state of the program and if there exists a choice combination such that no pair of edges in the combination
are matching communications. Non-blocking edges exiting a TIG node can never contribute to a program deadlock,
since they can always be bypassed, thus they are not included in choice combinations.

We compute the following summary information:

3For clarity our presentation is in terms of edges. In practice, we group together edges that are branches of the same select statement
and select choice combinations appropriately. This improves both the efficiency and accuracy of checking & TPN marking for deadlock.
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Definition 7 A deadlock summary for a TPN place is a pair of bit-vectors of length e, where e is the total number
of task entries in the program. A value of TRUE in the ith bit of the accept summary vector indicates that the
TPN place has a blocking communication that accepts the ith task entry. A value of TRUE in the jth bit of the call
summary vector indicates that the TPN place has a blocking communication that calls the jth task entry.

Using choice combination and summary information we can check for the possibility of deadlock at a TPN marking.

Algorithm 8 (Deadlock Property Predicate)
Input:

A TPN marking M = [s1, 83, . . -, 3k and deadlock summary information, Accept and Call, for each TPN
place.

Output:
TRUE if the marking may correspond to a program deadlock.

Main Loop:
Let AllCalls and All Accepts be a bit-vectors of length e that record blocking entry calls and accepts at a TPN place.

(1) if M is a terminal marking then
(2) return FALSE

end if
(8) for each choice combination, C, of M loop
(4)  AllAccept = U,y Accept(p)
(5)  AliCall = U, Cali(p)
(6) if (AllCall N AllAccept) = (0,0,...,0) then
(7) return TRUE

end if

end loop

(8) return FALSE

To illustrate, consider the deadlock property applied to the reachable TPN marking (2,5) in Figure 6. For this
example, TPN place 2 has a single exiting, blocking edge for the accept of b with an Accept summary of (0,1) and a
Call summary of (0,0) and TPN place 5 has a single exiting, blocking edge for the call of b with an Accept summary
of (0,0) and a Call summary of (0,1). The single edge choice combination considered by the deadlock predicate for
TPN marking (2,5) computes the bit-vector expression (((0,1) V (0,0)) A ((0,0) v (0,1))) = (0,1) so the predicate
returns FALSE.

The cost of Algorithm 3 is dominated by the cost of the loop. The body of the loop is O(k) under the assumption
that the bit-vector operations are O(1); this is reasonable for a wide variety of programs since the number of
communication channels typically grows slowly with the size of a program. Thus, the total cost of Algorithm 3 is
O(c*). We note that Young et. al. [YTL*95] showed this problem to be NP-hard, but they have found empirically
that for a number of programs, checking this condition is practical.

Checking for freedom from deadlock is supported by the TOTAL toolset. For most statement-level Petri net
representations, including Ada-nets, the deadlock predicate is very simple. We need only check whether a reachable
marking has any outgoing arcs; if there are no outgoing arcs and it is not a terminal marking, then it is a potential
deadlock.

Thus, the cost of checking for deadlock at an Ada-net marking appears to be considerably cheaper, in the worst-
case, than checking for deadlock at a TPN marking. The next subsection, however, considers the total cost of analysis
when the reachability graph and property predicate are both taken into consideration.

6.4 Evaluating Total Analysis Cost

We have presented the TPN-based reachability graph model and property predicates. We have also compared them
to analysis using the Ada-net model. To reason about program behavior we need to apply the property predicate to,
in the worst-case, every reachable marking of the model. Our analysis cost is bounded by the product of the number
of reachability graph states and the cost of checking a property predicate at a state.

For checking that a program is free of critical races it appears that the TPN-based approach results in significant
savings in analysis cost over Ada-net-based analysis. While the cost of the analysis algorithm is the same for TPNs

12



Table 2: Deadlock Predicate Cost Data

ﬁxample Tasks | Entries | Average | Cost | Marking
CC | Ratio Ratio

BDS 15 18 3.83 40.2 -
Gas-1 3 7 10 1.31 7.2 .006
Gas-15 9 14 1.33 9.1 -
Phils 3 6 6 1 5.0 .004
Phils 5 10 10 1 7.7 -
Phils 7 14 14 1| 103 -
RW 2/5 8 4 1 6.3 -

and Ada-nets, the size of the reachability graph is much smaller for TPNs. Thus, the TPN approach has a clear
benefit for this analysis.

For checking that a program is free of deadlock, the comparison is not as clear. For TPNs, the deadlock property
predicate can be costly to check. To reason about the cost of checking the deadlock property predicate over a TPN-
based reachability graph, we compute the average number of operations required to check the predicate at a TPN
place. We do this analytically based on Algorithm 3. We assume that each of the following operations has unit cost:
bit-vector operations, accessing a Petri net marking, checking for the existence of successor markings, and checking
that a given marking corresponds to a terminal program state. Under these assumptions we can define the cost of
checking for deadlock at a TPN and Ada-net marking as:

Costrpy = 2+CC(2*T+1)
Costada—net = 3

where CC is the number of choice combinations for the marking and T is the number of tasks in the program. For
either model we need to access the marking and check if it is terminal. For Ada-nets we also check for the existence
of successor states, and for the TPN case we have the cost of processing the loop from Algorithm 3. A component
of the TPN toolset computes the average number of choice combinations over the set of reachable TPN marking for
a given program; this data on choice combinations incorporates the notion of edge groups mentioned previously.

Table 2 presents the number of tasks and average number of choice combinations. We include the number of
entries in order to validate our claim that the bit-vector operations are O(1). The table includes the cost ratio which
is the ratio of the cost of checking the deadlock predicate at a TPN marking to the cost of checking the deadlock
predicate at an Ada-net marking. The table includes the marking ratio which is the ratio of reachable TPN markings
to reachable Ada-net markings. For many of the example programs the Ada-net based reachability graph could not
be generated; in those cases we mark the undefined ratio with ’-’. We do not include the smaller RW examples; for
each of those examples, the cost ratio was less than the ratio for RW 2/5 and the marking ratio was undefined.

Clearly, the ability to analyze examples for which existing control flow graph based Petri net analyses could not
be constructed is a significant advantage of TPN-based analysis. In the cases where both analysis techniques provide
results the TPN-based analyses enjoy a factor of 22 to 45 reduction in analysis cost.

The cost of checking the TPN deadlock predicate varies with the program under analysis and is a non-trivial
increase over the cost of checking an equivalent predicate over Ada-net markings. The variation in cost depends both
on the complexity of intra-task control flow, as in the case of the BDS program, and on the number of tasks in the
program, as in the case of the scalable Gas and Phils programs.

As discussed in section 1, TPN-based analysis represents a tradeoff in encoding information in the program
representation versus increased cost in the analysis algorithms. The two property predicates described above illustrate
that checking properties of a TPN marking can range in cost from linear to exponential in the number of tasks. Using
the smaller TPN-based reachability graph is superior whenever efficient predicates are available. When the cost of
checking a predicate on a reachable TPN marking is greater than the cost of checking the corresponding CFGPN
predicate, this increased cost may be compensated for by the reduced number of states in the reachability graph
itself, as was demonstrated by the data in this section. Of course, in cases where the CFGPN reachability graph is
too large to construct and the TPN reachability graph can be generated, TPN based analysis is the better choice.
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Figure 7: Example of parallel transitions reduction

7 Extending the Applicability of Reachability Analysis

Although TPNs appear to be an improvement over CFGPNs for reachability analysis, TPNs still suffer from
explosive growth in the size of the reachability graph, which makes them impractical as a basis for analysis of large,
complex concurrent programs. In this section, we consider techniques for reducing a TPN prior to reachability
analysis.

The theory of Petri net reductions [Mur89] allows a given net to be replaced by a reduced net that maintains
certain properties of the original net and has a smaller reachability graph. Most Petri net representations of con-
current programs, including TPNs, explicitly represent all potential inter-task communications. Unlike a collection
of individual task representations, such as TIGs, this allows for the identification of reduction opportunities and
transformation of the net prior to generation of the reachability graph. The decoupling of reduction considerations
from graph generation allows a series of reductions to be independently applied before the reachability graph is
constructed. For example, consider deadlock detection. As noted above, to conservatively detect program deadlock,
reachability analysis of some Petri net representations can test for the existence of markings that have no successors.
A net reduction must preserve this information so that each reachable marking without successors in the original net
corresponds to some reachable marking without successors in the reduced net. Recent experimental data has demon-
strated that net reduction techniques are an effective approach to extending the size of programs for which deadlock
checking is practical [DBDS94]. Here we discuss two TPN reductions: parallel transitions and forced communication
pairs.

Parallel transition reductions preserve all information in the reduced TPN and thus can be applied to improve the
effectiveness of analysis for any property. The parallel transition reduction merges transitions that have the same
input and output places. These TPN structures arise when communication statements are nested within multiple
control structures. The transitions represent different control flow choices that can be made within the TIG regions
corresponding to the input places. In the context of our analysis, parallel TIG edges and their associated TPN
transitions are redundant and can be deleted. Figure 7 illustrates the effect of the reduction. Transitions ¢; and ¢3
are merged into a single transition £;3. This reduction has the potential to greatly reduce the number of arcs in the
reachability graph, thereby reducing the time it takes to generate the set of reachable TPN markings.

Forced communication pair reductions only preserve the deadlock property predicate in the reduced TPN. Un-
fortunately, program deadlocks are not conservatively represented by the set of reachable TPN markings without
successors, so we cannot directly apply existing deadlock-preserving Petri net reductions. Net reductions can be
developed, however, that are applicable to TPNs. We use the semantics of the property predicate to develop re-
ductions by extracting necessary conditions for the predicate to hold. If we find that a necessary condition for the
property predicate to hold is false for a TPN fragment, then we know that the tested fragment cannot participate in
a reachable TPN marking that corresponds to that property.

The forced communication pair reduction takes advantage of the existence of a sequence of communications be-
tween two tasks. Here we illustrate how it can be applied to preserve deadlock in the reduced TPN. Informally, this
reduction can be applied when no other tasks attempt to communicate with the pair during a sequence of commu-
nications and when all choice combinations for the communicating pair contain matching communications. Figure 8
depicts a simple example of forced communication, where tasks T1 and T2 engage in a series of 3 communications at
T2. .start, T1 .e.xf:hange, and T2.stop. The reduction is based on the semantics of the deadlock property predicate.
le.en the conditions on applying the reduction, it is always the case that whenever we reach a TPN marking in
which the start places of the forced communication are marked (in our example 1 and 5) we always execute the rest
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task body T1 is task body T2 is
begin begin
loop loop
T2.start; ;tlzcepl start;
— local work — local work bypass
accept exchange; Tl.exchange;
— local work —- local work
T2.stop; accept stop;
en'a loop; en';!' loop;
end Tl; end T2; \
unreduced reduced

Figure 8: Example of a forced communication reduction

of the TPN fragment associated with the forced communication resulting in the end places (in our example 4 and
8) being marked. We introduce a transition into the TPN that bypasses the portion of the TPN representing the
forced communication and delete the bypassed portion of the TPN. We can detect forced communication pairs by
looking for the boundary communications, in our example start and stop, then verifying that the rest of the pattern
is suitable for reduction. This reduction yields a decrease in both the number of reachable TPN markings and the
number of arcs in the reachability graph.

We can generalize forced communication reductions to allow a more complicated pattern of communication between
a pair of tasks, to consider more than a pair of TPN places, and to preserve properties other than deadlock. Consider
a region of the reachability graph that is entered through a single marking and exited through a single marking. If
we can verify that no markings in this region violate the property we are interested in, then we can bypass it.

Unlike existing Petri net reduction approaches that consider low-level detailed semantics, the forced communication
reduction reasons about necessary conditions for executable program behavior at a very high-level and has the
potential to collapse large portions of a Petri net.

8 Conclusion

In this paper we have presented a compact Petri net representation for Ada tasking programs. Empirical evidence
shows that TPNs are smaller than Petri nets that explicitly represent program control flow. More importantly for
analysis, the reachability graphs generated from TPNs are also smaller, in some cases dramatically so. We introduced
the concept of a property predicate and provide evidence that checking such predicates over the set of reachable
TPN markings is practical. We showed how property-dependent and property-independent TPN reductions have the
potential to improve the cost-effectiveness of reachability based analysis. Although those well-versed in concurrency
analysis could define, and appropriately verify, property predicates and property-specific reductions, we envision
that typical end users will select from a library of existing property predicates and reductions that address common
properties of interest.

It has been suggested that no single technique is suitable for analysis of all properties of all concurrent programs.
TPNs bring elements of Petri net and TIG-based reachability analysis together. TPNs represent a different tradeoff
between encoding information in the program representation versus the analysis algorithms than has traditionally
been made for Petri net representations. This paper has presented preliminary results to support our hypothesis
that reachability analysis of a representation that reduces the size of the state space, perhaps by increasing the cost
of checking properties of program states, is more practical than reachability analysis of non-reduced representations.
This work has established a framework from which we intend to further explore the limits of practical state space
analysis of concurrent programs.
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