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Abstract

Data flow analysis is a well studied family of static program analyses. A rich theoretical
basis for data flow analysis has been developed. Central to this theory is the concept of data
flow framework. These frameworks are a semantically well-founded formalism for specifying
a data flow analysis. A variety of solution algorithms for problems specified as data flow
frameworks have been developed.

The bulk of the research on data flow analysis has been done in the context of analysis
of sequential programs. Unfortunately, a number of important assumptions of this work are
violated when we apply data flow analysis results to concurrent programs. In this paper,
we extend data flow frameworks for sequential program analysis to accommodate concurrent
programs. We present solution algorithms for these extended frameworks and reason about
their convergence and complexity.

1*This work was supported by the Advanced Research Projects Agency under Grant F30602-94-C-0137.



1 Introduction

Data flow analysis is a process for uncovering facts about executable program behavior
without actually running the program. With applications to compiler optimization, pro-
gram testing, validation and verification, data flow analysis is an important technique for
a variety of software development activities. The constant desire for faster programs has
spurred tremendous theoretical and practical advances in program analysis and optimiza-
tion techniques. The bulk of this work has been for sequential programs.

The development of data flow frameworks by Kildall [Kil73] marked the beginning of a
new era in compiler optimization. Setting data flow analysis on a sound formal foundation
spurred a wealth of research into both generalizing, e.g., [KU77, CC77, GW76, Tar81] and
specializing Kildall’s result, e.g., [KU76, WZ91, Tar81]. This resulted in formalisms for
specifying and classifying data flow analysis problems, and the development of algorithms
for solving any problem in a given class. This meant that compiler developers no longer
had to hand-craft a system of equations and a solver for an analysis problem. Instead, the
formal machinery of data flow frameworks could be used to describe a data flow problem
and to guide the selection of an appropriate ready-made solution algorithm for that problem,
thereby, reducing the cost of building analyzers.

Compiler optimization research has adapted to the emergence of concurrent and parallel
computing into the programming mainstream A large body of work has been developed
for using data flow analyses to aid in parallelizing of sequential programs, e.g., [ZC91].
More recently, data flow analyses and optimizations for explicitly concurrent and parallel
programs have been investigated, e.g., [SHW93, GS93]. Unfortunately, the theory of data
flow frameworks has not been updated to accommodate the new program representations
and analyses that concurrency and parallelism have brought.

In this the next section, we present a review of data flow frameworks. Section 3 follows with
a discussion of the limitations of those frameworks. In Section 4 we present a generalization
of Kam and Ullman’s monotone data flow analysis framework [KU77]; this generalization,
called a complete-lattice monotone data flow analysis framework, supports the formulation of
data flow analyses over flow graphs for concurrent programs. We present solution algorithms
for data flow analysis problems formulated as complete-lattice frameworks and prove results
related to their correctness and complexity. To illustrate these ideas, in Section 5 we discuss
the formulation of a well-studied data flow analysis problem as a complete-lattice framework.
Section 6 mentions future directions and concludes.

2 Background

We begin with some definitions and terminology. In this section, we present results about
data flow analyses formulated as data flow frameworks, using the terminology and definitions

in Hecht [Hec77].

Every data flow analysis problem computes a different kind of problem information. This
information captures facts about executable program behavior that the analysis is designed



to gather; this information is inherently approximate. We can gather more(less) precise
approximations with a commensurate increase(decrease) in the cost of analysis.

Definition 1 A meet semai-lattice is a triple, L = (V,C, M), where V is a set of values,
C is a partial-order defined over V, and I s binary operation defined over V', such that the
following semi-lattice properties hold:

Ny C y (1)
zlly=2 & zLy (2)
zlle = =z (3)
Ny = ylMz (4)
(zMy)Mz = &M(yMNz) (5)
dlLeV : VzeV:1LCe (6)

The lattice values encode information about the program that we are interested in collecting.
The values in V are partially-ordered by the C operator; this describes which values contain
the information of other values. The meet operator M|V x V — V is used for combining
values. Intuitively, the bottom value, 1, is less than all other lattice values if we interpret
C as <. We can optionally have a top value, T, that is greater than all other values. A
chain in the lattice is a collection of values that are all ordered with respect to one-another;
it is a linear ordering of lattice elements. While V need not be finite, for our purposes we
are only interested in lattices that have chains of finite length; note that we allow infinitely
many such chains. The height of a lattice is the length of the longest chain. The standard
example of a meet-semilattice is a powerset, P(S), where the values are subsets of a given
set, S; C S, the values are ordered by C and meet is N. For this lattice L =0, T = S, and
its height is the number of elements in S.

Definition 2 A function space F over a meet semi-lattice, is set of functions, f|V — V,
defined over the lattice values.

The functions in F, called transfer function, are used to capture the local effects of parts
of the programs computation. There are a number of function space properties that can be
used to classify a function space with respect to a lattice:

Ifident €F : YV EV : figems(v) = v (7)
YoeV : df,e F:VzeV: f(z)=v (8)
Vf,ge F : fogé€eF (9)
VfEF : Ya,yeV:f(zNy)C f(=)Nf(y) (10)
VfEF : Ve,yeV: fleNy) = f(e)N f(y) (11)



Definition 3 A monotone function space satisfies properties 7-10.
Definition 4 A distributive function space satisfies properties 7-11.

Combining a lattice of values and a collection of transfer functions yields a, somewhat
abstract, description of a class of data flow analysis problems.

Definition 5 A data flow framework is a pair, D = (L, F), where L is a meet semi-
lattice and F' 1s a function space defined over that lattice.

The set of possible program executions are modeled as a rooted directed graph.

Definition 6 A flow graph is a directed graph, G = (N, E,no), where N is set of nodes,
E is an edge relation over nodes, and ng € N 1s a distinguished start node.

For our purposes we restrict the set of edges such that Ym € N : (m,no) ¢ E. For
convenience, we define the set of predecessor, Preds(n) = {m : (m,n) € E}, and successor
nodes, Succs(n) = {m: (n,m) € E}.

Associating the components of a data flow framework with components of a flow graph
yields a more concrete description of a class of data flow analysis problem.

Definition 7 An instance, I = (G, M) of a data flow framework, D, is the binding of
transfer functions to flow graph nodes. This binding is accomplished through the definition
of a function map, M|N — F'.

This mapping associates a function from F' with each node; the transfer function captures
the effects of that node with respect to the information being gathered and represented as
lattice values. For convenience, we will write the function M(n) as f,.

The solution of a data flow analysis problem is an approximation to the problem informa-
tion at each node in the flow graph. Data flow analysis problems can be formulated directly
as equations that give the information for a node in terms of the information at its prede-
cessors and functions that capture the local effects of a node:

X[n] = fn(X[nPTedl]a SR 7X[np"'9dk])

Where X|[n] is the problem information at node n. A data flow framework is a formalism for
describing a class of data flow analysis problems. It provides the types for the X|[.| variables
and the functions f. An instance of a framework provides information that tells us which
variables and functions to equate; thus, providing a system of related equations:

X[no] = L
Vn € N —{no}: X[n] = Micpredsn)fi(X[i])



A data flow analysis problem is solved by computing a fixed point of the equation system.
This solution associates a lattice value, representing problem information, to each flow graph
node. For problems formulated as an instance of a monotone data flow framework, the
mazimum fized point (MFP) can be computed efficiently and is known to be unique. If the
framework is distributive, then the MFP solution contains, for each node, the maximum
amount of problem information that can be computed by considering every path from the
start node to the given node; this is called the meet over paths (MOP) solution 2. This
solution is made possible due to the fact that M distributes over f € F. We can move
the M operations to the outside and apply it a single time to f,(L). Where for a path,
p = ng,n1,...,Nnk, the composition of transfer function of the nodes on the path is f,(.) =
Frn (oo (fas (fno (1)) - - ). We define the set of paths leading from ng to node n as Paths(n) =
{P|P = nog,...,nr = n} where, for integer 7 such that 1 < 7 < k we have (n;_1,n;) € E.
Given this we can write the MOP solution as:

Aln] = Tpepaths(n) fo(L)

3 Limitations of Semi-lattice Frameworks

Placing data flow analysis on a sound formal foundation has brought many advantages to
developers of new analyses. The ability to characterize an analysis framework [MR90], as
rapid, continuous, distributive, monotone, or k-bounded for example, allows one to apply
existing theoretical results to reason about convergence, bounds on running time, and the
precision of analyses. In addition, a wide variety of general and specialized algorithms have
been developed for classes of frameworks. Making it easy for developers of new analyses to
choose the algorithm that is most appropriate for their data flow framework formulation of
a problem.

The application of data flow analysis has been primarily in compiler optimization. His-
torically, the main thrust of that work has been on producing small/fast executables for
programs written in sequential programming languages. The algorithmic and theoretical
developments related to data flow analysis have mirrored this work by focusing on sequential
programs. There has been some recent work on applying data flow analysis to concurrent
programs. Like the early work on sequential program analysis this newer work has, to a
great extent, involved the development of ad-hoc solutions to important practical problems.

As with all static analyses, data flow analyses reason about a model of program execution,
i.e., the flow graph. A flow graph model can represent varying amounts of program informa-
tion; it need only be sure to represent all the information that is necessary to support safe or
conservative analyses. Given the wide variety of possible flow graph models it is fruitful to
examine some common assumptions about these models. We discuss two such assumptions
that underly much of the data flow analysis work to date.

2The MOP solution is often referred to as the best possible static solution for a given analysis problem.



A Path Models a Program Execution

Flow graph representations are often constructed so that for each prefix of a program execu-
tion that ends at the statement corresponding to node n, there is a path in the graph from
ng to n. Typically, flow graphs will contain some paths that do not correspond to feasible
executions of the program; this is done in order to represent the large, potentially infinite,
number of different program executions in a tractable form.

For sequential programs it is easy to construct a flow graph from the source text. For
programs written in high-level programming languages such a flow graph is typically sparse;
each node only has a few neighbors. For interacting concurrent programs flow graph is more
complicated to construct and often has a higher degree of node-connectedness.

Many models of concurrency allow for communication between processes and support mul-
tiple senders and receivers over a given communication channel. A flow graph representation
for a program using this model must pessimistically assume that all pairs of senders and
receivers for a given channel can communicate; although analysis may be able to determine
the impossibility of certain communications. Thus, the number of nodes in the flow graph
will, in the worst-case, be quadratic in the number of program statements rather than linear.

In order for all feasible program executions of a concurrent program to be represented as a
flow graph path, we must represent all possible interleavings of the independently executing
statements in program processes. Even with exact information about the statements that
can execute concurrently, the flow graph would still be very dense, i.e., |E| will approach
|N|2. Unfortunately, the problem of computing that information is NP-complete [Tay83].

As a consequence of this second implication, researchers have developed flow graphs that
do not explicitly represent statement interleavings; these include the SCG [CKS90], PFG
[GS93], MIG [Due91], and sync hypergraph [MR93]. There are also flow graphs that can be
viewed with or without explicit interleavings, such as the TFG [DC94]. Figure 1 depicts flow
graphs for a sequential and a concurrent program. The sequential flow graph is standard.
The concurrent flow graph can be viewed as a collection of sequential control flow graphs,
one for each process in the program (enclosed in a dashed box), consisting of (circular) nodes.
Additional (square) nodes represent synchronization or communication points. Note that we
are not attempting to define an all inclusive model of flow graphs for concurrent programs,
rather we are identifying a number of common structural and semantic modeling features
that differentiate them from flow graphs for sequential programs. The specific flow graphs
mentioned above are all quite similar to the concurrent flow graph as described here.

These concurrent flow graphs model a program execution as a collection of paths, one for
each process sub-graph, where those paths intersect at process interaction points. For such
graphs, the MOP is no longer the best possible solution; in fact, it can be quite imprecise.
Consider a classic any-path forward-flow data flow analysis problem such as reaching defini-
tions [ASU85]. A definition of variable v at node d is said to reach a use at node w if there
exists a path from d to u on which d is not killed, i.e., v is not re-defined. For the concurrent
flow graph in Figure 1, if def;, def; and use all refer to the same variable, the MOP solution
for this problem would say that def; reaches use. If the successor square node of def; is a
synchronization node, however, then def; is killed by defs on all program executions leading



Concurrent Flow Graph

Sequential Flow Graph

Figure 1: Typical Sequential and Concurrent Flow Graphs

to use.

Semantics of flow graph merge points

The semantics of merge points in such a sequential flow graph are uniform; a merge repre-
sents the confluence of two distinct program executions. In a concurrent flow graph nodes
and edges model control flow information, synchronization information and communication
information. Consequently, merge points can represent the confluence of parts of two distinct
program executions or different parts of the same program execution.

For data flow analysis, flow graph merge points serve an important role; they are the
points at which data gathered from separate regions of sequential program execution are
combined. In meet semi-lattice data flow frameworks this combining operation is the meet
operation. For the concurrent flow graphs described above, it appears that being limited to a
single combining operation can lead to significant imprecision in analysis results. Srinivasan
[SHWO93| has also identified the necessity of multiple combining operations, represented as
¢ and % nodes, in defining an SSA form for explicitly parallel programs.

4 Complete-lattice Frameworks

In this section, we generalize semi-lattice frameworks to allow formulation of data flow prob-
lems over a complete-lattice. We extend a number of important results for monotone semi-
lattice frameworks to complete-lattice frameworks. These new results address the limitations
of semi-lattice frameworks and make the advantages of frameworks available to developers



of analyses for concurrent programs.

Definition 8 A complete-lattice is a triple, L = (V,C,1,1), where V is a set of values,
C s a partial-order defined over V, and ' and U are binary operation defined over V. These
operations are such that for all subsets S C V, M,cs and U,cs are defined®. In addition
to the semi-lattice properties (1 - 6), the components of L must satisfy the following lattice
properties:

zly Iy (12)
ctly=y & zLCy (13)
ztle = =z (14)
zly = ylUz (15)
(zUy)Uz = zU(yl=2) (16)
cU(zNy) = = (17)
cMNzly) = = (18)

A complete-lattice is essentially a meet semi-lattice with an additional idempotent, associa-
tive, commutative operation U called join. Height and T are defined in the same way as for
a semi-lattice. The standard example of a complete-lattice is a powerset, P(S), where the
values are subsets of a given set, S; C S, the values are ordered by C, meet is N, and join is
U. For this lattice L. =, T = S, and its height is the number of elements in S.

Observation 1 If we have a finite collection of lattice values 1, xs, ..., ¢, ', @', ... 2 €
V, where for © such that 1 < i < k we have z; T z;/, then Mici<rz; T Mici<pzs’ and

1)
Lhi<i<k®; & Lici<k®;

This follows from Lattice properties 1, 18 and the associativity, and commutativity of ' and
LI

We define a function space, F', over the values, V', just as we do for a semi-lattice. Mono-
tonicity and distributivity of the function space requires that function space properties (7-10)
and (7-11), respectively, be met.

Definition 9 A complete-lattice data flow analysis framework, is a pair, D =
(L, F), where L is a complete-lattice and F is a function space defined over that lattice.

Definition 10 An instance, I = (G, Nn, Ny, M), of a complete-lattice data flow
analysis framework, D, is a quadruple consisting of a flow graph G, subsets of the flow
graph nodes N and N, and a function map M|N — F, where:

3This is the standard lattice-theoretic definition of a complete lattice [DP90].



T € N|—|
T € N|_|
NﬂmNu = 0

N = N|—|UN|_|U{TLO}

The set Ny contains the flow graph nodes for which M is used to merge predecessor values.
The set N, contains the flow graph nodes for which LI is used to merge predecessor values.
Intuitively, these sets serve to map merge operations onto flow graph nodes just as M maps
transfer functions onto flow graph nodes. A complete-lattice framework describes a class of
data flow analysis problems; it induces the following system of simultaneous equations:

X['I’L()] = 1
Vn € Nn: X[n] = Mpepredsn) fo(X[p])
Vn € N|_| : X['I’L] = quPreds(n)fp(X[p])

We note that if N, = () then this equation system is equivalent to one derived from the
semi-lattice framework embedded in the complete-lattice framework. A data flow analysis
problem is solved by computing a fixed point of the equation system, as described above.

Solving Complete-Lattice Data Flow Problems

We generalize existing results for monotone semi-lattice frameworks to monotone complete-
lattice frameworks by mirroring Kam and Ullman’s generalization of Kildall’s distributive
semi-lattice frameworks [KUT77].

In the following, we assume the existence of T. If it does not exist we can introduce a new
element and adjust the lattice and functions accordingly, such that:

VfeF:VeeV : ThNe=zNT ==«
TUe = zUT =T
[(my =7

Algorithm 1 (General Iterative Solver)
Input:

An instance I = (G, Nn, Ny, M) of D = (L, F), a monotone complete-lattice
framework.

Qutput:



A lattice value for each node, Vn € N : A[n] € V.

Initialization Step:

Ve N A[n]:{J‘ if m = mo

T otherwise

Iteration Step:

Visit the nodes, other than ng, in order ny,n,,.... Nodes can be visited multiple
times and the order is not fixed prior to running the algorithm. A wisit of a node,
n, is the evaluation of one of the assignments:

A['I’L] = |_|p€P'l‘eds(n)fp(14[p]) if n = N|—|
A['I’L] = l—'pEPreds(n)fp(A[p]) ifne N,

The sequence of nodes visited must satisfy two conditions:

No premature termination If there exists a node n € Ny (n € N,) such that
Aln] # MNpepredsn) fo(Alp]) (A[n] # Upepreds(n) fo(Alp])) after visiting node n;
in the sequence, then there is an integer j > 7 such that n; = n. Intuitively,
if we reach a point in the sequence where some node’s current value has not
been updated by newer information at its predecessors then the sequence must
continue until that update is performed.

Termination after stabilization If after visiting node n;,
A[n] = Mpepreds(n) fp(Alp]) for all n € Nn and A[n] = Uycpreds(n) fo(Alp]) for
all n € N, then the sequence will eventually halt. Intuitively, once we have
reached a point where all the current node values are up to date it is safe to
terminate the algorithm.

In the presentation that follows we will refer to the j** step of Algorithm 1 to mean the
state of the algorithm after visiting the first 7 nodes in the node sequence. The value at a
node, n, on the j** step will be denoted A¥)[n).

The constraints on the node visitation sequence express certain requirements of the algo-
rithm with respect to termination; they do not, however, guarantee termination.

Lemma 1 (General Iterative Solver Terminates)
Given an instance instance, I = (G, Nn, Ny, M), of a monotone complete-lattice data flow
analysis, D = (L, F'), if we apply Algorithm 1 it will eventually terminate.

Proof: The proof is by induction on m, the number of steps performed by Algorithm 1. We
show that for all nodes, n, in G, Am+1)[n] C A™)[n].



Base Step: m =0

At this point the algorithm has completed its initialization phase and visited a
single node, ny. For the start node, no, we have AM[ny] = L C L = A®[ng]. We
have yet to visit any of the other nodes, n € N — {ng,n;}, and those nodes remain
at their initial values, so AM[n] = T C T = A®[n]. We visit n; on this step, but
since the value at step 0 at n; was T we do not need to bother evaluating A()[n,];
by definition all values are C T.

Inductive Step: At step m + 1 we have Vn € N : A™[n] & Alm=1)[n]

At this point in the algorithm we are at step m 4+ 1 and have just visited node
Nmt1. We note that at each step in the algorithm the value of at most a single
node can change; for step ¢ it is the value at node n;. Thus, for the values at node
n € N — {nm41} will remain unchanged, so:

V€ N = {npa} s A 0] = A[m] = ACD[n] © A ]

Let I be the most recently preceding step at which node n,,.; was visited;

if my,i1 has never been visited then I = 0. The sequence of node visits is
ce My ey My Mgyt q - - ., WheTe Ny = Ny .

If for all 7 such that I < 7 < m + 1, it is the case that n; ¢ Preds(nmi1),
then A+, 1] = A0, 1] = AO[n,, 1], since none of its predecessors have

changed value. In this case the induction trivially holds.

If there exists an ¢ such that [ < i < m + 1 and n; € Preds(nm41), then
some number of predecessors may have changed value. We refer to the set of
predecessors of n,,;; who have changed value since step [ as Changed; we also
define NotChanged = Preds(nmy1) — Changed. There are two cases to consider
in evaluating the new value at n,,,1:

case 1: n,, 1 € N
We write out the values at steps m and m + 1 more explicitly to show their

relationship.
A ] = AR
= (Mpechanged fo(AV[P])) N (MpeNotchangea fo( AV [p]))
A 0] = (Mpechanged fo(AT™[P])) N (MpeNotchangeafr(AV[p]))

Focusing on the right hand side of these two equations, we have:

Vp € NotChanged : f,(AV[p])) C f,(AY[p)))
Vp € Changed : f,(A™[p])) C f,(A"[p]))

10



from the definition of C and the inductive hypothesis. By Observation 1 the
iterated meets of the elements on the right hand sides satisfy the C relation.
So, A"t[n,, 1] C A™)[n,, ;] and the induction holds.

case 2: n,,; € N
We write out the values at steps m and m + 1 more explicitly to show their

relationship.
A ] = Ay
= (Upcchangedp(AV[P])) U (UpeNotchanged fo (AP [p]))
A 0] = (Upechanged fo(AT™[P]) U (UpeNotchangea o (A [p]))

Focusing on the right hand side of these two equations, we have:

Vp € NotChanged : f,(AV[p])) C f,(AY[p)))
Vp € Changed : f,(A™[p])) C f,(A"[p]))

from the definition of C and the inductive hypothesis. By Observation 1 the
iterated joins of the elements on the right hand sides satisfy the C relation.
So, A"t[n,, 1] C A™)[n,, ;] and the induction holds.

We now turn our attention to the conditions for node visitation sequences. After
the it step we have one of two cases, either the values have stabilized, in which
case the sequence will terminate, or there is some value that has yet to be updated
and the sequence continues. The premature termination condition guarantees that
a node that needs updating will get updated. There are a finite number of nodes
in G; for each node there are a bounded number of values that can be taken on
in descending through the lattice, since the lattice has finite length chains and a
1 element. Consequently, node updates can occur only a finite number of times.
Therefore, the sequence is finite and the Algorithm 1 terminates.

a

We now show that the solution computed by this algorithm is, in fact, the maximum
fix-point of the system of equations described earlier.

Theorem 1 (General Iterative Solver Computes MFP)

Given an instance, I = (G, Nn, N, M), of a monotone complete-lattice data flow analysis
framework, D = (L, F), if we apply Algorithm 1 then the solution, the A[n|, is the mazimum
fix point solution of the following system of equations:

X['I’L()] = 1
Vn € Nn: X[n] = Mpepredsn) fo(X[p])
Vn € Nu: X[n] = Upepredsn) fo(X[p])

11



Proof: By the definition of the algorithm it is clear that once Algorithm 1 halts, the A[n]
are solutions to the above equations. We need to show that these A[n] are greater or equal
to any other solution to the equations, B[n|. We prove, by induction on m, the number of

steps taken in Algorithm 1, that after the m® step Vn € N : B[n] C A™)[n)].

Base Step: m =0

The only possible solution at node ng is L, so B[ng] = L. At step 0 we have com-
pleted initialization so A(®[ne] = L, and the induction holds. For the other nodes
n € N — {no} the initial value is T, so regardless of its value B[n| C T = A(®)[n)].

Inductive Step: At step m we have Vn € N : B[n] C A™=1)[n]

At step m we visit node n,, to compute a new value; all other nodes keep their
same value, Vn € N — {n,,} : A™[n] = A™~[n]. Using the inductive hypothesis
we see that the inductive step holds for these nodes.

To compute the new value at node n,, there are two cases:

Ny € N|—|
By definition the solution we have B[n,,| and from the proof of Lemma 1 we
have:
B[nm] — |_lpep'reds(n) fp(X[p])
APl = Myeprea (AT lp])

From the inductive hypothesis we know that
Vp € Preds(n,,) : Blp] C A [p]
The monotonicity of the function space gives us that

Vp € Preds(nn) = fBlp] C fp(A™[p])

From Observation 1, since the elements of the iterated meets in the definitions
of Bny,] and A™)[n,,] are pair-wise ordered so are their iterated meets. Thus,
B[n,) C A™[n,] and the inductive step holds for 7.

Ny € N|—|
By definition the solution we have B[n,,| and from the proof of Lemma 1 we
have:
Blnm] = UpePreds(n) fp(X[p])
A(m) [nm] — l—lpGPreds(n)fp(A(m_l)[p])

From the inductive hypothesis we know that

Vp € Preds(n,) : B[p]C A(m—l)[p]

12



The monotonicity of function space gives us that

Vp € Preds(nm) : fpBlp] C fp(A™ Vp])

From Observation 1, since the elements of the iterated joins in the definitions
of B[n,,] and A(™[n,,] are pair-wise ordered so are their iterated joins. Thus,
B[n,,] E At™[n,,] and the inductive step holds for n,,.

The theorem follows from these results and the fact that Algorithm 1 is guaranteed
to terminate by Lemma 1.

a

Algorithm 1 is specified as weakly as possible; more refined implementations are free to
choose from a wide variety of data structures and node visitation orders. We describe one
such implementation here. It is an adaptation of Hecht’s iterative worklist algorithm [Hec77].

Algorithm 2 (Iterative Worklist Solver)
Input:

An instance I = (G, Nn, Ny, M) of D = (L, F), a monotone complete-lattice
framework.

Qutput:
A lattice value for each node, Vn € N : A[n] € V.

We use two auxiliary data structures in this algorithm: W which is an ordered sequence of
nodes with at most |N| elements and v a single lattice value.

Instialization:
) L ifn=mng
vneN Aln] = { T otherwise
W = {m:(no,m)€ E}
Main Loop:

We evaluate the following statements repeatedly until W = : *

at this point W =n,ny,ny...104
(1) W =mnq,n,,...0p
(2) v= AR
(3) if n € Np then

*We describe the worklist as initially containing k 4 1 elements; this is a notational convenience and if
k=0 then W = n.

13



(4) Aln] = Mpepredstn) fo(AlP])

else
(5) A[’I’L] = uPGPreds(n)fp(A[p])
end if
(6) if v # A[n| then
(7) W =mn1,m0,..., 0, N, Mgy, - - -
where n,; € Succs(n) and for 1 <1<k n, #mny
end if

We now show that this iterative worklist solution algorithm computes the same results as
the general solver algorithm, which was shown in Theorem 1 to be the MFP of the induced
system of equations.

Theorem 2 (Iterative Worklist Solver Correctness)

Given an instance, I = (G, Nn, N, M), of a monotone complete-lattice data flow analysis
framework, D = (L, F), if we apply Algorithm 2 then the solution, the A[n|, is the mazimum
fix point solution of the following system of equations:

X['I’L()] = 1
Vn € Nn: X|[n] Mpe Preds(n) fo (X [P))
Vn € Nu: X[n] = Upepredsn) fo(X[p])

Proof: Recall that Algorithm 1 operated by performing a sequence of node visits, where
the sequence had two constraints. We prove this theorem by showing that the computation
performed by Algorithm 2 is equivalent to such a sequence of node visits.

The initialization phases of both algorithms are identical. A visit in Algorithm 1
1s equivalent to executing statements 3-5 in Algorithm 2. The rest of the statements
in Algorithm 2 are used to maintain the worklist, W, which enforces the node
visitation sequence. We show that these statements work together to satisfy the
conditions on visitation sequences expressed in Algorithm 1. We consider just the
case of nodes in Np; for nodes in N, we make an identical argument.

No premature termination The condition states:

if In € Np @ A[n] # NycPreds(n) fo(Alp]) after visiting node n; in the

sequence, then there is an integer 5 > ¢ such that n; = n.

Let the last time we visited node m be at step last where last < 1,
Nigst = n. We have Alest)[n] = I_Ipepreds(n)fp(A(l”t_l)[p]). The only way
that Myecpreds(n) fp(A[p]) can change value is if one of the predecessors, say py,
changes value and that requires a visit to node p;. Let such a visit occur at
step new where last < new < 7 and there are no other visits to p; at steps last
through new — 1. This visit will occur on the new'® iteration of the body of
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Algorithm 2; we remove p; from the head of W. Line 2 of the algorithm saves
the old value of A[p;] which is A!*!)[p,] in our local variable v. Our visit of p;,
lines 3-5, compute a new value A(*%)[p,] = Ale#)[p]; the values are not equal
because of the assumption that the predecessor changes its value. The test at
line 6 succeeds and we proceed to add all successors of p; to W that are not
already in W. Thus, we are assured that n is on the worklist after our visit
to p;. Since, the worklist contains at most |N| elements we are guaranteed to
visit node n before step 4+ | N|+ 1. Thus, the condition is satisfied since there
exists a j such that 1 < j <1+ |N|+ 1.

Termination after stabilization The condition states:

If after visiting node n;, A[n] = Mpcpredsn) fp(Alp]) for all n € Np,
then the sequence will eventually halt.

After we visit node n; we may visit additional nodes. Let n be the next node
we visit at step ¢+ 1; it 1s taken off of W at line 1. We store the current value
A®)[n] in local variable v at line 2. Our visit to node 7, in lines 3-5, computes
AGH[p] = I_Ipepreds(n)fp(A(")[p]). The assumption in the condition is that
A [n] = Myepredsn) fo(AD[p]) for all n € Ni. So, ATY[n] = AD[n] = v and
the test at line 6 fails; we add no nodes to W. Subsequent iterations all behave
in the same way because the visits 2,2 + 1, ... cause no change to A[n| for all
n € Np. Since we never execute line 7 in any of these visits, each visit reduces
the number of elements on W by 1. Thus, there can be at most |N| — 1 more
iterations of the body of Algorithm 2 after the 4*?, and the sequence of node
visits halts at j where j <1+ |N|.

Since all phases of Algorithm 2 meet the specification of Algorithm 1 our theorem

holds by Theorem 1.

a

We can express a bound on the running time of this algorithm in terms of the height, &,

of L.

Theorem 3 (Iterative Worklist Solver Complexity)
Given an instance, I = (G, N, Ny, M), of a monotone complete-lattice data flow analysis,

D = (L, F), where L has height k, if we apply Algorithm 2 it will terminate in O(k|N|2)

time.
Proof:

The initialization phase requires O(| N|) operations to assign values to each node
and O(|N|) operations to initialize W.

We use W as a queue that contains at most a single instance of each element.
Lines 1 and 7 require standard enqueue/ dequeue operations. Querying whether
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W has a given successor node in line 7 requires a containment test. Both of these
requirements can be handled efficiently by implementing W as a collection of nodes
that is threaded as a queue and also threaded as bucket elements of a hash table;
hashing on node identity is straightforward. In this case, lines 1-3 and 6 all require
O(1) operations.

The cost of lines 4 and 5 are equal, so we consider only one of them. Line 4 is
the iterated meet over all predecessors, of the predecessors transfer function applied
to the predecessors current value. A standard, and reasonable, assumption is that
transfer functions, f,, require O(1) operations to evaluate. Thus, line 4 requires
O(|N|) 5 operations since in the worst-case a node may have all other nodes as
predecessors.

Line 7 requires that for each successor, we check for containment in W if not
contained we append the successor to W. The containment check requires O(1)
operations, since it is a hash table lookup, and the append requires O(1) operations.
Thus, line 7 requires O(|N|) operations since in the worst-case a node may have all
other nodes as successors.

In total the body of the main loop requires O(|N|) operations.

The number of iterations of the body, or visits to a node, can be bounded by
making use of the conditions on the node visitation sequence from Algorithm 1. It
was shown in the proof of Theorem 2 that the sequence of nodes taken from the W
satisfies those conditions. Recall, from the proof of Theorem 1, that the values at
all nodes in the graph are descending monotonically through the lattice from T; the
lowest they can go is L. In the worst case, each iteration of the main loop causes
a single node to descend a single value in the lattice; multiple nodes descending
multiple values in a single iteration is quite possible but only makes the algorithm
converge faster. At least one node will descend otherwise the termination after
stabilization condition guarantees that Algorithm 2 we will terminate in at most
|N| steps. At most a node can descend k, the height of the lattice, times before it
hits L. Since there are |N| nodes in the graph there are at most k|N| descending
iterations. Thus, there are O(k|N|) iterations of the main loop.

The theorem holds since O(k|N|) iterations of O(|N|) operations is O(k|N|?).

Algorithm 2 is a practical improvement over Algorithm 1 because of the node visitation

order it enforces. Nodes are only visited when they have the potential to change value. If
the sequence of nodes removed from the worklist is ...n;,n;11,...,n;... and n; = n; = n
then there is an integer k such that ¢ < k < j and ny € Preds(n); intuitively, we only put a

node on the worklist if one of its predecessors changes values.

Careful consideration of Algorithm 2 reveals a number of additional opportunities for

eliminating unnecessary computation. As described, for each node the algorithm stores a
value that does not reflect the effects of the transfer function at that node; this is called

SEvaluating a binary-tree of meets would require only O(log|N|) operations. In this analysis we don’t

bother doing that because the cost of this step is dominated by the cost of line 7.
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the in value for a node. We can easily modify Algorithm 2 to keep track of the value that
reflects the effects of a node’s transfer function; this is called the out value for a node. We
can perform the comparison out(n) /l in(s) where s € Succs(n) to determine whether the
value computed at n can possibly affect the value at s. If it cannot, then there is no need
to put s on the worklist. We can also keep track of the set of predecessors of a node n that
have changed value, call it Changed, and only compute in(n) = in(n) M (Mpechangeaout(p))
rather than considering all predecessors. These optimizations do not improve the worst-case
time bound for Algorithm 2, but for dense graphs and graphs whose nodes have high fan-in
or fan-out they can yield significant practical speedup.

5 An Example

To illustrate the utility of complete-lattice data flow frameworks, we consider an example
data flow analysis problem, which computes flow graph dominators. Intuitively, for a se-
quential program represented by a statement flow graph domination captures information
about statements that must precede the execution of other statements on any program exe-
cutions in which they both occur; we call this statement precedence information. Formally,
Dom(m) = n if all paths from ng to m in G pass through n. This is a safe approximation to
statement precedence information in the sense that Dom(m) = n implies that statement,
precedes statement,, on all program executions in which both occur.

Hecht presents a formulation of it as a distributive semi-lattice data flow analysis frame-

work [Hec77]:

L = (P(N),C,N)

F = {figen(S)=S:SCP(N)}U
{fn(S)=SUn:ne NASCP(N)}U
{fmise(X) =Y : XY CP(N)}

Where the f,.;,c are included to make F' closed under composition. Note that, for this
problem, T = N and L = (). An instance of this framework is defined as (G, M) where
M(n) = f,.

For concurrent programs we are also interested in gathering statement precedence infor-
mation [CKS90, CK93, DS91, GS93, Mas93|. Unfortunately, using Dom information often
yields an overly pessimistic safe approximation. Recall the example concurrent flow graph
in Figure 1. The statement end is clearly preceded by the statement def;, since all pro-
gram executions that lead to the last statement of the process must pass through the first
statement of the process. The existence of paths through the other processes crossing to the
middle process via one of the square nodes means that this precedence relationship will not
be captured by the Dom information.

Intuitively, we want to treat control flow merge points differently from communica-
tion /synchronization merge points. At a control flow merge point we know that one, but not
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all, of the predecessor statements has executed immediately prior to the merge. In this case,
only statements that precede all of those predecessors are guaranteed to precede the merge
point. At a synchronization merge point we know that all of the predecessor statements
have executed immediately prior to the merge. In this case, the statements that precede
any of those predecessors are guaranteed to precede the merge point. This problem can be
formulated as a complete-lattice framework problem as follows:

L = (P(N),c,n,V)

F {fident(S) =S5 :S CP(N)}U
{fn(S)=SUn:ne NASCP(N)}U
{fmise(X) =Y : X, Y C P(N)}

Where the f,.;,c are included to make F' closed under composition. Note that, for this
problem, T = N and L = . An instance of this framework is defined as (G, Ny, Nn, M)
G is a concurrent flow graphs whose control flow merge points and synchronization merge
points are N, and N respectively. The function map is defined as in the semi-lattice case
M(n) = f,. Since the lattice is the powerset of the set of flow graph nodes its height is
|N|. Thus, applying Algorithm 2 gives an O(|N|?) solution procedure for the problem. The
bound of this algorithm is equal to the bound of algorithms developed by Callahan [CKS90]
and Grunwald [GS93] for the statement precedence problem.

6 Conclusions

We have extended the theoretical foundations of data flow analysis to accommodate a number
of natural analysis problems for concurrent programs. The formulation of complete-lattice
frameworks is compatible with previous semi-lattice frameworks. Thus, a general implemen-
tation for the complete-lattice frameworks, such as Algorithm 2, is applicable to semi-lattice
frameworks as well. We have illustrated, by way of example, the ease with which analysis
problems for concurrent programs can be formulated as a complete-lattice framework. On
the theoretical front we intend to look at the extent to which distributivity, continuity and
rapidity [MR90] can be exploited in complete-lattice frameworks. We intend to investigate
a wide variety of standard and special purpose data flow analysis problems to understand
the extent to which they are accommodated in the new theory. Given that complete-lattice
frameworks promise improved precision for data flow analysis of concurrent programs, we
intend to empirically investigate the extent to which this occurs in practice.
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