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Abstract

Two important Quality-of-Service (QoS) measures for current cellular networks are the fraction of
new and handoff “calls” that are blocked due to unavailability of *“channels™ (radio and/or computing
resources). Based on these QoS measures, we consider optimal admission control policies for three
problems: minimizing a linear objective function of the new and handoff call blocking probabilities
(MINOBJ), minimizing the new call blocking probability with a hard constraint on the handoff call
blocking probability (MINBLOCK) and minimizing the number of channels with hard constraints
on both the blocking probabilities (MINC). We show that the well-known Guard Channel policy is
optimal for the MINOBJ problem, while a new Fractional Guard Channel policy is optimal for the
MINBLOCK and MINC problems. The Guard Channel policy reserves a set of channels for handoff
calls while the Fractional Guard Channel policy effectively reserves a non-integral number of guard
channels for handoff calls by rejecting new calls with some probability that depends on the current
channel occupancy. It is also shown that the Fractional policy results in significant savings (20-50%)
in the new call blocking probability for the MINBLOCK problem and provides some, though small,
gains over the integral guard channel policy for the MINC problem. We see that the Fractional Guard
Channel policy offers more flexibility than the Guard Channel policy in the sense of a richer set of
parameters but the algorithms developed in the paper for determining the optimal parameter settings
for the fractional policy are computationally inexpensive. Finally, we briefly explore the possibility of
exploiting the combination of these features of the Fractional Guard Channel policy and its concomitant
algorithms for real-time control of cellular networks.
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1 Introduction

During the last few years there has been tremendous interest and strides in the field of wireless com-
munications. There is, hence, a great demand for Personal Communication Services (PCS) which will
provide reliable voice and data communications, anytime and anywhere, via small lightweight, pocket-

‘ size terminals. PCS can be provided, in theory, by the current cellular technology and infrastructure
and hence will be the focus of this paper. The service area in a PCS network is partitioned into cells'.
In each cell, a Base Station (BS) manages the allocation of channels ? to the Mobile Subscriber (MS)
enabling the MS to communicate with other MS's or PSTN users. Note that the BS itself is assigned a
setof channels and this assignment could be static or dynamic. We primarily assume a static assignment
of channels for this paper but the ideas in the paper can be extended easily to the dynamic assignment
scenario as well.

As the MS moves from one cell to another, any active call needs to be allocated a channel in the
destination cell. This event, termed the handover or handoff, must be transparent to the MS. If the
destination cell has no available channels, a call is terminated. The disconnection in the middle of a
call is highly undesirable and one of the goals of the network designer is to keep the probability of such
occurrences, also termed the handoff blocking probability, low. On the other hand, reserving channels
for handoff traffic could increase blocking for new calls. As a result, there is a trade-off between the
two Quality-of-Service (QoS) measures, the handoff and the new call blocking probabilities. In this
paper, we consider the optimal admission control policies for three problems based on these two QoS

measures:

MINOBJ: Minimizing a linear objective function of the two blocking probabilities

MINBLOCK: For a given number of channels, minimizing the new call blocking probability subject

to a hard constraint on the handoff blocking probability.

MINC: Minimizing the number of channels subject to hard constraints on the new and handoff call

blocking probabilities.

MINOBIJ appeals to the network provider in terms of maximizing the revenue obtained. MINBLOCK

'Both micro and macro cells are likely.
2Channels could be frequencies, time slots or codes depending on the radio technology used.



guarantees a particular level of service to already admitted users while trying to maximize the revenue
obtained. MINC is more of a network engineering problém where resources need to be allocated apriori
based on, for example, traffic projections.

We show that the well-known Guard Channel policy is optimal for the MINOBJ problem. The
notion of guard channels was introduced in the mid-80s [7, 8] as a call admission mechanism to give
priority to handoff calls over new calls. In this policy, a set of channels called the guard channels
are permanently reserved for handoff calls. We then introduce the Fractional guard channel policy
which effectively reserves a non-integral number of guard channels for handoff calls by rejecting new
calls with some probability that depends on the current channel occupancy. We show that a restricted '
version of the this Fractional policy is optimal for the MINBLOCK and MINC problems. We also
develop computationally inexpensive algorithms for determination of the optimal parameters of the
Fractional policy. Further, in order to ensure that the QOS requirements are continuously met, it may
be necessary to adapt to variations in traffic load. For example, in the Guard Channel policy it may
be necessary to dynamically change the number of guard channels with the traffic load. In this sense,
the admission control policy can also be viewed as a cohtrol mechanism which may, for example,
increase the blocking of new calls, as the traffic load increases, to ensure that existing calls can be
served, limiting the handoff blocking probability to its prescribed level [1]. We briefly explore this
possibility, highlighting the necessary mechanisms and advantages in using the Fractional policy as a
control mechanim in a real-time environment.

The remainder of the paper is organized as follows. In Section 2, we describe the Guard Channel
and the Fractional Guard Channel policies and compute blocking under these two policies. In Section 3,
we consider the problem of minimizing a linear objective function of the new and handoff call blocking
probabilities and show that the Guard Channel policy is optimal for this problem. In Section 4, we
consider the MINBLOCK problem. We introduce a Limited Fractional Guard Channel policy, show
it is optimal, and develop an algorithm for the solution of the MINBLOCK problem. We show that
the algorithm gives us significant improvement over the Guard Channel policy. In Section 5, we
consider the MINC problem and develop an algorithm for its solution. In Section 6, we explore, briefly,
the suitability of the Fractional Guard Channel policy for cellular networi< control. We present our

conclusions in the final section and mention some further ideas that we are currently exploring.



2 Admission Control Policies and Blocking Performance

We introduce the Guard Channel and Fractional Guard Channel admission control policies in this
section. The computation of blocking under these policies is detailed and will be useful in subsequent '
sections for proving the optimality of these policies.

Consider a cellular network with C channels in a given cell. The Guard channel policy reserves a
subset of these channels (say C — T') for handoff calls. Whenever the channel occupancy exceeds a
certain threshold (T"), the Guard channel policy rejects all new calls. In the Fractional Guard channel
policy, new calls are accepted with a certain probability that depends on the current channel occupancy.
Note that both these policies accept handoff calls as long as channels are available. These policies are
illustrated algorithmically in Figure 1. We next focus on the new and handoff call blocking under these

policies.

2.1 Blocking Performance

We compute performance of the admission policies based on the following assumptions:
o The arrival process of new and handoff c;lls is Poisson with rate A and A, respectively. Let
A=A+ A and A = a* A
o The channel holding time for both type of calls is exponentially distributed with mean 1/u and
letp= %
o The busy-line effect [13] is negligible, i.e., the interval between two calls from a MS is much

greater than the mean call holding time.

This set of assumptions have been found to reasonable as long as the number of mobiles in a cell
is much greater than the number of channels and have been used in the models in [7, 11, 15].
Define the state of a cell at time ¢ by the total number of occupied channels®. Thus, the cell channel

occupancy can be modeled by a continuous time Markov chain with C states. The state transition rate

3One could possibly enhance the state description by keeping track of new calls and handoff calls separately, rather than the

total occupancy alone. However, this néw state descriptor is not expected to change any of the conclusions of the paper given the

memoryless nature of the arrival process.



/*********************/

/* Guard Channel Policy */
/*********************/
if (NEW CALL) then
if (NumberOfOccupiedChannels < T')
admit call;
else
reject call;
if (HANDOFF CALL) then
if (NumberOfOccupiedChannels < C)
admit call;
else
reject call;
/******************************/

/* Fractional Guard Channel Policy */
/******************************/
/* random(0,1) returns a uniformly generated
random number in the interval [0,1] */
if (NEW CALL) then
if (random(0,1) < B(NumberO fOccupiedC hannels))
admit call;
else
reject call;
if (HANDOFF CALL) then
if (NumberOfOccupiedChannels < C)
admit call;
else
reject call;

Figure 1: Call Admission Policies

diagram of a cell with C channels and C — T guard channels is shown in Figure 2(a). Given this, it is

straight forward to derive the steady-state probabilities that j channels are busy (FP;) [6, 7]:

£ Py 0<j<T 1
P,~={ 3] it - with Py = _ —
L"}!—Po, T<j<LC T o5 + 2y L;’!

The state transition rate diagram for the Fractional Guard Channel policy is shown in Figure 2(b).
At each state 7, we now accept new calls with a probability 8; and handoff calls with probability 1.

Thus the arrival rate at state 7 is (@ + (1 — a) * 8;) * A. The steady-state probabilities are calculated

similarly as:
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Fig 2(a). State transition diagram (Guard channel scheme).
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Fig 2(b). State transition diagram (Fractional guard channel scheme).
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Define 8 = (61,5, ..., Bc) as the new call acceptance probability vector. Given the state prob-

abilities, we can find the handoff blocking probability B, (C,3) and new call blocking probability
B, (C,B) as

B},(C,B)=PC, (l)
Ba(C,B) = Z_(1 - Bj+1)P; where Bc41 =0. (2)

Note that the blocking for the Guard Channel policy, with threshold 7', can be calculated from the

above by setting3; =1, 1<:<Tandf; =0, T+1<i<C.

3 Minimizing a Linear Objective Function

In this section, we consider the problem of finding an' admission control policy that minimizes a linear

objective function of the new and handoff call blocking probabilities.



Problem 1: MINOBJ: Minimize F = A, * B,(C, 8) + A2 * By(C, B) for a given C, and given

constants 4; and 4; with0 < 4, < A4,.

The above problem can be posed as an average cost problem[9]:

Min lim % E(Zﬁ’;‘o‘ A~ "™ 4 2,1:’___-0' Aze™"T),

N—oo

where 7 is the discount factor and T;,, and T,, are the rejection times for the new and handoff calls
respectively. Before we proceed to solve this problem, we consider the 7-discounted finite horizon

problem [9]:

Min E(ZN_) Aje™"T + EN 2] Age™Tm).

n=0
We denote by V;" (%) the optimal cost for the k-stage problem starting in state i which is the number
of allocated channels. We note that the control policy that achieves the minimum cost is a stationary
policy, i.e., it depends only on the current state, which we denote as u(z). Given the stationary control
policy, the state of the system now evolves as a Markov decision process [9] and in particular our
interest will be only in stationary policies that lead to irreducible Markov chains.

We discretize the discounted return problem above by using the standard uniformization technique
[2] and by scaling time, one can assume that Cp + A; + A + 1 = 1%. The optimal cost function V' (-)

then satisfies:
Va(@) = A min(V G+ 1), 4+ Vi (3) + A2 min(V_ (i + 1), A2+ V) ,(3)
+ip.Vk"_'(i—l)+(C—i)ka"_,(i), 1<i<C-1. 3)

The first term is the contribution to the cost if the next transition is the arrival of a new call. Here,
we have the option of rejecting the arrival in which case a cost A, is incurred. The second term is the
contribution to the cost for a handoff call arrival. Here, we have the option of rejecting the handoff call
in which case a cost A; is incurred. The third term is the contribution to the cost due to call completions
and the fourth term is a consequence of the uniformization.

The boundary condition is handled by defining V;!(C) = C max(A,;, A2) and V;(0) = 0. Note
that we assume that we are controlling both the new and handoff calls here. We will show later that

controlling handoff calls is not beneficial as it leads to some channels being idle.

*Transitions associated with the discount cost  can be thought of as terminating the process of channel occupancy evolution



Lemma 1: V,!(3) is monotonically non-decreasing and convex in i for all k.

Proof: In Appendix A.

Under minor technical conditions, it can be shown that the optimal cost function for the infinite-
horizon problem, V7(#) = limg .o Vi (), is also non-decreasing and convex [12, Assumption 8.28].
Also, since the state space is finite and the Markov chain induced by the control policy is irreducible,
V(i) — V7(0) is bounded uniformly [9]. We now return to consider the average cost problem.

Since V7(3) — V7(0) is bounded, the optimal control policy for the average cost problem is also

stationary and the optimality equation is given as [9]:

g+hGE) = A min(h(i+ 1), Ay + k(i) + A2 min(h(i + 1), Az + h(3))

+iph(i—1)+(C-d)ph(i), 1<i<C-1, )

where g = limy—; (1 —7)V7(0) is a constant and h(3) = lim,_,o [V (¢) — V" (0)] for some sequence
n, — 1. Note that h(3) inherits the structural properties of V() and hence is non-decreasing and
convex. The optimal average cost policy is one which minimizes the right-hand side of the above
equation. The following theorem shows that a threshold policy, the Guard Channel policy, is optimal

for the average cost problem and hence for the MINOBJ problem.
Theorem 1: The Guard Channel policy is optimal for the MINOBJ problem.

Proof:

The optimal control policy u(z) that incurs the minimum cost (see Equation (4)) is given as,

N[ 1 ifh(i+1)—h() < Ay,
u(i) = { 0 Otherwise. I

where u(z) = 1(0) corresponds to accepting (rejecting) a new call when i channels in the cell are
busy. Since h(3) is non-decreasing and convex, h(3) — k(i — 1) is nondecreasing in %, and hence
there exist integers i and ¢, where ig = Arginf{i : h(3) — h(i — 1)) > A} and i} = Arginf{i :
k(i) — k(i — 1)) > Az}. Thus, for new calls we have u(%) = 1 for i < ip and u(i) = 0 for i > i
and hence the optimal control policy for new calls is of the threshold type. Let us now consider the
policy for handoff calls. Since Ay > A, ) > %. If i < C, then this will resuit in idling one or

more channels. We can, hence, do better by not blocking the handoff traffic and letting them use these
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Figure 3: State transition diagram (limited fractional guard channel scheme).

channels, i.e., 4y = C. Thus the overall optimal policy is to block all new calls when the channel
occupancy reaches or exceeds i and not block any handoff calls. Or in other words, the optimal policy
is to reserve C — iy channels for handoff calls. Thus, the optimal policy for the average cost and
MINOBJ problem is the Guard Channel policy. O

In the following sections, we consider the MINBLOCK and MINC problems. For these problems,
we restrict our attention to a Limited Fractional Guard Channel policy and show that this policy is

optimal.

4 Minimizing new call blocking with a hard constraint

Problem 2: MINBLOCK: Given C, Minimize By(-) such that

Bh(-) < Py (5)

For the above problem we consider a restricted version of the Fractional Guard Channel policy and

show that it is the optimal policy for the MINBLOCK problem.

4.1 Limited Fractional Guard Channel Policy

Figure 3 shows the state transition rate diagram of a system with C channels for the Limited
Fractional Guard Channel (LFG) policy and Figure 4 outlines this call admission algorithm. At state
T, we now accept new calls with a probability 3. From states T' + 1 to C, we accept only handoff calls

and at states 0 to T — 1, we accept both types of calls. The handoff and blocking probabilities for the



/* random(0, 1) returns a uniformly generated
random number in the interval [0,1] */
if NEW CALL) then
if (NumberOfOccupiedChannels < T') then
admit call; »
else if (NumberOfOccupiedChannels == T') AND (random(0,1) < 8)
admit call;
else
reject call;
if (HANDOFF CALL) then
if (NumberOfOccupiedChannels < C)
admit call;
else
reject call;

Figure 4: Call Admission with Limited Fractional Guard Channel Policy

LFG policy can be easily calculated using Equations (1) and (2) by setting 874 = 8 and the values of
Bi=1 1<i<TandB; =0, T+ 1< i< C. We now show that the Limited Fractional Guard

channel policy is optimal for the MINBLOCK problem.

4.2 Optimality of the LFG policy

Let g; represent the integral Guard Channel policy with threshold i. Thus, we have a set of policies
9o, 1, ---gc¢ fora C channel system. We know that, for the MINOBJ problem, Ji such that g; is optimal.
We show below that a policy that randomizes between two static policies g;—; and g; is optimal for the
MINBLOCK problem.
Let us first define some notation:
: j . 19 _i-i . < g .
U = TG 0<i<C, Vi {5 g o 0<i<C, M={ gra®t 0<i<C,
0 Otherwise. 0 Otherwise. 0 Otherwise.
adlet X; = Ui + V; + W5,
Consider the MINOBIJ problem with 4; = 1. The objective function E7 for a given threshold T,

or policy g, is

Vo +Wr(42+1)

Ep Xr

, T=01,..,C. (6)

10



We first show that g is optimal for MINOBJ if AT +' < A, < AT where

Ve 1 Xp~VopXg_
T W:X‘r:—u;;.:x;. -1 T=1,.,C,
A2 = 0 - C 1’
oo T=0.

We will first need the following property of the function A7 .
Property 1: AT > AT*' for T =0, 1,...,C.

Proof: In Appendix A.

Lemma 2: If Ag' <4< Ag'", then policy gr is optimal for the MINOBJ problem.

Proof:
4> > A7
_ VrXry —VrnXr
Wr X — WrXry
Vrsr + Wrp(A2+1) _ Vo + Wr(42+1)
= 2>
X141 Xr
=> Er41 2 E7.
and
A < Ag'-]
Ve X7 - VorXro1 1
WrXro) — Wr_ 1 X
N Veoi+ Wroi(4a+ 1) Vo + Wr(42 + 1)

X7 - Xr

= Er_, > Er.

Also, if BEp < Eryy, then By < Epgs, 4= 1,...,C = T since Epqi—; < Epgq if A > ATH
and this is true from Property 1.

Similarly, if Er < Ep_, then Br < Ep_;, i = 1,..., T'since Ep_;y| < Br_; if A4, > AT !
and this follows from Property 1.

Thus, Ep is minimum among all E;, i = 0, 1, ..., C and hence policy gr is optimal for MINOBJ

problem.

11



]

Consider the Limited Fractional Guard Channel policy

fk,q = [gk—hgk:Q]: g€ [0: l] (7)

which admits new calls at state k — 1 with probability g, and admits only handoff calls from states k
through C. Let Bn(u) and By (u) be the handoff and new call blocking probabilities for a stationary
(possibly randomized) policy u. Observe that, Bx(fi,0) = Bn(gk-1), Ba(fi,1) = Bn(gx) and
Bn( fx,q) is a continuous function of g over interval [0,1] for k = 0, 1, ..., C. Now, we show that fi

is optimal for the MINBLOCK problem. We need the following lemma for the proof.

Lemma 3: Consider J¥(u) = Bp(u) + wBs(u). Then if AT < w < AT, policy gr is
optimal by the previous lemma. In particular, if w = Ag'". policies gr-1, gr and fr 4 are all

unconstrained optimal.

Theorem 2: If By(g90) < Pn < Br(gc). then for some g € [0, 1], f;,q is constrained optimal
where j = min{i : Ba(g:) < P»}.

Proof:

Suppose Bi(gj—1) < Pn < Ba(gj) with j as given above. By continuity of f; 4, g € [0, 1] such

that By (fi,q) = Px. Moreover, f;,, minimizes J7(u) where v = A2~' by Lemma 3. Thus, for any

policy u,

Bﬂ(fi»?) + 'Y‘Ph
= J'(fq)

J7(u)

IA

IN

By (u) + vBa(u).

Thus Bi(f;) — Ba(u) < ¥(Br(u) — Py) which implies By (f;) < Bn(u) for any policy which is
feasible (i.e., Bx(u) < Py).

Thus, fj,q is constrained optimal. O

12



/* Returns T+8 */
/* We assume that this algorithm is called only when the constraint on
the handoff blocking probability can be met with C channels. Also, the traffic
parameters p and « are assumed to be built in the evaluation of function By */
1. Resolution = 0.0001; /* Change this for different resolutions, if desired */
2.U =C; L =0; Mazlter = 15;Iter = 0;i = (U + L)/2;
3. if ((Bn(C, C,0) <= Py) return C;
4. while ((Iter < MazIter) AND ((U — L) > Resolution)) {
if (By (C, whole(3), frac(i)) > Pp) {
U=1
i=(U+L)/2
}else {
L=z
i=(U+L)/2
}

Iter++;

5. while (B (C, whole(3), frac(i)) > Pi) {
U=i
i=(U+L)/2;

6. return i;

Figure 5: Algorithm MINB

4.3 Algorithm for Optimal Parameters of LFG Policy

We now present an algorithm (Fig. 5), labeled MINB, that minimizes the new call blocking probability
for LFG with the constraint that the handoff call blocking probability must be at most Py, i.e., it
determines the optimal values of parameters T and 3 for a given constraint Py.

We first establish some properties of By (-) and By (+) which will be useful in proving that algorithm
MINB minimizes the new call blocking probability while satisfying the constraint on the handoff call

blocking probability.

Lemma 4: B, (-)(Bx(-)) is a monotonically decreasing (increasing) function of both T and 8

and hence also of T + 8.

Proof: Oh and Tcha ([6]) have shown that B, (C, T+ 1,8) > Bx(C, T,8) and B,(C,T+1,8) <

B,(C, T, B) for the integral guard channel policy. Thus, we only need to show that for a given T, By,

13



New and Handoff call Blocking Probabilities
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Figure 6: By and B, as functions of T' + 8

(Bn) decreases (increases) monotonically with 3. Differentiating By, with respect to 3,

0Bu() _ _ (Tof)x(5)*(1-0)

= - >
B (T + e )

0 (8)

Since the derivative of By, with respect to 3 is postive, By, is a monotonically increasing function of 3.
Similarly, differentiating B,, with respect to 3, we can show that the derivative is negative. Thus, we

can prove that B, decreases monotonically with 8.

Theorem 3:  Algorithm MINB minimizes the new call blocking probability (Bn(-)) while

satisfying the constraint on handoff call blocking probability (Bx () < Pa).

Proof: Clearly, if the condition in Step 3 is true, we are done; we don’t have any guard channels in
this case and this would result in the least blocking probability for new calls.

The algorithm uses the fact that finding the value of T'+8 which satisfies the equation By (-) = Py is
precisely the value for which By, (+) is minimized. This is based on the fact that By (-) is monotonically
increasing function of T + 3 and hence the value of T + 8 which satisfies the equality on the handoff
constraint is the largest admissible value for T + 8. This also minimizes the new call blocking
probability as By, (-) is monotonically decreasing function of T'+ 8. The while loop in Step 4 performs

a binary search to locate the value of T + 8 which satisfies the equation Bp(-) = P,. A graph of

14



the functions By, and B, versus T + 8 is shown in Figure 6 for illustration. The traffic parameters

correspond to those of Case I in Table 1 with 12 channels.

4.4 Numerical Examples

We show below that the introduction of Fractional Guard Channels gives us significant savings in
terms of new call blocking probability as compared to the integral Guard channel approach. The load
values and the number of channels in Table 1 are taken from [6). Column 4 of Table 1 is obtained
by computing the minimum new call blocking probability By, for the integral guard channel policy
subject to the constraint B, < 0.01. Column 5 of Table 1 is obtained by via algorithm MINB and
calculating the new call blocking probability. The last column in the table lists the percentage gain in
new call blocking for LFG over the integral guard channel policy. We see significant savings in cases
I through IV. The values in Case V has been particularly chosen to illustrate a case when the constraint
on handoff probability can be met without the use of any guard channels. In this case, as expected,

there is no gain for the fractional policy.

Item Arrival Handoff C  Integral Policy Fractional Policy Percentage Gain
Rate (A) Prob. (a) (Bn) (Bn) for Fractional

Casel |6 1/6 12 0.024859 0.0013313 4645

Casell |7 217 13 0.031118 0.021538 30.78

CaseIll | 12 1/6 19 0.029255 0.022536 22,97

CaseIV | 14 21 22 0.023117 0.015211 34.20

CaseV | 14 2/7 23 0.0074454 0.007454 0.0

Table 1: MINBLOCK: Minimize B, such that By < 0.01

5 Minimizing the number of Channels with hard constraints

Lastly, we consider the problem of finding an admission control policy that minimizes the number of

channels while satisfying the blocking constraints for both the new and handoff calls. Formally,

Problem 3: MINC: Minimize C such that

Bn(C,T,B) < Pa ()

15



a.nch(C, T,ﬁ) < P, (10)

with 0<KT<C(TCeI)and0<B<1.

Note that the LFG policy is optimal for this problem also. This follows easily from the fact the
LFG policy is optimal for MINBLOCK problem and MINC problem can be reformulated as find the
Minimum C such that the minimum B,, (from the MINBLOCK problem) is smaller than Py, given

Bp < Py.

5.1 Algorithm for Optimal Parameters of LFG Policy

‘We now present an algorithm (Fig. 4) that calculates the minimum number of channels which satisfy
the QOS constraints that new call blocking probability must be at most P, and handoff call blocking
probability must be at most P,. Note that we could use algorithm MINB by starting with the value
of C that meets the constraint for the handoff call blocking probability and increase C till the new call
blocking probability also meets its constraint. Algorithm MIN detailed in Figure 7 is more efficient.

The following claims will be useful in proving that algorithm MIN finds the minimum number of
channels that satisfies the constraints expressed in Equations (8) and (9).

Claim 1: There exists a value of T 4 8 for C > Cip, ,where Cjy = Arg Min{C : B,(C,C,0) <
P.}, such that B, (-) and By (-) either both violate their constraints, P, and Py, or both meet them.

Let T, + Bn be such that B, (C, Ty, Bn) = P,. Note that a feasible solution T, + G, always exists
in [0, C] for C > Cy since Bn(C,0,0) = 1.0 and B,(C,C,0) < P, and By (-) is monotonically
decreasing in T + 8. Now consider By(-). If By(C,T,8) > Pu, VYT + B € [0,C], then in
the interval [0, T, + B,) both B,(-) and By(-) violate their constraints. On the other hand, if
B(C,T,B) < P, VT + B € [0, C], then in the interval [Ty, + Bn, C] both By () and By () meet
their constraints. Finally, if there is a feasible solution to By(C, Th, ) = Py for Tr + Bn € [0,C],
then if Th + B > Ty + Bn, ihe interval [T}, + B, Th + Ba] includes all points T + 3 where both Bx(+)
and B, (-) meet their constraints. If T, + Bx < Ty, + Bn, then both By (+) and By (-) will violate their
constraints for T' + 8 € [Tk + Bn, Tn + Bul-

Claim 2: If there exists a value of T + 8 for a given C where both the constraints given by
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/* We assume that the traffic parameters p and « are assumed to be
built in the evaluation of functions By, and B,,, which are evaluated based on
Equations (1) and (2) respectively. Also, whole(i) returns the integer part of i and
frac(i) returns the fractional part of i. */
cC=1;
. while (Bn(C,C,0)> P,)C=C+1,
. if (Ba(C, C,0) < P3) return C;
.U=C;L=0;
e (U + L) /2;
. while ((Bn(C, whole(i), frac(i)) > Pi) XOR (Bn(C, whole(i), frac()) > P.)){
if (Bn (C, whole(i), frac(i)) > Pa) {
L=1
1= (U + L) /2

AV HE WM~

}
else if (By(C, whole(z), frac(i)) > Pn) {
U=y
1= (U + L)/Z;
) }
7. if ((Bn(C, whole(3), frac(i)) < Pp) AND (Bn(C, whole(i), frac(i)) < Py))
return C;
else {
C=C+1
goto step 3.

}

Figure 7: Algorithm MIN

Equations (8) and (9) are violated, then there is no value of T' + 8 for the given C where both the
constraints can be met.

Claim 2 can be inferred from the arguments for different cases in proof of Claim 1. A simpler
argument is that if a value of T' + G violates both the constraints, reducing (increasing) the value will

lead to larger violations of By (-)(Ba(+)).

Theorem 4: Algorithm MIN finds the minimum number of channels that satisfies the constraints

given by Equations (8) and (9).

Proof: The initial assignment in Step 2 of the algorithm is a lower bound, Cjs, on the minimum
number of channels. If the condition at Step 3 succeeds, we are done. If not, the while loop in Step
6 tries to locate a value for T and 3 (i in algorithm MIN represents T + 3) which satisfies the given
constraints. Since we consider only values of C > Cj, Claim 1 holds and hence the algorithm is

guaranteed to terminate provided the algorithm can find the point that either violates or meets the
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constraints. In the following, we show that the algorithm finds such a point. To do that, we show that
at each iteration of the while loop, the following invariant holds.

Invariant: The interval represented by [L, U] is such that for T + 8 = L, the constraint given by
Equation (9) is met and for T' + 8 = U, the constraint given by Equation (8) is met.

This is due to the fact that the iteration condition of the while loop ensures that exactly one of the
constraints is met at the midpoint of the interval and the body of the while loop resets the endpoint
where that condition had been met previously to the midpoint. For example, if the constraint given
by Equation (8) is violated at the midpoint while the constraint given by Equation (9) is satisfied. the
lower bound of the interval is moved to the midpoint resulting in a new interval where the invariant
still holds.

Thus, an interval [L, U}] is halved at each iteration, to form a new interval [L,, U], while the
invariant is maintained. Since the invariant is maintained, it is easy to see that a point that either meets
the constraints or violates them together cannot be in the part of the interval, [Ly, U\] — [L2, U5, that is
eliminated from future consideration due to the monotonicity of B (-) and By (-). Hence, the algorithm
is guaranteed to find the point (which is guaranteed to exist by Claim 1) that either meets the constraints
or violates it. In the latter case, by Claim 2, there is no feasible solution for C and hence we increment
C by 1 and go to Step 3. Thus, Algorithm MIN finds the minimum number of channels that satisfies
the required QOS constraints.

A graph of the functions By, and By, versus T + @ is shown for illustrative purposes in Figure
6. The traffic parameters correspond to those of Case I in Table 2 with 12 channels. The figure also

highlights the region in which the QoS constraints are met.

5.2 Numerical Examples

We show below that the introduction of Fractional guard channels gives us smaller values for the
number of channels compared to the integral Guard channel. The load values in Table 2 are taken from
[6]. Column 3 is obtained via an algorithm detailed in [6] which evaluates the minimum value of C for
the integral Guard Channel policy while meeting the blocking constraints. Column 4 is obtained via
algorithm MIN. From Table 2, we can see that the LFG policy gives us a smaller value of C in case

I (12 instead of 13) and case IV (22 instead of 23). However, the LFG policy in general appeared to

18



New and Handoff Call Blocking Probabilities
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Figure 8: The Region[11.37-11.84] where B, <= 0.01 and B,, <= 0.02

provide only small improvements (1-2 channels) over the integral guard channel policy.

Item Arrival Handoff  Integral Guard Channels Fractional Guard Channels
Rate (A)  Prob. (a) (C,T, By, Ba) (C, T+ B, Bn, Bi)

Case [ 6 1/6 (13,12,0.012,0.00087) (12,11.625,0.016,0.0078)

Casell |7 217 (14,13,0.016,0.002) (14,14.0,0.007,0.007)

CaseIll | 12 1/6 (20,19,0.018,0.00165) (20,20.0,0.0098,0.0098)

CaseIV | 14 217 (23,22,0.0145,0.002) (22,21.313,0.0197,0.0063)

Table 2: Minimize C such that B,, < 0.02 and Bj < 0.01

6 Dynamic Fractional Guard Channel Policy

The importance of adaptability in wireless call admission algorithms and architecture have been stressed
in(1,5). Also, call admission (whether new or handover) has to be done in a quick and timely fashion so
that the user is not disconnected, excessively delayed or does not perceive glitches in the conversation
(10). Thus it is necessary that any proposed policy be able to adapt with possible changes in the traffic
load while maintaining the desired QOS levels. We focus on the new and handoff call blocking in
this section. The previous sections considered static optimal choices of parameters and policies for
minimizing or meeting certain objective functions of these QOS measures. In this section, we consider,

briefly, the scenario where the traffic loads are changing (as would be the case in reality).
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We propose to adapt to changes in the traffic load by dynamically changing the parameters of the

Fractional Guard Channel policy. This adaptability will require
o Estimation of traffic loads and blocking
e Fast computation of T and 8

The estimation of the mean values of traffic arrival rate can be done using , for example, an
exponential smoothing model [3]. Based on the traffic estimates and the current values of T" and 3, we
can calculate the blocking probabilities By (-) and By (+) (or they can be estimated directly). Based on
these probabilities, we can detect whether these values violate their respective QOS values Py and P,.
If a violation is detected, we can use algorithm MIN to recompute values of T and 8 for the updated
traffic es_»timates. thereby ensuring that the system remains within its prescribed QOS guarantees. Thus,
the LFG policy can serve as a control mechanism which may, for example, automatically increase the
blocking of new calls as overload conditions set in. This provides a way of Bringing the cell back to
stable condition, maintaining the low probability of dropping handoff calls. Note that an uncontrolled
mechanism may lead to thrashing in overload conditions; where users are being connected and dropped
off shortly afterwards, when the cells where the call originated and where the call was handed off are
both overloaded. While the integral Guard Channel policy can also serve as a control mechanism by
adjusting the value of T, the LFG policy has the advantage of two levels of control; parameter 8 can
be used for fine-grained control while parameter T' can serve as a coarse-grained control.

Any computation required for adaptive control of real-time systems must be fast. To illustrate
the computational speed of algorithms MINB and MIN, consider Case IV from Table 2. Algorithm
MINB takes about 0.8 milliseconds and algorithm MIN takes about 0.5 milliseconds on a Sparc-10
workstation. Thus, the LFG policy can be easily implemented at the Base Station and can be used to

adaptively control the blocking probabilities experienced by the Mobile Subscriber.

7 Conclusions and Future Work

In this paper, we considered optimal admission control policies in cellular networks in the light of three
problems: minimizing a linear objective function of the new and handoff call blocking probabilities

(MINOBJ), minimizing the new call blocking probability with a hard constraint on handoff call blocking
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probability (MINBLOCK) and minimizing the number of channels with hard constraints on both the
blocking probabilities (MINC). We showed that the well-known Guard Channel policy was optimal
for MINOBJ. We defined a new Fractional Guard Channel policy and showed that a restricted version
of it was optimal for the MINBLOCK and MINC problems. We also showed that the Fractional
guard channel policy resulted in significant (20-50%) savings in the new call blocking probability over
the integral Guard channel policy for the MINBLOCK problem and provided some, though small,
improvement over the integral Guard channel policy for the MINC problem. Further, we showed
that the algorithms developed in this paper for the solution of these problems were computationally
inexpensive and have potential for use as a real-time control mechanism in cellular networks.

We are exploring the use of the Fractional Guard Channel policy to assist in Dynamic channel
assignment and other hybrid policies [10]. One can also easily extend this policy to have finite buffers
for handoff and/or new calls [14] in case delaying handoff and/or new calls is considered acceptable.
We are also studying call admission policies when there are multiple classes of wireless traffic. Finally,
we are also studying in greater detail the mechanisms for dynamically changing the parameters of the

Fractional Guard Channel policy in order to adapt to changes in traffic load.

Acknowledgments

We would like to thank Professor Jim Kurose and Dr. Thomas La Porta for the many discussions

and suggestions which served to influence and improve this work.

References

{11 A.S. Acampora and M. Naghshineh, “Control and Quality-of-Service Provisioning in High-
Speed Microcellular Networks,” /EEE Personal Communications, Vol. 1, No. 2 (Second quarter,

1994) ,pp. 36-43.

(2] D.P. Bertsekas, “Dynamic Programming: Deterministic and Stochastic models,” Prentice-Hall,

Englewood Cliffs, NJ, 1987.

[3]1 C.Chatfield, “The analysis of Time Series: An Introduction,” Third edition, Chapman and Hall,
NewYork, 1984.

21



(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

[15]

D.C. Cox, “Personal Communications- A viewpoint”, I[EEE Communications Mag., Vol. 28,
No. 11 (Nov, 1990).

Randy H. Katz, “Adaptation and Mobility in Wireless Information Systems,”/EEE Personal
Communications, Vol. 1, No. 1 (First quarter, 1994) ,pp. 6-17.

S.-H. Oh and D.-W. Tcha, “ Prioritized Channel Assignment in a Cellular Radio Network,” IEEE
Transactions on Communications, Vol. 40, No. 7 (July 1992), pp. 1259-1269.

E.C. Posner and R. Guerin, “Traffic Policies in Cellular Radio that minimize blocking of Handoff
Calls,” ITC-11, Kyoto, 1985.

D.Hong and S.S.Rappaport, * Traffic Model and Performance Analysis for Cellular Mobile Radio
Telephone Systems with Prioritized and Nonprioritized Handoff procedures,” IEEE Transactions

on Vehicular Technology, Vol. 35, No. 3 (Aug., 1986), pp. 77-92.
S. Ross, “Applied Probability Models with Optimization Applications,” Holden-Day, 1970.

S. Tekinary and B. Jabbari, “Handover and Channel Assignment in Mobile Cellular Networks,”

IEEE Communications Magazine, November 1991, pp. 42-46.

S. Tekinary and B. Jabbari, “A Measurement Based Prioritization Scheme for Handovers in
Cellular and Microcellular Networks,” IEEE Journal on Selected Areas in Communications,

October 1992.

Jean Walrand, “An introduction to queueing networks,” Prentice-Hall, Englewood Cliffs, NH,
1988.

Y.-B.Lin and W. Chen, “Impact of busy lines and mobility on cell blocking in a PCS network”,
Submitted to IEEE Journal on Selected Areas in Communications.

Y.-B.Lin and W. Chen, “Call Request Buffering in a PCS network”, /EEE Infocom, June 1994,
pp 585-592.

C.H. Yoon and K. Un, “Performance of Personal Portable Radio Telephone Systems with and
without Guard Channels,” [EEE Journal on Selected Areas in Communications, Vol 11. No 6.

(August 1993), pp 911-917.

22



Appendix A

Lemma 1: V() is monotonically non-decreasing and convex in i for all k.

Proof: Part a)

We first show that Vi is monotonically non-decreasing by induction. The basis step is trivial since
Vo(i) = 0. Assume that g(i) = Vi_,(3) is monotonically non-decreasing. We need to show that V; (%)

is monotonically non-decreasing. The first term in A(3) = Vi(3) — V(i — 1) is

min(g(i + 1), Ai + ¢(3)) — min(g(), 4 +g(i - 1))

g(3) + min(g(i + 1) — g(3), A1) — g(i — 1) — min(g(3) — g(¢ — 1), 4))

v

9(3) — 9(i — 1) — min(g(i) — g(i — 1), A1) since g(i) is monotonically non-decreasing
> 0 since g(i) is monotonically non-decreasing

Similarly, the second term of A(z) can also be shown to be monotonically non-decreasing. Let

f(3) = pVi_1(3) and assume it is non-decreasing. Now, consider the third and fourth terms of A(3).

(C—)fE) +ifli=1) = (C=(i= 1)fG=1) = (i 1)f(i - 2)
(C = i)f(i) — (C—)f(i — 1) + (i + 1)fGi — 1) - (i — 1)f(i - 2)

> @+ 1)f(i-1)—(-1)f(i—2), sincef(i)is non-decreasing
> if(i—1)—if(i-2)
> 0.

Hence, A(7) = Vi(z) — Va(i — 1) > 0 and thus Vi (%) is a monotonically non-decreasing function of i
for all k.

Part b)

We show Vj (%) is convex by induction. The basis step is again trivial since Vp(¢) = 0,1 <1< C.
Assume Vi_;(%) is convex. We need to show that Vi(3) is convex. The first and second terms in
Equation (3) can be shown to be convex by induction [8.35 in [12]]). The arguments for the 3rd and 4th

terms follow. Let f(z) be convex. Then consider if(i — 1) + (C — %) f(3). Let
AD) = (= 1)+ (C=DFE) - (= fGE=2) = (C = (= G- 1)
= (C—i)f(i) - (i— 1)f(i = 2) + (2i+ 1 - C)f(i — 1).
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Then,

AG) - AG-1)

= (C=)f()) = (i- Vf(i—2)+(2i+1-C)f(i-1)
—(C-(GE-D))fGE-D+(E-2)f(i-3)- (26— 1-C)f(i-2)

= (C-i)f(i) + (3i—20)f(i—1) - (3i—2-C)f(i — 2) + (i — 2)f(i — 3)

= (C-9f(@) -2(C-)fi - 1) +(C-9)f(i-2)
+if(i—1) =26 —1)f(i—2)+ (G- 2)f@G-3)

v

if(i—1)=2(GE-1)f(E-2)+ (: —2)f(: —3) by convexity of f(i),

v

(i- 1)fGi—1)=2(—1)f(i —2)+ (i— 1)f(i — 3) since (i) is non-decreasing,

> 0 by convexity of f(i).

Thus, Vi (%) is a convex function in ¢ for all k.

a
Appendix B

Property 1: AT > AT*! for T=0,1,....C.
Proof: Case 1: T = C.

Assume AS > ASt' =0

AS >0

Ve-1Xc - 0Xc-y

-1>0
WeXc-1 — We_1 Xc

= Xc(Ve-1+We-1)> WeXc-y

pC-1 C oS o€
P c-1P p° P
=> ,1._0 '((C ! aa])Z ;'--CT'-FE el
Cc I P Cc- |P’P 3¢ o o€ i E_c_
= E=Gi e ) ~ G Gien) t E=gere T arver > O
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The second term in the above equation is clearly greater than 0. The first term can further be

expanded into

Pc—l C pc pc-l-l c+l p2C—l pZC-l
{(c—)+(1v(c AR T T+ * ey " e-ne?

which is also greater than zero. Thus, the property holds for T = C.
Case2: T = 0.
We need to show that A{ < Ag = oo. It suffices to show that the denominator of A'lz is not zero

since the numerator is a known finite quantity. The denominator is

gy 7o (Za0 ,<=z’)-—°(l+z )

Thus, the property holds for T' = 0.
Case3:T=12,..,C-1

Assume A7 ' > AT.

Vp_ | Xp —VpXp_ VpXp4 — Ve X
o Jroidr - Vrdroy o VTATH — VTidT

-1
WepXp_ - WT.-XT WT+|XT - WTXT+|

= X3Vo_Wry — XpXrp1 Voo Wr — Xr_\ Xo Ve Wy, + Xr_ 1 X7 Ve Wr

> X3 Vo Wroy = Xo Xp 4 VeWeroy — X Xp Ve Wr + X7 1 X751 Ve Wr
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= X2(Vo_1\Wry — Ve Wr_y) > Xr Xp 1 (Voo \ W — Ve Wr_y) + X X1 (VoW

Now,
VeWry — Ve W
= f_ql?"a"'rg'a -T-1 Zc T_Hior"T ’Z'a
— Pc «C-T- IP
c“ T
and
Ve \Wrpy — VT+|WT-|
= 85 l;”'a,-r+|l;! T-1 _zc_THP"aJ-T 11(’:! oC-T+!
= 2'_01 C_T—l((;i-;)!’“%“)
Substituting,
(=7, |P’ +Zc P’a,-:r) oS- T-l(%a+ (;T-;)’)
> (ZT_opy, + 3¢ _T+Ip1'a]—T 1) oS- T(;T_—) (ZT 2;” +Z80 IP:QJ—T+|)

Rearranging and collecting e;—, and (,‘;.LT_-—;F separately,

T
%ﬁé a-T- l{(z;-"_olp’ C—TP:QJ-T)G (ZT zP’ _*_):_T lp"aJ-T'Fl)}

T-1

T-nia”®

T C i i

PP c-T-1 -np’ c P’ =T+l _eT- |P’ c P’ J=T+1

e T Bt 3L ~E -5 e T
\.—,——/
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T-1 C j i
T N e > +Z_T+,p1aJ'T s ’J”a—z;;ﬂ,%a’-’fpo

T-nict” :
‘—¢_’ -~
T—1 C
o et - - £ 0
T-1 C PP } ! [
G T eI+ - P+ (G - )+ (5 - B+ gy o)

The last equation is clearly true. Thus, property 1 holds for T =0, 1,...,C.

o
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