The Many Faces of Multi-Level Real-Time Scheduling

Prof. John A. Stankovic
Department of Computer Science
University of Massachusetts

Ambherst, MA, 01003

Abstract

Many real-time scheduling algorithms use simplis-
tic sets of assumptions and this limits their applicabil-
ity in practice [6]. Often, a large real-time system has
multiple scheduling algorithms and multi-level schedul-
ing algorithms. Multiple algorithms arise when it is
possible to partition the system into subsystems, each
with their own algorithm. While this is a valuable ap-
proach, in this paper we focus on the issue of multi-
level scheduling. Multi-level scheduling arises for var-
ious important reasons. In this invited presentation
we discuss multi-level scheduling examples from a pro-
cess/thread model, local/distributed scheduling, manu-
facturing, and multimedia.

1 Introduction

Complex real-time systems usually don’t have a sin-
gle scheduling algorithm due to the system size, the
vastly different requirements of various sets of tasks,
and the different metrics used for different functions
or subsystems. Decomposing a real-time system into
subsystems may generate different scheduling algo-
rithms. For example, front-end processors may exe-
cute a relatively small set of periodic tasks to process
sensor data. The scheduling algorithm in this front-
end may be a cyclic scheduler or the rate monotonic
algorithm. An avionics subsystem of an aircraft might
use a sporadic server algorithm and the navigation sys-
tem might employ yet another algorithm such as EDF.
While decomposition gives rise to multiple algorithms,
these algorithms are not multi-level. This invited pre-
sentation focuses on multi-level scheduling algorithms.
In particular, we demonstrate the need for more com-
plex real-time scheduling research by using four ex-
amples of multi-level scheduling: two from operating
systems and two from applications. The four exam-
ples are: the process/thread model, local/distributed
scheduling, manufacturing applications, and multime-
dia used in a real-time control context.

2 Process/Thread Model

Many operating systems are now supporting a
model of execution where a process can have multiple
threads executing in its address space. If the schedu-
lable entity is the thread, then this is a single level
scheduling approach. However, if the schedulable en-
tity is the process, then a second level scheduling deci-
sion must be made as to which thread of the process to

execute. To guarantee that deadlines are met, the de-
signer must consider both process and thread schedul-
ing. Because of the greater difficulty involved in guar-
anteeing performance with this multi-level scheduling
over single level thread scheduling, many real-time
systems may avoid using this approach. However,
in certain applications there are advantages to the
multi-level approach. New scheduling and analysis
techniques that account for context switching, shared
state, hidden interactions and slowdowns, deadlines,
etc. need to be developed for this situation. In the
associated invited presentation, further details on the
issues and problems involved will be presented.

3 Local/Distributed Scheduling

Most complex real-time systems are distributed.
One of the least developed areas of real-time schedul-
ing is distributed scheduling. Most current results in
this area deal with static real-time systems. However,
many actual distributed real-time systems require dy-
namic scheduling. In one example of dynamic, dis-
tributed real-time scheduling, the Spring system [3]
advocates a dynamic guarantee scheduling algorithm
that operates on each local multiprocessor node. If
a newly arriving task or set of tasks with a dead-
line cannot be scheduled locally, then the task may
be passed to a second level distributed scheduling al-
gorithm [1], if the deadline is far enough away. In
general, many other types of interactions between lo-
cal and distributed levels of scheduling could occur.
In fact, it has been proposed by various researchers
that a meta level be used to dynamically control the
parameter settings and types and amounts of inter-
actions between the local and distributed scheduling
levels.

4 Manufacturing

Agile manufacturing is a very demanding applica-
tion with real-time constraints of many types. For
example, to support agile manufacturing [4], it is of-
ten necessary to support scheduling of tasks with hard
and soft deadlines, precedence constraints, shared re-
sources and multiprocessing requirements.

Beyond this, additional requirements are imposed
by the fact that scheduling must occur at different lev-
els of abstraction. At the higher level the system must
deal with orders for products, resources which consist
of parts and subcomponents to be automatically as-
sembled — constrained by robots, floor space, cost, and



expected profits. Decisions made at this level, may be
handled by a real-time AI subsystem, which deter-
mines which of the incoming orders need to be carried
out, computational resources permitting. Whether it
was possible to carry out a specific order is deter-
mined by the scheduler at the lower level, where the
system deals with the computational resources needed
to move robots, assemble products, etc. It is neces-
sary to implement both levels of scheduling with a
feedback interface between these levels. For example,
if the higher level decides to make certain products,
the actual manufacturing floor may not be capable
of performing these tasks in time. Such information
supplied to the higher level scheduler improves perfor-
mance of the system in choosing between alternatives.

Interesting research questions regarding multi-level
scheduling in manufacturing include:

e how to partition the scheduling functionality be-
tween the high level (RTAI) planner and the sys-
tem level scheduler (which 1s also a planner),

e what information should be passed back and forth
between the levels, and

e how to pass information back and forth between
the schedulers so as to get the best performance.

In developing an agile manufacturing testbed [4], we
found it necessary to be able to hold resources across
a set of processes. For example, a set of processes may
require a common tool which cannot be shared with
others. This adds an interesting scheduling compli-
cation not typically addressed by real-time scheduling
algorithms. We also found that deadlines can some-
times be relaxed within a deadline tolerance. Inter-
esting questions involve understanding the cumulative
effect of missing the original deadline, but satisfying
the tolerance factor.

5 Multimedia

A new area of research is real-time multimedia.
Consider the need to support scheduling for multi-
media in a command, control and communications,
C3, environment[5]. Multimedia aspects of C3 ap-
plications normally permit varying levels of real-time
performance and resource requirements. Hard real-
time tasks of these applications on the other hand, re-
quire deterministic QOS guarantees and predictabil-
ity at a much finer grained temporal level, and
consequently there is less opportunity for any safe
resource/computation-quality tradeoff for these tasks.
The emphasis of the hard real-time task requirements
is more on ensuring predictable execution of already
guaranteed tasks even at the cost of potential under-
utilization of the system. In comparison, multime-
dia tasks are more amenable to adaptive and flexible
scheduling paradigms where some degree of determin-
ism can be traded off to improve system utilization
without violating the QOS requirements of a partic-
ular application. Given the different concerns of the
two types of applications, the hypothesis is that it
may be better to use different scheduling policies for
the different classes of tasks.

For multi-level scheduling in this type of applica-
tion, we propose using separate execution time win-
dows for continuous multimedia tasks and hard real-
time command and control tasks, and applying differ-
ent scheduling disciplines within each window. The
basic ideas are to have (i) an efficient on-line schedul-
ing algorithm for multimedia tasks that doesn’t neces-
sarily require strict scheduling plans, (ii) a precise time
line algorithm for the hard real-time tasks, and (iii) to
carefully address how the two algorithms impact each
other because of shared resources. Obviously, sim-
ply having two classes of tasks with their own algo-
rithms is not novel. Novelty is required in developing
solutions that focus on the true influence each has on
the other, especially with respect to meeting timing
constraints. As one part of this, we are working on
a solution that creates the following resource model.
Resources are either passive (models buffers, memory,
data structures) or active (models cpus, communica-
tion processors, disk controllers). Resources are also
either precise time line or percentage based, or both.
For example, a cpu is an active resource which in some
windows has a precise time line semantics and in other
windows has a percentage semantics. The algorithms
we are developing then schedule and allocate across
sets of these resources depending on their semantics.
Such an integrated resource model can depict the in-
fluence of one class of algorithms on the other, at least
as far as resource contention is concerned. Developing
a truly predictable runtime platform is the other main
requirement.

The overall main research questions that need to be
addressed in this multi-level scheduling approach are:

e What is the most appropriate choice of the
scheduling algorithm for each window? Since
there are resources common to both the windows,
there are effects at some level of the decisions
taken by one scheduling discipline on tasks in the
other window and vice versa. So the choice of
particular algorithms for the different windows
cannot be addressed as independent design issues.
Having a truly predictable runtime platform eases
the task of dealing with the impact of the two
classes of scheduling on each other.

e In this multi-level scheduling, a difficult research
questions is how to set up the different windows
- i.e., what is the appropriate base-level schedul-
ing needed to efficiently schedule resources among
the two window types. Choices range from stati-
cally allocating some fixed fraction of CPU time
to each window type using a round-robin fash-
ion, to more elaborate schemes which dynami-
cally vary the window sizes depending on relative
importance of different tasks and/or the current
system state and current mix of applications in
the system. The first approach is easier to imple-
ment and the cost of base-level runtime schedul-
ing is small, but clearly, this static scheme suffers
from inflexibility and poor adaptability, and may
result in low utilization of system resources. The
dynamic approach, on the other hand, is much
more responsive to changes in system state and



allows higher resource utilization, but may be ac-
companied by a higher runtime scheduling cost.
More research needs to be done in evaluating the
correct paradigm.

e A related issue is how to handle sharing of re-
sources among tasks in different window types or
different instances of the same window type. De-
pending on resource types, there may be need to
provide some task with exclusive access to a par-
ticular resource across window boundaries. Re-
sources may be non-preemptable (i.e., any usage
of the resource must be in a non-preemptive man-
ner) or serially reusable (e.g., CPU). Tasks might
request exclusive or non-exclusive access to some
resources. There needs to be sharing of infor-
mation among the different window types to en-
sure resource consistency. Some policies are also
needed at window boundaries to enforce some
degree of independence between different win-
dow types. The separation of CPU time itself
is difficult, but modeling and sharing of resources
among deterministic and probabilistic uses pose
hard research questions.

In the hard real-time window, one choice is to use
a Spring-like scheduling approach [2] which uses plan-
ning during admission control to perform integrated
scheduling of CPU and other resources. This planning
approach avoids conflicts over resources by schedul-
ing competing tasks to execute in different time inter-
vals. The current Spring algorithm schedules tasks by
planning task executions onto a continuous and pre-
cise time line into the future. Modifications need to
be made to the algorithm to impart to it the abil-
ity to lay out plans onto discrete windows of time
into the future. Besides the Spring algorithm, more
general purpose real-time scheduling algorithms such
as EDF (Earliest Deadline First) can be used. Us-
ing EDF leads to less scheduling overhead because it
doesn’t plan out tasks taking their resources into con-
sideration. However, the implicit on-demand resource
allocation model allows random interactions between
different tasks competing for the same resource. This
leads to poorer understandability of system resource
contention and the resultant lack of deterministic re-
source control may result in poor predictability espe-
cially under overload conditions.

In the multimedia window, less precise guarantee
based scheduling algorithms can be chosen. For ex-
ample, Round Robin, fixed priority, EDF or the latest
“best” scheduling algorithm can be used. The issues
mentioned above when discussing EDF for hard real-
time tasks are relevant here also. In addition, an im-
portant issue is the modeling of resources. That is,
resources used in a window by different tasks need
to be statistically shared yet ensuring QOS guaran-
tees associated with the resources. Another question
is whether the scheduling algorithm should be preemp-
tive or nonpreemptive. Preemptive scheduling allows
better statistical multiplexing of resources, but on the
other hand, management of the resources across win-
dow boundaries is difficult since a task may get pre-
empted holding some resources at a window boundary.

An important issue is to incorporate into the chosen al-
gorithm the capabilities to take advantage of the flex-
ible resource requirements of multimedia tasks, their
interval-based guarantees, and to exploit the unique
resource modeling that we are proposing. The stan-
dard algorithms like EDF, Round Robin etc. do not
have these abilities and require suitable modifications
before they can be used.

6 Summary

Real-time scheduling research has received consid-
erable attention, especially in the past 10 years. How-
ever, many of the problems addressed are too simplis-
tic for direct use in many systems. Even though it is
difficult and less likely to be amenable to closed form
solutions, it is still necessary to develop scheduling ap-
proaches (both single and multi-level) that are com-
prehensive and integrated. For example, the overall
approach must be comprehensive enough to handle:

e preemptable and non-preemptable tasks,

e periodic and non-periodic tasks,

e tasks with multiple levels of importance (or value
function),

e groups of tasks with a single deadline,
e end-to-end timing constraints,

e precedence constraints,

e communication requirements,

e resource requirements,

e placement constraints,

e fault tolerance needs,

e tight and loose deadlines,

e normal and overload conditions, and
e different metrics in the same system.

The solution must be integrated enough to handle
the interfaces between:

e CPU scheduling and resource allocation,
e /0 scheduling and CPU scheduling,

e CPU scheduling and real-time communication
scheduling,

e local and distributed scheduling,

e static scheduling of safety-critical tasks and dy-
namic scheduling of less critical tasks, e.g., mul-
timedia tasks, and

e disparate levels of resources such as in the manu-
facturing example.



Acknowledgments

This work was supported, in part, by NSF IRI-

9208920, IRI-9318971, and NSF CDA-8922572.

References

[1]

K. Ramamritham, J. Stankovic, and W. Zhao,
Distributed Scheduling of Tasks with Deadlines
and Resource Requirements, Special Issue of IEEE
Transactions on Computers, Vol. 38, No. 8, pp.
1110-1123, August 1989.

K. Ramamritham, and J. Stankovic, Schedul-
ing Strategies Adopted in Spring: An Overview,
chapter in Foundations of Real-Time Computing:
Scheduling and Resource Management, edited by
Andre van Tilborg and Gary Koob, Kluwer Aca-
demic Publishers, pp. 277-306, 1991.

J. Stankovic and K. Ramamritham, The Spring
Kernel: A New Paradigm for Real-Time Systems,
IEEE Software, Vol. 8, No. 3, pp. 62-72, May 1991.

J. Stankovic, K. Ramamritham, and G. Zlokapa,
Real-Time Platforms and Environments for Time
Constrained Flexible Manufacturing, Workshop on
Real-Time Operating Systems and Software, May
1994.

J. Stankovic, Continuous and Multimedia OS Sup-
port In Real-Time Control Applications, Fifth
Workshop on Hot Topics in Operating Systems,
pp- 8-11, May 1995.

J. Stankovic, M. Spuri, M. Di Natale, and G. But-
tazzo, Implications of Classical Scheduling Results
For Real-Time Systems, IEEE Computer, Vol. 28,
No. 6, pp. 16-25, June 1995.



