Prototype Selection
for Composite
Nearest Neighbor Classifiers

David B. Skalak
Department of Computer Science
University of Massachusetts
Ambherst, Massachusetts 01003
skalak@cs.umass.edu

CMPSCI Technical Report 95-74

July 1995

PROTOTYPE SELECTION FOR
COMPOSITE NEAREST NEIGHBOR CLASSIFIERS

A Dissertation Proposal Presented

by

DAVID B. SKALAK

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

DoCTOR OF PHILOSOPHY

July 1995

Department of Computer Science

© Copyright by DAVID B. SKALAK 1995

All Rights Reserved

PROTOTYPE SELECTION FOR
COMPOSITE NEAREST NEIGHBOR CLASSIFIERS

A Dissertation Proposal Presented
by
DAVID B. SKALAK

Approved as to style and content by:

Edwina L. Rissland, Chair

Paul E. Utgoft, Member

Andrew G. Barto, Member

Michael Sutherland, Member

David W. Stemple, Department Chair
Computer Science

ACKNOWLEDGMENTS

I thank my committee chair Edwina Rissland for her inspired guidance and
inspiring support, and members Paul Utgoff, Andy Barto and Michael Sutherland
for their help to me and for the direction that they have given to this research. I
appreciate the assistance of David Mix-Barrington, Victor Lesser, Shlomo Zilberstein
and Bill Lenhart. Thanks to Oliver Selfridge for his enlightening comments and
encouragement. Thanks also to Jeff Clouse and M. Timur Friedman for discussions
and to Neil Berkman for having written and provided me with source code for ID3.
Most of all, I thank Claire Cardie.

This work was supported in part by the Air Force Office of Scientific Research
under Contract 90-0359 and in part by National Science Foundation Grant No. EEC-
9209623 State/University /Industry Cooperative Research on Intelligent Information

Retrieval.

iv

ABSTRACT

PROTOTYPE SELECTION FOR
COMPOSITE NEAREST NEIGHBOR CLASSIFIERS

JULY 1995
DAVID B. SKALAK, B.S., UNION COLLEGE
M.A., DARTMOUTH COLLEGE
J.D., HARVARD LAW SCHOOL
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Edwina L. Rissland

This proposal brings together two problems in classification. The first problem
is how to design one of the simplest and oldest classifiers, the k-nearest neighbor
classifier. The second problem is how to combine classifiers to produce a more effective
classifier.

Our immediate objective is to study a classifier that combines the predictions of
a set of complementary nearest neighbor classifiers using several well-known machine
learning algorithms. We use the term complementary to refer to a set of classifiers
whose predictions may be combined to yield a classifier with accuracy higher than any
of these component classifiers. The resulting architecture is an instantiation of the
stacked generalization framework discussed by Wolpert [1992]. A central problem of
this research is to characterize the senses in which classifiers are complementary and
to present algorithms that create sets of complementary nearest neighbor classifiers.
We propose algorithms that selectively incorporate different sets of prototypes into
nearest neighbor classifiers.

We bias our search for component nearest neighbor classifiers in favor of classifiers

that incorporate only small sets of prototypes. In this proposal we provide evidence

that a very small number of prototypes may be sufficient to give good generaliza-
tion accuracy on several often used data sets. We also show that simple sampling
and search algorithms with a stochastic component may be sufficient to find such
prototypes.

This proposal gives an introduction to the problems of nearest neighbor classifier
construction and combination, reviews related research, gives an overview of the
intended framework for stacked nearest neighbor classifiers, and introduces algorithms
for nearest neighbor classifier construction and combination. Finally, we propose work

to finish the dissertation.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . ..ottt it e e e v

ABSTRACT . o . ottt e e v

LisT OF TABLES e X

L1ST OF FIGURES e xii
CHAPTER

1. INTRODUCTIONo e 1

1.1 A Guide to the Proposal 8

2. RELATED RESEARCH. 10

2.1 Chapter Organization 10

2.2 Prototypes Lo 11

2.2.1 Psychology, Philosophy and Cognitive Science 11

2.2.2 Case-Based Reasoning 12

2.2.3 Machine Learning00 0000 14

2.2.4 Artificial Neural Networks 14

2.3 Constructing Nearest Neighbor Classifiers 16

2.3.1 Pattern Recognition Editing Algorithms 18

2.3.2 Machine Learning Editing Algorithms 21

2.4 Combining Classifierso L. 23

2.4.1 Hybrid Case-Based Reasoning 25

2.4.2 Machine Learning00 26

2.4.2.1 Stacked Generalization 27

2.4.3 Artificial Neural Networks 30

2.4.3.1 Network Combination Techniques 31

2.4.3.2 Network Construction Algorithms 33

2.4.4 Statistical Approaches 34

2.4.5 Computational Learning Theory Algorithms 37

2.5 Limitations of Existing Research 38

2.5.1 Nearest Neighbor Editing Algorithms 39

2.5.2 Combining Classifiers 40

vii

2.6 Conclusion 44
3. A CLASSIFICATION FRAMEWORKttt .. 45
3.1 Chapter Organization 45
3.2 Introduction Lo 45
3.3 Composite Classifier Architecture and Algorithm 46
3.4 Component Classifier Construction 47
3.5 Generating and Testing Classifiers 50
3.6 An Example 52
3.7 Discussion and Motivation 00000 L 58
3.8 Assumptions 64
3.9 Conclusion Lo 67
4. CONSTRUCTING A NEAREST NEIGHBOR CLASSIFIER 68
4.1 Chapter Organization 68
4.2 Introduction L 68
4.3 The Nearest Neighbor Algorithm Applied 69
44 The Algorithmso 71
4.4.1 Baseline Storage Requirements and Classification Accuracy . 71
4.4.2 Monte Carlo (MC1) 72
4.4.3 Random Mutation Hill Climbing 75
4.4.3.1 The Algorithm (RMHC) 75

4.4.3.2 Search for Prototype Sets (RMHC-P) 75

4.5 Search for Prototype and Feature Sets (RMHC-PF1) 77
4.6 Discussiono e e 80
4.7 A Measure of Clustering 81
4.8 Conclusion L 85
5. COMBINING NEAREST NEIGHBOR CLASSIFIERS 87
5.1 Chapter Organization 87
5.2 Selection of a Combining Classifier 88
5.2.1 Experiment Lo 91

5.3 Search for Component Classifiers 92
5.3.1 Classifier Selection through Sampling 93
5.3.2 Classifier Selection through Inconsistency Reduction 93
5.3.3 Classifier Selection through Error Orthogonality 100
5.3.3.1 Experiment 103

5.4 Integrated Search for Combining and Component Classifiers 106
5.5 Conclusion Lo Lo 108

viil

6. PROPOSED WORK . . . o o it i e e e e e e e s s e s e 110

6.1 Chapter Organization 110
6.2 Possible Research Directions 110
6.3 Evaluation 113
6.4 Conclusion 114

APPENDICES

APPENDICES

BIBLIOGRAPHY . . . o ot o e e e e e e e e, 119

X

Table

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

LisT oF TABLES

Page
Classical nearest neighbor editing algorithms. 18
Machine Learning nearest neighbor editing algorithms. 21
Component classifier selection methods 42
Combining classifier algorithms 43
Training set classifier predictions. 53
Derived representations for training instances for composite classifiers
Clg and C23 55
Training set predictions of the six composite classifiers. 56
Test set classifier performance 58
Derived representations for test instances for composite classifiers Cq
and 623 58
Percent of test instances correct for nearest neighbor classifiers that
predict the class of the 7th nearest neighbor, forz =1,2,...,5. The
symbol “t” denotes statistically significant improvement over the
baseline 1-nearest neighbor algorithm (1-NN) at the 0.1 confidence
level; “*” significance at the 0.05 confidence level. A two-sample t-
test for statistical significance assuming equal population variances
isused. 61

Storage requirements (with number of instances in each data set) and
classification accuracy computed using five-fold cross validation
with the l-nearest neighbor algorithm used in this chapter and
pruned trees generated by C4.5. The symbol “*” denotes statistical
significance at the 0.05 confidence level. A two-sample t-test for
statistical significance assuming equal population variances was used. 72

Storage requirements for the 1-nearest neighbor and MC1 algorithms,
average MC1 classification accuracy and average baseline 1-nearest
neighbor classification accuracy using five-fold cross validation. . . 74

Effect on test set accuracy (average percent correct) of number of
prototype sets sampled.o 74

4.4

4.5

4.6

4.7

4.8

5.1

5.2

3.3

5.4

Storage requirements for the prototypes found by RMHC-P, average
classification accuracy for the prototypes selected by RMHC-P, and
average baseline 1-nearest neighbor classification accuracy.

Computation of average storage requirements for RMHC-PF1

Storage requirements and average classification accuracy for the se-
lection of prototypes and features by RMHC-PF1, with average
1-nearest neighbor baseline classification accuracy.

Number of features in the original instance representation and average
number features selected by RMHC-PF1.

Summary of average classification accuracy (% correct) from five-fold
cross validation for the experiments presented in this chapter to
select prototypes and features. Storage requirements, in percentage
of the data set are given in parentheses. The symbol “t” denotes
statistically significant improvement over the baseline 1-nearest
neighbor algorithm (1-NN) at the 0.1 confidence level; “*” sig-
nificance at the 0.05 confidence level. A two-sample t-test for

77

statistical significance assuming equal population variances was used. 81

Comparison of baseline 1-nearest neighbor with the ID3 algorithm,
k—nearest neighbor and voting, for combining randomly selected
component classifiers. Average percent classification accuracy on
test data, using ten-fold cross validation. The symbol “}” denotes
statistically significant improvement over the baseline 1-nearest
neighbor algorithm (NN) at the 0.1 confidence level; “*”, signif-
icance at the 0.05 confidence level.

Component classifier selection algorithms classification percent accu-
racy, using ten-fold cross validation and ID3 as the combination
algorithm. The symbol “” denotes statistically significant im-
provement over the baseline 1-nearest neighbor algorithm (NN) at

the 0.1 confidence level; “*” significance at the 0.05 confidence level.104

Component classifier selection algorithms classification percent accu-
racy, using ten-fold cross validation and a nearest neighbor algo-
rithm as the combination algorithm.

Component classifier selection algorithms classification percent accu-
racy, using ten-fold cross validation and a voting algorithm as the
combination algorithm.00

x1

Figure
1.1

3.1

3.2
3.3

3.4

3.5

3.6

4.1

4.2

4.3

LisT OoF FIGURES

Composite classifier architecture

Composite nearest neighbor classifier architecture. In the training
phase the instance class is supplied to the combining classifier as
an additional input. Lo

Pseudocode for the training algorithm for a composite classifier.
Pseudocode for the classification algorithm for a composite classifier.

Location of data instances in the example. Test instances given in ital-
ics. Class labels given in brackets. Voronoi tessellations are shown
for the classifiers C1, C; and C3. In order to keep the diagram clear,
the tessellations for C'; and C'5 are shown as coincident; they are
not, but all the instances pictured are partitioned into the same
regions by the tessellations for Cy and Co.

ID3 trees for the derived training set for composite classifiers Cyo (left)
and Cog (right).o

Stacked nearest neighbor classifier with £ component k-nearest neigh-
bor classifiers as a generalization of traditional k-nearest neighbor
classifier

Classification accuracy vs. Calinski-Harabasz Index on Iris data

Classification accuracy vs. Calinski-Harabasz Index on Cleveland Heart
Diseasedata

Classification accuracy vs. Calinski-Harabasz Index on Breast Cancer
data

xii

47

48

48

23

56

60

84

84

CHAPTER 1

INTRODUCTION

The ability to classify is one important facet of intelligence. Given a set of
examples that have been assigned a class label, the task of a classification algorithm
is to predict correctly the class of unlabeled examples. Many algorithms have been
developed to perform this task, which is often called supervised learning, but each
classification algorithm works well for some data sets but not for others. Given a
specific data set, the first problem confronting a user is to select a model class for a
classifier, such as linear discriminant functions [Nilsson, 1990], decision trees [Quinlan,
1986] or instance-based classifiers [Cover and Hart, 1967].

Once a model class has been selected, model fitting must be performed: a specific
classifier must be configured for application to the data set. The configuration of
a classifier might involve setting parameters (e.g., k, the number of neighbors to be
considered in a k-nearest neighbor algorithm) or designing more complex functional
sub-procedures (e.g., the rule for combining the predictions of a set of k& neighbors).
The user is faced conceptually with a large set of classifiers of different configurations
that potentially might be applied to the data. The simplest strategy to deal with this
surfeit is winner-take-all: define what it means for a classifier to be the best and choose
a single classifier that is best in that sense. A typical winner-take-all approach is to
pick the algorithm with the highest average cross-validation generalization accuracy.

But picking a single classifier that is somehow the best forecloses the possibility
that the losing candidates could contribute to classification predictions. Perhaps
another classifier can predict with high accuracy examples of a sort that are poorly
classified by the winning classifier, for instance. Perhaps a disagreement in predictions

between two strong classifiers suggests the level of confidence that can be associated

with either prediction. Perhaps selecting a few classifiers and taking the majority vote
of their predictions will be more accurate than any of the sampled classifiers. In order
not to foreclose potential advantages such as these, an alternative to winner-take-all is
desirable: combine the predictions of a set of classifiers with different configurations.
This alternative is the subject of this proposed thesis.

While there are many strategies for combining classifiers, a straightforward ap-
proach has been captured by Wolpert in the stacked generalizationframework [Wolpert,
1992; Wolpert, 1993]. In its most basic form, a layered architecture is created with
a set of classifiers forming a first layer and a single combining algorithm forming
a second (somewhat degenerate) layer (Figure 1.1). A set of component classifiers
(called by Wolpert level-0 classifiers) in the first layer take an instance as input
and each makes a class prediction. The component predictions are amalgamated by
a combining classifier (level-1 classifier) and the ultimate prediction of the entire

composite classifier (stacked classifier) is output.

Prediction

Combining
Classifier

Component
Predictions

Component
Classifiers

Figure 1.1. Composite classifier architecture

Many open questions are raised by this simple framework!. Wolpert has gone so
far as to observe:

It is important to note that many aspects of stacked generalization are, at

present, “black art.” For example, there are currently no hard and fast rules

saying what level 0 generalizers one should use, what level 1 generalizer one

1'We discuss the similarity of this framework to a two-layer neural network in Section 3.7.

should use, what & numbers to use to form the level 1 input space, etc. [sic]
In practice one must usually be content to rely on prior knowledge to make
(hopefully) intelligent choices for how to set these details. [Wolpert, 1992,
p.245].

Wolpert’s observation is as true today as when it was made. From a broad
metaphorical perspective, the goal of the proposed research is to realize some of the
promise of the stacked approach to classification by turning black art into science. We
can begin to move beyond witchcraft by identifying three subproblems of the general

problem of combining classifiers.

Problem 1: Selection of a Combining Classifier. Given a set of component clas-
sifiers and a data set as input, output a combining classifier that maximizes the

generalization accuracy of the resulting composite classifier.

Problem 2: Search for Component Classifiers. Given a combining classifier and
a data set as input, output a set of component classifiers that maximizes the

generalization accuracy of the resulting composite classifier.

Problem 3: Integrated Search for Combining and Component Classifiers.
Given sets of available combining classifiers and component classifiers and a
data set as input, output a combining classifier and component classifiers from
those sets that maximize the generalization accuracy of the resulting composite

classifier.

Our primary focus in the thesis will be on Problem 2, selecting the component
classifiers. Problem 2 is the central, keystone problem of these three. The reason
is based in the fundamental observation in artificial intelligence that given the right
representation of the data, problem-solving and learning can be easy [Barr et al.,
1981]. The role of the component classifiers is analogous to the role of the first layer

of units in a neural network: to effect a re-representation of the input data. In the

4

stacked generalization framework each input item is re-represented as a vector of
predictions of the component classifiers (the derived training set). In keeping with
the fundamental observation, we focus on selecting a set of suitable classifiers to make
learning from the derived training set easy. Once a suitable derived training set is
created, Problem 1 may be solved easily, with predictions combined by an off-the-shelf
algorithm. Finally, given an appropriate derived training set, the interaction between
the component and combining classifiers — the source of difficulty underlying Problem
3 — may also be lessened.

Insufficient attention has been paid to Problem 2, the selection of component
classifiers. The previous researchers who have offered suggestions about solutions
have relied primarily on informal characterizations. It has been observed by one re-
searcher that “the biggest gains came when dissimilar sets of predictors were stacked”
[Breiman, 1992, p.4] when he stacked different types of linear regressions. Wolpert has
suggested, on the basis of a hypothetical example where three component classifiers
made exactly the same predictions, that “one should try to find generalizers which
behave very differently from one another, which are in some sense ‘orthogonal,’
so that their guesses [predictions] are not synchronized” [Wolpert, 1993, p.6]. In
Chapter 2 (Related Research) we catalog types of “dissimilar” classifiers that have
been combined in previous research. However, the dimensions along which classifiers
should be dissimilar in order to serve as effective component classifiers has not been
studied closely or characterized precisely. This thesis proposes to begin to fill this
gap.

As an initial matter, we suggest a shift in vocabulary, which suggests a shift in
perspective that distinguishes previous approaches to component selection from our
own. Rather than dissimilar component classifiers, we suggest the term complemen-
tary. Our approach will be to construct the component classifiers with the goal that
they be combined. The few previous stacking efforts have identified ways of choosing

dissimilar component classifiers, without regard to whether they will actually work

well together in a composite classifier. “Dissimilar,” meaning not alike, does not
capture adequately this cooperative notion. Dissimilar classifiers can be different in
a way that does not aid their combination.

To drive this point home, consider an analogy to a college basketball team. The
members of the team are analogous to component classifiers. Team members may
be selected according to some criterion of dissimilarity. They may be from different
states, they may be of different races, or they may have different majors. None of these
differences probably would optimize or even affect their performance together. But if
they are chosen to be complementary with the idea that together they should make a
winning team, then a good play-maker, a good outside shooter and a good rebounder
will be chosen as part of the team. On the other hand, dissimilarity can give rise
to complementarity by coincidence: if the players of various heights are selected, for
example. But a better approach would rely less on coincidence, by determining the
precise sense in which the players’ skills should be complementary and then fielding
a team according to that determination. So, we argue, should component classifiers
be selected.

In addition to complementarity, there are other desired constraints that one
might place on component classifiers, and we therefore bias our search for component
classifiers in favor of those that satisfy some reasonable related constraints. All other
things being equal, one might prefer (a) fewer component classifiers over more, (b)
computationally inexpensive ones over more expensive, and (c) simpler component
classifiers over more complex ones.

Clearly, one would prefer fewer classifiers, since training and application costs will
be lower than for a composite that incorporates more components. Since composite
classifiers require the training of a number of component classifiers and a combining
classifier, there is a strong desire to limit the number of the component classifiers in

a composite system.

6

Computationally expensive component classifiers that require high training costs
or application costs can be a substantial drawdown on resources. For example, a com-
posite classifier that consists of a linear combination of a set of 10 multilayer networks
trained with backpropagation (as by Perrone [Perrone, 1993]) can be computationally
expensive to implement. Excessive costs also have the detrimental methodological
side-effect of slowing the pace of experiments that can be performed.

Finally, we pose a bias in favor of simpler classifiers, which is a reflection of
Occam’s Razor [Blumer et al., 1987]. A simpler classifier is one that generates a
simpler concept hypothesis, which is shorter in some concept representation language
[Angluin, 1992]. Where overly complex hypotheses are permitted, the potential for
overfitting a training set is present. We propose to mitigate this potential problem
by applying simple classifiers. The danger of overfitting is still present with a simple
classifier, but ought to be less likely in that simple classifiers admit concept hypotheses
that are not complex and admit fewer of them. For some model classes, simple
classifiers are less expensive to train and to apply as well.

Putting complementarity together with these three constraints allows us to formu-
late our proposed contribution. The contribution of this research will be to evaluate

the hypothesis:

Effective and efficient composite classifiers can be constructed in many domains
using a stacked generalization framework that incorporates a small number of simple

component classifiers that are complementary.

The proposed research will provide characterizations of complementary, and then
provide algorithms that construct classifiers that are in fact complementary according
to each characterization.

Thus this research will propose a theory of classifier combination based on compo-
nent classifier complementarity and to explore the theory’s strengths and weaknesses.

We propose to investigate the issues involved in this hypothesis by implementing a

7

system that uses heuristic measurements of component classifier complementarity to
guide the search for component classifiers.

We have chosen to limit the implementation to three combining algorithms and
to k-nearest neighbor component classifiers. The three combining algorithms are
voting [Littlestone and Warmuth, 1989], ID3 [Quinlan, 1986], and k-nearest neighbor
algorithms [Cover and Hart, 1967]. We justify these choices in more detail later, but
previous research has shown that nearest neighbor and ID3 classifiers have different
strengths. Voting is a traditional technique for amalgamating categorical preferences
in many social and scientific settings.

As a matter of fidelity to the scientific method, we cannot say what our investi-
gations of the hypothesis will yield. If there is insufficient support for the hypothesis,
then we shall show where it fails and explain why, to circumscribe the limits of
our hypothesis about classifier combination. In view of the dicta from previous
researchers about the importance of dissimilarity, then this demonstration would be
a contribution in itself. On the other hand, it would be disingenuous not to offer
our expected result: that accurate and efficient composite classifiers can be designed
using a small number of k-nearest neighbor classifiers.

Indeed, we have preliminary empirical support for the central hypothesis. In
Chapter 4 we show that on the data sets tested, classifiers with small numbers of
prototypes can outperform classifiers that use all instances as prototypes, resulting
in a reduction of on-line storage costs of up to two orders of magnitude. Further,
we show that even simple search techniques are adequate to locate sets of prototypes
that have good generalization accuracy. We discuss other approaches to prototype
selection in Chapter 2. In Chapter 5 we provide preliminary experimental evidence
of the accuracy of several algorithms for creating component classifiers.

The problem we propose is at the confluence of two streams of research: nearest
neighbor classifier configuration and composite classifier construction. Until now these

problems have been treated independently. A methodological contribution of this

research will be to demonstrate that one path to progress on both problems is to treat
them as dependent problems to be solved simultaneously. Constructing composite
classifiers using nearest neighbor building blocks can suggest ways to configure nearest
neighbor classifiers — selecting prototypes in particular — and exploring the ways to

configure nearest neighbor classifiers can offer new classifiers to combine.

1.1 A Guide to the Proposal

In broad outline, this proposal takes a canonical form. The general problem has
been introduced. Next, previous research from a variety of related areas is surveyed,
followed by a discussion of how previous work can be supplemented. A solution
framework is introduced in general terms, which realizes some of the extensions and
improvements to previous research. Next, detail for the framework and a partial
implementation are presented. Preliminary experiments supporting the utility of the
proposed approach are given. Last, work to finish the dissertation is proposed.

The proposal is organized into the following chapters:

Chapter 2: Related Research. We survey the role of prototypes in several disci-
plines, the selection of prototypes for nearest neighbor classifiers and the com-
bination of classifiers. We describe the framework of stacked generalization
for classifier combination [Wolpert, 1992] and the many open problems that

it engenders.

Chapter 3: A Classification Framework. We propose a stacked, two-layer clas-
sifier architecture of small nearest neighbor classifiers and a combining classifier,
introduce several algorithms for selecting component classifiers, and provide
motivation by showing that our approach extends previous work and is analogous

to successful work in related areas of machine learning.

Chapter 4: Constructing a Nearest Neighbor Classifier. We first consider the

problem of creating an independent nearest neighbor classifier that incorporates

only a few prototypes. We show that some simple sampling and stochastic
search techniques can locate sets of prototypes with good classification accuracy
on several data sets. Finally, we show that a measure of clustering of the classes
in a data set is correlated with the accuracy of a sampling algorithm to select

prototypes.

Chapter 5: Combining Nearest Neighbor Classifiers. Our preliminary algorithms
to select complementary nearest neighbor classifiers are described, and we com-

pare several off-the-shelf learning algorithms for classifier combination.

Chapter 6: Proposed Work. In the final chapter, we suggest alternative paths to

complete this project.

CHAPTER 2
RELATED RESEARCH

2.1 Chapter Organization

The problems of prototype identification, nearest neighbor algorithm design and
composite classifier creation have been considered either directly or by analogy in
various disciplines, including cognitive science, case-based reasoning, statistical pat-
tern classification, machine learning and the theory of artificial neural networks. The
relation of previous research to this proposal takes several forms. In some cases,
related work merely provides part of a broad background of ideas underpinning this
research. Cognitive science research into the nature of prototypes is an example.
In other cases, related work has a direct bearing on our proposed research, espe-
cially where we provide alternative methods to accomplish classical tasks (reducing
prototype sets) or use a very general framework that has been previously identified
(stacked generalization to create composite classifiers). Other topics are brought
into play in a less direct way, often by analogy, as with the analogy of dynamic
neural network construction to the incremental addition of component classifiers to

a composite classifier.

This chapter is organized to reflect the hierarchy of the objects of study. Treated

in order are

1. prototypes, which are selected to build ...
2. nearest neighbor classifiers, which are combined to build ...

3. composite classifiers.
We examine the relevant work on these three topics from the standpoint of several
disciplines. We then suggest ways that the previous research can be extended or

improved.

11

2.2 Prototypes
2.2.1 Psychology, Philosophy and Cognitive Science

The examples of a category that are best in some sense are called “prototypes.”
Prototypes have been advanced as the basis for theories of category representation,
category learning, and classification [Smith and Medin, 1981]. The existence and
utility of prototypes have been recognized as a response to the inadequacy of the
classical model of categorization. The classical model of categorization holds that
there is a necessary and sufficient set of criteria that determine whether an object is a
member of a category. While this classical model went unchallenged for a long time,
psychological studies and philosophical investigations have demonstrated that often
some examples of a category are better than others, undercutting the classical theory
[Smith and Medin, 1981; Rosch and Mervis, 1975). One response was the prototype
model of categorization. In the prototype model, sometimes called prototype theory,
a new example is classified as in or out of a category on the basis of the weighted
similarity of the features possessed by the prototype and the example [Smith and
Medin, 1981].

Wittgenstein was one of the first to undercut the classical theory of categorization.
In a famous example Wittgenstein observed that there was apparently no set of
necessary and sufficient features that in general characterize a game [Wittgenstein,
1953]. He coined the term family resemblance to characterize the relationship among
various examples of games, a term later used by Rosch and colleagues [Rosch and
Mervis, 1975]. Wittgenstein used the game example to demonstrate that categories
can have extensible boundaries and that categories can have both central and non-
central members.

Much of the trail-clearing research in cognitive science on prototypes and their
relation to category structure has been done by Eleanor Rosch, who conducted a series
of experiments documenting prototype effects, which are asymmetries in goodness-

of-example ratings [Rosch and Mervis, 1975]. Such asymmetries could not exist

12

under the classical view of category structure. Rosch found prototype effects along
a large number of experimental dimensions: direct rating of goodness-of-example,
reaction time, production of examples, asymmetry in similarity ratings, asymmetry
in generalization, and family resemblances. However, Rosch does not hold that
prototype effects mirror a particular category structure based on prototypes. Rather,
a variety of category structures and mental representations could account for the
experimentally determined prototype effects. Nonetheless, some researchers believe
that Rosch’s experimental evidence does provide a theory of representation of category
structure [Lakoff, 1987]. Lakoff maintains that domain knowledge is organized by
humans in structures called idealized cognitive models (ICMs) and that prototype
effects are side-effects of that organization [Lakoff, 1987].

Work from philosophy, psychology and cognitive science thus converged to un-
dercut theories of categorization that depended on the presence of necessary and
sufficient membership criteria and substituted a view of concepts that depended
on recognizing prototypical examples. Case-based reasoning is built in part on the
general notion that examples — cases — are not fungible and that careful attention
to individual cases is a basis for reasoning in a variety of applications [Rissland, 1977;

Rissland, 1978; Rissland, 1981]

2.2.2 (Case-Based Reasoning

In general, case-based reasoning (CBR) systems retrieve similar cases for further
analysis or adaptation [Rissland, 1989], not usually for classification. However, a
number of case-based reasoning systems have relied on prototypes, usually for memory
organization. In these systems a prototype is used to index cases that are similar to
the prototype. Typically, prototypes have been used in a two-phase retrieval process.
The first phase compares a new case to the small set of prototypes. Once the most

similar prototype has been found, in the second phase the new case is compared to the

13

cases that are indexed by the prototype. We consider the role played by prototypes
in several CBR systems.

McCarty and Sridharan proposed a representation for legal cases as consisting of
legal prototypes plus possible deformations of them [McCarty and Sridharan, 1982).
Their approach anticipated, from a legal standpoint, Lakoff’s view from cognitive
science that some categories can be represented as a radial structure with a prototype
at its hub, rules that generate other category members at the spokes, and other
category members along the rim [Lakoff, 1987, pp.83-84]. More recently in the law,
Sanders applied a notion of example prototypes plus deformations of so-called safe
harbor plans to creating plans for income tax transactions [Sanders, 1994]. Safe-
harbor plans are stereotypical plans to achieve a certain result under the tax code.

The ReMind CBR development shell [Cognitive Systems, Inc., 1990] also incor-
porates a facility for the user to create prototypes to index a case base. Prototypes
are combinations of simple predicates on features (e.g., bathrooms > 2 and schools
= good). When a problem case satisfies these predicates and therefore matches a
user-defined prototype, all the cases indexed under that prototype are retrieved for
further filtering.

PROTOS is an example of a CBR reasoning system that does rely on case
prototypes for classification, the diagnosis of ear diseases [Bareiss, 1989]. Prototypes
in PROTOS capture the typical features of a diagnostic category and are the cases
to which appeal is first made. The similarity of an input case to the prototypes (the
prototypicality rating) determines the order in which stored cases are selected for
further, knowledge-based pattern matching. The degree of prototypicality of a case is
increased for each example that is successfully matched to the prototype. PROTOS
is an interactive assistant for intelligent classification and prototypicality ratings may
be increased manually by a supervising teacher as well.

Thus in case-based reasoning, prototypes have been used as the cases to which

14

comparison should be made first. We next consider briefly the role of prototypes in

machine learning.

2.2.3 Machine Learning

The interest of machine learning researchers in prototypes understandably has
been on how they can be used for classification, since classification is a fundamental
task studied in machine learning, rather than on their inherent interest. Therefore we
postpone a discussion until Section 2.3, where we discuss the selection of prototypes
for nearest neighbor classification. However, some machine learning research has
exploited the notion that some instances exhibit a high degree of typicality and this

research warrants brief mention here.

Prototypes are often thought to be instances with large typicality in a domain.
Minsky has observed, for example, “The problem of reading printed characters is a
clear-cut instance of a situation in which the classification is based ultimately on
a fixed set of ‘prototypes’.” [Minsky, 1965]. Rosch’s family resemblance measure
[Rosch and Mervis, 1975] is a primary example of a typicality measure, and it has
been used to identify prototypes for classification tasks by Zhang [Zhang, 1992]. This
typicality measure is based on the statistical distribution of instances in the class and
the distribution of features values within class and between classes. Zhang suggests
that the average typicality of instances in a dataset can be used to characterize a
dataset as a whole. In other implementations, the reliability of an instance when
used for prediction can be implemented as a weight attached to each instance in

order to give a graded structure to a category [Aha, 1990; Salzberg, 1991].

2.2.4 Artificial Neural Networks

Two artificial neural network algorithms related to prototype identification are
learning vector quantization and radial basis functions. Learning vector quantization
is used to locate prototypes; radial basis function networks require the identification

of prototypes in order to perform function approximation.

15

Vector quantization is an incremental technique for finding prototypes for un-
supervised vectors of real numbers [Hertz et al., 1991]. Kohonen and colleagues
have extended vector quantization to supervised data with real-valued components
in an algorithm called Learning Vector Quantization (LVQ) [Kohonen et al., 1988;
Kohonen, 1989]. For each training vector, the algorithm computes the closest pro-
totype of a set of prototypes of a fixed cardinality. The closest prototype vector is
moved toward the training vector if the classification is correct, and moves the closest
prototype vector away from the training vector if the classification is incorrect. The
locations of the other prototypes in the set are left unchanged. A more recent version
of the algorithm (LVQ2) adjusts the decision boundary by moving both a misclassi-
fying closest prototype and a correct next-closest prototype, but only under certain
conditions. LVQ2 has shown improved performance over LVQ [Kohonen et al., 1988;
Hertz et al., 1991].

Radial basis function (RBF) networks also provide an analogy for prototype selec-
tion [Poggio and Girosi, 1990; Hutchinson, 1993; Wasserman, 1993]. RBF networks
are a function approximation method in which Gaussian or other basis functions are
located at a set of points in the input space, often called the centers (since they are
the centers of the often radially symmetric basis functions). The function values at
new points are a weighted sum of the Gaussian values, weighted by the distance of
the new point from the centers.

While the details of RBF networks are not relevant here, there is a similarity
between the problem of finding appropriate RBF centers and the problem of prototype
selection for traditional nearest neighbor classification algorithms. Several approaches
have been applied to placing the centers, including the computationally expensive
technique of using all input instances as centers [Wasserman, 1993, simple clustering
methods [Burrascano, 1991], LVQ [Kohonen et al., 1988], and applying supervised
learning algorithms [Wettschereck and Dietterich, 1992]. Wasserman [Wasserman,

1993] observes that there is no guaranty of optimality for the cluster centers under

16

any of the known techniques, and that cross validation is often used to select the best
centers.

In this section we have surveyed briefly the roles that prototypes have played in
a variety of disciplines. In the next section we show how prototypes have been used

for one particular task, building nearest neighbor classifiers.

2.3 Constructing Nearest Neighbor Classifiers

In this section we deal with research that is related to the intermediate level
(Figure 1.1) of our classification hierarchy: nearest neighbor classifiers, which are
built from prototypes, and which will be used to construct composite classifiers.

In this proposal, our primary technique for increasing classification accuracy, as
well as reducing the computational expense of nearest neighbor computation, is to
select a proper subset of the training instances to be used as prototypes. Two other
general classes of methods have been applied to the subgoal of reducing the computa-
tional expense of nearest neighbor retrieval: (1) improved data structures for neighbor
retrieval, particularly k-d trees [Moore, 1990], and (2) feature selection [Cardie, 1994;
Skalak, 1994; Tan and Schlimmer, 1990]. Improving the data structures used for
retrieval will not in itself improve the accuracy of classification, just the speed. Feature
selection has been studied for a long period by the statistics, pattern recognition and
machine learning communities [Krzanowski, 1988]. Our focus for this subsection is
on the characteristics of the algorithms that have been used to find prototypes for
nearest neighbor classification.

Reducing the number of prototypes used for nearest neighbor retrieval has been a
topic of research in the pattern recognition and machine learning communities for 25
years [Hart, 1968]. The problem is sometimes called the reference selection problem
and the algorithms to perform this task have been called editing algorithms or editing
rules [Dasarathy, 1991]. Editing algorithms fall into two general groups. The first set

of algorithms stems from pattern recognition research in the 1970’s. The second set of

17

algorithms has been presented more recently by machine learning researchers, mostly
in the 1990’s. While the algorithms presented by the two groups are not very different
(and in some cases, are identical), in view of the historical division of efforts in this
area, we treat the two sets of algorithms in separate subsections. Useful surveys of
such editing algorithms have been undertaken by Aha [1990] and Dasarathy [1991].

The term “prototype” has been adopted by a number of different research commu-
nities and the result is ambiguity in the application of the term. Whereas in cognitive
science the term is used to refer to a distinguished example, in pattern recognition
research the term is used to refer more generally to any reference instance used in
a nearest neighbor classifier, in particular those that remain after the application of
some editing algorithm. The term prototype is ambiguous because the connection
between the cognitive science and pattern recognition notions of a prototype has
not been precisely characterized. This connection could provide grounds for useful
research into whether distinguished examples for a domain are the ones that are best
retained as reference instances in classifiers.

In both research communities the goal of editing a set of instances is to reduce the
expense of nearest neighbor computation without sacrificing generalization accuracy.
Examples of the various approaches to the problem have included storing misclassified
instances ([Hart, 1968; Gates, 1972; Aha, 1990]); storing typical instances [Zhang,
1992]; storing only training instances that have been correctly classified by other
training instances [Wilson, 1972|; exploiting domain knowledge [Kurtzberg, 1987);
and combining these techniques [Voisin and Devijver, 1987]. Other systems deal with
reference selection by storing averages or abstractions of instances [Chang, 1974;
de la Maza, 1991]. In the next two sections, we survey important representatives of

editing algorithms.

18

2.3.1 Pattern Recognition Editing Algorithms

In this section, we review the major algorithms for creating nearest neighbor
classifiers with a reduced set of prototypes designed during the first wave of interest in
this topic. As many techniques as there are synonyms for “edited” have been created,
including condensed, selective and reduced algorithms. In addition to similarity in
their names, many of the algorithms for achieving a reduction have relied on similar
procedures.

Classical editing algorithms can be characterized according to whether the algo-
rithm works from the top-down, starting with the entire data set and filtering the
instances according to some rule to arrive at a set of prototypes; or from the bottom
up, starting from the null set of prototypes or a random sample of instances, one from
each class, and adding prototypes one-by-one according to some rule.

Table 2.1 collects the major editing algorithms developed by researchers generally

associated with pattern recognition research. We describe each in turn.

Table 2.1. Classical nearest neighbor editing algorithms.

| Name H Abbrev. H Cite ‘ Derivative 0f|
Condensed NN CNN Hart, 1968
Reduced NN RNN Gates, 1972 CNN
Iterative Condensation || ICA Swonger, 1972 | CNN
Edited NN ENN Wilson, 1972
Selective NN SNN Ritter, 1975
Unlimited ENN Tomek, 1976 ENN
All k-NN ENN Tomek, 1976 | ENN
MultiEdit Devijver, 1980

Condensed Nearest Neighbor. Apparently the earliest editing rule was Hart’s
Condensed Nearest Neighbor algorithm [Hart, 1968]. Hart uses a bottom-up
approach, adding an instance to the prototype set if it is misclassified by applying
the 1-nearest neighbor rule with all the other instances used as prototypes.

Hart introduces the notion of a minimal consistent subset, a smallest subset

19

of the complete set that also classifies all the original instances correctly, but his
algorithm does not achieve such a subset. In practice, it does reduce the number

of instances retained, however.

Reduced Nearest Neighbor. The Reduced Nearest Neighbor algorithm is an iter-
ative, top-down variant of the Condensed algorithm [Gates, 1972]. An instance is
deleted from the prototype set if its deletion does not result in a misclassification
of any of the other instances. Deletion continues until no further deletions have

been made in an iteration.

Iterative Condensation. The Iterative Condensation algorithm (ICA) is also a
variant of the Condensed algorithm, with the advantage that it may either add
or delete prototypes from the prototype set [Swonger, 1972]. The prototype set
is initialized with one instance from each observed class in the training set. The
algorithm makes multiple passes through a training set. During each pass, ICA
deletes prototypes from the prototype set that were not the closest prototype
for any instance in the training set. Instances that have the highest margin of
misclassification (the difference between the distance to the closest prototype of
the correct class minus the distance to the closest prototype of an incorrect class)
for a pass are added to the prototype set. The algorithm is not guaranteed to

converge.

Edited Nearest Neighbor. The Edited Nearest Neighbor algorithm is a top-down
algorithm that retains correctly classified instances in the prototype set [Wilson,
1972]. For each instance in the data set, the k-nearest neighbor rule is applied
to determine if the instance is correctly classified according to that rule. (In this
selection phase, k is fixed in advance, and k£ = 3 is suggested by Wilson.) If
the instance is correctly classified, it is retained; if it is not classified correctly,
the instance is deleted from the prototype set. Wilson’s algorithm then uses a

1-nearest nearest algorithm for the classification of new instances.

20

Selective Nearest Neighbor. In the Selective Nearest Neighbor algorithm, Ritter
and colleagues heuristically extend the definition of a minimal consistent subset
[Ritter et al., 1975]. In addition to the consistency and minimality requirements,
Ritter introduces a requirement that each instance in the data set be nearer to
a prototype of the same class than to any instance in the other class. This
additional requirement gives rise to a relation that associates with each instance
the instances that are of the same class and are closer than any instance of
another class. The prototype set generated by the Selective algorithm is a
smallest subset of the dataset that contains at least one related member for

each instance in the dataset.

Unlimited and All k-NN Edited Nearest Neighbor. Tomek provides two vari-
ants of the Edited Nearest Neighbor algorithm (ENN) [Tomek, 1976]. In the
first variant, the Unlimited ENN algorithm, the ENN procedure is iteratively
applied, with additional passes made through the set of stored prototypes. In
the second variant, the All k-NN algorithm, the ENN procedure is repeated using

an ¢-nearest neighbor algorithm in the selection phase fori =1,2,..., k.

MultiEdit. The MultiEdit algorithm [Devijver and Kittler, 1980] is an iterative
top-down algorithm that discards misclassified instances from the prototype set,
but invokes a form of cross validation to do the editing. The data are randomly
partitioned into an ordered list of N subsets. Each of the N subsets is classified
using the instances in the next subset in the partition as prototypes, and applying
a l-nearest neighbor algorithm. Instances that are misclassified are discarded.
The remaining data are pooled to form a new set and the procedure is iterated.
If a threshold number of iterations have resulted in no editing, the loop is exited

and the algorithm outputs the remaining instances.

21

2.3.2 Machine Learning Editing Algorithms

Since the foundational work done around the 1970’s on editing algorithms, re-
searchers from machine learning have re-visited the problem. Table 2.2 lists notable
recent examples. Many of the more recent nearest neighbor algorithms can work
directly with symbolic attribute values and admit weighting of individual instances
by scalars. Weighting instances by real values is of course a generalization of the 0-1
weights implicitly applied by algorithms that only retain or delete an instance in the

prototype set.

Table 2.2. Machine Learning nearest neighbor editing algorithms.

‘ System H Cite ‘ Stored Instances ‘
IB2 Aha, 1990 misclassified
IB3 Aha, 1990 statistically reliable
PEBLS || Cost and Salzberg, 1991 | weighting
EACH Salzberg, 1991 weighting
TIBL Zhang, 1992 typical
BIBL Zhang, 1992 boundary
SRIBL Zhang, 1992 misclassified

IB2 and IB3. Aha’s IB2 algorithm, which is very similar to the Reduced Nearest
Neighbor algorithm, provides one way to reduce storage requirements [Aha,
1990]. For symbolic predictions, IB2 saves only misclassified instances. In the
case of numeric classes, only those instances are saved whose prediction is outside
a parameterized interval around the actual classification. A second algorithm of
Aha, IB3, uses only acceptable, non-noisy instances as prototypes. To determine
if an instance is acceptable, first an instance is provisionally accepted if it is
misclassified according to the (applicable symbolic- or numeric-class) criteria of
IB2. Only those acceptable instances that display statistically significant predic-
tive accuracy are ultimately retained and allowed to participate in predictions,
however. To determine statistical significance, prediction records are maintained

for stored instances that record the number of correct predictions and the total

22

number of predictions attempted. A statistical test, the confidence intervals of
proportions test, is applied to the prediction records to determine if each instance

provides significantly accurate classification.

EACH and PEBLS. The EACH system [Salzberg, 1991] and PEBLS [Cost and
Salzberg, 1993] associate a numerical weight with each instance in memory, which
is used as a coefficient in the computation of the distance between instances.
Like Aha’s IB3, the weight reflects the classification performance history of each
instance. The weight is the ratio of the number of times the instance was used
as a classifying neighbor to the number of times it was used correctly. This
weighting results in unreliable instances having weights that are greater than

one, resulting in a greater distance from other instances.

TIBL, BIBL and SRIBL. Zhang developed three instance-based learning systems
to compare the classification accuracy of storing misclassified instances (SRIBL),
typical instances (TIBL), and atypical boundary instances (BIBL) [Zhang, 1992].
SRIBL (Storage Reduction Instance-Based Learning System) follows IB2, re-
peating the process of finding misclassified instances and storing them until
all instances are correctly classified. Zhang’s TIBL (Typical Instance-Based
Learning System) instead stores the most typical instance that is not currently
stored whose addition to instance memory results in a correct classification for
each previously misclassified instance. Zhang based the measure of typicality
on Rosch’s family resemblance measure, a ratio of an instance’s intra-class sim-
ilarity to its inter-class similarity. In TIBL, each stored exemplar is assigned a
weight that reflects its typicality so that the more typical instances have greater
influence on a classification decision. The BIBL (Boundary Instance-Based
Learning Algorithm) algorithm stores instances of the least typicality, which
were exceptional and boundary instances. Zhang found that BIBL performed

quite poorly on some data sets.

23

All of the above algorithms output a subset of (possibly weighted) instances from
the original data set. A different approach is exemplified by the research of Chang
[1974], which creates artificial prototypes that are not “real” instances. The idea is
to start with every instance in a training set as a prototype, and then successively
merge (in some fashion) any two nearest prototypes of the same class so long as the
classification accuracy is not downgraded. The PROTO-TO system of de la Maza
[1991] also creates artificial prototypes, which de la Maza calls “augmented.” Case-
based reasoning systems that rely on case merging to reduce the number of stored
instances include PROTOS [Bareiss, 1989] and CABOT [Callan et al., 1991]. Kibler
and Aha [1988] have compared instance-averaging with instance-filtering techniques
and found that while the two methods appeared to have equivalent classification
accuracy and storage requirements, misclassified instances can be included in the
prototype sets of instance-averaging algorithms. They found that instance-filtering
algorithms were more appealing on that basis.

In this section we have reviewed many techniques for editing a training set to yield
a set of prototypical instances for nearest neighbor classifiers. In the next section we

move up the hierarchy to survey previous classifier combination research.

2.4 Combining Classifiers

In this subsection we focus on the methods that previous researchers have used to
combine the classification predictions of a set of classifiers. The problem of combining
classifier systems has received a large amount of recent attention (e.g., [Wolpert,
1993]), but has been a recognized area of research for quite a long time. In seminal
artificial intelligence research such as Selfridge’s Pandemonium [Selfridge, 1959] and
Nilsson’s committee machines [Nilsson, 1990](originally published in 1965), the idea of
combining classifiers was advanced. In 1989, Clement reviewed over 200 papers on the

more general issue of combining forecasts [Clement, 1989]. Particular research interest

24

recently has been shown in the combination of neural classifiers (e.g., [Edelman, 1993;
Jacobs et al., 1991; Jordan and Jacobs, 1993; Perrone, 1993].)

Classifier combination is known under a number of names, depending on the
research community and the application, including ensemble or consensus methods,
hybrid or composite models, fusing, estimator combination and forecast combination,
aggregation or synthesis. Here we have adopted the terminology that in a compos-
ite classifier the predictions of component classifiers are combined by a combining
classifier.

Because classifier combination is such a large subject, a fine screen is required to
unearth previous work that is relevant to the proposed research, and to discuss those
salient aspects in sufficient detail so that the contributions of the proposed efforts
will be clear. An example of a line of research that is not particularly germane is the
subfield of machine learning that has emerged to deal with the integration of different
inferential strategies to solve problems, called multistrategy learning [Michalski, 1994].
Strategies encompass broad classes of rational methods in this terminology, such as
empirical generalization, constructive induction, deductive generalization and expla-
nation [Michalski, 1994, p.4]. The problem of multistrategy combination is broader
than our effort, since we apply only a single inferential strategy, inductive concept
learning.

In order to maintain a clear focus in the following survey, we shall try to provide

answers to the following questions, where they are applicable:

1. Are the component classifiers assumed to be given a priori or is a theory provided

as to how to select them?

2. What is the scope of each component classifier? Is it used to classify the entire

instance space or a proper subset of it?

These particular questions are relevant because the answer to one or both of them

will distinguish our proposed line of research.

25

Methods for selecting classifiers to be combined and combining their predictions

can be grouped into five categories, which reflect the approaches of five research fields:

1. Hybrid systems that integrate case-based and other methods from case-based

TeasSONINg

2. Stacked generalization and recursive partitioning (divide-and-conquer) methods

from machine learning
3. Modular networks from artificial neural network theory
4. Stacked regression from statistics
5. Voting algorithms from computational learning theory

We consider, in order, progress on the combination of predictions contributed by

these disciplines.

2.4.1 Hybrid Case-Based Reasoning

While the tasks performed by case-based reasoning systems are often not simply
classification tasks, the combination of case-based systems and other algorithms
has been a fairly active area of research, including CABARET (case-based module
combined with rule-based module; the shell is instantiated in a legal domain) [Rissland
and Skalak, 1991], KRITIK (case-based and model-based module for mechanical
design) [Goel, 1989], FRANK (case-based and OPS5 system in planning framework for
diagnosis tasks) [Rissland et al., 1993], IKBALS-II (case-based and rule-based system
for law) [Vossos et al., 1991], and MEDIATOR (case-based and decision-theoretic
modules combined for labor negotiation) [Sycara, 1987). The emphasis in these
projects was frequently on the control strategies or the implementation framework for
integrating the component reasoning modules. In some cases these control regimes are
more sophisticated than the straightforward control strategies contemplated by the

composite classifiers we shall propose because the hybrid case-based systems apply

26

larger amounts of domain knowledge, incorporate more extensive case representations,
or perform more complex tasks.

Case-based systems that do combine reasoning strategies for classification include
ANAPRON (case-based and rule-based system for word pronunciation) [Golding and
Rosenbloom, 1991], CASEY (case-based and model-based reasoning combined for
heart disease diagnosis) [Koton, 1988] and PROLEXS (case-based and rule-based
system for Dutch landlord-tenant law) [Walker, 1992]. These systems do not, however,
combine multiple case-based classifiers, which would be the appropriate analogy to

our proposed research.

2.4.2 Machine Learning

Two general approaches to combining classification algorithms can be distin-

guished:

1. Recursive Partitioning: Systems and algorithms in which the component
classifiers recursively partition the instance space into subspaces. Subspaces that
are in the final partition are assigned class predictions for all of the instances
in that subspace. Algorithms of this type are also called divide-and-conquer

algorithms.

2. Global Scope: Systems and algorithms in which each individual classifier makes
a classification prediction for every instance and the predictions are combined
in some fashion. Although apparently no term has been coined for this class
of algorithms, we will refer to them as global scope classifiers, because each

component classifier is applied to all the instances in a data set.

Thus in global scope systems the component classifiers are applied to all the
instances in the space, regardless of where they reside. In recursive partitioning algo-
rithms, each classifier is applied only to a local, (usually) proper subset of instances.

Recursive partitioning classifiers are generally implemented as decision trees, where

27

a classifier is present at each internal node of the tree, and its task is to learn a
subconcept for the instances that fall to that node. Work by Utgoff and Brodley
provide paradigm examples of this approach [Utgoff, 1989; Brodley, 1992]. The
important advantage of this approach is that a classifier can be selected whose bias
is appropriate for a region of the instance space. The result is an increased flexibility
to draw on the special strengths of classifiers and the concept descriptions that they
apply [Utgoff, 1989]. In the context of class probability trees (which return a vector
of class probabilities at their leaves), Buntine argues that combining multiple trees
can be interpreted as an approximate method to compute theoretical values that arise
from a Bayesian decision-theoretic model of classification [Buntine, 1991]. Langley
has provided a framework for creating a tree of Bayesian classifiers [Langley, 1993].
While recursive partitioning has clear strengths, the research proposed here will focus
on systems that have global scope. We discuss the reasons for this design choice in
Section 2.5, where some of the disadvantages of recursive partitioning algorithms are
discussed. These disadvantages include the availability of fewer training instances in
each subspace, the presence of hard boundaries between subspaces and the inability
to learn from the mistakes that a classifier may make in a subspace.

The primary framework for global scope classifier combination is stacked gener-

alization, to which we turn next.

2.4.2.1 Stacked Generalization

Much of this proposal is an outgrowth of research on a technique called stacked
generalization, a framework for combining classifiers [Wolpert, 1992; Wolpert, 1993].
Wolpert concentrates on a simple, two-layer architecture in which the classifiers to
be combined are called level-0 classifiers, and the combining classifier is the level-1
classifier. The layering may be iterated to create level-2 classifiers, and so on. The idea
of a layered classifier is not original to Wolpert, however, and can be traced at least

as far back as Selfridge’s Pandemonium for pattern recognition, whose architecture

28

is very similar to the standard two-layer stacked generalizer as shown in Figure 1.1
[Selfridge, 1959].

The idea of stacked generalization is quite simple. The algorithm assumes that
we have been given a set of level-0 classifiers, a level-1 classifier, and a data set of
classified examples with real-valued features. The classes are real values as well under
Wolpert’s assumed framework. The architecture has the usual two phases, training
and classification.

Training Phase: There are three steps.

1. First, apply leave-one-out cross validation as follows. For each instance in the
data set, train each of the level-0 classifiers using the remaining instances. After
training, classify the instance left out using each of the trained level-0 classifiers.
Form a vector from the predictions of each of the level-0 classifiers and the actual

class of that instance.

2. The resulting set of vectors of predictions forms a new data set, which is the
training set for the level-1 classifier. Train the level-1 classifier on this derived

training set.

3. Re-train the level-0 classifiers on the entire training set.

Classification Phase: When presented with a new instance whose class is
unknown, classify the instance using each of the level-0 classifiers, deriving an input
vector for the level-1 classifier. The derived vector is then classified by the level-1
classifier, which outputs a prediction for the original instance.

Although it is not guaranteed to increase generalization accuracy, stacked gener-
alization can be an effective meta-learning technique to boost generalization accuracy.
In at least one case stacked generalization has attained accuracy at levels not achieved
by other learning algorithms. According to Wolpert [Wolpert, 1993, p.7 draft], the
current best system on a difficult protein folding prediction task employs stacked

generalization [Zhang et al., 1992]. Wolpert has applied the stacked generalization

29

framework to the NetTalk problem of phoneme prediction from windows of letters.
The experiment was designed to test “whether stacked generalization can be used to to
combine separate pieces of incomplete input information” [Wolpert, 1992, p.253] using
a set of three so-called “HERBIE” level-0 classifiers combined by a level-1 HERBIE
classifier. Wolpert’s HERBIE classifiers are 4-nearest neighbor classifiers that use a
distance-weighted Euclidean distance metric. Seven-letter windows were passed to
the three level-0 classifiers, but the three HERBIEs received as input just the third,
fourth, and fifth letters in the window, respectively. That is, each classifier had a
one-dimensional input space, and differed only in the letter slot that they received as
input. This stacked generalizer showed an increase of approximately 20 percentage
points in generalization accuracy over the best of the three level-0 classifiers. The
accuracies of the three level-0 classifiers were 23%, 69% and 25%; the accuracy of the
stacked system was 88%. However, the accuracy of the stacked generalizer was not
compared to other machine learning algorithms?.

Schaffer has investigated an extension of stacked generalization, bi-level stacking,
in which the combining classifier also has access to the original feature vector, and
not just to the predictions of the combining classifiers [Schaffer, 1994]. The intended
benefit is to allow the combining classifier to take the original values into account to
determine how to arbitrate among the component classifiers. For example, component
classifier 1 might be more reliable when the stock market is trending upwards, while
classifier 2 might be more reliable when the market is trending lower. Schaffer
performed an experiment to compare stacking with bi-level stacking on five UCI
data sets. The three model classes combined were a decision tree, rule induction, and

a neural network. The combining classifier was drawn from each one of these classes

'Wolpert observes [1992, p.253], “The purpose of this text-to-phoneme experiment wasn’t to beat
the performance ... of a metric-based HERBIE having access to all 7 input letters, nor even to beat
the performance of back-propagation (i.e., NETtalk) on this data. Rather it was to test stacked
generalization, and in particular to test whether stacked generalization can be used to combine
separate pieces of incomplete input information.”.

30

as well. In only 3 of 15 experiments (using three combining classifiers on each of
five data sets) did bilateral stacking outperform stacking. This empirical result raises
doubt about the utility of this implementation of bilateral stacking for most of the
problems considered by Schaffer in these experiments.

The work we propose will instantiate, complement and extend aspects of Wolpert’s
stacked generalization framework. We shall return to the topic of the relationship of
the proposed research to stacked generalization in Section 2.5. In the next section
we continue our survey of related research by examining some techniques from the

theory of artificial neural networks that are related to classifier combination.

2.4.3 Artificial Neural Networks

There are two specific strains of neural network research that are related to this
proposal:

Neural network combination algorithms. There have been several im-
plementations for combining neural network classifiers, including the hierarchical
mixture of experts algorithm [Jordan and Jacobs, 1993; Jacobs et al., 1991], layered
radial basis function classifiers [Edelman, 1993] and an array of Restricted Coulomb
Energy Network classifiers [Cooper et al., 1982]. While these methods are not usually
considered instance-based techniques, the algorithms we will discuss do involve neural
architectures that incorporate examples to a greater extent than other neural network
algorithms such as backpropagation in a multilayer feedforward network. We also
survey non-instance-based research that has focused on classifier combination.

Network construction algorithms. Techniques for changing the architecture
of a neural network dynamically are relevant by analogy to methods we will propose
for adding classifiers dynamically to a composite classifier.

There are also general analogies between the layered stacked generalization frame-
work and a multilayer feed-forward network, which we discuss further in Section 3.7.

By analogy, a hidden unit of a multilayer net corresponds to a component classifier.

31

This analogy is borne out in several respects: both are computational units, whose
output can be interpreted as a category assignment of the input (especially where the
output of a hidden unit is squashed, thereby driving the output towards the endpoints
of its output range). In addition, where the role of the component classifiers is not
merely to output correct predictions, but to output predictions from which a combiner
will learn easily, the cooperation between component classifiers is like the cooperation
between the units of a neural network.

The role of hidden units is described by Hertz, Krogh and Palmer [1991]: “In some
cases the emergence of significant internal representations is also observed; some of
the hidden units discover meaningful features in the data (meaningful to humans) and
come to signify their presence or absence.” [p. 133] No reference we have encountered
has described an analogous ability of stacked classifiers to detect emergent features,
however.

We discuss these network combination and construction techniques below.

2.4.3.1 Network Combination Techniques

As in the work in machine learning, the combination of neural networks may be
characterized according to whether the component networks are designed to classify
only a proper subspace (subspace algorithms) of the input space or to classify the
entire input set (global scope algorithms).

2 The work of Jordan, Jacobs and Barto [Jordan and

Subspace Algorithms.
Jacobs, 1993; Jacobs et al., 1991] on hierarchical mixtures of experts is one strain of
the composite algorithms. In their research, expert component networks compete to
learn training patterns and a gating network learns to mediate this competition.

The gating network learns a soft partition of the instance space to enable task

decomposition. Thus the combination algorithm applies a gating network that learns

’In contradistinction to global scope algorithms, we have used the term “subspace algorithm”
here, rather than the term previously applied, “recursive partitioning.” Here the algorithms create
a single partition of the space, and do not partition recursively.

32

which expert network to devote to which input. Nowlan and colleagues have proposed
a similar framework [Nowlan, 1990].

Global Scope Algorithms. Battiti and Colla [1994] have analyzed several
combination mechanisms for combining the classifications of multilayer perceptrons
trained to recognize handwritten digits. The combination schemes compared are una-
nimity, majority vote, averaging and several mechanisms based on thresholding the
confidence of the component networks in their classification prediction. Battiti and
Colla note that a “sufficiently large uncorrelation in ... mistakes” [Battiti and Colla,
1994, p.691] leads to boosted classification accuracy. They vary the architectures
of the multilayer perceptron networks (the number of input and hidden nodes) and
the random weight initializations in an attempt to create networks with uncorrelated
errors. They observe that the assumption is not justified that the predictions of the
resulting networks are independent. While it is not surprising that this assumption is
not true, they base their theoretical analysis on this assumption. Their experiments
are conducted in the realm of optical character recognition (OCR), where a reject
option is typically also available to a system.

Although his approach is not called stacked generalization, Edelman [1993] instan-
tiates a stacked generalization framework in which the predictions of a set of level-0
radial basis function classifiers are combined using a level-1 radial basis function
classifier. This composite architecture is applied to the task of face recognition, where
each network is trained to recognize a single prototype, a specific face. Edelman shows
experimentally that the dimension of a category may be characterized by the number
of stored prototypes, rather than by the dimension of a raw or abstract feature space.

Cooper and colleagues have been granted a patent on a classification method
called NLS for Nestor Learning System® [Cooper et al., 1982; Wasserman, 1993].

NLS consists of an array of Restricted Coulomb Energy* System (RCE) classifiers

3Nestor Learning System is a trademark of Nestor Inc.

“Restricted Coulomb Energy is a trademark of Nestor Inc.

33

whose classification decisions are combined using a so-called Class Selection Device
(CSD). An RCE classifier is a descendant of classifiers that are inspired by ideas
from electrostatic field theory. To create an RCE classifier, a training procedure
sequentially fits basins of attraction around a subset of training instances. In the
classification phase, if a test instance falls within the basin of attraction of a training
instance, it is given the class of that training instance. During the classification phase,
the prediction of the highest priority classifier that gives an unambiguous response is
used.

The CSD relies on a priority system that uses the highest priority classifier that
produces an unambiguous response. (In the NLS algorithm, classifiers have the option
to output “confused,” similar to a reject option in OCR applications.) Otherwise,
if there is no classifier that gives an unambiguous response, “a simple vote counting

procedure” is used [Reilly et al., 1987, p.11-501].

2.4.3.2 Network Construction Algorithms

Several methods have been developed for dynamically adding to the architecture
of a neural network. The analogy to the research described in this proposal is that
whereas the neural net construction algorithms add nodes to a network (according
to some criterion), our algorithm may add small nearest neighbor classifiers to a
composite classifier (according to some criterion). Adaptive network construction
algorithms are designed to create neural architectures that effect a balance between
creating too many hidden units and too few hidden units. Too many hidden units
can lead to overfitting; too few, to overgeneralization. Connectionist algorithms that
add units and connections to an architecture dynamically include the tiling algorithm
[Mezard and Nadal, 1989], the upstart algorithm [Frean, 1990], cascade-correlation
[Fahlman and Lebiere, 1990], and algorithms due to Marchand and colleagues [1990]

and to Ash [1989]. The algorithms differ according to the configuration of the

34

constructed network, the order in which units are added, and the criteria for unit
addition.

The tiling algorithm [Mezard and Nadal, 1989] for network construction relies
upon the same principle as the Inconsistency Reduction algorithm we shall propose for
component classifier configuration. The principle is that in any layered architecture,
the internal representation at a layer should be a faithful representation of the previous
layer, and, hence, of the original data. A faithful representation is one in which two
instances that are from distinct classes have a different value on at least one feature
[Hertz et al., 1991]. (Note that a faithful representation is not necessarily an identical
one.) A representation that is not faithful is termed inconsistent. Inconsistent
representations have different class assignments for at least one feature vector. In
the tiling algorithm, a new unit is added to any layer that has an inconsistent
representation. The new unit is trained only on the subset of patterns that given
rise to the ambiguity. This process is iterated until the representation at each level
is no longer inconsistent.

Finally, model selection and combination have also been faced in statistical re-
search. In the next section we consider how those lines of research relate to the work

we propose to undertake.

2.4.4 Statistical Approaches

There are two basic approaches to the combination of statistical models winner-
take-all and model combination. In the statistical literature, statistical models are

often called estimators, predictors or generalizers.

35

1. Winner-take-all. Examples of the statistical approach to classifier selection
that emphasize the role of the training sets are cross-validation® and bootstrapping®
[Efron, 1979]. These approaches sample the training set to estimate the average
generalization accuracy of a classifier. In a setting where multiple classifiers are
under consideration, these techniques determine which has the highest estimated
generalization accuracy, and simply use that classifier on the data set [Wolpert,
1992]. These techniques are therefore examples of a simple approach to classifier
“combination”: winner-take-all. For example, the idealized Pandemonium model of
Selfridge [1959] was a winner-take-all system in which a decision demon selected the
cognitive demon whose output (or “shout”) was the greatest (“loudest”) from among
those demons, each of which represented a particular pattern [Selfridge, 1959, Figure
1, p. 515].

2. Model combination. Research on combining statistical predictors has
concentrated on linear combinations of the predictors [Breiman, 1992; Perrone, 1993].
Breiman investigated the stacked generalization framework using linear combination,
and calls his instantiation stacked regression. Breiman also investigated the combi-
nation of several types of predictors: classification and regression trees (CART trees)
and two types of linear regressions: subset and ridge regressions. Diverse CART
trees for combination were produced by growing a large tree and then pruning it to
include distinct numbers of leaves. Subset regression uses subsets of features in a
linear regression function. In the subset regression experiments, Breiman combines
predictors gotten by stepwise backward deletion of variables. Ridge regression is a

variation that is used for highly correlated variables, as is often the case for a set

5Cross-validation partitions a training set into n subsets. For each of n plies, a different subset
is held out as a test set and the remaining n — 1 subsets constitute the training set. Generalization
accuracy on the withheld test set is computed for each ply, and the average over the n plies is taken.

6Bootstrapping is similar to cross-validation, except that rather than partitioning the data set
into n disjoint subsets, training and test sets are created by random sampling of the original data
set with replacement.

36

of predictors that are designed to approximate the same function. It attempts to
minimize the sum of the residual-sum-of-squares plus a parameter, A, times the sum
of squares of the regression coefficients. Varying this parameter produces a set of
predictors. Breiman notes that he has also stacked linear regression predictors with
k-nearest neighbor predictors, and reports “substantial reductions in error.” These
results are not described further, however.

Perrone has shown that under certain conditions on an error function, an optimal
set of coeflicients for a linear combination of a set of predictors can be derived theoret-
ically [Perrone, 1993]. In experiments on an optical character recognition database,
the attempt to compute these coefficients proved impossible due to difficulties in
computing the inverse of a covariance matrix of the predictor estimates. In practice,
the large assumption was made that the errors made by the different predictors were
uncorrelated. Perrone used ten multilayer perceptron networks with varying numbers
of hidden units and different random initial weights in his experiments on optical
character recognition with good results. On a classical time series prediction problem,
sunspot prediction, ten multilayer perceptron networks with the same number of
hidden units were combined.

Statistical methods have thus focused on winner-take-all methods or the linear
combination of generalizers, themselves often linear regressions. While we have
treated “statistical methods” and “artificial neural networks (ANNs)” in separate
sections, linear combination methods have prevailed in both settings. Of course the
outputs of neural nets are combined in research that falls under the “ANN” heading,
rather than the outputs of statistical regression algorithms. See Section 2.5.2 for a
description of neural network combination research. Making the assumption that the
combiner is linear does allow more formal analyses of the algorithms applied in both
research settings, however. In the next section, which is the final section on related
work on classifier combination, we discuss the contributions of computational learning

theory, whose focus is on formal description.

37

2.4.5 Computational Learning Theory Algorithms

Angluin describes the goal of computational learning theory (COLT) as “Give
a rigorous, computationally detailed and plausible account of how learning can be
done.” [1992, p.351]. She identifies voting schemes as one class of techniques for
constructing learning algorithms.

The Halving and Weighted Majority algorithms of Littlestone and Warmuth [Lit-
tlestone and Warmuth, 1989] are the two major algorithms in this area. The theoreti-
cal framework and terminology for the COLT approach to the problem is that a finite
pool of learning algorithms (.A) is given and a master algorithm must be designed to
combine the predictions of the pool, where the master algorithm (sometimes called
the “fuser” or the “fusing algorithm”) has access to the predictions of each of the pool
algorithms but not to the sample input. Assumed are a two-class problem and on-line
learning, where a series of examples is put to the learning system, and a reinforcement
is given as to whether the prediction of the class of the example is right or wrong.
The goal of each algorithm is to reduce the pool to a subset of reliable algorithms,
or, more generally, to weight the algorithms in the pool.

The Halving combination algorithm makes a prediction according to the majority
of the consistent functions in the pool, where a function is consistentif it has correctly
predicted all the examples in the sequence of instances previously put to it. If there
is a consistent algorithm in the pool, the Halving finds it after making no more than
loga| A| mistakes, since at least half the algorithms are removed from the pool when
a mistake is made.

The Weighted Majority (WM) algorithm is an extension of the Halving algorithm,
where weights are associated with each algorithm in the pool. The WM predicts
according to whether the total weight of the algorithms predicting 0 is greater than
the sum of the weights of the algorithms predicting 1. The learning is simple. Each
time WM errs, the weights of the erring algorithms in the pool are multiplied by a

factor § € [0,1), which has been fixed in advance. The WM algorithm reduces to

38

the Halving algorithm for # = 0. Littlestone demonstrates an upper bound on the
number of mistakes made by the composite algorithm that are O(log|A| + m) where
there exists an algorithm in the pool that makes at most m mistakes.

Rao, Oblow, Glover and Liepins [Rao et al., 1994] distinguish two distinct prob-
lems in trying to combine a set of PAC (probably approximately correct) learning
algorithms [Valiant, 1984]: open fusion, where the fuser is given the training examples
and the hypotheses of the individual learners, and closed fusion, where the fuser
cannot access the training instance or the hypotheses of the individual classifiers. In
this proposal we emphasize the closed fusion approach. In the closed fusion case,
Rao and colleagues demonstrate that a linear threshold function of the classification
decisions of the individual learners can result in a system where the “confidence
parameter of the entire system can be made greater than or equal to that of a best
learner.” (p. 326).

This concludes our introduction to related research. We next discuss how our

proposed work will supplement previous research.

2.5 Limitations of Existing Research

In this section we consider ways that the research proposed here can extend some
of the previous efforts we have described in this chapter. This section is divided
into two subsections, nearest neighbor editing algorithms and classifier combination.
In the next subsection we discuss how the search bias of previous nearest neighbor
editing algorithms is (a) inappropriately limited and (b) not well suited to building
classifiers that are to be combined. In the second subsection, we observe that many
fundamental aspects of Wolpert’s stacked generalization are not understood. As we
said in Chapter 1, the desire to understand how this very general framework can be

instantiated is part of the motivation for this thesis.

39

2.5.1 Nearest Neighbor Editing Algorithms

In this section we discuss how the search bias of previous nearest neighbor editing
algorithms is unduly limited with respect to two goals. (1) The bias limitation does
not help achieve the original, stated goal of these algorithms: to select a minimal
consistent prototype set (or at least to find the smallest set that achieves a given level
of accuracy). Recall that a minimal consistent subset is a smallest set that correctly
classifies 100% of the training instances. (2) The bias does not aid our own goal of
building composite classifiers from a set of component nearest neighbor classifiers.
We treat the two goals in turn.

1. Building an Independent Nearest Neighbor Classifier. None of the
existing editing algorithms is guaranteed to find a minimal consistent subset. There-
fore, there is still room for fresh research on prototype selection, notwithstanding the
attention that has been given to this topic. However, for some datasets, an existing
algorithm has resulted in a fairly small number of prototypes that can achieve a
very good level of classification accuracy. For example, Aha’s IB3 algorithm achieves
79% accuracy on the Cleveland heart disease data set [Murphy and Aha, 1994] while
retaining only approximately 4% of the 303 instances [Aha, 1990]. Results such as
this hint that a small number of prototypes will suffice on some data.

Nevertheless, existing editing algorithms that do not rely on instance weighting
immediately and only change the cardinality of the set of prototypes when some
triggering criterion occurs, such as a misclassification. Further, in all examined
algorithms except Swonger’s Iterative Condensation Algorithm, the search is uni-
directional in cardinality: the size of a prototype set is either increased or decreased.
Thus the potential is present for inadequate search for prototype sets of a given, small
cardinality. Algorithms with the potential to sample better the space of small sets of
prototypes would be useful.

2. Building Component Nearest Neighbor Classifiers. Secondly, existing

editing algorithms will not be useful for prototype selection for the simple reason that

40

the objective of the present research is different. The objective of previous research
was to build a single minimal classifier of maximal accuracy (with some presumed
tradeoff between size and accuracy). Our objective is to construct a set of several
small nearest neighbor classifiers in order to use them as components in a composite
classifier. There are two reasons why the difference in goals is important.

First, each editing algorithm can output only one set of prototypes, and therefore
can be used to build only one classifier. Combining multiple copies of the same
classifier into a composite classifier will not increase classification accuracy. There
may be ad hoc ways to alter existing algorithms to produce multiple sets, but we
require algorithms that can produce multiple sets of instances as candidate prototype
sets for complementary classifiers.

Second, the objective of previous editing algorithms was to build an independent
classifier of maximal accuracy. Since the classification accuracy of a component
classifier is not the only criterion we shall apply in selecting classifiers, our ap-
proach to composite classifier construction requires a prototype selection method
that incorporates other selection criteria into the body of the algorithm to choose
what instances to retain. Selection algorithms should also choose prototypes that are
appropriate for component classifiers that are going to be combined with others and
are complementary. Since previous editing algorithms only apply criteria based on
classifications or misclassifications, it is not clear how they can be extended to include
other fitness functions without substantial damage to the existing algorithms. In any

event probably they would have to be greatly extended.

2.5.2 Combining Classifiers

In this section we discuss previous work on classifier combination, concentrating
on the many open questions engendered by the stacked generalization framework. But
first we note several reasons that we have not adopted one tried-and-true approach

to classifier combination, recursive partitioning.

41

There are a number of advantages to recursive partitioning algorithms, in partic-
ular the ability to define a classifier that is locally appropriate for particular regions
of the instance space [Utgoff, 1989; Brodley, 1992]. On the other hand, there may
be disadvantages to recursive partitioning. One disadvantage is that fewer instances
are available to train a classifier, since each is applicable only to a proper subspace
of the instance space. This training set limitation is an important consideration in
domains where only a small amount of data is available. Fewer training instances may
increase the likelihood of overfitting a small region, especially where models with many
degrees of freedom are applied. Secondly, most recursive partitioning algorithms have
hard boundaries between subspaces, which may artificially divide the space, making
distinctions between instances that are quite close in the instance space. Third, since
only one classifier is applied to each subspace, the possibility is foreclosed that other
classifiers may provide useful classification predictions about instances that fall into
that subspace. For these reasons we have adopted a combination method, stacked
generalization, that permits each classifier to be trained with all available data and
permits each classifier to make a contribution to the class prediction for every instance.

The research by Wolpert on stacked generalization provides the primary frame-
work for the proposed research. We noted in Chapter 1 that stacking is still magic.
Important issues still remain to be treated, particularly our Problem 2, the selection
of component classifiers. In our survey of previous work we have shown that previous
researchers implicitly have assumed that the classifiers that are to be combined
have already been given and the problem is how to combine them, or that the
component classifiers have been chosen for diversity, which may or may not make the
chosen classifiers complementary. In the only reported work on stacking component
nearest neighbor classifiers, Wolpert’s NETtalk experiment, the components were
distinguished only because they received different inputs. Table 2.3 summarizes the
aspects of classifiers that have been varied to create dissimilar component classifiers

for stacked generalization.

42

Table 2.3. Component classifier selection methods
‘ Researcher ‘ Component Algorithm H Aspect Varied |

Breiman Subset regression regression variables: backward stepwise deletion
Breiman Ridge regression ridge parameter A

Breiman Subset, ridge regression A and regression variables

Breiman CART trees pruned to different numbers of nodes

Wolpert HERBIE input features

Wolpert unspecified partitions of training set

Perrone Multilayer perceptron random weight initializations

Battiti et al. | MLP, LVQ random weight initializations, architecture

Several researchers have commented on the desirability of combining dissimilar
classifiers. Breiman observed that the “biggest gains came when dissimilar sets of
predictors were stacked” [Breiman, 1992, p. 4]. Wolpert has ventured “one should try
to find generalizers which behave very differently from one another, which are in some
sense ‘orthogonal,’ so that their guesses [predictions] are not synchronized” [Wolpert,
1993, p.6]. As suggested by Table 2.3, general attempts have been made to create
diverse classifiers without the specific intent to create complementary classifiers. We
begin to rectify this situation in the remaining chapters.

On the issue of Problem 1, the selection of a combining classifier, the default
combining method for this problem and other categorical problems is the plurality
vote. Voting is often justified because it is simple, seems fair and, depending on
the reader, appeals to democratic principles. However, voting is subject to hidden
paradoxes. Placing a set of reasonable axiomatic constraints on the voting procedure
can yield contradictions, as shown by Arrow’s General Possibility Theorem [Arrow,
1963]. While the theorem is stated and proved formally, Arrow restates his result

informally:

If we exclude the possibility of interpersonal comparisons of utility, then
the only methods of passing from individual tastes to social [collective]
preferences which will be satisfactory and which will be defined for a wide

range of sets of individual orderings are either imposed or dictatorial.

43

The word “satisfactory” in the above statement means that the social
welfare function does not reflect individuals’ desires negatively ... and that
the resultant social tastes shall be represented by an ordering having the
usual properties of rationality ascribed to individual orderings [1963,

p. 59]

The terms imposed and dictatorial are two crucial terms in this restatement of the
theorem. Arrow uses imposed to mean that “there is some pair of alternatives x and y
such that the community can never express a preference for y over no matter what
the tastes of all the individuals are” [1963, p. 28]. Arrow uses dictatorial to mean
that “whenever the dictator [an individual] prefers x to y, so does society” [1963, p.
30]. It has been observed that ranking cases by similarity to a new problem according
to each feature and then amalgamating the rankings can run afoul of Arrow’s General
Possibility Theorem [Skalak, 1990].

Voting has other shortcomings as well. In the context of classifier combination, a
voting combining classifier is unable to learn from certain mistakes of the component

w_»

classifiers. If every time classifier 1 predicts and classifier 2 predicts “—”, the

correct answer is “+”, voting will always predict “—7

and be wrong. Thus in this
research we will explore whether other learning algorithms perform better than voting
to combine component classifier predictions for the problems we examine. In Table 2.4
we collect for reference the combining algorithms that have been applied in the stacked

classifiers we have surveyed.

Table 2.4. Combining classifier algorithms
‘ Researcher ‘ Combining Algorithm

Breiman linear combination

Wolpert HERBIE

Perrone linear combination

Battiti unanimity, majority vote, linear combination

44

On the issue of Problem 3, the integrated search for component classifiers and
combining classifiers, we have found no reported analysis or progress so far in the
stacked generalization framework for symbolic prediction problems. (For function
approximation problems, progress on the integrated problem has been made using
the hierarchical mixtures of experts framework, which provides simultaneous training

of component and gating networks [Jordan and Jacobs, 1993; Jacobs et al., 1991].)

2.6 Conclusion

In this chapter we have surveyed previous work on the role of prototypes for
classification, editing algorithms for prototype selection, and the combination of
classifiers. The limitations on the application of existing editing algorithms for
building component nearest neighbor classifiers were discussed. There is much more
work to be done to realize the potential of the stacked generalization framework. In

the next chapter we outline one promising approach to instantiating the framework.

CHAPTER 3
A CLASSIFICATION FRAMEWORK

3.1 Chapter Organization

We have a number of topics to address in this chapter. Its broad objective is to
introduce the approach we propose to constructing composite classifiers, leaving the
details to later chapters and, in some cases, to later work. The first cluster of tasks in
this chapter is to examine the classes of algorithms we will use to build the component
classifiers and to show how we will extend previous work on editing algorithms
and stacked generalization. This description builds the stage set for the next two
chapters, which provide detailed algorithms and preliminary empirical evidence for
our approaches to prototype selection and classifier combination. A second task is to
give an example of the instantiated architecture. With an example in place to make
the approach clear, our third task is to provide supporting intuition and motivation for
this solution approach. We try to provide motivation by showing how our approach
is a generalization of a single k-nearest neighbor classifier, how it is analogous to
a multilayer neural network, and how it is analogous to other research in machine

learning that shows that simple classifiers can be — perhaps surprisingly — accurate.

3.2 Introduction

The general problem we have posed is to design efficient classifiers that demon-
strate good classification accuracy. The solution offered by this thesis proposal is
to combine a small number of complementary, small nearest neighbor classifiers.
Traditional solutions to the model selection problem have looked for “the model class

that yields the simplest classifier with the highest degree of accuracy.” [Brodley, 1992,

46

p.22]. The direction we take is different, however. The hypothesis we want to examine
is that combining potentially less accurate classifiers that are complementary can
lead to high classification accuracy. Many mediocre-to-good classifiers are available
as building blocks, and they may be easy to find. Rather than search for the
most accurate building block classifiers, we search for the sets of classifiers that are
complementary. Once complementary classifiers can be found, their decisions can be
combined using some fairly simple techniques. Thus while the goal is in part the same
as previous work — to build accurate classifiers — the means we propose is not to
follow that criterion solely in the construction of the component classifiers.
Efficiency of this classifier stems from the small computational overhead of the
component classifiers, which are nearest neighbor classifiers that rely on only a few
prototypes. The combining algorithms examined in this proposal are also quite sim-
ple: a decision tree algorithm, a nearest neighbor algorithm, and a voting algorithm.
The research presented in this proposal extends previous work on prototype
selection by showing that in some domains decreasing the number of prototypes can
be pushed quite far indeed — that only several well-selected prototypes can give good
classification accuracy. We extend previous work by demonstrating that algorithms
that rely primarily on random techniques can perform the task of choosing a small
number of salient prototypes. Further we show when a prototype sampling technique

works: when the data to be classified are highly clustered by class.

3.3 Composite Classifier Architecture and Algorithm

The architecture of the type of composite classifier we shall investigate is as
discussed in Chapter 1. As pictured in Figure 3.1, the classifier has two layers. A set
of component classifiers forms the first layer. A single combining classifier forms the
second layer. The architecture is straightforward and follows the general framework

of two-level stacked generalization [Wolpert, 1992; Wolpert, 1993]. The learning

47

algorithms we present have the usual two phases: (1) training and (2) classification

(or “application”).

Prediction
M([C1(x),..Cn(x)L c(x))

Figure 3.1. Composite nearest neighbor classifier architecture. In the training phase
the instance class is supplied to the combining classifier as an additional input.

Pseudocode for the training and classification algorithms is given in Figure 3.2 and
Figure 3.3. Our training procedure is basically the same as for stacked generalization,
described in Chapter 2. Training instances are input to the component classifiers,
whose predictions are collected into vectors of class labels. This set of prediction
vectors together with the original class labels forms the training set for the combining
classifier. To classify a new instance, first classify it using each component classifier,
and then form a vector of predicted class labels. Finally, apply the combining classifier
to the vector of predictions.

In the next section we describe algorithms for constructing component classifiers.

3.4 Component Classifier Construction

This proposal introduces four algorithms embodying four approaches to the com-

ponent classifier selection problem, Problem 2 of the Introduction:
1. Random Selection: Sample classifiers
2. Best Random Selection: Select the most accurate of a sample of classifiers
3. Error Orthogonality: Minimize the errors made in common by classifiers

4. Inconsistency Reduction: Reduce inconsistencies in a derived training set.

48

Key:

Th: Training set in original representation
T1: Training set in derived representation
z: Data set instance

c(z): Class of x

C': Composite classifier

C;: Component classifiers

Ci(z): Prediction of C; on input z

n: Number of component classifiers

M: Combining classifier

train-composite (Tp, C')

loop for z € T}
collect [Co(z), Ci(x),...,Cu(z), c(z)] into T}
train(Ty, M)

Figure 3.2. Pseudocode for the training algorithm for a composite classifier.
apply-composite (C,)

x = [Co(), C1(2),- .., On(2)]
M(x)

Figure 3.3. Pseudocode for the classification algorithm for a composite classifier.

Chapter 5 discusses each algorithm in detail. We describe each briefly here and
discuss the reason for including each algorithm in this study. Each of the algorithms
is a provisional instantiation of a general approach. In Chapter 6 we propose to refine,
speed up and possibly expand this collection.

Random Selection. The pure Random Selection algorithm randomly samples
sets of prototypes for each component classifier from the training set. The constraint
is imposed that at least one prototype be selected from each class, and the desired
number of component classifiers (n) is fixed in advance. This algorithm was applied
in part because its results may be counterintuitive: that randomly selected classifiers
may be complementary. While the Random Selection algorithm is in part included as
a baseline, we show in Chapter 5 that this algorithm can return component classifiers

whose combination can yield better generalization accuracy than a nearest neighbor

49

algorithm that applies all instances as prototypes. We do not argue that random
classifiers are the best component classifiers. However, the performance of stacked
architectures that incorporate only a few such random classifiers may be surprising
in view of the small percentage of the training set used for classification, the small
number of component classifiers and the simplicity of random sampling. These results
provide the impetus for further research into the structure of the space of nearest
neighbor classifiers.

Best Random Selection. A variant of Random Selection is the Best Random
Selection algorithm, which incorporates a bias toward prototypes that perform ac-
curately on the training set. This algorithm is included to test the intuition that
the search for component classifiers should be biased in favor of components that are
more accurate on the available training data. The Best Random Selection algorithm
assumes that the most accurate classifiers are complementary. Best Random Selection
takes m samples of k prototypes from the training set (sampling at least one prototype
from each class exposed in the training set) and returns the n resulting classifiers with
the highest individual classification accuracies on the training set.

Error Orthogonality. The FError Orthogonality algorithm is based on the
notion that classifiers that make different errors are complementary ([Wolpert, 1993;
Breiman, 1992; Perrone, 1993]). If the errors made by component classifiers are
the same, then a combining classifier will be unable to improve on the component
predictions. We discuss the use of the term “orthogonal” in Chapter 5. This algorithm
is included to test the intuition that classifiers that make disjoint errors will perform
well in a composite architecture, and to test the informal suggestions of previous
researchers to stack “dissimilar” [Breiman, 1992, p.4] classifiers, or classifiers “whose
guesses are not synchronized” [Wolpert, 1992, p.6]. The current implementation
generates a pool of classifiers and then filters them to return classifiers all of whose

error sets have a small intersection.

50

Inconsistency Reduction. The Inconsistency Reduction algorithm attempts to
reduce a straightforward measure of the inconsistency in the re-representation of the
instances that is effected by regarding the instances as vectors of component classifier
predictions. The inconsistency of the representation is determined by the extent
to which instances from different classes are mapped by the component classifiers
to the same derived training instance. This algorithm is iterative and constructive,
adding in each iteration a classifier designed to reduce inconsistency ultimately below
a user-supplied threshold.

A related algorithm is Saxena’s ACR algorithm, which can be applied to select
a single classifier on the basis of the encoding of a data set effected by a learning
algorithm [Saxena, 1991]. ACR selects a representation based on the Minimum
Description Length Principle, which holds that the best hypothesis to describe a data
set minimizes the length of the code needed to represent the data. The algorithm that

induces the best generalization is the one that results in the shortest representation.

3.5 Generating and Testing Classifiers

Since few systems have relied on sampling a classifier space in order to construct a
classifier, a few comments may be useful. In our implementation, we sample k-nearest
neighbor classifier space by sampling from the training set the prototypes used by a
clagsifier. We assume — for the time being — that the other aspects of the nearest
neighbor classifier are fixed, such as the distance metric and the number of nearest
neighbors considered, k. In Chapter 6 we suggest expanding search of the space of
nearest neighbor classifiers to aspects other than the prototype set.

Three of the provisional algorithms described below use generate-and-test (Ran-
dom Selection, Best Random Selection and Error Orthogonality) to create an explicit
pool of classifiers with different sets of prototypes. These algorithms differ in the way
they select classifiers from this pool to be included as components in a composite

system. Generate-and-test is a venerable paradigm [Barr et al., 1981]. Clearly

51

this approach is not adequate for many large search spaces. However, where there
are many states that satisfy the test criteria, or where many states are equivalent
according to the test criteria, generate-and-test may work.

To take a small example, the collection of permutations on a set of size n is n!.
If, however, an algorithm requires only an even permutation® for some purpose (such
as an initial seed), generate-and-test may be a viable approach. If many states are
equivalent by the test and there are few equivalence classes, generate-and-test may be
able to select representatives of the equivalence classes that are implicitly induced by
the test criteria. The structure of the space of classifiers from any model class is not
well enough understood to know in advance whether classifiers may be successfully
generated and tested for individual accuracy (as in Chapter 4) or for complementarity
(Chapter 5). Indeed, the question of the structure of nearest neighbor classifier space,
and whether it lends itself to generate-and-test, is raised by our positive preliminary
results.

Generate-and-test is potentially exhaustive: the classifiers that can be generated,
trained and tested using reasonable computational resources may not satisfy the test
criteria sufficiently well to be useful. Classifier sampling is made more practical here
by constraints on the size and number of component classifiers that have arisen in
part from the other considerations discussed in Chapter 1, such as the avoidance of
overfitting.

Thus one potential contribution of this line of research occurs as a side-effect
of the constraints we have imposed. Small nearest neighbor classifiers are useful
building blocks because a simple, known classical approach can be invoked to con-
struct them — generating (by sampling) and testing. We do not argue, incidentally,
that small nearest neighbor classifiers are the only classifiers that lend themselves

to this straightforward means of construction. One segment of a (post-thesis) line

1An even permutation on a set can be written as a product of an even number of transpositions
of two elements in the set.

52

of research might be the stacking of shallow decision trees, especially those that
incorporate complementary attribute-selection or tree-selection metrics [Utgoff, 1995]
or stochastic node splitting criteria.

Having introduced the four algorithms and supplied some justification for the
use of generate-and-test by three of the algorithms, we give an example of stacked
generalization and then supply additional motivation for the utility of stacking small,

complementary nearest neighbor classifiers.

3.6 An Example

In this section we give a simple example to serve two purposes: (1) to show
generally how the mechanics of the stacked framework work, and (2) to show specif-
ically that combining classifiers that perform less well on a training set but are
complementary can yield learning and generalization accuracy higher than combining
more accurate ones that are not complementary.

Suppose that we want to create a composite classifier that combines two nearest
neighbor component classifiers on a problem that has three class labels {+, —,0} and
data instances that are ordered pairs of real numbers in the real plane. Each of the
two component classifiers will take one prototype from each of these classes. Suppose
that there are ten training instances (designated by their indexes {1,2,...,10}) and
four test instances ({11,...,14}). So as not to complicate the example with specific
distance calculations, suppose the instances are arranged as depicted in Figure 3.4.
It is clear that specific coordinates in the real plane can be assigned to satisfy the
constraints that there be three clusters of four instances that are clustered by class
(A = {1,2,3,11} of class +, B = {4,5,6,12} of class —, C' = {7,8,9,13} of class
0) and one cluster of two instances (D = {10, 14} of class +). Further, we assume
that the instances in cluster D are nearer to instances in B than to any instance in

A, and that the instances in cluster C are closer to instances in A than the instances

33

in D, in terms of Euclidean distance, which we take as the distance metric used by

the component classifiers.

C
D

1211 4]

5.
B 611 [-]

»
>

Figure 3.4. Location of data instances in the example. Test instances given in italics.
Class labels given in brackets. Voronoi tessellations are shown for the classifiers C'y, Cy
and Cj3. In order to keep the diagram clear, the tessellations for C; and C5 are shown
as coincident; they are not, but all the instances pictured are partitioned into the
same regions by the tessellations for C; and Cj.

Consider three 1-nearest neighbor classifiers composed of the following prototypes:
C1:4{1,4,7}
Cs:42,5,8} and
Cs : {6,9,10).

The predictions of classifiers C';, C; and C3 on the training set are given in

Table 3.1.

Table 3.1. Training set classifier predictions.

| Instance | C4 | Cy | Cs | Actual |
1 +[+]0 +
2 + |+ |0 +
3 + |+ |0 +
4 _ _ _ _
5 _ _ _ _
6 _ _ _ _
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 — — + +

54

From Table 3.1, it can be seen that the training set accuracy of C; and of Cy
is 90% (instance 10 is misclassified by both classifiers); the accuracy of C5 is 70%
(instances 1, 2 and 3 are misclassified).

Now let us build six stacked classifiers, denoted Ci2-NN, C12-VOTE, Ci2-1D3,
Ca3-NN, Co3-VOTE and Cy3-1D3. The subscripts indicate the indexes of the component
classifiers: C12-NN is a stacked classifier that combines the predictions of component
classifiers C; and Cs, for example. The suffix indicates the combining algorithm,
l-nearest neighbor (“NN”), voting (“VOTE”), or ID3. So Ci2-NN is the stacked
classifier that combines the predictions of C'; and C5 using nearest neighbor as the
combining algorithm. We will use a calligraphic typeface (e.g., C12) to denote a
stacked classifier and upper case italics to denote component classifiers (e.g., C1).

In Chapter 5 we describe the training and classification procedures for each of
these three combining algorithms, but the procedures are straightforward applications
of these standard algorithms to the derived data sets. In brief, each algorithm is
configured and applied as follows:

Nearest neighbor. The nearest neighbor combining algorithm uses a similar-
ity function that counts the number of exact matches among component classifier
predictions. This function is a Hamming distance metric applied to the vectors of
class predictions. A vote of all nearest neighbors is taken to yield a final prediction.
Typically in the data sets used so far, the nearest neighbors of a test instance at this
derived training level match the derived test instance exactly. This means of course
that the class predictions of the component classifiers for a test instance are exactly
the same as for a previously stored training instance.

Vote. There is no training needed for the voting combining alorithm. A plurality
vote of the class predictions of the component classifiers is taken, with ties resolved
randomly.

ID3. The version of the ID3 decision tree algorithm uses the information gain

ratio test to select atttributes on which to branch, as described in [Quinlan, 1986]

35

and Appendix B. A decision tree is formed from the derived training set vectors,
where the tree branches on the predictions of a particular component classifier and
the branches correspond to class predictions of that classifier.

The derived training set for each composite classifier consists of a vector of the
predictions of each of its component classifiers concatenated with the actual target
prediction for each instance. (Where the combining algorithm relies on majority vote,
the elements in the derived training set may be thought of as “vote vectors,” vectors
of the class votes of the component classifiers.) Thus the derived training set for Cio
consists of the ten vectors whose components are taken (across rows) from the columns
labeled C7, C5, and Actual. The first vector component of each derived vector is the
prediction of C7, the second vector component is the prediction of Cy, and the third
vector component is the actual target class. The derived representations for the ten
training instances for the composite classifiers C15 and Co3 are given in Table 3.2. For
example, the derived training set for Cjo is all the instances in the column labeled
“Derived Rep. C12": {< +++ >, < +++ >, <+++>,<———>,..., < ——+ >}
Similarly, the derived training set for Cy3 is formed across the rows of the columns

labeled C5, C3 and Actual in Table 3.1 and is shown in Table 3.2.

Table 3.2. Derived representations for training instances for composite classifiers Cyo
and 623

‘ Instance ‘ Derived Rep. Ci» H Derived Rep. (o3 ‘

1 <+ ++> <+ 0 +>
2 <4+ 4++> <+ 0 +>
3 <4+ 4++> <+ 0 +>
4 <—==> <—=—>
5 <—==> <—=—>
6 <———> <—=—>
7 <000> <00 0>
8 <000> <00 0>
9 <000> <00 0>
1 <—=4> <—++>

56

The decision trees produced by the ID3 algorithm on the derived training sets for

C12 and Co3 are given in Figure 3.5.

Cl1]

P

o

c[2]
0 C[3]

/N

Figure 3.5. ID3 trees for the derived training set for composite classifiers Cio (left)
and Coz (right).

The predictions of each of the algorithms are presented in Table 3.3.

Table 3.3. Training set predictions of the six composite classifiers.
Instance | Actual | C15-NN || C12-VOTE || C15-ID3 || C33-NN || Co5-VOTE || Cp3-1D3 |

1 + + + - + +,07 +
2 + + + + + +,07 +
3 - + + + - +,07 +
4 — — — — — — —
5 — — — — — — —
6 — — — — — — —
7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0
10 + — - + —+7? +

Now note that composite classifiers C15-NN, C;o-VOTE and Cy5-1D3 only achieve
90% accuracy on the training set, since each misclassifies instance 10.

C12-NN misclassifies instance 10 because the nearest neighbors to 10 (< — —+ >)
ared (< ———>),5 (< ———>),6 (< ———>) and 10, all of which match the

features of instance 10 (< —— >) exactly. Since there are ties among the nearest

57

neighbors, we take a vote among the neighbors: three votes for class — and one vote

for class 4. Thus C12-NN predicts — for instance 10.

C12-VOTE misclassifies instance 10 because the (unanimous) vote of the compo-

nent predictions for instance 10 is —, since both C'; and Cy predict —.

C12-ID3 misclassifies instance 10 as well, as shown by the decision tree pictured

on the left in Figure 3.5.
Co3-NN can be trained to predict the training set with 100% accuracy, on the

other hand. The only problematic patterns are instances 1,2 and 3 (< + 0+ >)
and instance 10 (< — + + >). But the nearest neighbors to instances 1, 2 and 3 are
just those instances, and so the prediction will be unambiguously +, which is correct.
The nearest neighbor to instance 10 is only instance 10, and so that prediction will

be correct as well.

C23-VOTE is subject to the difficulty that where the two component classifiers
disagree, the ultimate prediction must depend on the policy for resolving tied votes.
There are tied votes for instances 1, 2, 3 and 10. If we assume that the ties are broken
randomly, then Co3-VOTE will get two of these four instances wrong on average, and

score on average 80% on the training set.

Co3-ID3 can be trained to predict the training set with 100% accuracy, as shown

in the tree depicted on the right in Figure 3.5.
The same reasoning as above shows that Cio-NN, C12-VOTE and Cy5-1D3 achieve

75% accuracy on the test set {11,12,13,14}, since they misclassify instance 14 (and
get the other three test instances correct). See Table 3.4. However, Ca3-NN and
Co3-1ID3, which incorporate a classifier that is only 70% accurate on the training set,
show 100% accuracy on the test set. The accuracy of Co3-VOTE will depend again
on how ties are resolved and may get from 50% to 100% accuracy on the test set,
depending on the policy regarding tied predictions.

The derived test sets for the two classifiers are given in Table 3.5.

This simple example demonstrates the important point that a component classifier

(C3) with lower observed accuracy on a training set may be more complementary to

58

Table 3.4. Test set classifier performance
| Instance ‘ Cq H Cy H Cs H Actual |

11 + [+ o +
12 — - - -
13 0 0o o 0
14 — - + +

Table 3.5. Derived representations for test instances for composite classifiers Ci2 and
Cos

‘ Instance ‘ Derived Rep. Cio H Derived Rep. (a3 ‘

11 <+++> <+ 0 +>
12 <———> <——=>
13 <000> <000>
14 <——+> <—++>

a given classifier (C) than one with higher accuracy (C5). This observation suggests
that the search for component classifiers should be aimed at optimizing criteria
other than just training set accuracy. This example further suggests two possible
explanations for the superior performance of Cy3-NN and Cy3-ID3: (1) Cy and Cj
make the same errors (although they incorporate disjoint prototype sets), and (2) the
problems for C15-NN and Cy5-1D3 are caused by the presence of inconsistent instances
< ——— > and < — — + > in the training set. These two possible explanations
respectively give rise to two algorithms we propose, the Error Orthogonality and
Inconsistency Reduction algorithms.

In the next section we try to supply additional motivation for considering a stacked
classifier that combines the predictions of small, complementary k-nearest neighbor

classifiers.

3.7 Discussion and Motivation

The goal of this section is to provide further support for the utility of research
into the combination of small nearest neighbor classifiers in a stacked framework.

In general, subjective motivation for an approach can be provided in a variety of

39

ways. Providing a visual interpretation of a method, demonstrating that it generalizes
an old framework in new ways, making analogies to techniques in allied fields, and
formalizing aspects of the approach all can help to enlist support. In the next few
pages, we briefly invoke each of these rhetorical methods to show that the proposed
solution path is worthy of further study.

Tessellating an instance space. The function of a nearest neighbor classifier
is to tessellate an instance space into regions whose boundaries approximate the class
boundaries of the instances, a Voronoi tessellation. The classical approach to creating
such classifiers is to put the computational effort into configuring a single classifier to
create the right set of decision boundaries. But a different approach, the one that we
advocate here, is to create a set of probably erring, approximate tessellations and to
combine the predictions derived from the tessellations. For example, we show that on
two of three tested data sets even a random set of tessellations — one created using
a small set of random prototypes — is sufficient to yield classification accuracy that
is statistically indistinguishable from or better than a nearest neighbor algorithm
that uses all instances as prototypes. Choosing the tessellations deliberately to
make accurate combination easy provides an alternative to the classical approach
of choosing a single tessellation of maximum accuracy.

Generalization of a classical k-nearest neighbor classifier. One perspective
on this research is as a generalization of the traditional k-nearest neighbor rule. In one
way the generalization is trivial. One nearest neighbor classifier used as a component
classifier and the identity function (on class labels) embodied in a combining algorithm
is a trivial stacked classifier.

A deeper connection can be made, as well. Suppose that we have a set (of
cardinality k) of component k-nearest neighbor classifiers, all of which use the same
set of prototypes. Suppose further that each component classifier uses a different
rule internally to extract a prediction from the predictions of the nearest neighbors:

the ith classifier outputs the prediction of the ith nearest neighbor. See Figure 3.6.

60

Then, if we use the majority rule as the function to combine the predictions of the &
component classifiers, we have the classical k-nearest neighbor algorithm based on the
set of prototypes shared by all the classifiers in common. Our proposed framework
expands the classical algorithm in at least two ways: (1) it provides that different
combining functions may combine the predictions of the £ nearest neighbors, and (2)
it provides for the component classifiers to apply different sets of prototypes. Thus,
the current framework is actually a generalization of the classical k-nearest neighbor
algorithm. This interpretation helps to show why a k-nearest neighbor classifier works
— because the neighboring instances bring complementary information to bear on the

class prediction for a test instance.

Prediction

Combining
Classifier

class of kth
neighbor

class of 1st
neighbor

k-nearest
neighbor classifiers

Figure 3.6. Stacked nearest neighbor classifier with £ component k-nearest neighbor
classifiers as a generalization of traditional k-nearest neighbor classifier

We performed an experiment to test the hypothesis that for some commonly used
data sets the prediction of the nearest neighbor may be less accurate on out-of-sample
data than the 7th nearest neighbor. A 10-fold cross validation was performed on three
data sets in which the accuracy of the predictions of the ith closest instance were
compared for ¢ = 1,2,...,5. The percent of instances correct on average across the
10 folds for the 7th nearest neighbor classifier is given in Table 3.6.

Table 3.6 shows that for well-known Iris data set, the 2nd, 3rd, 4th and 5th nearest
neighbor rules all outperform the 1st nearest neighbor rule. For the Cleveland Heart
Disease data, the 2nd, 3rd and 5th nearest neighbors outperform the nearest neighbor.

On the Breast Cancer data, the 1st nearest neighbor is indeed the most accurate of

61

Table 3.6. Percent of test instances correct for nearest neighbor classifiers that predict
the class of the ith nearest neighbor, for + = 1,2,...,5. The symbol “{” denotes
statistically significant improvement over the baseline 1-nearest neighbor algorithm
(1-NN) at the 0.1 confidence level; “*” significance at the 0.05 confidence level. A
two-sample t-test for statistical significance assuming equal population variances is
used.

| Data Set ‘ 1st-nn || 2nd-nn H 3rd-nn H 4th-nn ‘ 5th-nn ‘
Iris 91.3 96.71 94.0 92.0 92.0
Breast Cancer 68.9 64.3 67.5 67.1 64.3
Heart Disease | 76.0 80.01 81.0%* 74.3 77.3

these rules. While a test on so few data sets is not conclusive, these results do provide
a basis for additional research into different rules for combining the predictions of a
set of neighboring instances.

Networks of nearest neighbor computational units. The stacked general-
ization framework diagram looks like a multilayer neural network diagram. There are
certainly analogous aspects to the two frameworks. The distinction between them
appears to lie partially in the type of information that is passed from the input layer
to the succeeding layer and in the granularity of the classifier nodes themselves. In a
neural network, an activation value is passed to forward layers, which may or may not
be an ultimate prediction or even have some recognizable interpretation. Generally, in
the stacked generalization framework, a “full-fledged” class prediction is passed to the
combining classifier, and not just a scalar that somehow contributes to a prediction?.
Also, in other implementations of stacked classifiers, the classifiers to be stacked are
complex, and may be neural networks themselves [Perrone, 1993].

So one view of the proposed research is as presenting a framework for combin-
ing classifiers that is an intermediate point between (a) complex, computationally
expensive component classifiers that are designed to be accurate on their own and
(b) neural network computational units that are very simple and are designed to be

applied together in architectures that often apply many such units.

*However, the application of a squashing function may make the output appear binary, and
therefore more like a class prediction.

62

In some previous work this intermediate point has been struck, in which classifiers
can be applied as simple classifiers in their own right or in networks. For example,
linear threshold units (LTU’s) could be used in layered feed-forward networks or in
perceptron trees [Utgoff, 1989], or they could be used as classifiers on their own.
By analogy, this proposal advocates combining small instance-based classifiers that
could be called “nearest neighbor units”. Nearest neighbor units can be used on
their own, as we show in Chapter 4, but can also be combined into layered networks
(Figure 1.1), as we show in Chapter 5. This perspective places the current work at one
of a few intermediate points on the spectrum from neural networks that apply very
simple elements to composite systems that integrate a small number of large-grained
modules.

The utility of simple classifiers. An analogy can be made to Holte’s research
demonstrating that a very simple classification rule is sufficient to perform quite good
classification on a number of commonly used databases [Holte, 1993]. Holte showed
that one-layer decision trees that classify on the basis of a single attribute can be
surprisingly accurate on the tasks drawn from the U.C.I. Machine Learning Repository
[Murphy and Aha, 1994]. Our results complement that work by showing how small
prototype sets work well on several datasets. While Holte used a decision tree
for concept representation and applied several simple inductive learning algorithms,
instead we use sets of prototypical instances to provide concept descriptions in a
simple nearest neighbor classification algorithm.

One strain of objection that can be made against Holte’s results is that the
shallow decision tree (so-called decision-stump) classifiers he develops have good, but
often not excellent, classification performance. Since the primary goal is to create
accurate classifiers, this objection goes, Holte’s results are interesting but not useful.
By analogy, on its face this objection can be made against our own approach to

building small nearest neighbor classifiers, which have good but usually not the best

63

generalization capability. Our response to this objection is to combine these small
classifiers in an attempt to boost the accuracy of the composite classifier.

Formal interpretation of the derived training set. Passing all the instances
through a set of component classifiers results in a re-representation of the instances.
This procedure also partitions the instance space according to the set of classifiers.
Formally, the component classifiers induce an equivalence relation on the instance
space. Two instances are equivalent modulo a particular set of classifiers if and only
if each classifier in the set makes the same prediction when given the two instances
as input.

Definition: Let C be a set of classifiers on a data set Tj. Let z;,z; € Ty. Define
z;, =z iff C(x;) = C(z;)VC € C.

This relation is an equivalence relation on the training set instances, since it is
reflexive, symmetric and transitive. Thus the derived training set is analogous to
a quotient space Ty/ = induced by this relation on the training set Ty. Intuitively,
the space has been partitioned according to the perspective afforded the component
classifiers. So, informally, the effect of creating the derived training set is to eliminate
the details of the instances, and to use only the features supplied by the component
classifier predictions. In many algebraic and topological settings the canonical map
from an element to the equivalence class to which it belongs is a structure-preserving
homomorphism. While the idea has not been formalized for our setting, future work
may formalize the intuitive notion that the class structure of a set of instances is pre-
served by the canonical map from the original instances to the derived representation
induced by a set of component classifiers.

Searching the space of nearest neighbor classifiers. The approaches to
k-nearest neighbor classifier construction that are presented in this proposal effect a
search of a low-dimensional subspace of the space of k-nearest neighbor classifiers. A

k-nearest neighbor classifier may be represented as a 4-tuple: < P, k,d, 0 > where

64

P is a set of prototypes,

k is the number of nearest neighbors to consider,

d is the distance function and

f is the rule that combines the class predictions of a set of & nearest
neighbors to yield a final prediction for a test instance.

In this research we vary P, the set of prototypes, to construct classifiers®. How-
ever, the prototype set is only one component of a k-nearest neighbor classifier. The
other “degrees of freedom” could be exploited as well, including varying k£ and varying
the distance metric, d. Also the rule # that selects the class of an unseen instance
from the class of a set of nearest neighbors could be varied. Of course, the default
rule is the majority (plurality) rule. Other rules are available, as well. For example,
combining nearest neighbors on the basis of a minority rule (“predict a class that
receives the fewest, non-zero number of votes from the k& nearest neighbors”) is also a
possibility. Since our objective is to find classifiers whose errors are complementary, a
nearest neighbor classifier that applies a minority (or similar) rule may be combined
effectively with classifiers that apply the majority rule. The dot product of the error
vectors of two classifiers gives one measure of the orthogonality of two classifiers, as
defined in Section 5.3.3.

Thus the research we propose can be viewed from several perspectives, in which
it extends or provides an analogy to previous research. In the next section we outline

several assumptions that we make in order to constrain the research task we face.

3.8 Assumptions

There are several assumptions that we make in this research. In this section we
discuss the reasons for making several of them.

No strong domain theory. One of the assumptions of this work is that a strong
domain theory is not available to inform the search for an appropriate combining

clagsifier and complementary component classifiers. More sophisticated approaches

3Where both k and P should be specified explicitly, the term “k — P-nearest neighbor classifier”
might usefully refer to a k-nearest neighbor classifier that incorporates P, a set of prototypes.

65

to these searches can be applied where a model of the domain (and of the available
classifiers in that domain) is available, such as in the Integrated Processing and
Understanding of Signals (IPUS) architecture of Lesser [Lesser et al., 1994], or in
the knowledge-based feature generation of Callan [1993]. On the other hand, our
assumption makes the framework we develop applicable to situations where domain
knowledge is not available to bias classifier search.

Classifiers from a single model class. Our empirical work will assume that
one particular type of classifier is used for the component classifiers whose predictions
are being combined. While other research has focused on combining different types
of classifiers, the focus in this proposal is on the combination of a collection of
homogeneous classifiers, all of which are nearest neighbor classifiers.

We adopt this constraint for a variety of reasons:

1. Nearest neighbor algorithms are prototypical examples of instance-based classi-
fiers, which have been shown to be effective in a variety of domains over a 50-year
period. Since there are few examples of stacking component nearest neighbor
classifiers in the research literature, studying the stacking of nearest neighbor

classifiers will help fill a gap in the evolution of knowledge in this area.

2. Where a set of component classifiers use the same internal concept represen-
tation, the potential exists for combining these concept representations, rather
than simply combining the class labels output by each classifier. For example,
a combining classifier might attempt to base its class prediction on the rankings
of the neighbors maintained by each k-nearest neighbor component classifier.
Where the component classifiers apply different and incommensurate internal
representations, the combining classifier cannot make use of the internal concept
representations, at least not nearly as easily. Incidentally, this observation opens
up the research question “How much knowledge should a combining classifier

have of the operation of the component classifiers?”

66

3. Nearest neighbor classifiers have been characterized by Breiman as stable classi-
fiers, meaning that a small change in the training set only leads to small changes
in the hypotheses that are generated by the classifier [Breiman, 1994]. He
observes that instability can lead to large generalization errors and large variance,
and these characteristics have not been shown to be desirable for component

classifiers.

4. It is desirable to keep the space of classifiers to be searched as small as possible,
while observing the constraint that the space must contain classifiers that yield
high accuracy, once their predictions are combined appropriately. It has not
been shown that it is necessary to combine classifiers of different types in order
to achieve high accuracy. In fact, it has been observed by Wolpert* that Breiman
achieved significant improvement even though the classifiers he combined were
quite similar to one another [Breiman, 1992]. We attempt to show that while
we limit the search space of learning algorithms we can still achieve very good

generalization accuracy on a variety of problems.

No artificial prototypes. This research also deliberately avoids the creation of
artificial instances because such instances may be unrealistic in the sense that they
do not observe implicit constraints that are present in real data. While such artificial
data can be useful as prototypes to make class predictions, they may not have the
imprimatur of real instances in their inherent explanatory power. An analogy can
be made to the citation of cases in legal practice: while it may be instructive and
probative to cite a hypothetical case, only bona fide cases may be cited in a legal brief
as an authority for a proposition of law.

Using artificial prototypes would also require solution of the problem of how
to create prototypes where some of the features are symbolic or discrete, since the

default construction of artificial prototypes takes an average of feature values. For

4Personal communication.

67

example, where a binary feature vector representation is used, the concept of an

average instance also probably would be inapplicable.

3.9 Conclusion

This chapter has introduced the problems of classifier composition and the solu-
tion paths we propose. We have shown how a composite system that combines a set
of small nearest neighbor classifiers may realize our goals of an efficient and accurate
classifier. Four general techniques of component classifier construction have been
proposed: random sampling, selecting the most accurate of a random sample, error
orthogonality and inconsistency reduction. These techniques are discussed in detail
in Chapter 5. In the next chapter, Chapter 4, we discuss algorithms for creating a
single, independent nearest neighbor classifier as a prelude to combining several of
them. In particular we show how search algorithms with a random basis can be used

on some data sets to find small prototype sets with good classification accuracy.

CHAPTER 4
CONSTRUCTING A NEAREST NEIGHBOR CLASSIFIER

4.1 Chapter Organization

This chapter is the first of two devoted to specific algorithms to select prototypes
and to combine classifiers. Our objective in this chapter is to demonstrate that simple
sampling and search methods are adequate to create independent nearest neighbor
classifiers with good classification accuracy. This chapter provides evidence that
sampling and search can yield component classifiers of sufficiently good accuracy to
justify their use in composite classifiers that use voting or other combining algorithms
that depend directly on the accuracy of the components. However, classification
accuracy is only one criterion we shall apply in the construction of composite classifiers

generally, and low-accuracy classifiers may nevertheless serve as useful components.

4.2 Introduction

The classical nearest neighbor algorithm has a probably deserved reputation for
being computationally expensive. Run-time costs for the basic algorithm are high:
in order to determine the class of a new instance, its similarity to every instance
in memory is assessed. Retaining all instances in primary memory also entails
storage costs. Our goal in this chapter is to demonstrate how two algorithms that
rely on random sampling and local search can reduce the cost of nearest neighbor
classification at run-time by reducing the number of prototypes retained. While a
classical nearest neighbor algorithm treats all instances as prototypes, we show that
nearest neighbor classification accuracy on out-of-sample data from four standard

data sets may be maintained or even increased by selecting only a small handful of

69

instances as prototypes. In order to reduce costs in space and time further, we also
show how local search can be applied to limit the features used in the nearest neighbor
computation.

Many previous approaches to selecting prototypes are instance-filtering tech-
niques, where each member of the data set is examined in turn and some screen is
used to sift the elements that should be retained in the emerging concept description.
Since our goals are to decrease as far as possible the number of prototypes used and
to select prototypes that together classify well, our approach starts from an a prior:
specification of prototype set size and tries to construct an accurate prototype set of
that cardinality. This approach has the obvious advantage of forcing the examination
of very small sets of prototypes. It has the potential disadvantage of requiring a large
amount of search to locate them. In addition, clamping the number of prototypes
limits the difficulty of the problem we address. While we do not pursue the question
of how many prototypes to include, we do appeal to a clustering index in Section 4.7
that may be applied to this important problem.

Two algorithms are applied to select prototypes and features used in a nearest
neighbor algorithm: (1) a Monte Carlo technique, which chooses the most accurate of
a sample of random prototype sets; and (2) a random mutation hill climbing algorithm
(e.g., [Mitchell and Holland, 1993]), which searches for sets of prototypes with demon-
strably good classification power. In previous work we used a genetic algorithm to find
prototypes [Skalak, 1993], which applied greater computational resources to prototype
selection, with comparable results. This chapter follows the theme of using adaptive
search techniques to find sets of prototypes, but uses somewhat less computationally

intensive algorithms to locate them.

4.3 The Nearest Neighbor Algorithm Applied

To determine the classification accuracy of a set of prototypes, a 1-nearest neigh-

bor classification algorithm is used [Duda and Hart, 1973]. The similarity function

70

used in this nearest neighbor computation is straightforward and relies on equally-
weighted features.

Pre-processing. Data are pre-processed (1) to scale values and (2) to instantiate
any missing feature values'.

1. Scaling. All feature values are linearly scaled from 0 to 100. Extreme numeric
feature values are squashed by giving a scaled value of 0 (100) to any raw value that is
less (greater) than three standard deviations from the mean of that feature computed
across all instances. We use this approach rather than, say, standard normal form, in
order to limit the effect of extreme, outlying values. The ReMind case-based reasoning
development shell has previously incorporated a similar data pre-processing method
[Cognitive Systems, Inc., 1992].

2. Missing Values. In the pre-processing step, missing feature values are
(naively) instantiated with the median value of that feature across all instances.

Similarity Computation. To compute the similarity distance between two
scaled instances, we use the Manhattan (“city block” or ;) distance metric. The
prototype with the smallest such similarity distance to a test instance is its 1-nearest
neighbor. As usual, an instance is considered correctly classified by a prototype set
if the instance’s class equals the class of the prototype that is its 1-nearest neighbor
taken from the prototype set.

Our algorithm also incorporates, for unordered, symbolic values, the Stanfill and
Waltz value difference metric [Stanfill and Waltz, 1986]. The value difference metric
uses the relative frequency of values across classes to determine the distance between
each pair of symbolic values that a feature can assume. Two symbolic values are
close if for each class they appear in instances in that class with the approximately
the same relative frequency. A slight variation on the metric was subsequently used

by Cost and Salzberg [Cost and Salzberg, 1993].

LOf the four data sets we use in this chapter, only the Cleveland Heart Disease has any missing
values; six feature values are absent.

71

We introduce a Monte Carlo method (MC1) and two applications of random
mutation hill climbing algorithms (RMHC-P and RMHC-PF1). Finally, we offer
evidence that the degree of clustering of the data set is a factor in determining how

well our simple sampling algorithm will work.

4.4 The Algorithms

4.4.1 Baseline Storage Requirements and Classification Accuracy

Four databases from the UCI machine learning repository [Murphy and Aha, 1994]
were used: Iris, Cleveland Heart Disease (binary classes), Breast Cancer Ljubljana,
and Soybean (small database). All but the Soybean database were chosen in part
because results using various algorithms were compiled from the research literature
by Holte [1993], providing convenient touchstones for comparison. As Holte records,
these databases vary along such features as size, the accuracy of a classification rule
that selects the most frequent class, whether missing values are extant, whether
continuous features are present, the distribution of the number of distinct values of
discrete attributes, and the total number of attribute values. In Section 6.3 we propose
selecting a number of datasets that represent a variety of tasks in the dissertation
research to be completed.

As a basis for comparison for the results we will present in this chapter, we
computed the baseline classification accuracy of the nearest neighbor algorithm, using
all the training cases as prototypes and all the features, and five-fold cross validation.
(Folds of equal size were used in the five-fold cross validation, necessitating that a
residue of fewer than five instances might be left out of every fold.) The average
accuracy over the five folds is given in Table 4.1. For general reference, since C4.5
[Quinlan, 1993] is a benchmark learning algorithm, we also include in Table 4.1
classification accuracies on the four data sets from our own five-fold cross validation

runs using pruned trees generated by C4.5 with its default option settings.

72

Table 4.1. Storage requirements (with number of instances in each data set) and
classification accuracy computed using five-fold cross validation with the 1-nearest
neighbor algorithm used in this chapter and pruned trees generated by C4.5. The
symbol “*” denotes statistical significance at the 0.05 confidence level. A two-sample
t-test for statistical significance assuming equal population variances was used.

| Data Set H Storage H 1-NN H C4.5 ‘
Tris 100% (150) || 93.3% | 93.3%
Cleveland 100% (303) || 74.3% | 71.6%
Breast Cancer || 100% (286) || 65.6% | 72.4%*
Soybean 100% (47) || 100.0% | 95.6%

In general, direct comparison with published results may be improvident in that
different validation techniques, similarity metrics, and values of k£ of the k-nearest
neighbor algorithms, and a different cross-validation partition almost surely will have
been used. In this research, we did not try to optimize k& or experiment with different

similarity metrics.

4.4.2 Monte Carlo (MC1)

As a general matter, Monte Carlo methods provide approximate solutions to
mathematical and scientific problems through repeated stochastic trials. The results
of independent trials are combined in some fashion, usually averaged [Sobol’, 1974].
The method has been applied to many problems in such domains as numerical
integration, statistical physics, quality control and particle physics.

The algorithm described in this section, called MC1, is a simple application of
repeated sampling of the data set, where sampling is done with replacement. The
algorithm is simple. It takes three input parameters: k (k-nearest neighbors), m
(the number of prototypes, which is the sample size), and n (the number of samples
taken). These parameters are fixed in advance. For all the experiments presented in
this chapter, £ = 1 and n = 100. We choose m = 3 for all but the Soybean data set,

where m = 4, since there are four classes.

73

The Monte Carlo MC1 classification procedure can be summarized as follows. We
assume that the data set has been divided for experimental purposes into a training

set and test set.

1. Select n random samples, each sample with replacement, of m instances from

the training set.

2. For each sample, compute its classification accuracy on the training set using a

1-nearest neighbor algorithm.
3. Select the sample(s) with the highest classification accuracy on the training set.

4. Classify the test set using as prototypes the samples with the highest classifica-
tion accuracy on the training set. If more than one sample has the same highest
classification accuracy on the training set, select a classification randomly from

those given by these best-performing samples?.

In a real application, all previously seen instances would be used as training
instances. We report in Table 4.2 the storage requirements (the percentage of mem-
bers of the data set that were retained) and the classification accuracy of the MC1
algorithm, applying five-fold cross validation.

One of the many questions that surfaces in the wake of these results is the effect of
the number of samples of prototype sets on test set accuracy for this algorithm. While
more experimentation would be required to give a full answer to this question, to
arrive at a preliminary indication we performed a 10-fold cross validation experiment
in which we determined the accuracy on the test set of the prototype set having the
highest accuracy on the training set after 10, 100 and 1000 samples of prototype sets.
We performed this experiment for three data sets, omitting soybean because of the

high accuracies achieved on that data. The number of prototypes in each prototype

2We report average accuracy on the test set of the prototype sets that display the highest
predictive accuracy on the training set.

74

Table 4.2. Storage requirements for the 1-nearest neighbor and MC1 algorithms, aver-
age MC1 classification accuracy and average baseline 1-nearest neighbor classification
accuracy using five-fold cross validation.

| Data Set H 1-NN Storage H MC1 Storage H 1-NN H MC1 ‘
Iris 100% 2.0% 93.3% | 93.5%
Cleveland 100% 1.0% 74.3% || 80.7%
Breast Cancer 100% 1.0% 65.6% | 72.6%t
Soybean 100% 8.5% 100.0% || 99.1%

set (3) and other initial parameters are the same for this algorithm as in the previous

experiment. The average accuracy on the test set is given in Table 4.3.

Table 4.3. Effect on test set accuracy (average percent correct) of number of prototype
sets sampled.

| Data Set || 10 | 100 || 1000 |
Iris 91.3% | 95.3% || 95.3%
Cleveland 80.0% || 79.7% || 82.0%

Breast Cancer || 71.4% || 71.4% || 71.4%

These experiments show that MC1, a very simple approach based on random
sampling, does quite well on these four data sets, with a large reduction in storage.
In each of the classification accuracy tables we present, the symbol “}” denotes
statistically significant improvement over the baseline 1-nearest neighbor algorithm
(1I-NN) at the 0.1 confidence level, “*”, significance at the 0.05 confidence level. A
two-sample t-test for statistical significance assuming equal population variances is
used. In Section 4.7 we try to characterize one of the factors that will determine when
random sampling will provide good accuracy. An approach to prototype selection

based on random mutation search is described next.

75
4.4.3 Random Mutation Hill Climbing
4.4.3.1 The Algorithm (RMHC)

Random mutation hill climbing is a local search method that has a stochastic
component [Papadimitriou and Steiglitz, 1982]. The basic random mutation hill
climbing algorithm (RMHC) is as described by Mitchell and Holland [Mitchell and
Holland, 1993]:

1. Choose a binary string at random. Call this string best-evaluated.
2. Mutate a bit chosen at random in best-evaluated.

3. Compute the fitness of the mutated string. If the fitness is strictly greater than

the fitness of best-evaluated, then set best-evaluated to the mutated string.

4. If the maximum number of iterations have been performed return best-evaluated,;

otherwise, go to Step 2.

The general approach is to use a bit string to represent a set of prototypes, and in
some experiments, a collection of features. The intuitive search mechanism is that the
mutation of the bit vector changes the selection of instances in the prototype set or
toggles the inclusion or exclusion of a feature from the nearest neighbor computation.
The fitness function used for all the RMHC experiments is the predictive accuracy on
the training data of a set of prototypes (and features) using the 1-nearest neighbor

classification algorithm described in Section 1.

4.4.3.2 Search for Prototype Sets (RMHC-P)

For this experiment, the bit vector encodes a set of m prototypes in a straight-
forward way. Each prototype set is encoded as a binary string, which is conceptually
divided into m substrings, one for each of the m prototypes, where each substring

encodes an index into the cases stored as an array. The length of the binary string

76

encoding a prototype set is the number of bits required to represent the largest index
of a case in the data set, multiplied by the number of prototypes, [logsr] - m where
r is the number of cases in the data set. So, for example, the number of bits used to
encode a set of three Iris prototypes was [log2150] - 3 = 24.

The RMHC algorithm was applied to this representation, searching for a set
of three (four for the Soybean data set) prototypes with superior predictive power.
The fitness function was the classification accuracy on the training set of a 1-nearest
neighbor classifier that used each set of prototypes as reference instances. In the
experiments reported here the algorithm was run for 100 mutations3. The results after
only 100 mutations — a very small number for this type of approach — are presented
for two reasons. Informally, we did not observe an increase in classification accuracy in
many experiments by running the algorithm longer, although more experimentation
is required to establish this result. Second, such a small amount of search supports
a sub rosa hypothesis of this chapter — that small sets of prototypes with good
classification accuracy are denser in the space of sets of prototypes than might be
expected for these data sets, since little search is required to locate them.

Further, the accuracy of the final prototype set returned by the algorithm does
appear to be better than the random prototype set used as the starting point. A
random starting prototype set yielded an average accuracy (across the five partitions)
on the test set of 68.0% for the Iris data set, 54.7% for the Cleveland data, 61.4% for
the Breast Cancer data, and 66.7% for the Soybean data. Average classification accu-
racy for the final prototype set and storage requirements for five-fold cross validation
are given in Table 4.4. The storage requirements for the baseline nearest neighbor

algorithm are 100% of the instances for all the experiments reported in this chapter.

3To accelerate the algorithm, the calculated fitness of each prototype set was cached by memoizing
[Abelson et al., 1985] the evaluation function so that the predictive accuracy of a set of prototypes
(and features) need only be computed once for each fold of the cross validation. Nonetheless,
retrievals of previously cached evaluations are counted in the number evaluations reported.

7

Table 4.4. Storage requirements for the prototypes found by RMHC-P, average
classification accuracy for the prototypes selected by RMHC-P, and average baseline
1-nearest neighbor classification accuracy.

| Database H Storage H RMHC-P H 1-NN ‘
Iris 2.0% 93.3% 93.3%
Cleveland 1.0% 82.3%* 74.3%
Breast Cancer 1.0% 70.9% 65.6%
Soybean 8.5% 97.8% 100.0%

The results show a comparable or improved classification accuracy of the RMHC-
P algorithm over a nearest neighbor algorithm using all the training instances as
prototypes. In particular, the results on the Cleveland database appear to be better
than previously published results with only a very small percentage of stored instances

used.

4.5 Search for Prototype and Feature Sets (RMHC-PF1)

Finally, experiments were performed to determine if the RMHC algorithm could
select features as well as prototypes. Further reduction in computational costs would
result from a reduction in the number of features that have to be considered in the
nearest neighbor similarity computation. We used RMHC-PF1 to select prototypes
and features simultaneously, using a representation that records both the prototypes

and features in a single vector.

The original numbers of features in the datasets we consider are given in Table 4.7,
and these numbers are quite small, varying from 4 to 36. We do not know how
well this algorithm would perform for instances with large numbers of features. For
example, in an information retrieval system applying a vector space model of retrieval,
a document is usually represented as a sparse binary vector, with 1’s representing the
appearance of a word (from some fixed dictionary of thousands of terms) in that
document, and 0’s representing the absence of a word. This algorithm has not been

tested on such datasets. Nevertheless, reducing the features stored for each instance

78

is a laudable goal, since it reduces costs in both time and space, reducing on-line
storage and the computation that must be done to compute the distance between
any two instances. Finally, in view of the fact that some UCI datasets sometimes
have been criticized as including only engineered features that are relevant (to the
extent that such engineering can be done reliably, however, it is a good thing), it is
somewhat surprising that feature reductions can be achieved at all from such a small
base of original features.

To use RMHC to select features, we used a simple characteristic function bit
vector representation, one bit for each feature used in the instance representation.
The 4th bit records whether to use the corresponding ¢th feature from some fixed
presentation of the features: 1 to include the feature in the similarity distance
computation, 0 to exclude it. Thus, for the Cleveland database, there are 13 features,
and a 13-bit vector represents the features.

The bit vectors used in the previous experiments for prototypes and the features
bit vector were concatenated in this representation. At each iteration only one bit
was mutated, and it was left to the random bit mutation procedure, which with
uniform probability randomly selects a bit to toggle, whether that bit fell within the
“prototypes sub-vector” or the “features sub-vector.” We did not attempt to alter
any bias stemming from the different relative lengths of the prototype set vectors
and feature vectors. RMHC-PF1 used a fitness function that classified the training
set using the encoded prototypes and only taking into account the features that are
specified by the bit vector.

For consistency of experimental presentation, the algorithm was again run for 100
evaluations only, notwithstanding the increased size of the search space, starting with
a random set of features and prototypes. The random starting prototype and features
set yielded an average accuracy (across the five partitions) on the test set of 51.3%

for the Iris data set, 61.6% for the Cleveland data, 55.4% for the Breast Cancer data,

79

and 51.1% for the Soybean data. Classification accuracy and storage requirements

for the five-fold cross validation are given in Table 4.6.

If a data set has P instances, each containing F' features, and the RMHC-PF1

algorithm yields p prototypes and f features, the storage requirements reported are

pf/PF. For example, the RMHCP-PF1 algorithm retrieves p = 3 prototypes and

an average, across the five folds, of f = 2.4 features; there are P = 150 original

instances and F' = 4 original features. The total storage costs are therefore given as

pf/PF = (3-2.4)/(150 - 4) = 0.012 See Table 4.5 for the other computations. As

always, the 1-NN algorithm requires 100% storage.

Table 4.5. Computation of average storage requirements for RMHC-PF1

Database Selected Selected Total Total RMHC-PF1
Prototypes || Features || Instances || Features Storage
Iris 3 2.4 150 4 1.2%
Cleveland 3 7.6 303 13 0.6%
Breast Cancer 3 4.8 286 9 0.6%
Soybean 4 16.4 47 36 3.9%

Table 4.6. Storage requirements and average classification accuracy for the selection
of prototypes and features by RMHC-PF1, with average 1-nearest neighbor baseline
classification accuracy.

‘ Database || Storage || RMHC-PF1 || 1-NN |
Iris 1.2% 94.7% 93.3%
Cleveland 0.6% 80.7%t 74.3%
Breast Cancer 0.6% 72.3%* 65.6%
Soybean 3.9% 97.8% 100.0%

As shown in Table 4.7, approximately half the total number of features were

used in general and so the reduction in features alone cuts run-time storage costs

80

in half. For example, an average, across the five folds, of 2.4 features out of 4 were

used for Iris classification. Petal-width and petal-length appear to be useful predictive

features, since they were selected as features in five and four partitions, respectively.

Sepal-length is apparently not useful, since it was not selected in any partition. An

average of 7.6 features of 13 were used for classification in the Cleveland data set.

The ca feature was used in all five partitions; cp, exang, and thal were applied in four;

restecg in none. The features for the Cleveland data set are described in Appendix

C. Descriptions of these features may be found in the UCI repository [Murphy and

Aha, 1994]

Table 4.7. Number of features in the original instance representation and average
number features selected by RMHC-PF1.

‘ Database H Total Features H RMHC-PF1 Features || Percent Features Retained ‘
Iris 4 2.4 60%
Cleveland 13 7.6 61%
Breast Cancer 9 4.8 53%
Soybean 36 16.4 46%

4.6 Discussion

Table 4.8 summarizes the mean predictive accuracy of the preceding experiments.

Except for the small Soybean data set, the storage requirements for all of the

algorithms were about 1%-2% of the training instances, except for the baseline nearest

neighbor algorithm, which used 100% of the training examples. The general lesson is
that a reduction in storage costs of one or two orders of magnitude from a standard

nearest neighbor algorithm that uses all instances has been achieved on some of these

data sets together with a statistically significant increase in computational accuracy.

81

Table 4.8. Summary of average classification accuracy (% correct) from five-fold
cross validation for the experiments presented in this chapter to select prototypes
and features. Storage requirements, in percentage of the data set are given in
parentheses. The symbol “{” denotes statistically significant improvement over
the baseline 1-nearest neighbor algorithm (1-NN) at the 0.1 confidence level; “*7
significance at the 0.05 confidence level. A two-sample t-test for statistical significance
assuming equal population variances was used.

[Database | I-NN | MC1 | RMHC-P || RMHC-PF1 |

Tris 933 | 93.5 (2.0) || 93.3 (2.0) || 94.7 (1.2)
Cleveland 74.3 || 80.7 (1.0) || 82.3* (1.0) | 80.74(0.6)
Breast Cancer | 65.6 || 72.61(1.0) || 70.9 (1.0) 72.3* (0.6)
Soybean 100.0 || 99.1 (8.5) | 97.8 (8.5) | 97.8 (3.9)

While some of the nominally better results may not be statistically significant?,
these experiments at least show that using three or four prototypes and possibly a
proper subset of the features performs statistically as well as using the entire training
set and all the features. Thus the accuracies of the algorithms presented in this
chapter are statistically comparable to a standard nearest neighbor approach with

much smaller computational expense.

4.7 A Measure of Clustering

It is clear that such naive sampling techniques will not always work, although
their limits need to be determined experimentally and theoretically. (One avenue of
research is to determine whether random sampling of sets of prototypes can itself
provide a measure of the predictive complexity of a database.) The success of a
sampling algorithm appears to depend partly on the distribution of instances in the

data set and the geometric structure of the concepts to be learned.

*In interpreting the significance results in the table, note that the t-test considers the mean and
variance of the underlying cross validation data, but that only the mean percentage accuracy is
reported here. In general, MC1 displayed higher variance than the other algorithms. A test for the
analysis of variance (single factor) for each data set also reveals that we cannot reject at the 0.05
confidence level the null hypothesis that all of the predictive accuracy means are equal.

82

In particular, one possible explanation for the successful results from sampling
presented in this chapter is that the data sets used exhibit well-defined, widely spaced
classes® in feature space, classes that exhibit a high degree of “internal coherence”
and “external isolation.” The intuition is that such an ideal separation of classes
moots the selection of a prototype, since any instance in an isolated class may give
perfect accuracy via a nearest neighbor algorithm.

Characterizing clusters and determining the “optimal” number of clusters in a
data set are classical problems, and many indicators have been proposed, usually
under the heading stopping rules, used to determine where to terminate a hierarchical
clustering algorithm [Milligan and Cooper, 1985]. In an empirical examination of
stopping rules, the Calinski-Harabasz Index (sometimes, the “Index”) was the best
performing of 30 procedures [Milligan and Cooper, 1985; Calinski and Harabasz,
1974). In general, the Index is defined as

[trace B/(m — 1)]/[trace W/(n — m)]

where n is the total number of data instances and m is the number of clusters in
a possible clustering®. B is the between cluster sum of squares and cross product
matrix, and W is the pooled within cluster sum of squares and cross product matrix
from multivariate statistics [Johnson and Wichern, 1992]. See Appendix A for a
description of these matrices.

We performed a set of experiments to determine the effect of class isolation and
cohesion, measured by the Calinski-Harabasz Index, on the performance of the Monte
Carlo (MC1) sampling algorithm. We regard the instances of each class as a cluster
and have applied this index to determine how well the classes are separated within

each data set. Our hypothesis was that as the Calinski-Harabasz Index increased,

SWe thank Paul Utgoff for this suggestion.

6The trace of a square matrix is the sum of its diagonal elements.

83

entailing greater class cohesion and external isolation, the performance of MC1 would
also increase.

For each of the four data sets, we performed a 10-fold cross validation. In each
ply, the following procedure was used, where 90% of the data set was used for training

and 10% used for testing.

1. Run MC1 algorithm on the training set and determine the generalization ac-
curacy of the classifier formed with the prototypes computed by MC1 on the

corresponding test set.

2. For each pair of classes, compute the Calinski-Harabasz Index using the instances

in the test set and treating the instances in each class as a cluster.
3. Take the minimum of the Index values over all pairs of classes.

4. Create a data point, an ordered pair whose abscissa is the minimum Calinski-
Harabasz index computed in Step 3, and whose ordinate is the generalization

accuracy on the test set.

This procedure allows us to determine the relationship between the minimum
Calinski-Harabasz Index (taken over all the pairs of classes in a test set) and the
classification accuracy on out-of-sample test sets”. The minimum Index was used as
the independent variable under the hypothesis that the worst separation between a
pair of classes would dominate the classification accuracy. Following this procedure
in each of the 10 plies gives 10 data points. The results are graphed in Figures 4.1,
4.2 and 4.3.

From the standpoint of using the Index to predict the suitability of a sampling
technique for a given data set, the Index value on the training set might better reflect
the “true” clustering displayed by the entire data set. Experimental results that apply

the Index to the training set have not been conclusive, however.

84

100 mn —=u
98-
96
941
921
90 -
88
86
84
82

14 J AN S AN AN S E—
0 2 4 6 8 10 12
Calinski-Harabasz Index

Classification Accuracy (%)

Figure 4.1. Classification accuracy vs. Calinski-Harabasz Index on Iris data

100

951
] n n
90 pd

85

80 -

A

75

Classification Accuracy (%)

70

65-

ool 1 1 1 1
0 1 2 3 4 5 6 7 8
Calinski-Harabasz Index

Figure 4.2. Classification accuracy vs. Calinski-Harabasz Index on Cleveland Heart
Disease data

85

100

95

90

85 -

80

. T
657(/./ k
60 +——+————

0 05 1 15 2 25 3 35
Calinski-Harabasz Index

Classification Accuracy (%)
[]
|

Figure 4.3. Classification accuracy vs. Calinski-Harabasz Index on Breast Cancer
data

The results show a clear tendency for MC1 to perform better when the cluster
index is higher (good class separation) and worse when the cluster index is lower (poor
separation). Tests for significance of the regression trendlines were confirmed by an
analysis of variance F-test, where all were found significant at the 0.05 confidence
level (Iris: F' = 6.2; Cleveland: F' = 17.6; Breast Cancer: F' = 5.4). While the results
are not conclusive, they do present a basis for additional experiments to determine

the range of applicability of Monte Carlo approaches.
4.8 Conclusion

We have found these results surprising. Using very simple stochastic algorithms
these experiments show that significant reductions in storage of cases and features
can be achieved on the data sets examined without decreasing nearest neighbor
classification accuracy, and in some instances actually improving it. This chapter
also has provided evidence for the hypothesis that the average accuracy of a simple

method of finding prototypes by sampling increases with the internal coherence and

"Due to the uniformly high performance on the Soybean data, we omit the analysis of that data
set.

86

external isolation of the classified data, as measured by a classical clustering index

developed by Calinski and Harabasz.

CHAPTER b
COMBINING NEAREST NEIGHBOR CLASSIFIERS
5.1 Chapter Organization

In the previous chapter, we discussed the application of sampling and search
methods to construct a single nearest neighbor classifier. In this chapter we begin
to investigate how to select classifiers whose predictions are to be combined and how
to combine nearest neighbor classifiers to get a more accurate composite classifier.
Experimental evidence is presented to support the following contention: composite
nearest neighbor classifiers composed of a small set of nearest neighbor classifiers
each of which incorporates only a small number of prototypes demonstrate better
generalization accuracy on several standard data sets than a nearest neighbor classifier

that uses all instances as prototypes.

In the specific instantiations of this architecture we will investigate here, the

combining classifier applies one of three algorithms:

e plurality vote
e k-nearest neighbor

e ID3.

In the following section we discuss the reasons for selecting these particular
combining algorithms. The component classifiers are k-nearest neighbor classifiers

in this instantiation.

We now turn to a consideration of the three subproblems involved in the con-
struction of a composite classifier discussed in Chapter 1: selection of a combining
classifier (Problem 1), selection of component classifiers (Problem 2), and the inte-

grated selection of combining and component classifiers (Problem 3).

88

5.2 Selection of a Combining Classifier

In this first problem, we assume that the component classifiers have been fixed
in advance and that the goal is to find a superior way to combine them. In this
section we give the details of how to train and apply voting, nearest neighbor and
ID3 algorithms in a combining classifier.

The hypothesis that we want to test experimentally in this section is:

Hypothesis. On the tested data sets, either of two classical learning algorithms
used as a combining classifier yields better classification accuracy than voting used
as a combining algorithm.

The selection of a combining classifier might be made by analogy to the ways that
a committee of (human) individuals can make a group decision. A panel of appellate
judges is one example of a committee whose decisions have to be aggregated in order to
render a judgment. In addition to the usual approach of using persuasion and arguing
the merits of each potential decision, there are at least three ways for a committee
to render a decision given the opinions of the individuals on the committee, at least

that might satisfy some elementary sense of fairness.
1. Vote and take the decision with the most votes.

2. Appeal to precedent and make the decision that was made the last time the

committee members held their present opinions as to which decision is best.

3. Determine which subset of members are best at making the decision and let them

decide.

These three approaches serve as analogies for our choices of combining classifiers:
voting, nearest neighbor and ID3. These off-the-shelf algorithms have been selected
deliberately to show that once an appropriate derived training set has been created,
a custom algorithm is not needed to generalize from that new training set. As we

discussed in Chapter 2, voting is a default method, but will be unable to generalize

89

situations where a majority of the classifiers give the wrong answer. Both ID3 and a
k-nearest neighbor algorithm should be able to learn from situations where a majority
of the component algorithms are wrong. ID3 and k-nearest neighbor algorithms
demonstrate different strengths in our context. ID3 should be able to recognize when
to output the prediction of a particular component classifier, or a prediction based on
a small subset of them. Using a nearest neighbor combining classifier gives a uniform
framework for the composite classifier by incorporating nearest neighbor classifiers at
both levels, but the benefits of this uniformity remain to be demonstrated. Nearest
neighbor algorithms may give strong performance where the component classifiers are
equally accurate, that is, where all the derived features are equally relevant. ID3 may
prevail where the classifiers vary in accuracy, since it need not take all the classifier
predictions into consideration.

Before we describe how to train and apply these classifiers, we first mention
a characteristic of a derived training set that is not typically encountered in raw
training sets (at least not in the UCI repository): inconsistent instances, instances
whose feature values are the same but whose class labels are different. The component
classifiers compress the data and if the compression is too severe, the presence of
inconsistent derived instances is a potential hazard. (As we shall see in Section 5.3.2,
attempting to limit excessive compression by the component classifiers at the derived
representation level leads to a heuristic method for selecting component classifiers.)

For each of the three combining algorithms we apply, we describe how they
have been adapted to deal with inconsistent instances, and how they are trained
and applied in a composite classifier. The initial setup of the derived feature set
that forms the training set for the combining classifier is the same for the k-nearest
neighbor and ID3 algorithms and was described Section 3.3, where pseudocode for
the training algorithm was provided. No training is required for the voting combining

algorithm.

Voting. In the application phase, a test instance is input to each of the individual

90

classifiers, and each classifier outputs a class prediction. The class predicted by
the greatest number of component classifiers wins and constitutes the final pre-
diction of the composite classifier. Ties among component classifier predictions

are broken randomly.

k-Nearest Neighbor. In the application phase, a test instance is input to each
classifier and a vector of class predictions is formed, as in the training phase.
Nearest neighbors in the derived case base to the test instance are computed
using a distance function that counts the number of class predictions that are
different in the two vectors. Essentially, this is a Hamming distance metric

applied to symbolic (rather than binary) vectors.

The implementation of any k-nearest neighbor algorithm must incorporate a
policy for determining the instances in a neighborhood where more than k
instances can legitimately be included in the neighborhood. This policy is
invoked when there are many instances on the boundary of a neighborhood.
These boundary instances are those that are as close as the farthest of any set
of k neighbors. The policy of the k-nearest neighbor combining algorithm we
apply is to include all these boundary instances, that is, all the instances whose

distance to a test case is the same as that of the k-th nearest neighbor.

In general, the predicted class is given by plurality vote of the classes of instances
in a neighborhood. Ties among these instance votes are broken randomly. The

default value of £ in these experiments is k£ = 1.

ID3. The set of derived vectors is then input to the ID3 algorithm to train a de-
cision tree. Internal nodes in the tree branch on the prediction of a particular
component classifier, and therefore branches correspond to the predictions of
a particular classifier. The gain ratio feature selection criterion is used. In

the application phase, a test instance is classified by each of the component

91

classifiers. The derived instance is then input to the decision tree combining

algorithm, which outputs a prediction.

In the implementation of ID3 used here!, a plurality vote of instances at each
leaf containing inconsistent instances is used to make class predictions for test

instances that fall to each such leaf.

In the next section we describe an experiment that shows for several datasets
that composite algorithms can outperform the baseline nearest neighbor algorithm

and compares the combining classifiers we consider.

5.2.1 Experiment

This experiment compares the classification accuracies of the three combining
algorithms on several data sets. We use a very simple approach to selecting component
classifiers, random selection. In a ten-fold cross validation experiment, in each fold we
randomly selected three sets of three prototypes from the training set. Three nearest
neighbor classifiers were created using the three sets of prototypes. A composite
classifier was built from these three classifiers, using each of the three combining
functions. Table 5.1 gives the average accuracy of the composite classifiers across the
ten folds.

We compare the accuracy of the three combining algorithms to an “unstacked”
baseline classifier, a 1-nearest neighbor algorithm using all the instances as prototypes.
The accuracy of the baseline classifier reported in Table 5.1 is different from the
1-nearest neighbor baseline accuracy reported in the experiments in Chapter 4 because
five-fold cross validation was used in Chapter 4 and ten-fold cross validation was used
in the experiments in this chapter.

Since ID3 and k-nearest neighbor perform comparably, these experiments do not

argue in favor of the universal application of any one of the combining algorithms for

!Thanks go to Neil Berkman for writing and providing Lisp source code for ID3.

92

Table 5.1. Comparison of baseline 1-nearest neighbor with the ID3 algorithm,
k—nearest neighbor and voting, for combining randomly selected component clas-
sifiers. Average percent classification accuracy on test data, using ten-fold cross vali-
dation. The symbol “1” denotes statistically significant improvement over the baseline
1-nearest neighbor algorithm (NN) at the 0.1 confidence level; “*” | significance at the
0.05 confidence level.

Data Set Baseline Combining Algorithm
1-NN ID3 || k-Nearest Neighbor || Vote
Iris 91.3 86.8* 86.2* 82.4*
Breast Cancer 68.9 70.7 70.7 56.8%
Cleveland Heart Disease 76.0 75.5 75.3 66.3%

amalgamating the predictions of small, randomly selected nearest neighbor classifiers.
However, they do provide some support for our experimental hypothesis, that voting
is not the universally best combining algorithm, although it is the combining method
often relied upon as a default [Battiti and Colla, 1994; Littlestone and Warmuth,
1989]). With these preliminary results?, we turn to our main focus, the search for

complementary component classifiers.

5.3 Search for Component Classifiers

In this section, we consider how to select or construct the component classifiers
whose decisions are being combined. We rely on three general approaches, each of
which is embodied in one or more algorithms. The general hypothesis we wish to
demonstrate is:

Hypothesis: A composite classifier can yield greater generalization accuracy
than a nearest neighbor algorithm that uses all training instances as prototypes.

We discussed four approaches to component classifier selection in Section 3.4. The
algorithms are described in greater detail below. The output of each algorithm is a set
of nearest neighbor classifiers to be used as component classifiers. After each of the
algorithms has been described, we present an experiment with a factorial design. For

three datasets, we show the average generalization accuracy of a composite classifier

2 Additional datasets will be used in the experiments in the proposed dissertation.

93

consisting of component classifiers selected by each of the four algorithms we present,

and combined using each of the three combining algorithms.

5.3.1 Classifier Selection through Sampling

There are two algorithms that select classifiers through sampling: Random and
Best of Random. The Random selection algorithm takes three inputs: the number
of classifiers to be created (n), the number of prototypes to be used in each classifier
(p), and a training set (7"). In this proposal we assume that each classifier uses the
same number of prototypes. This algorithm randomly selects n subsets of instances,
with replacement, of cardinality p from 7. The sampling is constrained to select at
least one prototype from each class exposed in the training set. For each of the n
subsets, a nearest neighbor classifier is constructed with that set of instances used as
the prototype set. The Manhattan metric is used as a similarity metric.

The Best of Random classifier selection algorithm takes the same set of arguments
as the Random selection algorithm, plus one additional input, the number of samples
to take (s). Then s samples of p prototypes are sampled with replacement from 7.
Next, s nearest neighbor classifiers are constructed from these prototype sets. The
classification accuracy on the training set 7" is determined for each of the s classifiers.
The n classifiers with the highest training set classification accuracy are output. Ties

are broken randomly.

5.3.2 C(lassifier Selection through Inconsistency Reduction

In this section we describe the Inconsistency Reduction algorithm that adds
component classifiers dynamically to reduce the inconsistency of the derived training
set. A set of instances is inconsistent if there exist two or more instances in the
set that have (all) the same feature values but different class labels. Recall that a
derived training set is created by inputing each instance in the original training set

to all of the component classifiers and re-representing the instance as a vector of class

94

predictions and its known class label. Each component classifier provides a feature
for the derived training set.

We use a measure of the inconsistency of a representation to drive a greedy
search for a level of representation that will reduce the inconsistency in the derived
training set. Beginning with the feature given by an initial component classifier,
the representation is expanded to include the features given by another component
classifier when the representation exhibits too great a degree of inconsistency (with
“too great” currently specified by the user). The expansion of the representation
stops when the training set inconsistency falls below the user-specified threshold. If
inconsistency in the derived training set remains when the algorithm halts, it will
reduce the classification accuracy on the training set, and, possibly, on out-of-sample
instances. Thus the algorithm effects a greedy search in a space of representations
for a data set. This space of representations is quite limited, however, since the
features of each instance representation are merely class labels. Nonetheless, it is
a question for future research whether a representation that is appropriate for the
learning algorithms we apply can be found within this somewhat impoverished set of
representations.

We describe the algorithm in more detail below, but at each stage the inconsis-
tency of the derived training set is reduced by choosing two instances from the original
training set whose representations in the derived training set are inconsistent. These
inconsistent instances are used as prototypes for a new classifier that gives rise to
another feature in the derived representation. The algorithm attempts to choose the
instances in a way that will help to decrease the inconsistency.

For example, suppose that z; and z, are two original training instances with
class labels 0 and 1, respectively, and that the current set of component classifiers
is {C1,C2}. Suppose the derived representation of z; is < 0 1 0 >: that is,
component classifier C7 outputs 0 on input z1, component classifier Cy outputs 1

on input z;, and the class of x; is 0, as we assumed. Suppose similarly that the

95

derived representation of x5 is < 0 1 1 >. Now the derived representations of z;
and zo, <0 1 0 >and <0 1 1 >, are inconsistent. These instances have the
same feature values (< 0 1 >), given by the predictions of C; and Cs, but different
class labels (0 and 1). The Inconsistency Reduction algorithm attempts to create
a third classifier, ('3, whose addition to the set of component classifiers will reduce
the inconsistency in these two instances. For example, if C'3 output O on input x4,
but C3 output 1 on input x5, then the inconsistency in these two instances would be
removed. The representation of z; induced by the three component classifiers would
be <0 1 0 0>, and the derived representation of o would be <0 1 1 1>. The
problem is how to construct component classifier C's by choosing suitable prototypes
for it. For example, the inconsistent instances themselves (z; and z3) may be used
as two of the prototypes in ('3, which is the current approach of the Inconsistency
Reduction algorithm.

While low inconsistency in the derived training set appears to be a prerequisite
for good classification accuracy in a composite classifier, we are experimenting with
various implementations of the Inconsistency Reduction algorithm. We therefore
describe the algorithm in two stages, first in broad outline to highlight the design
issues and then in more, albeit provisional, detail. We follow the same two-step
description procedure for the Error Orthogonality algorithm to select component
classifiers, described in Section 5.3.3.

In broad outline, the steps of the Inconsistency Reduction algorithm are:

1. Create an initial component classifier.
2. Compute the inconsistency of the derived training set.

3. If exit conditions are satisfied, then return the current set of component classi-

fiers.

4. Otherwise, construct a classifier and add it to the component classifier set.

96

5. Go to step 2.

As this outline shows, there are several design decisions inherent in an algorithm

that follows this outline:

1. How should the initial classifier be created (step 1)?
2. What is the inconsistency measure of a training set (step 2)7?
3. What exit conditions should be used (step 3)7

4. How is a new classifier constructed to reduce inconsistency (step 4)?

We are testing the effect of different answers to these questions, but we can
describe the provisional answers.

1. Initial classifier. A classifier is created with randomly selected prototypes,
at least one from each class.

2. Inconsistency measure. The Inconsistency Reduction algorithm measures
the inconsistency of a derived training set based on the proportion of training in-
stances of distinct classes that are mapped to the same training instance by a set of
component classifiers. The measure currently implemented is described below.

3. Exit conditions. The algorithm halts when either of two user-provided
thresholds is breached. (1) The inconsistency measure is below a threshold value
input by the user. (2) The maximal number of classifiers have been added. The
default inconsistency measure threshold is more or less arbitrarily set at 0.2; the
default maximal number of classifiers is three.

4. Classifier construction. Classifiers are constructed by incorporating pro-
totypes from distinct classes that have the same derived features. There are two
subproblems: (1) select a derived instance that is maximally inconsistent according
to some measure, and then (2) through prototype selection, construct a classifier that

will reduce the inconsistency of that derived instance.

97

As to the first problem, the current algorithm chooses a derived instance by
determining which instance has the greatest product of the number of instances of
distinct classes that are mapped to it. For example, if three instances of class +
and two instances of class — are mapped to the derived instance < —— > by the
component classifiers, then < —— > is assigned the value six for the purpose of
selecting the (maximally) inconsistent derived instance.

As to the second problem, the current approach is to select two prototypes
from the original training set that are mapped to the derived training instance of
greatest inconsistency. Several techniques have been tried to make this selection
from among the instances that have inconsistent derived representations, including
(1) randomly selecting the two instances from different classes that have inconsistent
derived representations; (2) selecting two instances of different classes that are the
closest of all pairs of instances from different classes whose derived representations are
inconsistent; (3) selecting two instances of different classes whose k-nearest neighbors
are all of the same class as each of the two instances; and (4) selecting not the
instances themselves that have inconsistent representations, but the nearest neighbor
of each of those instances. The current approach is (2), but research is on-going.

Once two prototypes are selected from the inconsistent region, any additional
prototypes are selected from the classes not represented in the inconsistent region or
from the default class if there are only two classes.

Our provisional inconsistency measure can be described formally. First, define
a projection operator that takes an instance of the derived training set Ty (which
consists of a set of vectors of classifier predictions and the actual class assignment)
into its feature vector without the class assignment: =([Ci(z),...Ch(z),c(z)]) =
[Ci(x),...Ch(x)], where each C;(z) is the prediction of classifier C; for the class of
instance z and ¢(z) is the actual class of z.

Let f : T, — m[T4] be the function that takes each original instance z € T,

98

and maps each one into a derived instance in the derived training set 7[Ty] via the
component classifiers.

Then f~1: 7[Ty] — 2% is the inverse relation that maps a derived instance into
the original instances that are mapped by f to that derived instance.

Define f5'(z4) = {z|f(z) = z4Ac(z) = C}. f5'(z4) represents the set of original
instances from class C that are mapped by the component classifiers into the derived
training instance z4.

Let C"* = argmaxc | f (za)|. Cm° is the class of the greatest number of
instances in the region containing z4.

Then the inconsistency of the derived instance can be defined by

a(za) = Y |fo, (za)l
O, Cyos
. a(z4) represents the number of instances that are mapped to x4 except those in the
class whose instances are mapped most frequently to xg4.

Finally, the normalized inconsistency of the derived training set Ty can be defined

by?

AlTa) =2 > alza))/|T]

zg€Ty

The idea may be harder to express formally than it really is, and an example may
clarify this computation. Suppose that there are two classes, + and —, and that we
apply two component classifiers to a training set T, = {z1,...,z7}. Suppose there
are five original instances < z1, + >, < o, + >, < 23, + >, < x4, — >, < =5, — > that
are mapped into the derived feature vector < +,— >. So C7'{" _ = +, since more
instances of class 4+ are mapped to < +, — > than any other class. The inconsistency

of < +,— >, a(< +,— >), is 2, reflecting the fact that the two instances x4 and x5

3The factor 2 is not crucial, but reflects an intuition that inconsistent instances come in pairs
in a two-class problem. Subjectively, it takes (at least) two instances to have an inconsistency and
both instances can be considered inconsistent.

99

are inconsistent in the derived representation. Suppose that < x4, 4+ > and < z7,+ >
are the only instances mapped to derived instance < +,+ >. The derived training
instance < +4,+ > has inconsistency 0, since it is not inconsistent: no instances
of class — are mapped by the component classifiers to < +,+ >. The normalized
inconsistency of the derived training set is 2- (24 0)/7 = 4/7, reflecting that four of
the seven training instances are inconsistent.

While recursive partitioning algorithms have applied the analogous idea of the
impurity of a subset of the instance space, we wish to distinguish work based on
that idea from the Inconsistency Reduction algorithm. The impurity of a node in
a decision tree, which represents a subspace of the instance space, is at a minimum
if it contains only instances from a single class. If the same number of elements of
all classes is contained in a subspace, that set is maximally impure [Breiman et al.,
1984]. A similar idea is applied here, but the Inconsistency Reduction algorithm is

distinguished from algorithms based on impurity in several ways.

1. The Inconsistency Reduction algorithm is not a recursive partitioning algorithm,
since the classifier constructed at each iteration in the algorithm has global scope.
It is not applied only to the subspace of instances that are deemed inconsistent.
This approach is consistent with the philosophy of this research, that giving
classifiers global scope may provide predictive information useful to a combining

classifier.

2. Recursive partitioning algorithms have handled inconsistent data differently from
the Inconsistency Reduction algorithm. Decision tree algorithms such as ID3 of-
ten have dealt with inconsistent instances by outputing an “inconsistent classes”
value at leaves containing such inconsistent instances or by taking a vote of the

instances within such a leaf.

3. The Inconsistency Reduction algorithm applies a different measure of inconsis-

100

tency, a simple one based on frequency counts, rather than measures used in

decision tree algorithms, such as ID3’s information gain [Quinlan, 1986].

4. The end to which the Inconsistency Reduction algorithm is applied is different
from recursive partitioning algorithms. The Inconsistency Reduction algorithm
to applied to effect a re-representation of the original instance space to create a

new instance space.

We next describe another approach to selecting complementary component clas-

sifiers, based on an analysis of the errors made by each classifier.

5.3.3 Classifier Selection through Error Orthogonality

In this section we argue that an analysis of the errors that are made by each
component classifier can provide a search bias that can lead to component classifiers
that have generalization accuracy for the tested data sets superior to a baseline nearest
neighbor classifier. The motivation to examine the sets of errors made by a classifier
stems from the observation that a set of component classifiers that all make the same
errors do not provide any additional information to a combining classifier that would
enable it to boost classification accuracy. We may think of two classifiers that make
different errors on a data set as displaying error orthogonality. If two classifiers make
the same errors, they are not orthogonal in this sense.

Enlisting the term orthogonality can be justified by formalizing some of these
ideas. Suppose we have two classifiers Cy and C, and a data set T' = {xg, 1, ..., Zn}
Given a fixed presentation ordering of 7" we can define a binary error vector £’ that
captures some of the classification behavior of a classifier C); when applied to 7'
Define

Ef = 0 if C; classifies z; correctly and

E! = 1if C; classifies z; incorrectly;

1=0,...,m;7=1,2

101

In general, two real vectors are called orthogonal if their dot product is 0. In our
context, if two error vectors have a non-zero dot product, then they are not orthogonal.
Two classifiers C; and Cy whose error vectors have a non-zero dot product make some
of the same errors: E'-E? > 0. E'-E? is the number of instances on which C; and C,
both make misclassifications. If E!- E? = 0, then either C; and C5 both classify each
instance correctly, or one classifies it correctly while the other classifies it incorrectly.
If a data set 7' is fixed, we may say that two classifiers are orthogonal if their error
vectors (defined as above) are orthogonal.

There are many ways that an analysis of the errors made by classifiers might give
rise to a bias for selecting classifiers. In the algorithm we present next, the Error
Orthogonality algorithm, a search is made for classifiers whose errors on the training
set are disjoint. The current algorithm is provisional and we shall propose work to
follow this general theme in the investigation of other algorithms.

The current implementation of the Error Orthogonality algorithm has the follow-
ing broad outline. The idea is to create a pool of classifiers, upon which one can
draw, to extract component classifiers that minimize the errors in common according

to some measure. In broad outline, the algorithm works as follows:

1. Sample s sets of p prototypes from the training set 7. Construct s classifiers

using these sampled prototype sets.

2. Based on heuristics, select a set of n classifiers that minimize a measure of error

overlap.

This algorithm uses generate-and-test. While a constructive algorithm would be
preferable, sampling classifiers is a viable method where the classifiers are small and
therefore easily tested, and where sampling gives enough sufficiently diverse classifiers.

Several questions arise in an algorithm that follows this outline.

1. How are the parameters set (s, p, n)?

102

2. What measures of error overlap can be used?

3. What search heuristics are used to minimize the measure of error overlap,

without exhaustive search?

Different answers to these questions give rise to a range of algorithms. We
discuss the answers to these questions for the current implementation of the Error
Orthogonality algorithm.

1. Parameter settings. The current algorithm does not provide a principled
answer to this question. No current algorithms can answer these questions, either,
even in a more limited context, such as the number of prototypes that achieves
maximal generalization accuracy for a single classifier on a given data set. In practice,
s = 10 sets of p = maz{3,number-of-exposed-classes} are chosen to find n = 3
component classifiers.

2. Measures of error overlap. The current implementation has the goal of
minimizing only the number of instances that are in the error sets of all the component
classifiers. Other approaches are clearly possible, especially those that use a weighting
coefficient to reflect that instances may appear in a number of error sets without
appearing in all of them.

3. Search heuristics. In the search for component classifiers with disjoint error
sets, we discard classifiers whose error sets are a (proper) superset of others in the
pool. A classifier that makes a superset of errors of another can only increase the
cardinality of the intersection with a third classifier’s errors. The search also is biased
in favor of classifiers that make a small number of errors, since, intuitively, it may be
easier to find classifiers whose error sets do not intersect such a small set.

At this point we have presented four algorithms for component classifier selection.
In the next section we provide results of preliminary experiments testing the general-
ization accuracy of composite classifiers using components constructed by these four

algorithms, for each of three combining algorithms.

103

5.3.3.1 Experiment

In this section we give preliminary evidence for the hypothesis that algorithms
based on sampling, derived training set inconsistency reduction, and error orthog-
onality yield component classifiers that display generalization accuracy superior to
a baseline nearest neighbor algorithm. On three data sets selected from the UCI
machine learning accuracy, we tested each of the four component classifier selection
algorithms, using each of three combining algorithms. In Tables 5.2, 5.3 and 5.4
for each experiment we give the average generalization accuracy using 10-fold cross
validation. Each algorithm was applied to constructing three component classifiers.
The results reported for the Random algorithm represent the average taken over 10
samples. For the Best of Random algorithm, the best three of 10 classifiers were used.
The number of samples to be selected is a user-specified parameter, and 10 samples
is an admittedly small number. However, the sensitivity of these algorithms to the
number of samples taken has yet to be determined. (Recall that the classification
accuracy of the MC1 sampling algorithm was surprisingly inelastic with respect to
the number of samples taken, as shown in Table 4.3.) One point we wish to make
is that a very small number of samples of prototypes suffice to give accuracy higher
than a nearest neighbor algorithm that incorporates all instances as prototypes.

The algorithms are compared with a baseline nearest neighbor algorithm that
uses all training instances as prototypes and applies a Manhattan distance metric,
under the column heading “NN”. This nearest neighbor baseline accuracy differs
from the accuracies reported in Chapter 4 because five-fold cross validation was used
in Chapter 4 and in this chapter we have used 10-fold cross validation. Statistical
significance was computed using a paired two-sample t-test.

These results provide a starting point for future research on stacked classifier
construction. Using a 1-nearest neighbor algorithm as a baseline, these results show

generally show the comparable or superior performance of stacked classifiers that

104

Table 5.2. Component classifier selection algorithms classification percent accuracy,
using ten-fold cross validation and ID3 as the combination algorithm. The symbol
“t” denotes statistically significant improvement over the baseline 1-nearest neighbor
algorithm (NN) at the 0.1 confidence level; “*” significance at the 0.05 confidence

level.

‘ Data Set H NN || Random || Best of Random || Inconsistency || Error Orthog. ‘
Iris 91.3 86.8* 88.7 96.0%* 93.3
Breast Cancer || 68.9 70.7 72.9 71.8 72.1
Heart Disease || 76.0 75.5 80.3% 74.7 79.37

Table 5.3. Component classifier selection algorithms classification percent accuracy,
using ten-fold cross validation and a nearest neighbor algorithm as the combination

algorithm.

‘ Data Set H NN || Random || Best of Random || Inconsistency || Error Orthog. ‘
Iris 91.3 86.2%* 88.0 96.0%* 92.7
Breast Cancer || 68.9 70.7 72.1 71.8 71.4
Heart Disease || 76.0 75.3 80.3%* 74.0 78.7F

uses ID3 or a k-nearest neighbor combining algorithm and incorporates only several
prototypes in a small number of component nearest neighbor classifiers.
However, there is much room for improvement when the baseline is “Best of

Y

Random,” which takes as components those classifiers that have the highest training
set classification accuracy. Only on the Iris data did the Inconsistency Reduction and
Error Orthogonality algorithms outperform the Best of Random algorithm. In future
work the stacked classifiers should also be compared with the classification accuracy
of the (single) component classifier with the highest accuracy on the training set, in

order to show that a boost in performance has been achieved. In the next chapter

we propose to improve these results or to explain why component classifier selection

Table 5.4. Component classifier selection algorithms classification percent accuracy,
using ten-fold cross validation and a voting algorithm as the combination algorithm.

‘ Data Set H NN || Random || Best of Random || Inconsistency || Error Orthog. ‘
Iris 91.3 82.4%* 90.7 87.3 82.7*
Breast Cancer || 68.9 56.8* 71.8 70.0 53.2%*

Heart Disease || 76.0 66.3% 79.01 66.3% 69.3%

105

algorithms based on the general ideas of reducing derived training set inconsistency
and increasing error orthogonality may not work consistently upon commonly used
data sets.

We can make several observations about the performance of these algorithms on
these data sets.

Relative Performance of Combining Classifiers. ID3 gave the best nominal
performance, and voting was the worst where the component classifiers may display
low accuracy, as can happen with the Random, Inconsistency Reduction, and Error
Orthogonality algorithms. The performance of ID3 and a nearest neighbor algorithm
were very similar as combiners.

Relative Performance of Component Classifier Algorithms. Random
selection generally performed the worst of the four algorithms. With the ID3 and
nearest neighbor combining algorithms the other three algorithms performed compa-
rably. Component selection using Best of Random outperformed the other algorithms
with a voting combiner.

But, on the Iris and Breast Cancer data, selecting the available classifiers with
the highest training set accuracy (Best of Random) does not significantly outperform
algorithms that select classifiers according to other criteria. Choosing classifiers with
lower accuracy on average performed statistically as well as selecting a combination
of the best classifiers.

Performance of Composite Classifiers. We have shown that a composite
classifier that incorporates a small number of nearest neighbor classifiers, each of
which incorporates only a few prototypes, can perform better than a nearest neighbor
algorithm that uses all instances as prototypes. Our goal in these initial experiments
was not to optimize generalization accuracy by varying the number of component
classifiers or the number of prototypes that they apply. We expect that the general-
ization accuracy of the composite classifiers will be improved as component selection

algorithms are explored and refined.

106

5.4 Integrated Search for Combining and Component Clas-
sifiers

Problem 3 from Chapter 1 puts the first two problems together: construct a
composite classifier, where both the component and combining classifiers may be
varied. This problem appears harder than the previous two subproblems because of
the added complication that there may be interactions between the set of component
classifiers and the combining classifier. Design of multilayer artificial neural networks
also presents this problem of dealing with the interactions between layers. One set
of component classifiers may perform best with one combining classifier, and another
set of components may perform best with a different combining algorithm.

Designing a composite classifier that minimizes error requires facing the problem
of blame and credit assignment. If the composite classifier misclassifies an instance,
is the combining classifier the “cause” of the misclassification, or are the component
classifiers “to blame?” If the component classifiers are to blame, how is the blame
to be apportioned among these components? Finally, once the blame is placed, how
can a classifier be reconfigured to eliminate its share of the error? In this section
we catalog several approaches to answering these questions, but leave to future work
specific algorithms or results to help answer them. The general approaches we mention

here are:
1. Cross validation.

2. Local search algorithms with a stochastic component, such as a genetic algorithm

or random mutation hill climbing.
3. Heuristics.
4. Stacking of combining classifiers.

We discuss each approach in turn.

107

Cross validation. In an application where the choice of combining classifier is
to be made from only a few candidates and only a few sets of component classifiers
are considered, one classical approach is to use cross validation of the data set to
select a composite architecture. For a given set of component classifiers, this winner-
take-all scheme selects the combining classifier with the highest average generalization
accuracy across all the plies of a cross-validation partition of the data. One pervasive
drawback with using cross validation is that it is computationally intensive. A second
is that no guidance is given as to which instantiations of the composite architecture
to compare.

Genetic algorithms, random mutation hill climbing. A second approach
that is still computationally intensive but does provide some guidance on the classifiers
to select is local search with a stochastic component, such as a genetic algorithm (GA)
or random mutation hill climbing. In the GA approach, each proposed instantiation
of an architecture would be encoded as a chromosome and a fitness function could be
defined as the training set classification accuracy (or generalization accuracy on some
withheld portion of the training set.) Suitable crossover and mutation operators would
have to be defined, along with other parameters and GA architecture components.
An appropriate crossover operator would take (the representations of) two composite
classifiers and create (the representation of) a third composite classifier, preferably
one that is likely to show improved generalization accuracy over its parent classifiers.
To apply this approach, the GA would be run until defined termination criteria were
satisfied and a composite classifier would be selected from the final population.

Heuristics. Another approach is similar to that taken by Brodley, which is
to determine heuristically on the basis of classifier performance on a data set, which
combining and component classifiers are likely to yield a classifier of superior accuracy
[Brodley, 1992]. Another approach would be to try to extract features of the derived
training set that call for the application of one or another combining classifier. This

last approach would be difficult and speculative, since it probably involves making

108

progress on the unsolved general problem of determining the best classifier to apply
on the basis (of some set of features yet to be determined) of a given set of data.

Stacking of Combining Classifiers. The three approaches just discussed select
a single combining algorithm from among the candidates. On the other hand, the
philosophy behind this proposal is that it is often useful to combine predictions.
Therefore, a three-layer architecture may provide a solution, where a set of component
classifiers forms the first layer, the (three) combining classifiers form the second layer,
and a single, master combining classifier forms the third layer. We do not expect to
adopt this solution, since this architecture only postpones the decision of the top-level
combining algorithm, however. On the other hand, the properties of the data derived
from the outputs of the second layer combining classifiers may be different from that
of the previous layer, in a way that makes the choice of a master combining algorithm
clearer. For example, if the data are highly compressed by the time they get to the
master level, the choice of master classifier may not matter much.

There are a number of possible approaches to the integrated problem of composite
classifier construction. We leave to proposed work the selection of one of them or the

adoption of a different tack.

5.5 Conclusion

In this chapter we have presented several approaches to creating composite clas-
sifiers. In Chapter 1 we identified three subproblems of this general task: selecting
a combining algorithm (Problem 1), searching for component classifiers (Problem
2), and performing these two tasks simultaneously (Problem 3). As to the first
problem, we have shown that two combining algorithms (ID3 and nearest neighbor)
can combine the predictions of some sets of nearest neighbor component classifiers
more accurately than voting. On the second problem, we have suggested four al-
gorithms for searching for component classifiers. Two are immediate outgrowths of

random sampling of prototypes. Two of the strategies introduce criteria in addition

109

to in-sample classification accuracy that ought to be considered in the selection of
component classifiers: (1) reduction in the inconsistency of the derived training set,
and (2) the presence of orthogonal errors on the training set. Finally, on the third
problem, we discussed some potential solution paths.

In the final chapter, we discuss the work to complete the dissertation research.

CHAPTER 6
ProOPOSED WORK

6.1 Chapter Organization

The primary objectives of this research are to propose elements of a theory of how
to select classifiers for combination and to study composite classifiers that combine
the predictions of a set of component nearest neighbor classifiers. In this chapter we

propose a strategy for achieving these objectives.

6.2 Possible Research Directions

There are several directions in which this line of research might be continued
to complete the dissertation. Work will continue along several of these directions
simultaneously. Since we have tested our algorithms only on a small number of data
sets, much more empirical work needs to be done. That experimental work is discussed
separately in the following section.

Improvement of algorithms for complementary component classifier
construction. The preliminary work discussed in the previous chapters was done to
show (1) the general utility of classifiers that apply only a small number of prototypes,
and (2) the relative utility of four broad strategies to select component classifiers:
random sampling, selecting the most accurate, decreasing the inconsistency of the
derived training set, and analyzing the errors made by each component classifier. The
algorithms we present are our first, tentative steps to capture the intuition behind
the broad strategies. The proposed algorithms can be modified to increase their
effectiveness and efficiency, and we anticipate proposing other algorithms to select

component classifiers. In particular, we shall investigate constructive strategies that

111

search for component classifiers without relying on repeated sampling of prototype
sets.

Description of an emerging theory. Our ultimate research goal is to give a
theory of how to construct classifiers for stacking. While a comprehensive theory of
classifier stacking is beyond the scope of this thesis, the sundry pieces that we identify
should be glued into a coherent framework.

Searching the space of nearest neighbor classifiers. In Section 3.7 we
presented a model of a k-nearest neighbor classifier with four parameters (the pro-
totypes, k, the distance function, and the class prediction combining function for a
set of neighbors). In this proposal we have limited our attention to varying the set
of prototypes to construct complementary classifiers. In particular, we have assumed
that the same number of prototypes is present for each class, and we should loosen
this assumption in future work.

The class prediction combining function, which takes the predictions of a set
of neighbors to an instance and outputs a final class prediction, has received little
attention in nearest neighbor classifier research. Investigating the utility of combining
component classifiers that incorporate different such prediction combining functions
may be a useful line of research, and we would propose a brief foray into this somewhat
neglected area.

We can also represent a nearest neighbor algorithm as an instantiation of a “local”
learning algorithm [Bottou and Vapnik, 1992] captured in 3-tuple: < T, f,# > where
T'is a set of instances, a subset of some universe of instances I, and C'is a set of class
labels.

[: 1 — 2T is a function that produces a (local) neighborhood, a subset of 7', of an
instance in the instance space I.
0 : f[I] — C is a function that takes a neighborhood of instances and returns a class

prediction based on that neighborhood.

112

This more abstract representation suggests that we might have even more flexi-
bility to design nearest neighbor classifiers, especially those that are complementary
to a given one. For example, one possibility is to alter the neighborhood-generating
function f. We have done preliminary experiments with neighborhoods that are based
on walks from an instance, in which an instance-to-instance path is traced for some
number of steps. The instances visited in the walk then constitute the neighborhood.
Walks in different directions in the instance space could yield neighborhoods that
support complementary classifiers.

Identification of characteristic instances. We have begun to explore the
notion of characteristic instances, instances that are touchstones to the accuracy
of classifiers on an entire data set. Our intuition is that by testing a classifier
on a small subset of carefully selected instances, we may be able to tell without
exhaustive testing the approximate degree of accuracy of the classifier when applied
to the entire set of instances. By limiting the testing to a small set of characteristic
instances, we shall attempt to accelerate a generate-and-test algorithm for configuring
component classifiers. A successful implementation of this approach may be applied
to the testing of parameter settings and other components normally done by cross
validation, bootstrapping or other computationally intensive techniques.

For example, our proposed approach to the identification of characteristic in-
stances is based on maintaining statistics when a set of random classifiers (of the model
class of interest) is each applied to a data set. In our initial implementation, we keep
track of the following statistics for each instance in a training set: (1) how many times
the instance was correctly classified by a random classifier, (2) the mean accuracy on
the whole data set of the classifiers that classified the instance correctly, and (3)
the mean accuracy on the whole data set of the classifiers that classified the instance
incorrectly. We are exploring ways to identify the set of characteristic instances based
on these statistics. For example, if an instance has high mean accuracy for those

classifiers that classify it correctly, and low mean accuracy for those classifiers that

113

classify it incorrectly, then that instance may be a good characteristic instance to test.
If an instance is almost always correct, if may be a bad choice for a characteristic
instance, unless the user wants to include a small number of such instances for a
“sanity check.”

Next, to test the accuracy of a new classifier that has been generated, testing only
would have to be performed on the set of characteristic instances. It is possible that
a set of characteristic instances may not be a static set, fixed in advance, but they
also may be identified dynamically as tests on characteristic instances are performed
to attempt bound the accuracy of a classifier within some confidence interval.

Alternatively, if a suitable algorithm can be found to identify characteristic in-
stances, it should also be determined whether such instances should be used as
prototypes, rather than (merely) used for testing the suitability of other instances

as prototypes.

6.3 Evaluation

In order to demonstrate empirically the general applicability of the methods we
present, they should be tested on a variety of data with different characteristics. Since
data sets from the U.C.I. Machine Learning Repository are recognized benchmarks in
this area of research [Murphy and Aha, 1994, we propose selecting a fixed collection of
data sets that repository for experimental use. The data sets selected should exhibit
varying characteristics, such as the number of features and classes, the amount of
noise in the features and/or class labels, the attribute value type, and so forth.

We also propose a second, complementary approach to evaluation that requires
the creation of artificial data sets. Once we have hypotheses about the characteristics
of the data that affect the performance of a composite classifier, we can program a
data set generator. This generator would permit us to control the characteristics of
data sets in order to show more directly how the performance of a stacked nearest

neighbor classifier varies with particular features of a data set. For example, we have

114

already shown that on several data sets the degree of clustering of the data to be
classified affects the accuracy of nearest neighbor classifiers that incorporate only
a few prototypes (Section 4.7). Thus the degree of clustering (as measured by the
Calinski-Harabasz Index or some other measure) would be one degree of freedom that
could be varied by such a data generator.

The expected result of our experiments is to show that the techniques we shall
explore will lead to small nearest neighbor classifiers that display classification ac-
curacies higher than a nearest neighbor classifier that applies all available instances
as prototypes and accuracy higher than the component classifiers. This result will

provide concrete evidence for the hypothesis presented in Chapter 1.

6.4 Conclusion

A successful implementation of the ideas presented in this proposal will affect
artificial intelligence and machine learning research in several ways. First, we expect
this research to show that it is possible to build accurate classifiers from very simple
components in many commonly studied domains. Second, it should demonstrate the
utility of random sampling and stochastic search techniques for constructing com-
ponent classifiers in those domains. Third, this research emphasizes the perspective
that there are many degrees of freedom inherent in some classifiers and that these

can exploited in order to create component classifiers that are complementary.

115

Appendix A
Sum of squares and cross-product matrices

Let there be g clusters of real vectors x;;, | = 1,2,...,g, each of which has n;
instances indexed by 5 = 1,2,...,n;. Let X be the overall sample mean vector, and
X; be the mean vector of the vectors in cluster /.

Then we can define B the between cluster sum of squares and cross product matriz
as

g
> (x — X) (% — X)
=1
We also define W, the within cluster sum of squares and cross product matriz as

g n

oD (= =) (xy — %)

I=1j=1

116

Appendix B
Information-gain ratio test

We reproduce here for reference the information-gain ratio of a test for a branching
attribute in a decision tree. We follow the description given by Quinlan [Quinlan,
1986] and set out by Brodley [Brodley, 1994, Appendix B, p. 95]. The theory behind
the test is given by Quinlan also. We give the two-class test; the multi-class case is a

straightforward extension.

Key:

p: number of positive instances in the training set

n: number of negative instances in the training set

v: number of distinct values for attribute A

p;: number of positive instances in which attribute A has value ¢
n;: number of negative instances in which attribute A has value ¢

Define

e gain(A) = I(p,n) — E(A) (the information gain of testing attribute A) where

o [(p,n) = —;F loga-2 — —logy . (information required for classification)

e (A) =37, %I(pi,ni) (the expected information required for a tree with
root A)

o IV(A) =~} Brilog, B (the information of the values of A)

117

Appendix C
Description of Cleveland Heart Disease dataset features

The following features are present in the University of California at Irvine Ma-
chine Learning Repository Cleveland Heart Disease dataset. Feature descriptions are

reproduced verbatim from documentation associated with that dataset.
age: age in years
sex: sex (1 = male; 0 = female)

cp: chest pain type
— Value 1: typical angina
— Value 2: atypical angina
— Value 3: non-anginal pain

— Value 4: asymptomatic
trestbps: resting blood pressure (in mm Hg on admission to the hospital)
chol: serum cholestoral in mg/dl
fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)

restecg: resting electrocardiographic results
— Value 0: normal
— Value 1: having ST-T wave abnormality (T wave inversions and/or ST eleva-
tion or depression of > 0.05 mV)
— Value 2: showing probable or definite left ventricular hypertrophy by Estes’

criteria
thalach: maximum heart rate achieved
exang: exercise induced angina (1 = yes; 0 = no)

oldpeak: ST depression induced by exercise relative to rest

118

slope: the slope of the peak exercise ST segment
— Value 1: upsloping
— Value 2: flat

— Value 3: downsloping
ca: number of major vessels (0-3) colored by flourosopy
thal: 3 = normal; 6 = fixed defect; 7 = reversable defect

num: The presence of heart disease in the patient. It is integer-valued from 0 (no
presence) to 4. Experiments with the Cleveland database have concentrated on
simply attempting to distinguish presence (values 1,2,3,4) from absence (value

0).

BIBLIOGRAPHY

[Abelson et al., 1985] Abelson, H.; Sussman, G.; and Sussman, J. 1985. Structure
and Interpretation of Computer Programs. MIT Press, Cambridge, MA.

[Aha, 1990] Aha, D. W. 1990. A Study of Instance-Based Algorithms for Supervised
Learning Tasks: Mathematical, Empirical, and Psychological Evaluations. Ph.D.
Dissertation, Dept. of Information and Computer Science, University of California,
Irvine.

[Angluin, 1992] Angluin, D. 1992. Computational Learning Theory: Survey and
Selected Bibliography. In Proceedings of the 2/th ACM Symposium on Theory
of Computing, Victoria, B.C., Canada. Association for Computing Machinery.
351-369.

[Arrow, 1963] Arrow, K.J. 1963. Social Choice and Individual Values. Yale University
Press, New Haven, CT.

[Ash, 1989] Ash, T. 1989. Dynamic Node Creation in Backpropagation Networks.
Connection Science 1:365-375.

[Bareiss, 1989] Bareiss, E. R. 1989. Exemplar-Based Knowledge Acquisition. Aca-
demic Press, Boston, MA.

[Barr et al., 1981] Barr, A.; Feigenbaum, E. A.; and Cohen, P. 1981. The Handbook
of Artificial Intelligence. Addison-Wesley, Reading, MA.

[Battiti and Colla, 1994] Battiti, R. and Colla, A.M. 1994. Democracy in Neural
Nets: Voting Schemes for Classification. Neural Networks 7:691-707.

[Blumer et al., 1987] Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and Warmuth, M. K.
1987. Occam’s Razor. Information Processing Letters 24:377-380.

[Bottou and Vapnik, 1992] Bottou, L. and Vapnik, V. 1992. Local Learning Algo-
rithms. Neural Computation 4:888-900.

[Breiman et al., 1984] Breiman, L.; Friedman, J.H.; Olshen, R.A.; and Stone, C.J.
1984. Classification and Regression Trees. Wadsworth International Group, Bel-
mont, CA.

[Breiman, 1992] Breiman, L. 1992. Stacked Regressions. Technical Report 367, Dept.
of Statistics, University of California, Berkeley, CA.

[Breiman, 1994] Breiman, L. 1994. NIPS*94 Tutorial, Statistics and Nets: Under-
standing Nonlinear Models from Their Linear Relatives.

120

[Brodley, 1992] Brodley, C.E. 1992. Dynamic Automatic Model Selection. Technical
Report 92-30, Dept. of Computer Science, University of Massachusetts, Amherst,
MA.

[Brodley, 1994] Brodley, C.E. 1994. Recursive Automatic Algorithm Selection for
Inductive Learning. Dept. of Computer Science Technical Report 94-61, University
of Massachusetts, Amherst, MA.

[Buntine, 1991] Buntine, W. 1991. Classifiers: A Theoretical and Empirical Study. In
Proceedings of the Twelfth International Joint Conference on Artificial Intelligence,
San Mateo, CA. Morgan Kaufmann. 638-644.

[Burrascano, 1991] Burrascano, P. 1991. Learning Vector Quantization for the Prob-
abilistic Neural Network. IEEE Transactions on Neural Networks 2:458—641.

[Calinski and Harabasz, 1974] Calinski, T. and Harabasz, J. 1974. A Dendrite
Method for Cluster Analysis. Communications in Statistics 3:1-27.

[Callan et al., 1991] Callan, J. P.; Fawcett, T. E.; and Rissland, E. L. 1991. CABOT:
An Adaptive Approach to Case-Based Search. In Proceedings, 12th International
Joint Conference on Artificial Intelligence, Sydney, Australia. International Joint
Conferences on Artificial Intelligence, Inc. 803-808.

[Callan, 1993] Callan, J.P. 1993. Knowledge-Based Feature Generation for Inductive
Learning. Ph.D. Dissertation, University of Massachusetts, Amherst, MA.

[Cardie, 1994] Cardie, C. 1994. Domain-Specific Knowledge Acquisition for Concep-
tual Sentence Analysis. Ph.D. Dissertation, Dept. of Computer Science, University
of Massachusetts, Amherst, MA.

[Chang, 1974] Chang, C. L. 1974. Finding Prototypes for Nearest Neighbor Classi-
fiers. IEEE Transactions on Computers c-23:1179-1184.

[Clement, 1989] Clement, R.T. 1989. Combining Forecasts: A Review and Annotated
Bibliography. International Journal of Forecasting 5:559-583.

[Cognitive Systems, Inc., 1990] Cognitive Systems, Inc., 1990. Case-Based Retrieval
Shell, User’s Manual V. 3.17. Cognitive Systems, Inc.

[Cognitive Systems, Inc., 1992] Cognitive Systems, Inc., 1992. ReMind: Case-based
Reasoning Development Shell.

[Cooper et al., 1982] Cooper, L.N.; Elbaum, C.; and Reilly, D.L. 1982. Self Organiz-
ing General Pattern Class Separator and Identifier. U.S. Patent 4,326,259.

[Cost and Salzberg, 1993] Cost, S. and Salzberg, S. 1993. A Weighted Nearest Neigh-
bor Algorithm for Learning with Symbolic Features. Machine Learning 10:57-78.

[Cover and Hart, 1967] Cover, T. M. and Hart, P. E. 1967. Nearest Neighbor Pattern
Classification. IEEE Transactions on Information Theory 1T-13:21-27.

121

[Dasarathy, 1991] Dasarathy, B. V. 1991. Nearest Neighbor (NN) Norms: NN Pattern
Classification Techniques. IEEE Computer Society Press, Los Alamitos, CA.

[de la Maza, 1991] Maza, M.de la 1991. A Prototype Based Symbolic Concept
Learning System. In Proceedings of the Fighth International Workshop on Machine
Learning, San Mateo, CA. Morgan Kaufmann. 41-45.

[Devijver and Kittler, 1980] Devijver, P. A. and Kittler, J. 1980. On the Edited
Nearest Neighbor Rule. In Proceedings of the 5th International Conference on
Pattern Recognition, Los Alamitos, CA. The Institute of Electrical and Electronics
Engineers. 72-80.

[Duda and Hart, 1973] Duda, R. O. and Hart, P. E. 1973. Pattern Classification and
Scene Analysis. John Wiley, New York.

[Edelman, 1993] Edelman, S. 1993. Representation, Similarity, and the Chorus of
Prototypes. Technical report, Weizmann Institute of Science, Israel.

[Efron, 1979] Efron, B. 1979. Computers and the Theory of Statistics: Thinking the
Unthinkable. STAM Review 21:460-480.

[Fahlman and Lebiere, 1990] Fahlman, S.E. and Lebiere, C. 1990. The Cascade
Correlation Architecture. Advances in Neural Information Processing Systems
2:524-532.

[Frean, 1990] Frean, M. 1990. The Upstart Algorithm: A Method for Constructing
and Training Feedforward Neural Networks. Neural Computation 2:198-209.

[Gates, 1972] Gates, G. W. 1972. The Reduced Nearest Neighbor Rule. [EEE
Transactions on Information Theory 431-433.

[Goel, 1989] Goel, A. 1989. Integration of Case-Based Reasoning and Model-Based
Reasoning for Adaptive Design Problem Solving. Ph.D. Dissertation, Dept. of
Computer and Information Science, The Ohio State University.

[Golding and Rosenbloom, 1991] Golding, A. R. and Rosenbloom, P. S. 1991. Im-
proving Rule-Based Systems through Case-Based Reasoning. In Ninth National
Conference on Artificial Intelligence, Anaheim, CA. American Association for
Artificial Intelligence.

[Hart, 1968] Hart, P. E. 1968. The Condensed Nearest Neighbor Rule. I[EEFE
Transactions on Information Theory (Corresp.) IT-14:515-516.

[Hertz et al., 1991] Hertz, J.; Krogh, A.; and Palmer, R. G. 1991. Introduction to the
Theory of Neural Computation. Addison-Wesley, Redwood City, CA.

[Holte, 1993] Holte, R. C. 1993. Very Simple Classification Rules Perform Well on
Most Commonly Used Datasets. Machine Learning 11:63-90.

122

[Hutchinson, 1993] Hutchinson, J. M. 1993. A Radial Basis Function Approach to
Financial Time Series Analysis. Ph.D. Dissertation, Dept. of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cambridge, MA.

[Jacobs et al., 1991] Jacobs, R. A.; Jordan, M. I.; and Barto, A. G. 1991. Task
Decomposition through Competition in a Modular Connectionist Architecture: The
What and Where Vision Tasks. Cognitive Science 15:219-250.

[Johnson and Wichern, 1992] Johnson, R.A. and Wichern, D.W. 1992. Applied Mul-
tivariate Statistical Analysis. Prentice-Hall, Englewood Cliffs, NJ.

[Jordan and Jacobs, 1993] Jordan, M.I. and Jacobs, R.A. 1993. Hierarchical Mix-
tures of Experts and the EM Algorithm. Technical Report 1440, Massachusetts
Institute of Technology Artificial Intelligence Laboratory.

[Kibler and Aha, 1988 Kibler, D. and Aha, D. W. 1988. Comparing Instance-
Averaging with Instance-Filtering Learning Algorithms. In Proceedings of the Third
FEuropean Working Session on Learning, Glasgow. Pitman. 63-80.

[Kohonen et al., 1988] Kohonen, T.; Barna, G.; and Chrisley, R. 1988. Statistical
Pattern Recognition with Neural Networks: Benchmarking Studies. In [EEE
International Conference on Neural Networks, San Diego, CA. IEEE. 161-168.

[Kohonen, 1989] Kohonen, T. 1989. Self-Organization and Associative Memory.
Springer-Verlag, Berlin, third edition.

[Koton, 1988] Koton, P. A. 1988. Using Experience in Learning and Problem Solving.
Ph.D. Dissertation, Department of Electrical Engineering and Computer Science,
M.I.T., Cambridge, MA.

[Krzanowski, 1988] Krzanowski, W. J. 1988. Principles of Multivariate Analysis.
Clarendon Press, Oxford, UK.

[Kurtzberg, 1987] Kurtzberg, J. M. 1987. Feature Analysis for Symbol Recognition
by Elastic Matching. International Business Machines Journal of Research and
Development 31:91-95.

[Lakoff, 1987] Lakoff, G. 1987. Women, Fire, and Dangerous Things: What Cate-
gories Reveal about the Mind. University of Chicago Press, Chicago.

[Langley, 1993] Langley, P. 1993. Induction of Recursive Bayesian Classifiers. In Pro-
ceedings of the 1993 Furopean Conference on Machine Learning, Berlin. Springer
Verlag. 153-164.

[Lesser et al., 1994] Lesser, V. R.; Nawab, S. H.; and Klassner, F. I. 1994. TPUS: An
Architecture for the Integrated Processing and Understanding of Signals. Submitted
to Artificial Intelligence.

123

[Littlestone and Warmuth, 1989] Littlestone, N. and Warmuth, M. 1989. The
Weighted Majority Algorithm. In Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, Washington, DC. IEEE Computer Society Press.
256—261.

[Marchand et al., 1990] Marchand, M.; Golea, M.; and Rujan, P. 1990. A Conver-
gence Theorem for Sequential Learning in Two-Layer Perceptrons. FEurophysics
Letters 11:487-492.

cCarty and Sridharan, cCarty, L. T. and Sridharan, N. S. : om-

McC d Sridh 1982] McC L. T. and Sridh N.S.1982. AC
putational Theory of Legal Argument. Technical Report LRP-TR-13, Laboratory
for Computer Science Research, Rutgers University.

[Mezard and Nadal, 1989] Mezard, M. and Nadal, J.P. 1989. Learning in Feedforward
Layered Networks: The Tiling Algorithm. Journal of Physics A 22:2191-2204.

[Michalski, 1994] Michalski, R.S. 1994. Inferential Theory of Learning: A Multistrat-
egy Approach. In Michalski, R. and Tecuci, G., editors, Machine Learning Vol. IV.
Morgan Kaufmann, San Francisco, CA. 3-61.

[Milligan and Cooper, 1985] Milligan, G. W. and Cooper, M. C. 1985. An Exam-
ination of Procedures for Determining the Number of Clusters in a Data set.
Psychometrika 50:159-179.

[Minsky, 1965] Minsky, M. 1965. Steps Toward Artificial Intelligence. In R. D. Luce,
R. R. Bush and Galanter, E., editors, Readings in Mathematical Psychology (origi-

nally published in the Proceedings of the Institute for Radio and Electronics, 1961,
vol. 49, pp. 8-30). John Wiley, New York.

[Mitchell and Holland, 1993] Mitchell, M. and Holland, J. H. 1993. When Will
a Genetic Algorithm Outperform Hill-Climbing? Technical report, Santa Fe
Institute.

[Moore, 1990] Moore, A. W. 1990. Acquisition of Dynamic Control Knowledge for a
Robot Manipulator. In Proceedings, Seventh International Conference on Machine
Learning, Austin, TX. Morgan Kaufmann. 244-252.

[Murphy and Aha, 1994] Murphy, P. M. and Aha, D. W. 1994. UCI repository of
machine learning databases. For information contact ml-repository@ics.uci.edu.

[Nilsson, 1990] Nilsson, N. J. 1990. The Mathematical Foundations of Learning
Machines. Morgan Kaufmann, San Mateo, CA.

[Nowlan, 1990] Nowlan, S.J. 1990. Competing Experts: An Experimental Investi-
gation of Associative Mixture Models. Connectionist Research Group Technical
Report CRG-TR-90-5, Dept. of Computer Science, University of Toronto, Toronto,
Ontario.

[Papadimitriou and Steiglitz, 1982] Papadimitriou, C.H. and Steiglitz, K. 1982.
Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Engle-
wood Cliffs, NJ.

124

[Perrone, 1993] Perrone, M.P. 1993. Improving Regression Estimalion: Averaging
Methods for Variance Reduction with Extensions to General Convexr Measure Op-
timization. Ph.D. Dissertation, Brown University, Providence, Rhode Island.

[Poggio and Girosi, 1990] Poggio, T. and Girosi, F. 1990. Networks for Approxima-
tion and Learning. Proceedings of the IEFFE 79:1481-1497.

[Quinlan, 1986] Quinlan, J. R. 1986. Induction of Decision Trees. Machine Learning
1:81-106.

[Quinlan, 1993] Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. Morgan
Kaufmann, San Mateo, CA.

[Rao et al., 1994] Rao, N.S.V.; Oblow, E.M.; Glover, C.W.; and Liepins, G.E. 1994.
N-Learners Problem: Fusion of Concepts. IEEE Transactions on Systems, Man,
and Cybernetics 24:319-326.

[Reilly et al., 1987] Reilly, D.L.; Scofield, C.; Elbaum, C.; and Cooper, L.N. 1987.
Learning System Architectures Composed of Multiple Learning Modules. In /EEE
First International Conference on Neural Networks, San Diego, CA. IEEE. 11495-
11503.

[Rissland and Skalak, 1991] Rissland, E. L. and Skalak, D. B. 1991. CABARET: Rule
Interpretation in a Hybrid Architecture. International Journal of Man-Machine
Studies 34:839-887.

[Rissland et al., 1993] Rissland, E.L.; Daniels, J.J.; Rubinstein, Z.B.; and Skalak,
D.B. 1993. Case-Based Diagnostic Analysis in a Blackboard Architecture. In

Proceedings of the FEleventh National Conference on Artificial Intelligence, San
Mateo, CA. AAAI Press/MIT Press. 66-72.

[Rissland, 1977] Rissland, E. L. 1977. Epistemology, Representation, Understanding
and Interactive Ezxploration of Mathematical Theories. Ph.D. Dissertation, Mas-
sachusetts Institute of Technology, Cambridge, MA.

[Rissland, 1978] Rissland, E. L. 1978. Understanding Understanding Mathematics.
Cognitive Science 2:361-383.

[Rissland, 1981] Rissland, E. L. 1981. Constrained Example Generation. Dept. of
Computer Science Technical Report 81-24, University of Massachusetts, Amherst,
MA.

[Rissland, 1989] Rissland, E. L. 1989. Case-Based Reasoning, Introduction to the
Proceedings. In Proceedings: Case-Based Reasoning Workshop, Pensacola Beach,
FL. Morgan Kaufmann.

[Ritter et al., 1975] Ritter, G. L.; Woodruff, H. B.; Lowry, S. R.; and Isenhour,
T. L. 1975. An Algorithm for a Selective Nearest Neighbor Decision Rule. IFEE
Transactions on Information Theory 1T-21:665-669.

125

[Rosch and Mervis, 1975] Rosch, E. and Mervis, C. B. 1975. Family Resemblances:
Studies in the Internal Structure of Categories. Cognitive Psychology 7:573-605.

[Salzberg, 1991] Salzberg, S. 1991. A Nearest Hyperrectangle Learning Method.
Machine Learning 6:251-276.

[Sanders, 1994] Sanders, K. E. 1994. Chiron: planning in an open-textured domain.
Technical Report 94-38, Computer Science Department, Brown University, Provi-
dence, RI. (PhD Thesis).

[Saxena, 1991] Saxena, S. 1991. Predicting the Effect of Instance Representations
on Inductive Learning. Ph.D. Dissertation, University of Massachusetts, Amherst,
MA.

[Schaffer, 1994] Schaffer, C. 1994. Cross-Validation, Stacking and Bi-Level Stacking:
Meta-Methods for Classification Learning. In P. Cheeseman, R.W. Oldford, editor,

Selecting Models from Data: Artificial Intelligence and Statistics IV. Springer
Verlag, New York, NY. 51-59.

[Selfridge, 1959] Selfridge, O. G. 1959. Pandemonium: A Paradigm for Learning. In
Proceedings of the Symposium on the Mechanization of Thought Processes, Ted-
dington, England. National Physical Laboratory, H.M. Stationery Office, London.
511-529.

[Skalak, 1990] Skalak, D.B. 1990. An Internal Contradiction of Case-Based Reason-
ing. In Proceedings of the Twelfth Annual Conference of the Cognitive Science
Society, Hillsdale, NJ. Lawrence Erlbaum Associates. 109-116.

[Skalak, 1993] Skalak, D. B. 1993. Using a Genetic Algorithm to Learn Prototypes
for Case Retrieval and Classification. In Proceedings of the AAAI-93 Case-Based
Reasoning Workshop (Technical Report WS-93-01), Washington, D.C. American
Association for Artificial Intelligence, Menlo Park, CA.

[Skalak, 1994] Skalak, D. B. 1994. Prototype and Feature Selection by Sampling and
Random Mutation Hill Climbing Algorithms. In Proceedings of the Eleventh Inter-
national Conference on Machine Learning, New Brunswick, NJ. Morgan Kaufmann.
293-301.

[Smith and Medin, 1981] Smith, E. E. and Medin, D. L. 1981. Categories and
Concepts. Harvard, Cambridge, MA.

[Sobol’, 1974] Sobol’, I. M. 1974. The Monte Carlo Method. The University of
Chicago Press, Chicago, IL.

[Stanfill and Waltz, 1986] Stanfill, C. and Waltz, D. 1986. Toward Memory-Based
Reasoning. Communications of the ACM 29:1213-1228.

[Swonger, 1972] Swonger, C.W. 1972. Sample Set Condensation for a Condensed
Nearest Neighbor Decision Rule for Pattern Recognition. In Watanabe, S., editor,
Frontiers of Pattern Recognition. Academic Press, New York, NY. 511-519.

126

[Sycara, 1987] Sycara, K. P. 1987. Resolving Adversarial Conflicts: An Approach
Integrating Case- Based and Analytic Methods. Ph.D. Dissertation, School of
Information and Computer Science, Georgia Institute of Technology.

[Tan and Schlimmer, 1990] Tan, M. and Schlimmer, J. C. 1990. Two Case Studies
in Cost-Sensitive Concept Acquisition. In Proceedings, Eighth National Conference
on Artificial Intelligence, Boston, MA. AAAT Press, Menlo Park, CA. 854-860.

[Tomek, 1976] Tomek, I. 1976. An Experiment with the Edited Nearest-Neighbor
Rule. IEEE Transactions on Systems, Man, and Cybernetics SMC-6:448-452.

[Utgoft, 1989] Utgoff, P.E. 1989. Perceptron Trees: A Case Study in Hybrid Concept
Representations. Connection Science 1:377-391.

[Utgoff, 1995] Utgoff, P.E. 1995. Decision Tree Induction Based on Efficient Tree
Restructuring. Technical Report 95-18, Dept. of Computer Science, University of
Massachusetts, Amherst, MA.

[Valiant, 1984] Valiant, L.G. 1984. A Theory of the Learnable. Communications of
the ACM 27:1134-1142.

[Voisin and Devijver, 1987] Voisin, J. and Devijver, P. A. 1987. An application of
the Multiedit-Condensing technique to the reference selection problem in a print
recognition system. Pattern Recognition 5:465-474.

[Vossos et al., 1991] Vossos, G.; Zeleznikow, J.; Dillon, T.; and Vossos, V. 1991. An
Example of Integrating Legal Case Based Reasoning with Object-Oriented Rule-
Based Systems: IKBALS II. In Proceedings of the Third International Conference
on Artificial Intelligence and Law, Oxford, England. ACM. 31-41.

[Walker, 1992] Walker, R. 1992. An Ezpert System Architecture for Helerogeneous
Domains. Ph.D. Dissertation, Vrije Universiteit te Amsterdam.

[Wasserman, 1993] Wasserman, P. D. 1993. Advanced Methods in Neural Computing.
Van Nostrand Reinhold, New York.

[Wettschereck and Dietterich, 1992] Wettschereck, D. and Dietterich, T. 1992. Im-
proving the Performance of Radial Basis Function Networks by Learning Center
Locations. In Advances in Neural Information Processing Systems, 2, San Mateo,
CA. Morgan Kaufmann.

[Wilson, 1972] Wilson, D. 1972. Asymptotic Properties of Nearest Neighbor Rules
using Edited Data. Institute of Electrical and Electronic Engineers Transactions
on Systems, Man and Cybernetics 2:408-421.

[Wittgenstein, 1953] Wittgenstein, L. 1953. Philosophical Investigations. Macmillan,
New York, NY.

[Wolpert, 1992] Wolpert, D. 1992. Stacked Generalization. Neural Networks 5:241—
259.

127

[Wolpert, 1993] Wolpert, D. 1993. Combining Generalizers using Partitions of the
Learning Set. In Nadel, L. and Stein, D., editors, 1992 Lectures in Complex
Systems. Addison-Wesley, Reading, MA.

[Zhang et al., 1992] Zhang, X.; Mersirov, J.P.; and D.L.Waltz, 1992. A Hybrid
System for Protein Secondary Structure Prediction. Journal of Molecular Biology
225:1049-1063.

[Zhang, 1992] Zhang, J. 1992. Selecting Typical Instances in Instance-Based Learn-
ing. In Proceedings of the Ninth International Machine Learning Workshop, Ab-
erdeen, Scotland. Morgan Kaufmann, San Mateo, CA. 470-479.

