Multilanguage Interoperability in
Distributed Systems:
EXPERIENCE REPORT

Mark J. Maybee*
Dennis H. Heimbigner*
Leon J. Osterweil

August 17, 1995

Abstract

The Q system provides interoperability support for multilingual, heterogeneous
component-based software systems. Initial development of Q began in 1988, and
was driven by the very pragmatic need for a communication mechanism between
a client program written in Ada and a server written in C. The initial design
was driven by language features present in C, but not in Ada, or vice-versa. In
time our needs and aspirations grew and Q evolved to support other languages,
such as C++, Lisp, and Prolog. As a result of pervasive usage by the Arcadia
SDE research project, usage levels and modes of the Q system grew and so more
emphasis was placed upon portability, reliability, and performance. In that context
we identified specific ways in which programming language support systems can
directly impede effective interoperability. This necessitated extensive changes to
both our conceptual model, and our implementation, of the Q system. We also
discovered the need to support modes of interoperability far more complex than
the usual client-server. The continued evolution of Q has allowed the architecture
of Arcadia software to become highly distributed and component-based, exploiting
components written in a variety of languages. In addition to becoming an Arcadia
project mainstay, Q has also been made available to over 100 other sites. It is
currently in use by SAIC, Loral, Stars project participants, and NASA Goddard.
This paper summarizes key points that have been learned from this considerable
base of experience.

Keywords: Interoperability, Heterogeneity, Distributed, Software Environments,
Experience.

*Department of Computer Science, University of Colorado, Boulder, CO 80309-0430
TDepartment of Computer Science, University of Massachusetts, Amherst, MA 01003-4610

ii

1 Introduction

A distributed system is one that is implemented as a collection of components that inter-
operate with each other, but that execute in separate address spaces, and may execute on
separate hardware/software platforms. Distributed systems offer a number of important
advantages over systems implemented as a single process running on a single platform.
Distributed systems may be more robust, as it is possible to implement key services
redundantly on different hardware and/or software platforms. Distributed systems may
be faster as it may be possible to effectively parallelize bottleneck jobs. Distributed
systems may be more flexible and extensible, as changes may be quarantined to smaller
subsystems, and may be carried out without the need for change to the entire system.
Distributed systems may be more effective in reusing sizable components, as these com-
ponents are less likely to require recompilation and reloading. Distributed systems may
be composed of components implemented in differing languages and dialects.

These advantages are particularly important to the implementors of software en-
vironments. Software environments are notoriously large, restricting their flexibility,
extensibility, and ability to reuse existing componentry. On the other hand it is essen-
tial that software environments be highly flexible and extensible as most will need to
undergo continuous change and enhancement. If an environment is implemented as a
distributed system, consisting of separately compiled components, the required flexibility
and extensibility can be achieved, often by reconfiguration using existing components,
such as off-the-shelf database systems. As many environments are still experimental pro-
totypes, it is particularly important that they be able to rely upon support from diverse,
possibly competing, components, possibly written in different languages. Distribution
also facilitates this.

1.1 Motivation for Q

Q has evolved over a period of years to provide the infrastructure for distributed objects
within the Arcadia environment project [21, 10, 9]. That evolution was driven by a cycle
involving experience with Q leading to a crisis in handling some important problem,
followed by extending and modifying Q to address the problem successfully.

Generally speaking, the problems that Q has encountered and overcome have been
related to issues of heterogeneity. Arcadia systems have been built intentionally to be
heterogeneous with respect to computing platform hardware, operating systems, and
especially programming languages. The latter point is worth expanding upon, since
many other systems (e.g., CORBA [15], OLE2 [13, 14], DCE [3]) claim to support
multi-language heterogeneity. In fact, they have generally restricted themselves to C
and C++. From its inception, Arcadia has been using a variety of languages, including
C, C++, Ada, Lisp, and even occasionally Prolog. As a result, we have developed an
extensive, tested Q library for inserting distributed object capabilities into almost any
programming language.

The need for these capabilities was clear to us in 1988, and persists to this day.
Currently, however, there are indications that this need is understood more widely in
the community, and there are some projects that start to address these needs. CORBA
and DCE, for example, are such projects. From our current perspective, however, we
now see that, even had CORBA been available to us in 1988 in its present form, it

would form only a part of a solution to our problems. For example, CORBA is avowedly
an attempt to provide for multilingual interoperability, but its primary thrust is most
clearly and sharply towards interoperability among clients and servers written in C and
C++. Also, it is oriented is toward traditional client-server architectures while Q has
moved on to support peer-oriented architectures. Further, both CORBA and DCE have
made assumptions about concurrency and threading that Q rejects in order to expand
its ability to support more platforms.

The details will be presented subsequently. For now, however, we believe it is worth
noting that the CORBA standard is a useful start towards meeting our needs, but that
the sorts of experiences that have shaped the development of QQ need to be duplicated
in CORBA to shape its future if it is to also be successful in meeting these same needs.

2 Q Version 1

For largely pragmatic reasons the Open Network Computing (ONC!) specifications
for Remote Procedure Call (RPC) and Ezternal Data Representation (XDR) [18, 17] were
chosen in 1988 as a basis for the construction of our language-heterogeneous interoper-
ability mechanism. The, then newly available, version 4.0 release of RPC/XDR from
Sun Microsystems was a public domain implementation that included the source code.
This made modifications easy. Also the ONC standard is the RPC which underlies Sun’s
Network File System (NFS). As a result, it was, and still is, the most widely available
RPC system. There were also good scientific reasons for this choice of RPC system.
The ONC implementation already solved some key requirements of the interoperability
system: it supported autonomous components communicating across process and plat-
form boundaries. That seemed to leave only the task of adapting the model to provide
multi-language support.

ONC RPC/XDR provides the ability to exchange meaningfully typed data values
between two processes. This model supports a procedure call abstraction of inter-process
communication, allowing one process to make a procedure call to another process —
even across machine boundaries and independent of machine architectures — and have
ONC/RPC handle the details of data marshaling and inter-process communication.

Data marshaling is the process of arranging data in a language and architecture
independent format prior to dispatching it in a message. This is to insure that the
semantics of the data values are preserved?.

ONC/RPC supports communication between two processes written in the C lan-
guage. Its interfaces are written in C and make use of semantic constructs which are
not supported in Ada (such as procedure variables). Additionally, its data representa-
tion does not define any mapping to assure the consistency of types when passing data
between different type models.

Operating under the assumption that it would be possible to layer heterogeneous
language support atop a standard communications interface, a new and improved in-
teroperability mechanism was conceived. Figure 1 depicts the virtual machine layers of
the resulting interoperability mechanism. A variety of language interfaces rest upon a

LONC is a trademark of Sun Microsystems, Incorporated.
2This is particularly relevant when moving data between machines with differing byte-order archi-
tectures [2].

Figure 1: Virtual machine layers

standard remote procedure invocation interface (ONC/RPC) with a separate argument
marshaling interface (ONC/XDR). Underlying this is a basic data transport mechanism
supporting the physical message transport needs of the system.

A variety of language interfaces were constructed to explore the flexibility of the
underlying support mechanism and the model in general. These languages included
Ada, C, C++, Lisp, and Prolog. Most of this papers discussion of language support
will center on the Ada language interface, however, because problems encountered while
developing this interface prompted much of the research. Also, for entirely pragmatic
reasons, it was necessary to focus attention on the Ada and C languages, as these were
the implementation languages used by the bulk of the software tools being supported.

Problems were encountered with both the ONC/RPC interface and the ONC/XDR
interface while trying to adapt them for use from multiple languages. Problems with
the ONC/RPC interface centered around its dependence on features found in C (its
implementation language) which are not present in many other languages (e.g., Ada).
Problems with the ONC/XDR interface revolved around its implicit assumption that
all data to be marshaled would be instances of C types. These problems, and their
solutions, are discussed in detail in the following sections.

2.1 Argument Marshaling Support

In general, an application should not have to worry about the issue of data marshaling.
An interoperability system’s infrastructure should be able to hide this necessity from
the application by automatically marshaling and unmarshaling data when necessary.
However, this becomes a problem when the support infrastructure does not, and can
not, know the type of data being shipped.

The ONC implementation of RPC handles this issue by requiring that the application
provide the generic remote call procedure with explicit marshaling procedures. At each
remote call, the client provides the procedures necessary to marshal the argument list
and unmarshal the return value. Similarly, on the server side, the server application
must register each service routine with a set of procedures to perform the argument
unmarshaling and the return value marshaling.

While this model provides a clean procedure call abstraction for interprocess com-
munication when all procedures are written in a language such as C, it breaks down for

procedures written in many other languages, most notably Ada. Ada does not permit
procedure parameters. It is therefore necessary to incorporate a modification to the
ONC/RPC model to resolve this problem.

The solution is to completely decouple the argument marshaling process from the
remote procedure invocation mechanism. Doing so alleviates the need for procedure pa-
rameters in the invocation interface. Rather than having the application provide a set
of arguments and a marshaling procedure to the invocation mechanism, the application
instead provides a pre-marshaled set of arguments. Upon return from the remote proce-
dure the application is handed the still-marshaled result and must explicitly un-marshal.
Similarly, on the server side, the application service routine will be handed a marshaled
set of arguments for explicit un-marshaling, and it must pre-marshal the return value
prior to completion.

This decoupling of the argument marshaling from the remote procedure invocation
was an important step to opening up the RPC model to multi-language implementations.
It allowed the construction of a matched set of C and Ada interfaces. There is a function
to establish a connection to a remote server, and a procedure to perform individual
remote procedure calls on a server as discussed earlier. This interface is complemented
with a set of matched interfaces for supporting data marshaling.

2.2 Type System Support

The above discussion of data marshaling assumes the existence of a language and archi-
tecture independent representation for data. The ONC/XDR standard was designed to
address this problem. Unfortunately, this standard was principally concerned with het-
erogeneity with respect to architecture rather than language. Its interfaces are written
in C and so provide support only for C data types. Immediate problems occur when
attempting to adapt this standard for use between multiple languages. When passing
typed data between C programs there is always a type correspondence. However, when
passing data between two differing languages there may not be a type correspondence.
Consider passing a fixed point data value from an Ada program to a C program. There
is no fixed point type defined in the C language, and so achieving type correspondence
is impossible (at the representation level).

This problem is solved by eliminating the requirement that all data types be rep-
resentable in all languages supported. Instead an attempt was made at type model
concordance. This means that whenever there is a data instance with an equivalent
representation in two, or more, languages, it may be passed between components con-
structed in those two languages. For example, most languages define an integer type, so
each interface supports a marshaling routine for that type. Integer data instances may
be passed between all languages which supply this interface routine.

Type concordance, for a type X, between any two languages, A and B, is based on
three factors:

1. the marshaled representation of the type X,
2. the representation of the type X in language A, and

3. the representation of the type X in language B.

Figure 2: Array Representation

For example, if the type is integer and the marshaled representation of an integer is
a signed 32 bit value, and the representation of an integer in language A is as a 32 bit
value, and the representation of an integer in language B is as a 16 bit value, then,
only integers in the range —2'%...2'® — 1 may be passed from language A to B. The
responses of marshaling routines to invalid data values are language interface specific.
The Ada interface for example, raises an exception. The C interface returns an error
result.

The following base types are currently supported and have the indicated marshaled
representations:

Integer is a signed 32 bit value with range —23!...231 — 1.

Floating point is signed 64 bit value whose precise representation is defined in the
IEEE standard on floating point numbers [7].

Fixed point is a 32 bit value whose precise representation is defined in the Ada lan-
guage reference manual [23].

Enumeration is represented as an integer denoting the position of the data value in
the enumeration set®.

Boolean is an enumeration type. False is represented as the integer 0 and True is
represented as the integer 1.

Character is an 8 bit value with range 0...255 of type ASCIT*.
String is an instance of the array type that will be discussed later.

Pointer is an abstraction represented with a boolean flag. This is actually a type
constructor to be discussed later.

The base types supported by the Ada and C interfaces appear in table 1. Note that
two components may not exchange a data instance of a type for which there is not a type
concordance between the two languages. This approach is predicated on the assumption
that there is a set of base types common to most languages. For Q, we have suggested
that this is essentially the C language type system, including the integer, floating point,
character, pointer, and enumeration data types.

Each language interface must provide mappings to as many of the base types as
possible. Language interfaces are also free to expand their type support beyond the
base set.

3Enumeration is actually a type constructor.
4To be precise, ASCII is an instance of an enumeration type.

Table 1: Types supported by C and Ada marshaling interface

C type | Ada type | Marshaled as

int INTEGER | Integer
double | FLOAT Floating point
FIXED Fixed point

bool_t BOOLEAN | Boolean
char* STRING String
caddr_t | ACCESS Pointer

GENERIC TYPE Struct_type IS PRIVATE;

TYPE Index IS (<>);

TYPE Struct_array IS ARRAY (Index) OF Struct_type;

WITH PROCEDURE struct (qdrs : IN Handle;

sp : IN OUT Struct_type);

PROCEDURE generic_array (

qdrs : IN Handle;

a : IN OUT Struct_array);

Figure 3: Array constructor interface for Ada

The data model is enriched by supporting the ability to compose the base types
into more complex abstract data types. Vector types are represented as an index range
followed by the vector elements (see figure 2). Arbitrarily dimensioned arrays may be
represented by a recursive application of this technique. Figure 3 contains the support
procedure (generic_array) for vector marshaling provided in the Ada interface. Note
that it is a generic procedure that can be instantiated for any constrained vector type.

Besides automatic array marshaling, support for pointer types is also supplied. Since
passing a pointer across address space boundaries is meaningless, marshaling a pointer
actually passes the data value referenced by the pointer. When unmarshaled, memory
is automatically allocated, the data value is stored in it, and a pointer to it is returned.

More complex types (such as records, linked lists, etc.) must be built up out of these
primitive constructors. For example, aggregates such as C structs or Ada RECORDS,
can be represented as a sequence of data values each corresponding to a field of the
aggregate, and represented according to its type. The aggregate is then reconstructed in
the same sequence as the one from which it was emitted. In this fashion a C structure
may be passed to an Ada component and reconstructed as an Ada record.

Applications must include marshaling functions for all the types that are to be used
in interprocess communication. Note that while this approach provides the ability to
marshal arbitrarily complex type structures, it does not provide any support for con-
veying the semantics associated with them.

2.3 Experience with Version 1

APPL/A [19] is a software-process programming language designed as an extension of
the Ada programming language. It adds constructs to the Ada language designed to

support change management in process-centered environments. APPL/A’s extensions
to Ada include persistent relations, triggers, enforcible predicates, and transactions. A
number of Arcadia components are written in APPL/A (Rebus, Debus, Process_Viewer,
Project_Panel, etc.). In the implementation of APPL/A used by Arcadia, the scope of
persistent relations is global to a cluster of different components, presumably hosted on
different platforms. Multiple components that access a relation with the same name will
be accessing a common instance. This requires coordinated access to shared nonlocal
data. To achieve this, Arcadia provides a sharable data repository, to store the relation
contents, and a global event manager, to coordinate the relation manipulation activi-
ties, to support the APPL/A implementation. Interoperability with these environment
infrastructure components is provided by Q.

The Global Event Monitor (GEM) is designed specifically to support APPL/A in a
distributed component environment. For example, the APPL/A language allows trigger
procedures to be associated with any relation operation. A trigger may be invoked
either before or after the relation operation, and may be specified as synchronous or
asynchronous. When a relation operation is invoked the APPL/A run-time system first
checks for any triggers that should be invoked before the operation is executed, all such
triggers are executed. When the synchronous triggers have completed, the operation
is executed. Following the completion of the operation the run-time system checks for
any post-operation triggers and executes them. Only after all synchronous triggers have
completed is the operation invocation completed. In a distributed environment, multiple
components may be simultaneously accessing a relation and any number of them may
define triggers on it. A great deal of event management is required to achieve the
coordination necessary to implement the APPL/A trigger model.

The trigger model is supported in Arcadia by both GEM and a Local Event Monitor
(LEM) embedded into each APPL/A-based application. Q is used to support the inter-
operation of these monitors. The triggering model is implemented by these monitors, in
the form of servers, at each relation operation in the following manner:

Before each operation is performed: the application informs the GEM, which in
turn informs all LEM’s, that an operation is about to be performed. Each LEM
executes any pre-operation triggers. The GEM awaits the completion of all syn-
chronous triggers before returning control to the local application.

After each operation is performed: the application once again informs the GEM,
which again informs all LEM’s. This allows the LEM’s to execute post-operation
triggers. As with pre-operation triggers, all synchronous triggers must complete
before the GEM returns control to the local application.

The execution model of components implicitly assumed by Q up to now was a single
threaded one. While Q supported the notion of application components acting as both
client and server, it was assumed that they would not do so simultaneously. That is,
a component could act as a client or a server and alternate arbitrarily between the
two roles, but would not act as both at once in a multi-threaded application. The
GEM, however, was designed and constructed as an Ada application. It made full use
of the multi-threading capabilities inherent in the Ada language. It embedded a server
(the LEM) into each APPL/A application and instantiated it as an asynchronous task.

The GEM/LEM implementation allowed for the possibility of an application acting
simultaneously as both a client and server. Consider the following scenario:

1. Application A initiates a relation operation R,.
2. Application B defines a trigger on that relation operation.
3. Before B is informed of R,, it initiates some relation operation of its own, R,.

4. The possibility now exists that B may be engaged in some remote procedure call
with the global event manager at the same time that its local event manager is
responding to the operation R,.

Complicating matters further, we observed that, in addition to the interactions between
an APPL/A component and the GEM, APPL/A components typically also simultane-
ously maintained a client relationship with a data server.

2.4 Crisis

Simultaneous remote procedure call activity (due to any combination of simultaneous
client and/or server activity) was not properly handled by the original Q design. Recall
that a remote procedure call is built from an exchange of two messages between a client
and a server. Clients await response messages from servers and servers await request
messages from clients. The problem with simultaneous RPC activity becomes apparent
when two or more threads of control (e.g., Ada tasks) are awaiting messages at the same
time. The ONC/RPC implementation underlying Q uses the select system service
call to await messages. The select system service listens for IO activity, incoming
messages in this case, on a set of IO channels and returns to its caller when there is
some 10 pending on one of those channels. When multiple tasks are awaiting messages,
multiple calls to the select service will be outstanding — all waiting on the same IO
channels. The select system service is not designed to be used in this manner, its
semantics under these conditions are undefined. The observed behavior of Q under
these conditions was unpredictable. Sometimes remote calls would succeed, sometimes
they would not, sometimes the system would hang. A re-design of the Q architecture
was called for; this led to the development and implementation of Q version 2.

3 Q Version 2

Emerging environment architectures, using multi-threaded components each maintain-
ing multiple simultaneous client and server interfaces, led to a realization that Q’s lan-
guage support must encompass thread support in multi-threaded languages. Significant
restructuring of the Q system was necessary to support the ability to embed multiple
clients and/or servers in a single process (see figure 5). The result was a new design that
supported the separation of the application architecture from its process binding.

3.1 IO Multiplexing Support

In the single threaded Q model of version 1, each language interface was only a relatively
thin veneer over the remote procedure call interface substrate. This interface, version

Figure 4: 10 multiplexing architecture

4.0 ONC/RPC, was also based upon a single threaded execution model. As discussed in
section 2.3, multiple execution threads, initiated from multiple simultaneous tasks in Ada
applications, were trying to block on select calls simultaneously. The resulting behavior
was unpredictable, and usually erroneous. What was required was an 10 multiplexing
capability to resolve multiple requests for 10 availability into a single select call.

To facilitate this the ONC/RPC infrastructure was reengineered and extended to pro-
duce the Augmented Remote Procedure Call (Arpc) interface [4]. Among other things,
the new infrastructure exposed a message passing interface for client/server interac-
tions. Where previously a client made a single call to clnt_call, now the client called
clnt_sendmsg followed by clnt_recvmsg®.

The Ada-language interfaces were re-written atop this new interface and an Ada-level
select mechanism was introduced to deal with the IO multiplexing problem. The IO
multiplexing interface provided a single generic procedure: await_io. Each individual
client and server in a component would then instantiate this procedure to interface with
a central IO multiplexor (see figure 4). The central multiplexor ran as a separate Ada
task. When a call to an instance of await_io was made the procedure would register
with the multiplexor to be informed when the next message arrived for it. Utilizing
the select call, the multiplexor would monitor the arrival of messages and inform the
appropriate await_io procedures when their messages arrived.

A slightly simplified algorithm for client and server RPC proceeds as follows: The
client initiates an RPC by sending a message to a server®. It then waits for a response
message from the server. The channel variable indicates the unique communication link
being used between this client and server and is defined when the client first establishes
communication with the server. When the message arrives the transaction is competed
with gpc_complete and the RPC is complete’. The server spends the bulk of its time
in await_io. It waits for service requests on a set of channels, which are the commu-
nication links that have been established with its clients. The svc_receive function

5 A message passing interface has always been exposed on the server side.
6gpc_initiate is the Ada interface name of the Arpc interface routine clnt_sendmsg.
"gpc_complete is the Ada interface name of the Arpc interface routine clnt_recvmsg.

Figure 5: Logical client/server architectures

returns the service request message. The server routine is then invoked to execute the
requested service. Upon completion, the service results are returned in a message to the
client with the svc_sendreply routine.

3.2 General Architecture Support

The purpose of introducing the IO multiplexing facility to the Ada interface was to be
able to support more general component architectures. Q was developed to support the
sort of architecture depicted in figure 5a. However, experience with the APPL/A im-
plementation demonstrated that Ada’s inherent multi-tasking abilities could and would
be leveraged upon in order to construct more complex application architectures than
originally imagined. Already applications were combining multiple clients into single
components (see figure 5b), as seen in the APPL/A-based applications discussed above.
The addition of a Chiron interface, as discussed in the next section, would lead to
multiple servers embedded into a single application as well (see figure 5c).

The logical progression depicted by the figures in 5 is towards increasingly arbitrary
combinations of communicating clients and servers. These figures represent combina-
tions of “pure” clients and “pure” servers communicating. This might be thought of as a
sequence of logical architectures for collections of clients and servers. The new Q design
supports this concept by allowing arbitrary mappings of these logical architectures onto
component processes. The original expectation was that this binding would usually be
one-to-one: that is, each client and server would occupy a single application process.
But experience has demonstrated that other bindings are clearly desirable. Q has been
designed to allow essentially arbitrary binding of clients and servers to processes.

Of particular interest amongst the possible mappings is the peer architecture. This
is a mapping of both a client and a server into each process such that each process may
either initiate, or respond to, remote procedure requests. This is required when callbacks
from a “server” back to its “client” are needed. Examples of this behavior occur when
a service procedure may run for an unbounded amount of time and the client does not
wish to await the outcome, or when a server wishes to inform clients of events of interest
to them. The first behavior was demonstrated in the GEM implementation discussed
above. The second type of behavior is frequent in user interface applications, where it
is desirable that the interface remain responsive even while engaged in lengthy service

10

[|
. Concrete | Chiron Server Chiron Client
. Depiction |
I I
: | Chiron Server Chiron Client
| N/ |
1 o .
| =
! ! € I/E f :
! ! o 7 Interpreter Chiron Client
I | (%
I I
! ! = Arti Wrapper
| I
| s m
|
VA N Z : ADT
T | E
S
L E Wrapper
S 2|
Abstract g AA ADT
Depiction
Wrapper
N Text
Text TeXt
ADL Library ADT

Figure 6: Chiron conceptual architecture.

operations.

3.3 Experience with Version 2

Chiron [26, 11] is a user interface development system (UIDS) supporting the user in-
terface needs of the Arcadia environment. It emphasizes the value of separating the
application from the graphical user interface (GUI) by means of a client/server split.
Figure 6 depicts the Chiron architecture for achieving this separation. Applications are
embedded in Chiron clients, while the bulk of the code for supporting the application’s
user interface resides in a Chiron server. The Chiron architecture is an attempt to
separate the concerns of the application domain (model) from the presentation domain
(view) by means of a sharp split between a client (application) and a server (presen-
tation). Chiron clients and servers are implemented as separate components and rely
upon Q for interprocess communication support.

The Chiron model assumes that an application’s user interface can be constructed
from a set of visible abstract data types (ADT) in the application. Each of the ADT
interfaces is wrapped so that Chiron is involved when any interface operation is invoked.
User interface designers are then expected to develop artists using the ADT interfaces.
An artist is a code module for constructing a graphical depiction of an ADT; it can be
thought of as defining a view of the ADT. It is possible to construct multiple artists, or
views, for a single ADT. Chiron maintains consistency between artist depictions through
its wrapper technology. Whenever the ADT is manipulated, via an artist interface or
from some internal application operation, the wrapper intercepts the operation and
dispatches it to any other artists for that ADT.

The artists, dispatcher, wrapped ADTs, and the remaining application code make

11

up a Chiron client. Chiron servers maintain the abstract depictions defined by client
artists. Artists interact with the Chiron server to construct and maintain a user interface
as an abstract depiction. The Chiron server, in turn, realizes this abstract depiction
via some graphical depiction engine such as an X11 server. Separating the Chiron
server code from the client code reduces the size and complexity of client applications.
It allows the dynamic creation of additional artists within the client to support new
or changing user views and interactions. In addition, it allows modifications to be
made to the client or any server without having to re-compile unchanged application or
server modules. Because Q allows the Chiron processes to reside on separate hardware
platforms, flexibility, portability, and efficiency are all enhanced.

Chiron is based on a concurrent control model with the application and user interface
simultaneously active. The Chiron server remains responsive to user interface manip-
ulation events, passing those events back to the artist in the clients as necessary. The
application embedded in the client also remains active and can continue to manipulate
its ADT interfaces while the user interface is active. To support this control model
Chiron uses a peer-peer architecture: clients and servers contain both a Q server and
client in order to provide two-way interprocess service.

The Chiron experience with Q has lead to key changes in Q. The first involved
alleviating sluggish run-time performance. (Chiron applications are real-time systems:
if the result of a computation is not obtained within a certain period of time, it is
considered to be incorrect regardless of value.) The other was necessary to eliminate
strange inconsistent behavior in the message passing substrate.

The symptoms of the Chiron performance problem included two measures of interest:
a single run of a particular application took about 11 minutes of wallclock time while
consuming less than 4 seconds of CPU time. Traces of system calls using UNIX trace
revealed that the processes typically were waiting on synchronous I/O (UNIX select
system call).

Investigation of the Chiron design revealed a decision that clearly affected perfor-
mance: time slicing was enabled. Time slicing is a commonly used technique for execut-
ing a large number of tasks on a smaller number of processors. Ada runtime executives
may optionally permit time slicing of tasks on a processor by repeatedly suspending the
execution of one task and resuming another. Another approach, required by the Ada
standard as an alternative to time slicing, is to allow scheduling of tasks based on their
predefined priorities. On each processor, a task is run until a synchronization point is
reached and then the scheduling decision is reevaluated. This enables a task to run until
preempted by one of higher priority in order to avoid unnecessary context switching.
However, program design must ensure that a single task does not monopolize the pro-
cessor. Assuring that can be quite difficult. Therefore most compilers (e.g., Verdix and
Sun Ada compilers) strongly encourage the use of time slicing by making it the default.

Early versions of Q polled for input, trading off rapid response for design simplicity.
As discussed above, in section 3, the multiplexing facility utilized the select service
to await messages. This request blocked until an input message appeared. Ada tasks
in a time sliced program that were waiting for messages could not progress, yet they
continued to consume full time slices because the Ada run-time system did not recognize
their blocked state. This was an unforeseen complication arising from Q’s attempt to
provide a single substrate to support multiple languages. Chiron applications were in
effect spending nearly all of their execution time waiting for time slices to expire. While

12

this is a problem of the Ada run-time system, it exemplifies the class of problems that
can occur when using synchronous IO under differing run-time systems.

The solution to this problem was to move from a synchronous I/O model to a signal-
based asynchronous model. Instead of having the multiplexor poll for interprocess mes-
sages, the data channels are configured for asynchronous I/O. When a message arrives
a signal is sent to the process. Therefore, processor time is only used for interprocess
communication when it is known that data is pending. Most significant, however, is that
time slicing can now be disabled so that blocked tasks are not scheduled for execution.

As an example of the effect of this change, the application referred to above, which
consumed about 11 minutes of wallclock time to run with time slicing enabled and
blocked tasks scheduled, required only 27 seconds of wallclock time with asynchronous
I/O operation. This order of magnitude improvement in performance has typically been
realized in representative Chiron applications.

The second Q problem uncovered by Chiron was far more subtle and insidious. The
symptoms of this problem were occasional irreproducible errors in the message substrate:
messages being lost, messages delivered twice, and messages apparently being delivered
to the wrong recipient.

3.4 Crisis

The problem was that, while the Ada interfaces had been re-engineered to support gen-
eral multi-client/multi-server (i.e., a multi-threaded) architectures, the Arpc substrate
was not. The Arpc substrate is written in the C language and relies heavily on the
standard C libraries supplied with all C compilers. Arpc is non-reentrant and, in gen-
eral, so are standard C libraries. A typical characteristic of non-reentrant code is the
use of unprotected global data structures. In a multi-threaded application, two threads
of execution attempting to manipulate such global data are likely to produce errors.
Consider the following scenario:

1. Routine X adds links to a global linked list 1.
2. Thread A calls routine X with new link x.

X assigns x->next to be 1.

- w

The time-slice for thread A ends.

ot

Thread B is started and it calls routine X with link y.
X assigns y->next to be 1 and 1 to be y.
Sometime later, the time-slice for thread B ends.

Thread A is restarted.

© % N

X completes its operation by assigning 1 to be x.
10. The link element y is now lost.

A solution to this problem was incorporated as a key new feature of version 3 of Q.

13

Figure 7: Q virtual machine layers

4 Q Version 3

The solution to the non-reentrant interface problem was two-fold. First, a non-blocking
message passing interface was constructed between the Arpc interface and the lan-
guage dependent interfaces. Second, calls into the non-blocking interface were protected
against reentrant access with semaphores. The resulting Q architecture is presented in
figure 7. This re-design coincided with the realization that the multi-threaded archi-
tectures that supported peer-style inter-component communication were becoming the
norm rather than the exception within the Arcadia project.

Careful readers may realize that, based on the earlier discussion of the evolution of
Q, the current QQ substrate interface should already be non-blocking. This was largely
true. The blocking interface had been isolated to the IO multiplexing interface and that
had been converted from synchronous to asynchronous. However, it was at this point
in the Q development that the true value of a non-blocking interface was realized and
formalized.

The key to solving the reentrant problem from Ada was the introduction of semaphores
to protect the non-reentrant code levels of the QQ mechanism. A single semaphore,
Nonreentrant_Access, was introduced to provide a mutual exclusion zone around all
non-reentrant interface procedures. When an execution thread wished to use one of these
interface procedures it first had to obtain the semaphore. Any other thread attempt-
ing to use one of the interface procedures would now be blocked until the semaphore
became available again. Upon completion of the interface procedure, the thread would
give up the semaphore. In this way, only a single execution thread may be active in a
non-reentrant procedure at any given time.

It is important to note that the mechanism used to protect against reentrant access
must be implemented as part of the language interfaces which form the top layer of
the Q model. The alternative is to place the protection (e.g., semaphores) into the
non-reentrant interface itself. The problem with this is very similar to the problems
encountered with the select service discussed in section 3.3. If a caller blocks inside
the lower layers, outside the language-specific layer, there exists the possibility that the
language-specific run-time system will not recognize the blocking event. The result is the
continued scheduling of threads that can not execute and a degradation in performance.
The implication is that all multi-threaded language interfaces are required to ensure

14

non-reentrant usage of the underlying support layers in Q. This is not unreasonable
however, as any multi-threaded language is likely to provide some form of support for
exclusive access.

A second requirement is also imposed upon languages using a non-blocking RPC
interface. The language layer must provide a mechanism for awaiting the arrival of mes-
sages. This issue was discussed in section 3.3. The solution was to provide asynchronous
IO support with signals. Whenever a message arrives the Q substrate generates an 10
signal. It is the responsibility of the language-specific interface layers to provide signal
handlers.

4.1 Experience with Version 3

Arcadia’s use of Q is now ubiquitous, as Q has become the foundation for interoper-
ability in that environment. Q version 3 has also been distributed to over 100 other
sites. It is in use by SAIC, Loral, Stars project participants, and NASA Goddard. The
majority of sites are using Q because of its support for multi-language interoperability,
and specifically its support for Ada. Q is also being used successfully in software evolu-
tion projects, where it supports the ability to interoperate with old components as large
systems transition from one implementation language to another. Feedback continues to
be quite positive, however there is ever increasing demand for more supported platforms
and languages.

5 Summary of Experience

Much of Q’s development has been driven by experience with the various application and
infrastructure components in the Arcadia project. Q has become the major mechanism
used to support the interoperability needs of Arcadia. Almost every component therein
(Rebus [22, 20], Debus [16], PIC [24, 25], BMS, Process_Viewer, Project_Panel, ACV,
Agendas, etc.) utilizes Q. Arcadia demonstrations are typically run on a network of
Sun and DEC workstations, and considerably greater heterogeneity and distribution are
possible. The use of Q in this distributed environment has brought to light some facilities
lacking in the Q implementation. For example Q does not address the need for a meta-
level component for interoperability services. As Arcadia grows so to will Q: modern
software architectures appear to be more and more like the Arcadia environment. This
trend implies uses for Q beyond the Software Development Environment arena which
spawned it.

6 Related Work
6.1 DCE

The Distributed Computing Environment [3] is an integrated set of services designed to
support distributed applications. These services include:

e Remote Procedure Call

e Directory Service

15

e Time Service
e Security Service
e Threads Service

The remote procedure call services were developed specifically to provide simplicity,
performance, portability, and platform independence. However, they were not designed
specifically to support multi-language interoperability. As a result DCE only attempts
to provide direct support for the C and C++ languages. Additionally, DCE made
the mistake of deeply embedding threading support into the model. As a result, it is
difficult to rehost DCE onto platforms with different thread models, and even more
difficult to embed DCE into languages like Ada that provide a significantly different
model of concurrency.

6.2 CORBA

CORBAS® [15] is an evolving application interoperability standard. The current version,
2.0, was released in late 1994. As an evolving standard it is a moving target. There are
a number of available systems which claim to comply with this standard (e.g., DSOM,
Orbix? , ORBeline!® | etc.), however these are almost all based upon the version 1.1
definition of the standard. As new versions emerge, these systems must adapt to remain
consistent with the standard.

Like DCE, CORBA is based on an RPC model of interoperability. Like other RPC
mechanisms, this provides support for platform-independent interoperability. CORBA
also provides what is claimed to be a target language neutral interface definition language
(IDL). However, IDL appears remarkably similar to C++ and it is not clear how well
it will map to other languages. Almost all known implementations of CORBA support
only C and/or C++.

As the CORBA definition did not exist at the time this research was conducted, it
did not have significant impact on this work. However it is now clear that there is a
great deal of correspondence between the issues that CORBA is attempting to address
and the issues raised in this work. Although the CORBA specification does not ad-
dress concurrency, available commercial implementations have chosen to mimic DCE
and embed threading into their implementation, which leads to the multi-language and
multi-platform problems already discussed.

The CORBA marshaling system also introduces a number of problems. Most impor-
tant is the problem of “external” or “pre-defined” types. Experience with Q indicates
that it is common to take pre-existing packages and wrap them to provide distributed
interfaces for the package. As a rule, these packages define a number of input and output
data types. CORBA (and technically, DCE) does not support direct marshaling of such
pre-defined types. Instead, one is required to define a duplicate type system in IDL and
translate at run-time between the pre-defined types and the IDL types. The CORBA
type system suffers from other deficiencies (See [5] for more detailed discussions).

8CORBA is a trademark of the Object Management Group, Incorporated.
90rbix is a trademark of Tona Technologies.
100RBeline is a trademark of PostModern Computing Technologies Incorporated.

16

6.3 OLE2

Microsoft’s COM/OLE2 [14] has grown over time to provide support for distributed
objects. Strictly speaking, COM (component object model) is the lowest layer in OLE2,
but is the part that is most analogous to Q, CORBA, and DCE. Until COM provides
complete support for distributed objects, it is premature to make direct comparisons.
Recently, Microsoft has begun to address these issues by using DCE to provide the
underlying naming and marshaling support. It is fair to say that this means that COM
will have the same merits and demerits as DCE.

6.4 Matchmaker

When supported by the capability-based interprocess communications found in the Mach
kernel [1] Matchmaker [8] provides a heterogeneous, distributed, object-oriented pro-
gramming facility. Currently the Mach/Matchmaker system supports the generation of
interfaces between C, Common Lisp, Ada, and Pascal. The Matchmaker language de-
fines the type model within which the supported languages may exchange data objects.
The built-in types provided by the type model are boolean, character, integer, string,
communication port, and real. The type model also provides record, array, union, and
enumeration type constructors. Matchmaker restricts the use of pointers, variable ar-
rays, and unions to top-level declarations and so they may not be used when constructing
other types. While this type model is restrictive, it still quite powerful and has been
effectively used throughout the Mach kernel.

Most RPC mechanisms choose to use a standard encoding scheme for data values so
that these values are not affected by differences in data representation across platforms.
Instead, Matchmaker embeds typing information with the data values and makes it the
responsibility of the receiving machine in a value transmission to be aware of any data
representation differences between platforms, and perform any necessary transforma-
tions. Essentially, Matchmaker is relying on the capabilities defined in the low-level IPC
support of the Mach operating system kernel to achieve multi-platform interoperability.
The dependence on Mach kernel features limits the usability of Matchmaker to hardware
platforms running the Mach operating system. This lack of flexibility /portability and
the sparse usage of Mach make Matchmaker unsuitable as a solution to the interoper-
ability needs of most contemporary software development environments.

6.5 Mercury

The work done at MIT on a value transmission method for abstract data types [12, 6] is
designed to support communicating abstract data types that are interoperable between
regions of a system using different data value representations. This method defines call-
by-value semantics for communicating values over a network of different computers. A
canonical representation for each type used in communications is defined. Each region of
the system that uses a type that is to be communicated must define a translation between
its internal representation of the type and the canonical representation. Much of the
Mercury system concerns itself with supporting an extension to the remote procedure
call paradigm called streams by addressing value representation issues.

17

7 Future Directions

While the Arcadia environment is composed of autonomous components, there are a
number of interdependencies implicit in the interoperation of those components. For
example, an APPL/A-based application with a Chiron interface relies on the ability to
interoperate with a Chiron server component to supply its user interface needs, with a
Triton server for its data persistence needs, and with a GEM server for its event manage-
ment needs. In the Q system, these dependencies are expressed as explicit requests for
servers from the application. These requests are explicit in the sense that they specify
the explicit name and location of the desired server. The problems with this are twofold.
One, this locks the server into a specific location. But, in a distributed environment it is
often desirable to maintain the flexibility to move services in response to load and need.
In addition, the mechanism requires that the desired server be active and available at
the time of the request; this requires that the environment “predict” the needs of its
clients, rather than letting it “react” to needs.

8 Conclusions

Modern software system requirements for flexibility and reuse are creating increasingly
stringent demands for powerful interprocess communication mechanisms. The original
design and implementation of Q were aimed at supplying capabilities for safe and ef-
fective interoperation between Ada and C programs by extending the ONC XDR/RPC
model. Ada language issues posed some problems, which were handled effectively.

Continuing experience with, and evaluation of, Q revealed deeper problems arising
from recognition of increasingly taxing demands. Original assumptions that time-slicing
executives could be relied upon turned out to be incorrect, and the need to accom-
modate asynchronous communication was realized. Further, complex systems such as
Chiron showed the need for support of peer-peer (in addition to client-server) inter-
process communication. Is is now clear that effective, safe, deadlock-free, and efficient
support for peer-peer and client-server interprocess communication between components
cannot be provided by a simple RPC model. The revised Q model now meets all of these
needs.

The simplicity and elegance of the remote procedure call model of interprocess com-
munication is appealing. It is intuitive to most software programmers and is consis-
tent with the notion of object encapsulation so popular today. However, experience in
component-based software environments has demonstrated that while many individual
component interactions may be client/server in nature, the larger scope of the interac-
tions is quite a bit more diverse and typically more peer oriented. More often than not,
components are implemented with multiple threads of control. Individual components
act alternately as client or server in unpredictable sequences and often simultaneously.
Any interoperability mechanism intended to support this type of interaction must be
capable of meshing cleanly with the threading models implied by component implemen-
tations to have even a chance at avoiding deadlock and providing efficient service.

18

Acknowledgments

We would like to thank Greg Bolcer of the Chiron development team and Stan Sutton,
the developer of APPL/A and GEM, for their contributions. Their patience in endeav-
oring to use a new system and their invaluable feedback is appreciated. We would also
like to acknowledge Stephen Sykes, who helped architect the initial version of the Q
system, and David Levine, who influenced the development of concurrency support in
Q.

This material is based upon work sponsored by the Air Force Material Command,
Rome Laboratory, and the Advanced Research Projects Agency under Contract Num-
ber F30602-94-C-0253. The content of the information does not necessarily reflect the
position or the policy of the Government and no official endorsement should be inferred.

References

[1] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: A
new kernel foundation for UNIX development. In Proceedings of the Summer 1986
USENIX Technical Conference and Ezhibition, June 1986.

[2] Danny Cohen. On holy wars and a plea for peace. IEEE Computer, October 1981.

[3] Open Software Foundation. OSF DCE Application Development Guide. Prentice
Hall, 1993. Revision 1.0.

[4] Dennis Heimbigner. ARPC: An augmented remote procedure call system. Technical
Report CU-ARCADIA-100-94, University of Colorado Arcadia Project, November
1994.

[5] Dennis Heimbigner. Why CORBA Doesn’t Cut It or Experiences with
Distributed Objects. Technical Report CU-ARCADIA-108-95, University
of Colorado Arcadia Project, Boulder, CO 80309-0430, 30 June 1995.
ftp://ftp.cs.colorado.edu/pub/cs/techreports/arcadia/Misc/sett.ps.Z.

[6] M. Herlihy and B. H. Liskov. A value transmission method for abstract data types.
ACM Transactions on Programming Languages and Systems, 4(4):527-551, October
1982.

[7] Institute of Electrical and Electronics Engineers. IEEE Standard for Binary
Floating-Point Arithmetic, August 1985. ANSI/IEEE Standard.

[8] Michael B. Jones and Richard F. Rashid. Mach and matchmaker: Kernel and
language support for object-oriented distributed systems. Technical Report CMU-
CS-87-150, Carnegie Mellon University, September 1986.

[9] R. Kadia. Issues encountered in building a flexible software development environ-
ment: Lessons learned from the Arcadia project. In Proceedings of ACM SIGSOFT
’92: Fifth Symposium on Software Development Environments, Tyson’s Corner,
Virginia, December 1992.

19

[10]

[11]

R. Kadia. Lessons learned from the Arcadia project. In DARPA Software Technol-
ogy Conference, Los Angeles, California, April 1992.

Rudolf K. Keller, Mary Cameron, Richard N. Taylor, and Dennis B. Troup. User
interface development and software environments: The Chiron-1 system. In Pro-
ceedings of the Thirteenth International Conference on Software Engineering, pages
208-218, Austin, TX, May 1991.

B. H. Liskov, T. Bloom, D. Gifford, R. Scheifler, and W. Weihl. Communication
in the mercury system. In Proceedings of the 21st Annual Hawaii Conference on
System Sciences, pages 178-187. IEEE, January 1988.

MicroSoft. OLE 2 Programmer’s Reference. MicroSoft Press, 1994. Volumes One
and Two.

Microsoft/Object Management Group. Draft Component Object Model Specifica-
tion, 6 March 1995.

Object Management Group. The Common Object Request Broker: Architecture and
Specification, 29 December 1993.

Xiping Song and Lee J. Osterweil. Debus: A software design process program.
Arcadia Technical Report UCI-89-02, Department of Information and Computer
Science, University of California, April 1989.

Sun Microsystems. XDR: External data representation standard. Technical Report
RFC-1014, Sun Microsystems, Inc., June 1987.

Sun Microsystems. RPC: Remote procedure call protocol specification. Technical
Report RFC-1057, Sun Microsystems, Inc., June 1988.

Stanley M. Sutton, Jr., Dennis Heimbigner, and Leon J. Osterweil. Language con-
structs for managing change in process-centered environments. In Proceedings of
ACM SIGSOFT ’90: Fourth Symposium on Software Development Environments,
pages 206-217, Irvine, CA, December 1990.

Stanley M. Sutton, Jr., Hadar Ziv, Dennis Heimbigner, Harry E. Yessayan,
Mark Maybee, Leon J. Osterweil, and Xiping Song. Programming a software
requirements-specification process. In Proceedings of the First International Con-
ference on the Software Process, pages 68-89, Redondo Beach, CA, October 1991.
IEEE Computer Society Press.

Richard N. Taylor, Lori Clarke, Leon J. Osterweil, Jack C. Wileden, and Michal
Young. Arcadia: A software development environment research project. In Pro-
ceedings of the IEEE Computer Society Second International Conference on Ada
Applications and Environments, pages 137-149, Miami, Florida, April 1986.

Robert B. Terwilliger, Mark J. Maybee, and Leon J. Osterweil. An example of
formal specification as an aid to design and development. In Proceedings of the
ACM SIGSOFT ’89: Fifth International Workshop on Software Specification and
Design, pages 266—272, Pittsburgh, May 1989. SIGSOFT Engineering Notes.

20

[23]

[24]

United States Department of Defense. Reference Manual for the Ada Programming
Language, 1983. ANSI/MIL-STD-1815A-1983.

A. L. Wolf, L. A. Clarke, and J. C. Wileden. The AdaPIC toolset: Supporting
interface control and analysis throughout the software development process. IEEE
Transactions on Software Engineering, 15(3):250-263, March 1989.

Alexander L. Wolf, Lori A. Clarke, and Jack C. Wileden. Ada-based support for
programming-in-the-large. IEEE Software, 2(2):58—-71, March 1985.

Michal Young, Richard N. Taylor, and Dennis B. Troup. Software environment
architectures and user interface facilities. IEEE Transactions on Software Engi-
neering, 14(6):697-708, June 1988.

21

