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Abstract

Data flow analysis is a versatile technique that can be used to address a variety of analysis problems. Typi-
cally, data flow analyzers are hand-crafted to solve a particular analysis problem. The cost of constructing
analyzers can be high and is a barrier to evaluating alternative analyzer designs.

In this paper, we describe an architecture that facilitates the rapid prototyping of data flow analyzers.
With this architecture, a developer chooses from a collection of pre-existing components or, using high-level
component generators, constructs new components and combines them to produce a data flow analyzer. In
addition to support for traditional data flow analysis problems, this architecture supports the development
of analyzers for a class of combined data flow problems that offer increased precision.

This architecture allows developers to investigate quickly and easily a wide variety of analyzer design
alternatives and to understand the practical design tradeoffs better. We describe our experience using this
architecture to construct a variety of different data flow analyzers.
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18), March 25-29, 1996, Berlin, Germany. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

2This work was supported by the Advanced Research Projects Agency through Rome Laboratory contract F30602-94-C-0137.



1 Introduction

Data flow analysis is a versatile technique that has been applied to a wide variety of analysis problems.
Typically, data flow analyzers are hand-crafted to solve a particular problem. Building analyzers requires
a significant effort; developers must consider, and choose from, a wide variety of alternative designs for
encoding the data flow analysis problem and then implement the chosen design. While evaluation of some
analysis design alternatives can be done analytically, it is often the case that the cost-effectiveness of a
particular approach must be judged empirically. In these cases, the significant software development cost of
building data flow analyzers is a barrier to comparing competing design.

Various forms of data flow analysis have been used in program optimization. Software engineering re-
searchers have also used this technique to support software validation [CK93, DS91, FO76, 0092, TO80].
Even very different data flow analyzers share a number of common features. As has been found with
domain analysis of other software areas, such as database systems, network protocols and data structures
[BO92, BST*94], domain analysis of data flow analyzers can identify common reusable software components.
In this paper, we describe an architecture that is built around such a collection of components. This ar-
chitecture facilitates rapid prototyping of data flow analyzers by enabling specialized component generation
and extensive reuse in the construction of new analyzers.

The architecture defines a set of compatible standard interfaces for components of data flow analyzers.
With this architecture, a developer chooses from a collection of pre-existing components or, using high-level
component generators, constructs new components and combines them to produce a data flow analyzer.
Component generators capture common functionality and facilitate creation of components specialized for
the problem at hand. The interfaces defined by the architecture allow existing and generated components
to be reused across data flow analyzers. Thus, the cost of building, or generating, a component can be
amortized over a number of analyzers.

We envision that this architecture will be especially useful in the early stages of development of data
flow analyzers. Prototype analyzers can be developed quickly for a variety of formulations of a given data
flow analysis problem. After evaluating and selecting the desired problem formulation the developer may
choose to create a more finely tuned analyzer. For example, a developer could decide to hand code a
highly optimized version of an analyzer component or, alternatively, to selectively replace components with
generated components or special purpose components that are optimized to produce a more efficient analyzer.
Another strategy for improving both the efficiency and precision of analysis is combining multiple data flow
analysis problems into a single problem. With combined problems, rather than executing multiple analyses
independently a single analysis is run. Precision is improved when the constituent problems can use each
others intermediate results. Analysis time is reduced by incurring analysis overhead costs a single time rather
than once for each run of the constituent analyses. An extension of the architecture allows analyzers to be
built for a useful class of combined data flow problems.

We have implemented a library of analyzer components and component generators as a collection of Ada
generic packages that provide the interfaces defined by the architecture. This implementation has been used
to construct a variety of data flow analyzers that are used in a toolset for analyzing explicitly stated cor-
rectness properties of distributed systems [DC94, Dwy95]. These include analyzers for traditional data flow
problems, e.g., dominators, live variables, constant propagation, and for non-traditional problems, e.g., for
complex reachability problems. These analyzers have been formulated over a variety of program representa-
tions, e.g., sequential and concurrent control flow graphs, reachability graphs for concurrent systems, Petri
nets. A number of these analyzers are important components of larger software systems and have evolved
over time. We have found that modifications to these analyzers have required very little programming effort.
This experience validates the generality of our architecture and demonstrates the reduction in development
and maintenance costs that are gained by using the architecture.

The next section describes related work. Sections 3 and 4 describe the architecture and library of com-
ponents, respectively. Section 5 describes an extended architecture for building analyzers for a class of
combined data flow problems. Section 6 describes several data flow analyzers that have been built using
an implementation of the architecture. We summarize our contributions and plans for future work in the
conclusion.



2 Related Work

A typical method for describing data flow analyses is as a system of equations. These equations are derived
from the structure of the program being analyzed and based on the information being computed by the
analysis. An alternate means of formulating a data flow problem is as a date flow framework. Unlike a
system of equations, a data flow framework is a collection of rigorously defined mathematical objects: a
function space and map, a lattice of flow values and a flow graph. Reasoning about these mathematical
objects allows one to determine performance characteristics of analyzers for a given data flow problem. A
number of theoretical results and algorithms related to specific classes of data flow frameworks have been
developed [ASU85, Hec77, MRY0].

Most of the work on data flow analysis is aimed at supporting analysis of sequential programs. The
main distinction between data flow analyses for concurrent versus sequential flow graphs is the need to have
differing semantics for how values should be combined at flow graph merge points, e.g., where a node has
multiple incoming edges. For example, intra-process control flow predecessors and inter-process synchroniza-
tion predecessors may be treated differently. Recently data flow frameworks and solution algorithms have
been extended to support analysis of concurrent programs by allowing different combining operators to be
defined for different classes of nodes[Dwy95]. We incorporate this extension in our architecture.

For decades data flow analyzers have been an integral part of optimizing compilers. Well-engineered com-
pilers often provide standard interfaces to analyzer components. These interfaces can insulate the majority
of the compiler from changes to a particular data flow analyzer and may ease the integration of new analyzers
in support of new optimizations. Compiler systems do not, however, provide high-level analyzer generator
capabilities.

Recent work has exploited the inherent generality of data flow frameworks and attempted to explore some of
the issues in supporting a flexible, general approach for constructing data flow analyzers. FIAT [HMCCR93]
is a framework for rapid prototyping of interprocedural analyses and transformations; it provide interfaces
for describing a data flow analysis problem as a data flow framework and provides a general iterative solver
with which to construct analyzers. Sharlit [TH92] is a tool for generating compiler optimization phases that
incorporate data flow analyzers; it generates a data flow analyzer, based on an iterative solver, from code
fragments that specify the components of a data flow framework.

Our work is similar to both FIAT and Sharlit in that it is based on specifying the data flow analysis
problem as a data flow framework. Like those systems, our architecture provides interface descriptions
of the function space, flow graph, and lattice. Unlike those systems, our approach also treats the solver
algorithm as a component of an analyzer and defines an interface for it. This allows different solution
algorithms to be used in a data flow analyzer by simply changing the underlying solver. Our approach also
provides a library of pre-existing components that can be used to build analyzers as well as generators for
common classes of analyzer components. In addition, we provide support for building analyzers for a class
of combined data flow problems.

Systems that facilitate the implementation of domain specific software systems, such as the GenVoca
software system generators [BO92, BST*94], have been developed. Both GenVoca and our architecture are
based on collections of parameterizable composable building blocks with standard interfaces. Consequently,
we believe that programming languages designed to support GenVoca-style generators could be applied
to produce an implementation of our architecture. While such support might make implementation of
our architecture easier, the key ingredient in an effective domain-specific architecture is the analysis of
the software domain to identify major reuseable components and candidates for component generation.
Successful experience using an architecture to rapidly construct cost-effective software systems is validation
of the domain analysis.

3 An Architecture for Data Flow Analyzers

Our architecture is based on the mathematical objects that constitute a data flow framework. The interface
to each object is defined by an architectural template. Abstractions that satisfy these interfaces are referred
to as components of a data flow analyzer. Formally, a data flow framework is (L, G, F, M, N):
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L is a lattice with a partially ordered set of values, V' 3; these values encode information about program
behavior that we are interested in collecting. Meet, M, and join operators, LI, are included that compute for
two lattice values the greatest lower bound and least upper bound, respectively. G is a flow graph, with a
set of entities, E, a set of designated start entities, Start, and the predecessor, Pred, and successor, Succ,
functions. Entities can be defined as subsets of flow graph nodes or edges; thereby allowing a wide variety
of graphs to be viewed as a flow graph. F is a function space consisting of a set of transfer functions defined
over the lattice values, V; these functions encode the effects of the program on the lattice values. M is a
function map that binds flow graph entities, E, to transfer functions. N is a confluence map that binds flow
graph entities, E, to either the lattice meet or join operator; this operator is used to combine the values at
flow graph predecessors to compute the value flowing into a given entity.

The architecture consists of templates that specify the interface to each part of a data flow framework
and to the solution algorithm. In practice, function maps are defined in terms of attributes of flow graph
entities; consequently, our interface merges the specification of function space and function map. We refer
to a mutually consistent set of lattice, function space, and flow graph components as a data flow problem.
A solver is instantiated with a data flow problem to produce an analyzer, as illustrated in Figure 1.

In the remainder of this section we provide a description of the interfaces specified by the architectural
templates.

Lattice

The lattice values constitute the data that are propagated throughout the flow graph. These values are
transformed by transfer functions and combined at merge points in the flow graph. The interface to the
lattice is:

type LatticeValue;
function Create return LatticeValue;

procedure Destroy(v : in out LatticeValue);

function Equal(x, y : in LatticeValue) return Boolean;
procedure Assign(l : out LatticeValue; r : in LatticeValue);
function Meet(x, y : in LatticeValue) return LatticeValue;
function Join(x, y : in LatticeValue) return LatticeValue;
Top : constant LatticeValue;

Bottom : constant LatticeValue;

3 Although we require T, this restriction could be lifted as long as initial values are available for the problem.



In this interface, LatticeValueis V, Meet is N, Join is LI, Topis T, and Bottomis 1. We include construc-
tor, destructor, assignment and equality operators to allow manipulation of lattice values in intermediate
computations.

Flow Graph

The flow graph consists of a collection of entities and predecessor and successor functions that describe the
ordering of entities. The interface to a flow graph is:

type FlowGraph;

type Entity;

function MaxEntity(g : in FlowGraph) return Natural;
function GetIndex(e : in Entity) return Natural;
function Starts(g : in FlowGraph) return SetOfEntity;
function Predecessors(e : in Entity) return SetOfEntity;
function Successors(e : in Entity) return SetOfEntity;

In this interface, FlowGraph is G, Entity is E, Starts is Start, Predecessors is Pred and Successors is
Succ. Entities can be defined as a collection of nodes or edges; this interface allows us to view a wide variety
of program representations as flow graphs. We require two additional operators, GetIndex and MaxEntity,
that map entities to unique indexes and provide the maximum index value in a graph, respectively. These
operators enable construction of analyzers that are more time and space efficient; in our experience these
requirements are easily satisfied and have significant payoff.

We note that the direction of the data flow analysis is defined by the predecessor and successor operators.
For example, backward flow analyses can be defined by exchanging the Predecessors and Successors
operators and by defining Starts to be the exit entities of the flow graph. Thus, by allowing multiple start
nodes we have generalized the class of graphs to which data flow analysis can be directly applied.

Function Space

The function space consists of a set of transfer functions that propagate and potentially transform lattice
values at each flow graph entity. While the operators of the function space are defined over lattice values
they are not part of the lattice; there may be many function spaces defined over a given lattice. The interface
to a function space is:

function Init return LatticeValue;

function Start return LatticeValue;

function FunctionMap(e : in Entity; v : in LatticeValue) return LatticeValue;
function ConfluenceMap(e : in Entity; v1,v2 : in LatticeValue) return LatticeValue;

The FunctionMap operator can be thought of as selecting a function from F when given an entity and applying
that function to the given lattice value. The ConfluenceMap operator can be thought of as selecting either
L or M given an entity and applying that operator to the given lattice values. We include Init and Start to
specify initialization values for non-start flow graph entities and start entities respectively; for many problems
these are defined using T or L. The function space described by this template is equivalent to a set of flow
equations of the form:

In(e) = ConfluenceMappcpred(e)(Out(p))
Out(e) = FunctionMap(e,In(e))

where, in this notation, the ConfluenceMap has been extended to sets, as opposed to pairs, of lattice values,
and In and Out are the values flowing into and out of the entity. Note that initially for start entities
In = Start, and for other entities Out = Init.

Solver

A data flow problem is formulated as a mutually consistent lattice, function space and flow graph. To
produce a data flow analyzer for a problem we need to specify a solution algorithm, which we refer to as the
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Figure 2: A Library of Components

solver component. In this architecture all solvers have a common interface that consists of a component for
each part of a data flow problem. These components are given as input to the solver component and the
following are produced:

type Results;

function GetInValue(e : in Entity; r : in Results) return LatticeValue;
function GetOutValue(e : in Entity; r : in Results) return LatticeValue;
function Solve(g : in FlowGraph) return Results;

The Solve operator computes the solution to the given data flow problem for the input graph and returns
the final values for flow graph entities as a Results value. GetInValue and GetOutValue are used to retrieve
the lattice value for individual entities. These operations constitute the interface to the data flow analyzer.

4 The Library of Components

The architectural templates define interfaces that individual components must satisfy in order to be com-
bined to produce a data flow analyzer. Conceptually, other than the template specifications, there are no
restrictions on the components that may be used to fill the roles of each template. We note, however, that
practical data flow analyzers usually consist of monotone function spaces, finite lattices, and flow graphs
that are linear in the size of the program. In this section, we describe a library of components designed to
support the production of practical analyzers. Figure 2 depicts the library organized around each architec-
tural template. Boxes with G denote generators for components that satisfy the associated template. Some
components are specifically designed to work together, such as the boolean variable lattice and function
space.

To illustrate the construction of a data flow analyzer with the architecture and library of components we
present a running example. This example is taken from a toolset for analyzing explicitly stated correctness
properties of distributed systems [DC94]. In this toolset distributed systems are represented as a directed
graph, called a trace flow graph (TFG). The TFG can be viewed as a collection of task control flow graphs with
additional nodes and edges to represent inter-task communication. One component of this toolset transforms
the TFG based on identification of sub-graphs that exhibit a particular structure, called communication
intervals. This transformation results in a smaller graph for which subsequent analysis is more efficient
and produces more precise results. A key structural feature of a communication interval is that all system
executions leading into the interval execute an identifiable entering communication event and that all system
executions leading out of the interval execute an identifiable eziting communication event. We present a
data flow analyzer that gathers part of this information by computing pairs of communication nodes in the
TFG, where one node dominates another; this communication dominator problem will serve as our running
example. This example is implemented using a collection of Ada generic packages that constitute the library
of components and generators.

4.1 Lattice Components

We provide three components that satisfy the lattice interface: bit-vectors, sets and boolean variables. Bit-
vectors are a common representation in data flow problems for which the values of interest can be easily
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embedded in a powerset. Although they can be consumptive of space, they provide efficient Meet and Join
operators. In addition, the transfer functions defined in many function spaces can be implemented efficiently
as bit-vector manipulations. When the domain of values of interest is too large or the mapping from values to
indexes, required for bit-vectors, is too expensive, one can use a more general set component. The boolean
variable lattice component can be represented as a special case of the lattice of singletons [WZ91]. This
lattice, illustrated in Figure 3, is designed to work with the boolean variable function space to track the
values of boolean variables.

The communication dominator problem uses a bit-vector encoding of the set of TFG nodes that represent
communication nodes, where the Meet operator is bit-vector intersection and Join is union.

4.2 Function Space Components

Data flow frameworks for many classic compiler optimization problems, such as available expressions and
reaching definitions, have a regular form. Individual transfer functions are constructed from a description
of the values generated and killed at each flow graph entity. We provide a generator for this common class
of gen-kill function spaces. The generator takes as input a lattice component, an indication of whether the
problem is all paths or any path, and the following two functions:

function Gen(e : 1in Entity) return LatticeValue;
function Kill(e : in Entity) return LatticeValue;

Based on the values of these inputs, the generator produces the ConfluenceMap operator, which for all flow
graph entities is Meet for an all paths problem and Join for an any path problem *. The generator also
produces the FunctionlMap operator to define the function space. This provides a function space that is
equivalent to the standard gen-kill flow equations:

In(e) = ConfluenceM apycpreds(e)(Out(p))
Out(e) Join(Gen(e), (In(e) — Kill(e)))

We also provide a monotone function space defined over the boolean variable lattice. The transfer functions
are illustrated in Figure 3. The mapping of transfer functions to flow graph entities is made by querying
attributes of entities. If the entity assigns constant true to the variable or the entity is the {rue branch of
a conditional that tests the variable, then Ftrue is used. The conditions for Ffalse are analogous. If the
entity assigns an unknown value to the variable then Funknown is used. If the entity assigns the negation
of the variable to itself then Fnot is used. All other entities are bound to Fident, the identity transfer
function.

For the communication dominator problem we define Gen to set only the bit corresponding to the node’s
index if the node is a communication node. We define Kill to return a bit-vector of zeros. The function
space is defined as an all-paths problem so the ConfluenceMap operator will be bit-vector intersection, the
Meet operator for our lattice. Figure 4 gives the function space definitions for this example.

4For clarity in the presentation we only describe the gen-kill function space generator for analyses over sequential flow graphs.
A variant of the gen-kill function space generator produces a confluence map that is appropriate for analyses over concurrent
flow graphs.



function Genllode(n : in TFG.Node; s : in Natural) package COMFunctionSpace is new GenKill(

return BitVector.Value is -- Bind lattice types and operators
begin LatticeValue = BitVector.Value,
if TFG.GetKind(n) = TFG.COM then Create = BitVector.Create,
return BitVector.Set(BitVector.Zero(s), Print = BitVector.Print,
TFG.GetIndex(n)); Assign = BitVector.Assign,
else Meet = BitVector.Intersect,
return BitVector.Zero(s); Join => BitVector.Union,
end if;
end Genllode; -- Bind relevant flow graph operators
Entity = TFG.Node,
function Killlode(n : in TFG.Node; s : in Natural) GetIndex = TFG.GetIndex,
return BitVector.Value is
begin -- Indicator for all versus any path problem
return BitVector.Zero(s); isAllPaths =  TRUE,

end KilllNode;
-- Bind Gen and Kill functions for node
Gen = Genllode,
Kill = Killllode);

Figure 4: Example Function Space

4.3 Flow Graph Components

A wide variety of control-flow-graph-like representations can be used directly as components in this archi-
tecture. Graph types for concurrent programs such as state reachability graphs, Petri nets, and a number
of control-flow-graph-like representations [CKS90, DC94, GS93, MR93] can also be adapted to meet the
interface.

The cost of solving a data flow problem is strongly dependent on flow graph size. A number of repre-
sentations have been developed that effectively reduce flow graph size for some data flow analyses. Choi
et. al [CCF91] describe a general algorithm for constructing sparse data flow evaluation graphs (SDFEG)
for monotone data flow frameworks. Use of this representation eliminates propagation of data through flow
graph regions that add no information to the results. Constructing an SDFEG requires finding paths through
the flow graph that correspond to chains of identity, or constant, transfer functions. This dependence on the
function space, however, limits reuse of an SDFEG in different data flow problems.

In contrast to SDFEGs, we provide a generator that produces a sparse flow graph component that is
independent of a particular data flow problem. We use a relevance predicate to determine whether the
entity is relevant and should be included in the representation, or whether it is irrelevant and should be
excluded. One can think of the SDFEG construction algorithm as using a restricted relevance predicate,
i.e., the existence of a non-identity and non-constant transfer function mapped to a given entity means the
entity is relevant. Abstracting away from the function space allows sparse representations to be defined and
reused in different data flow problems for which the relevance predicate is appropriate. The generator is
given a flow graph component, which defines graph and entity types, and start, predecessor and successor
functions, and a relevance predicate:

function IsRelevant(e : in Entity) return Boolean;

It produces a sparse representation component and a constructor that builds a sparse representation from
a given flow graph. The sparse representation conforms to the interface for flow graphs defined by the
architecture, so that sparse representations can be used wherever a flow graph is required.

In the communication dominator problem, we could formulate the analysis over the set of all TFG nodes
and use control flow predecessor and successor operators to produce a data flow analyzer. Alternatively,
we could improve analyzer performance by using a sparse representation that elides all TFG nodes that are
not communication nodes. Figure 5 gives the definition of the relevancy predicate, IsCOMNode, and sparse
representation that includes only communication nodes.



function IsCOMNode(n : in TFG.Node) package COMDominators is new IterativeSolver(
return Boolean is

begin -- Bind lattice type and operators
return TFG.GetKind(n) = TFG.COM; LatticeValue = BitVector.Value,
end IsCOMNode; Create = BitVector.Create,
Destroy = BitVector.Destroy,
package COMSparseTFG is new SparseRepresentation( Equal = BitVector.IsEqual,
Assign = BitVector.Assign,
-- Bind graph and entity types
FlowGraph = TFG.Graph, -- Bind flow graph operators
Entity = TFG.Node, FlowGraph = COMSparseTFG.Graph,
MaxEntity = TFG.GetlMaxNodes, Entity = COMSparseTFG.lode,
GetIndex = TFG.GetIndex, MaxEntity = COMSparseTFG.GetMaxllodes,
GetIndex = COMSparseTFG.GetIndex,
-- Bind graph start/end and edge operators IterateStart = COMSparseTFG.IterateStart,
IterateStart = TFG.IterateStart, DoneStart = COMSparseTFG.DoneStart,
DoneStart = TFG.DoneStart, GetNextStart = COMSparseTFG.GetStart,
GetNextStart = TFG.GetStart, IteratePreds = COMSparseTFG.IteratePreds,
IterateEnd = TFG.IterateExit, DonePreds = COMSparseTFG.DonePreds,
DoneEnd = TFG.DoneExit, GetNextPred = COMSparseTFG.GetNextPred,
GetNextEnd = TFG.GetExit, IterateSuccs = COMSparseTFG.IterateSuccs,
IteratePreds = TFG.IteratePreds, DoneSuccs = COMSparseTFG.DoneSuccs,
DonePreds = TFG.DonePreds, GetNextSucec = COMSparseTFG.GetNextSucc,
GetNextPred = TFG.GetNextPred,
IterateSuccs = TFG.IterateSuccs, -- Bind function space operators
DoneSuccs = TFG.DoneSuccs, Init = BitVector.One,
GetNextSucc = TFG.GetlNextSucc, Start = BitVector.Zero,
Cmap = COMFunctionSpace.Confluencellap,
-- Bind the relevancy predicate Fmap = COMFunctionSpace.Functionlap) ;
IsRelevant = IsCOMNode);

Figure 5: Example Sparse Representation and Analyzer Generation

4.4 Solver Components

The interface specified by the solver architectural template is very general. It makes few requirements on
the structure of the lattice and no requirement on the structure of the function space and flow graph. It is
well known that for certain classes of data flow problems, very efficient algorithms exist. Our intent is that
those algorithms are to be implemented once, installed in the library of solver components, and incorporated
into data flow analyzers as needed. To date, we have provided an iterative worklist solution algorithm for
frameworks with monotone function spaces formulated over both sequential [Hec77] and concurrent flow
graphs [Dwy95].

For the communication dominator problem, the data flow analyzer is constructed using the bit-vector
lattice, sparse flow graph, gen-kill function space and iterative solver. Figure 5 gives the details of this defi-
nition. We note that the solver component accepts additional parameters that are used to optionally produce
detailed tracing of analyzer computation. We setup and run the analyzer by calling COMSparseTFG.Create
with a TFG.Graph to create a sparse representation of the flow graph, then we pass the sparse representation
as input to COMDominators.Solve.

5 Extending the Architecture for Combined Analyses

The precision of data flow analysis suffers from the fact that all paths through the flow graph are considered
executable. Encoding information about path executability can improve the precision of analysis results, but
usually increases the size of the flow graph considerably. An alternate approach is to include information in
the data flow problem that is used to restrict consideration of certain program paths. This has been done
for individual data flow analyses, e.g., [WZ91]. A more general method, and one that we employ, is to use
qualified data flow analysis [HR81].

We refer to the data flow problem of interest as the primary problem. We then formulate necessary
conditions for path executability and encode those conditions as constraint data flow problems. A qualified



problem is a combination of a primary and a set of constraint data flow problems. Conceptually, the qualified
problem restricts the propagation of any value that violates one of the necessary conditions encoded in the
constraint problems. Care must be taken at flow graph merge points so that information that could be used
to restrict value propagation is not lost.

To simplify the discussion, we describe qualified analysis for a single constraint, where both the primary
and constraint problems operate over the same flow graph. In this case, a qualified lattice value is a set,
whose members are pairs ® of primary and constraint lattice values, called PCtuples. We construct the
qualified ConfluenceMap operator to preserve information that may be used to restrict value flow at some
point during analysis. To enable this, the developer specifies a function, MayDiffer, that defines equivalence
classes of constraint lattice values such that, at any point in the flow graph, either all or no members of a class
cause flow to be restricted. The ConfluenceMap operator merges PCtuples with equivalent constraint values,
as determined by MayDiffer. The qualified FunctionMap is constructed by applying the primary(constraint)
FunctionMap to the primary(constraint) component of each PCtuple in the given qualified lattice value. The
developer specifies a function, Restrict, that is used to restrict the set of values processed at an entity to
only the input values that satisfy the constraint. The induced set of flow equations is as follows:

In(e) = ConfluenceM apycpreds(e)(Out(p))
Restricted(e) = {PCtuple|PCtuple € In(e) A Restrict(e, PCtuple.constraint)}
Out(e) = FunctionMap(e, Restricted(e))

We could move the restriction operation inside the FunctionMap and use any solver component. Instead,
for performance reasons, we provide a specialized solver component for qualified data flow problems. To
generate a qualified data flow problem, developers provide a flow graph, primary and constraint lattice and
function space components and the following predicates:

function MayDiffer(x, y : in ConstraintValue) return Boolean;
function Restrict(e : Entity; v : in ConstraintValue) return Boolean;

The interface described above has been simplified for this presentation. A more general interface produces
types and operators so that a qualified problems can itself fill the role of the primary problem in specifying a
new qualified analysis. This allows construction of analyzers for qualified data flow problems by incrementally
composing a primary problem with a series of constraints.

Analyzers for qualified data flow problems offer increased accuracy, over the primary problem, at the
expense of analysis time. In the worst-case, the cost of qualified analysis is exponential in the number of
constraints, so care must be taken in defining qualified problems. Our preliminary experience indicates that
for some problems, considerable increases in the precision of analysis results can be obtained for relatively
small increases in analysis time using qualified analysis.

6 Experience with the Architecture

In addition to the example presented throughout the previous sections, we have developed a number of other
data flow analyzers using this architecture. In this section we describe some of those analyzers. Some solve
problems that are recognizable as extensions of familiar data flow analysis problems, while others are less
familiar. The analyzers use a wide variety of different flow graph, lattice and function space components.
They compose both ready-made components and generated components. The degree of flexibility and large
amount of component reuse that was enabled by the architecture is strong evidence that the domain analysis,
component interfaces and component definitions are appropriate for the data flow analysis software domain.

Selected Analyzers

The communication dominator analyzer, presented as a running example earlier in the paper, is a traditional
bit-vector problem. We were able to reuse the function space, lattice and sparse representation to generate

5For k constraints we would have k-tuples rather than pairs.



an analyzer for the associated post-dominator problem by switching predecessor and successor operators and
defining the flow graph exit nodes as the start nodes for the data flow problem. Using the architecture,
this analyzer was constructed in less than an hour using existing components and generators. This analyzer
exhibits performance that is comparable to a hand-crafted implementation in this application.

After preliminary experimentation with the communication dominator analyzers we wanted to generalize
the class of communication intervals that could be detected in a TFG. In doing so we were able to reuse
much of the existing COMDominator analyzer with minor modifications. Instead of communication nodes,
we required dominators and post-dominators for all send and receive nodes that are local to individual task.
We redefined the Gen function to set appropriate bits only for send(receive) rather than communication
nodes. For the new problems we consider only predecessors and successors within a given task. Task-specific
predecessor and successor iterators are defined by the TFG data type. The interface to these iterators,
however, does not match the flow graph interface defined by the architecture. We were able to incorporate
these task-specific iterators in our analyzer by defining wrapper operators that have interfaces that satisfy
the architectural definitions. The sparse representation relevance predicate was modified to check that the
node kind was send(receive) rather than communication. Finally, the generation of the gen-kill function
space, sparse representation, and the instantiation of the iterative solver component for these problems was
the same as for the communication dominator problems. It took less than an hour to design and carry out
this modification and the resultant analyzers work as expected.

We also constructed a data flow analyzer for a non-traditional problem. This analyzer computes an approx-
imate test to determine if paths in a TFG correspond to accepting strings for a deterministic finite automaton
that represents an event sequencing specification. This is called state propagation analysis [Dwy95]. The
problem is formulated over TFG nodes connected by the set of control flow edges and an additional set
of inter-task edges. The lattice is a bit-vector encoding of sets of finite automaton states. The function
space is constructed from 4, the automaton state transition function. The ConfluenceMap operator is union
for nodes with incoming control flow edges and intersection for nodes with incoming inter-task edges. The
FunctionMap(n, v) = ¢*(In(n), Label(n)), where Label(n) is a symbol in the alphabet of the finite automaton
that labels the TFG node. We note that §* is the extension of the state transition function to sets of finite
automaton states.

We have also designed a data flow analyzer for a qualified analysis where the primary problem is state
propagation and the constraint problem models a boolean variable. This is useful in the analysis of distributed
systems, since it is common to have a local state variable control the pattern of inter-task communication,
for example, enforcing exclusive write access. For such systems, it is often possible to improve the precision
of state propagation analysis by modeling the control variable’s values and restricting propagation of finite
automaton states to TFG paths that are consistent with a given value of the controlling variable. For this
qualified data flow problem, which uses the constraint problem lattice and function space illustrated in Figure
3, Restrict(n, v) returns false if the node, n, is a true branch(false branch) and the constraint value , v, is
false(true). Intuitively, Restrict returns true if a value is inconsistent with a particular program execution
state as defined by a TFG node. MayDiffer(x, y) returns false if z = y or if one value is Both and the other
is Unknown, otherwise it returns true.

We have prototyped a data flow analyzer that is capable of finding dead transitions in a TIG-based Petri
Net (TPN) [DCN95]. The problem is formulated over the set of TPN transitions. The lattice is a bit-vector
encoding of the set of transitions. The function space consists of a distinct function for each TPN transition;
each function tests if any predecessor has its bit set in the input value, and if so, adds the bit for the current
transition. This is quite similar to the dominator function spaces, except that we test the input value here
in a way that is not supported by the GenKill function space generator.

In addition, the architecture has been used in a system to compute general def-use anomalies and to
perform analysis of state sequencing properties over the reachability graph of concurrent programs.

7 Conclusion
The architecture has been used to develop a wide variety of data flow analyzers. Members of our research

group have used it for analysis of both sequential and concurrent programs and for a variety of different
internal program representations including control flow graphs, both node-based and edge-based, finite state
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automata, Petri nets, and reachability graphs. The architecture has been used to formulate problems with
classical gen-kill function spaces and with non-traditional functions and combinations of functions. The
ability of the architecture, with its library of components and component generators, to accommodate this
wide range of problems is evidence of its utility and flexibility.

Our experience to date suggests that architectural support for constructing data flow analyzers is especially
beneficial at the early stages of design when developers have yet to settle on the right combination of
information to encode in the problem. We were able to rapidly prototype a variety of data flow analyzers
allowing evaluation of a number of analysis design alternatives. This allowed us to tune our formulation of
the data flow analyzer based on observations from running the analyzer with real programs as input.

Through reuse, the existing library of components and component generators reduce the software devel-
opment cost involved in building analyzers. There are two cost reduction benefits: developers do not have to
write the code and do not have to test and debug it. This may seem simplistic but in practice the payoff is
high. Our experience bears this out. For example, we developed the state propagation analyzer in a matter
of days. In contrast, it took approximately three weeks to develop a hand-crafted analyzer for the state
propagation algorithm. In fairness, this hand-crafted analyzer was built first and provided valuable insight
that was used in defining the components of the analyzer generated with the architecture. Nevertheless, the
reduction in programming and testing cost gained by using the architecture and components was large.

Generality is the key to supporting component reuse across different data flow analyzers. As we built each
new data flow analyzer, we found a number of opportunities for reuse. A good example of such reuse is
the use of the gen-kill function space and the sparse representation in both communication dominator and
post-dominator problems.

Surprisingly, we also found that the flexibility of the architecture facilitated the construction of efficient
analyzers. Compatible component interfaces make replacing one component with another very easy. Thus,
after we had gained first hand experience using an analyzer, we were able to identify less-efficient compo-
nents and easily replace them with optimized versions. By selecting and generating components that are
appropriate for a given data flow analysis problem we were often able to generate analyzers that match the
performance of hand-crafted analyzers.

To support our application of data flow analysis to software validation and verification we intend to
continue this work. Implementation of support for qualified analysis is underway. We plan to add new
components to the library to support a number of new analyses. For example, we are interested in lattices
and associated function spaces for symbolic representations of the number of times program events happen.
We are also building components for other common types of state variables, such as bounded counters, and
for the lattice of singletons, lattice of intervals, and lattice of arithmetic congruences [Gra89].

In summary, we have identified classes of components of data flow analyzers, defined general interfaces to
such components and created an architecture in which such components can be easily combined to produce
an analyzer for a given data flow problem. We have validated the appropriateness of this architecture by
constructing a variety of different data flow analyzers with it. This work is further evidence that high-quality
software systems can be generated at low cost by exploiting knowledge about a software domain.
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