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ABSTRACT

EXECUTION PERFORMANCE ISSUES IN FULL-TEXT
INFORMATION RETRIEVAL

FEBRUARY 1996
ERIC WILLIAM BROWN
B.Sc., UNIVERSITY OF VERMONT
M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

The task of an information retrieval system is to identify documents that will satisfy a
user’s information need. Effective fulfillment of this task has long been an active area of
research, leading to sophisticated retrieval models for representing information content in
documents and queries and measuring similarity between the two. The maturity and proven
effectiveness of these systems has resulted in demand for increased capacity, performance,
scalability, and functionality, especially as information retrieval is integrated into more
traditional database management environments.

In this dissertation we explore a number of functionality and performance issues in infor-
mation retrieval. First, we consider creation and modification of the document collection,
concentrating on management of the inverted file index. An inverted file architecture based
on a persistent object store is described and experimental results are presented for inverted
file creation and modification. Our architecture provides performance that scales well with
document collection size and the database features supported by the persistent object store

provide many solutions to issues that arise during integration of information retrieval into

vii



more general database environments. We then turn to query evaluation speed and introduce
a new optimization technique for statistical ranking retrieval systems that support structured
queries. Experimental results from a variety of query sets show that execution time can be
reduced by more than 50% with no noticeable impact on retrieval effectiveness, making
these more complex retrieval models attractive alternatives for environments that demand

high performance.
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CHAPTER 1
INTRODUCTION

Documents play a central role in our daily acquisition and distribution of information.
They serve as both a medium and a repository for information, coming in a variety of shapes
and sizes. Newspaper and magazine articles supply us with our daily news. Manuals
instruct us in all sorts of activities. Letters enable us to correspond professionally and
socially. Reports keep us current in the work and business of others. Over the ages people
have produced an enormous wealth of documents. Today we continue to add to this wealth
by perpetually generating new documents. With such an abundance of documents available,
finding a particular document of interest can amount to a Herculean task.

To make this task feasible, information retrieval (IR) systems were developed. The
function of an information retrieval system is to satisfy a user’s information need by
identifying the documents in a collection of documents that contain the desired information.
Since the inception of IR systems over thirty years ago, a great deal of effort has been spent on
improving the ability of IR systems to correctly identify interesting and relevant documents.
In the work presented in this dissertation, we now concentrate on system implementation
issues and, in particular, how to improve the execution performance of these systems so
that their operations can be carried out quickly and efficiently.

In the remainder of this chapter, we provide an overview of the problems considered
in this dissertation and the approaches taken to solving them, summarize the research
conducted and the results achieved, describe the contributions of this work, and outline the

rest of this dissertation.



1.1 Overview

A document is any written work that conveys information. Examples include books,
reports, articles, and letters. The fundamental element of any document is text, the written
form of human language. Text is a powerful mechanism for storing information, allowing
us to record anything that can be expressed verbally. This power comes from the endless
variety and flexibility of human language. When creating text, we have a huge vocabulary
of terms at our disposal and infinitely many ways of combining those terms to express what
we wish to communicate.

While this flexibility makes for rich and interesting documents, it has the potential
to impede human understanding of the information stored in a document. Documents
can be long and detailed, requiring careful study before their true information content is
discovered. This situation is acceptable when the set of documents that we must examine is
restricted to those that contain the information we seek. But what if we have a large number
of documents and do not know which ones contain the desired information? Individual
inspection of each document is impractical. Without a method for identifying relevant
documents, a large collection of information-rich documents is useless.

One of the first solutions to this problem appeared nearly four thousand years ago
when catalogues of documents in libraries were created to aid in keeping track of those
documents [44]. A catalogue provides a compact listing of the documents available in
the library. Each document entry in the catalogue includes some number of attributes
for the respective document, such as author, title, or subject. The attributes can be used to
identify potentially interesting documents without actually having to examine the documents
themselves.

More recently, in the 16th century, primitive indexes for documents were created. An
index is a list of certain keywords or topics. Each entry in the list contains pointers into
the documents where descriptions and discussions of the respective keyword or topic may

be found. Unfortunately, deciding what keywords and topics should go into an index and



which discussions are worthy of an index pointer is a tedious and subjective human task
prone to omissions. Ultimately, both indexes and catalogues suffer from the restriction
that an information search must be based on a set of limited, predetermined document
characteristics, i.e., the keywords of an index or the attributes of a catalogue.

A different kind of index that avoids this shortcoming is the concordance. A concor-
dance is an alphabetical list of all of the terms that appear in a collection. For each term, the
list gives a pointer to every occurrence of the term in the collection, along with a portion of
the text surrounding the term to suggest the context of the occurrence. The full-text index
provided by a concordance is free from the restrictions of predetermined keywords and can
be used to locate all of the passages that contain the terms of interest. A concordance for
a large document such as the Bible, however, might require a good portion of a lifetime to
construct by hand, and such an effort can take a significant toll on the concordance compiler.
In the case of Alexander Cruden, author of one of the better known Bible concordances [24]
(first published in 1737), the effort involved in compiling the concordance is believed to
have led to his insanity [48].

With the advent of the computer age in the latter half of the 20th century, concordance
construction could be automated, greatly simplifying the task. What used to take years
could now be accomplished in minutes. In spite of being relatively complete and simple
to construct, a concordance still provided a rather unsophisticated solution to our original
problem. Trying to locate information in a large collection of documents using a concor-
dance can be an exercise in frustration, leading to the retrieval of many unrelated documents
that just happen to contain terms that we believe are indicative of the information we seek.
A more intelligent solution to the problem at hand was still needed.

Over thirty years ago, work towards this intelligent solution began with the birth of
information retrieval systems. Information retrieval is the process of identifying and
retrieving relevant documents based on some expressed interest in documents of a particular

nature. The distinguishing characteristic of information retrieval is that the search for



interesting documents is based on the information content of the documents, rather than
just the terms, keywords, or attributes associated with the document. To support document
searching based on information content, an information retrieval system consists of three
basic elements: a document representation, a query representation, and a measure of
similarity between queries and documents. The document representation provides a formal
description of the information contained in the documents, the query representation provides
a formal description of the information need, and the similarity measure defines the rules
and procedures for matching the information need with the documents that satisfy that need.

These three elements collectively define a retrieval model. Research in information
retrieval has produced a number of retrieval models, of which the three most prominent
are the Boolean, vector-space, and probabilistic retrieval models. In all of these models,
a document is represented by a set of indexing features that have been assigned to the
document. Indexing features are commonly the terms that occur in the document collection,
although they may also be more semantically meaningful concepts extracted from the text
by sophisticated indexing methods (e.g., citations, phrases). Unless further distinction is
necessary, we will use the word “term” to mean any indexing feature.

In Boolean retrieval, a document is represented as a set of terms d; = {#,..., %}, where
each 7; is a term that appears in document d;. A query is represented as a Boolean expression
of terms using the standard Boolean operators and, or, and not. A document matches the
query if the set of terms associated with the document satisfies the Boolean expression that
represents the query. The result of the query is the set of matching documents.

The vector-space model [73] enhances the document representation of the Boolean
model by assigning a weight to each term that appears in a document. A document can then
be represented as a vector of term weights. The number of dimensions in the vector-space
is equal to the number terms used in the overall document collection, or | T |, where T is

the set of terms used in the collection, commonly referred to as the vocabulary or lexicon.



The weight of a term in a document is calculated using a function of the form #f - idf,
where #f (term frequency weight) is a function of the number of occurrences of the term
within the document, and idf (inverse document frequency weight) is an inverse function of
the total number of documents that contain the term. The first component incorporates the
notion that the ability of a term to describe a document’s content is directly related to the
number of times the term occurs within that document. The second component incorporates
the notion that a term’s discriminatory power weakens as the term appears in more and more
documents.

A query in the vector-space model is treated as if it were just another document, allowing
the same vector representation to be used for queries as for documents. This naturally leads
to the use of the vector inner product as the measure of similarity between the query and
a document. This measure is typically normalized for vector length, such that the actual
similarity measure is the cosine of the angle between the two vectors. After all of the
documents in the collection have been compared to the query, the documents are sorted by
decreasing similarity measure and a ranked listing of documents is returned as the result of
the query.

The probabilistic retrieval model is based on the Probability Ranking Principle, which
states that an information retrieval system is most effective when it responds to an expressed
information need with a list of documents ranked in decreasing order of probability of
relevance, and the probabilities are estimated as accurately as possible given all of the
available information [70]. In this model, the answer to a query is generated by estimating
P(relevant | d) (the probability of the information need being satisfied given document d)
for every document, and ranking the documents according to these estimates. Using Bayes’
theorem, P(relevant | d) can be expressed as a function of the probabilities of the terms in
d appearing in relevant and non-relevant documents. The query gives an estimate for the
probability of a given term appearing in relevant documents, and the document collection

gives an estimate for the probability of a given term appearing in non-relevant documents.



This results in a #f - idf style term weighting function, similar to that used in the vector-space
model. The probabilistic version, however, is more formally motivated.

Although these models differ in many of their details, they each incorporate the belief
that a query and its relevant documents will have terms in common. An important query
evaluation step for all of these models is matching query terms with the documents that
contain those terms. Scanning the document collection for occurrences of the query terms
is an unsatisfactory implementation of this step, especially when the document collection
is quite large. Instead, an inverted file index [73, 29, 42] is used to support this process. An
inverted file contains an inverted list for every term that appears in the document collection.
A term’s inverted list identifies all of the documents that contain the corresponding term.
Each document entry in an inverted list may additionally contain a term weight for the
document (often just the number of occurrences of the term within the document) and the
locations of each occurrence of the term within the document.

Using an inverted file, we match query terms to documents by obtaining the inverted
lists for the query terms and processing the document entries in those lists. The particular
retrieval model will dictate exactly what information is stored in the inverted lists and how
that information is used in the query evaluation process. Regardless of how the inverted list
contents are used, the fundamental advantage of an inverted file is that the set of documents
that must be considered during the query evaluation process is constrained to those that
contain at least one of the query terms. Moreover, the documents in this constrained set
do not even need to be accessed during query evaluation. All of the information required
to evaluate a query can be stored in the inverted lists, such that a document need only be
accessed when the user selects it from the query result list for viewing.

The issues of what information to store in an inverted list and how to use that information
to generate a query result are at the heart of the question that most of the IR research to
date has focused on: how to define the elements of a retrieval model for best retrieval

effectiveness. Retrieval effectiveness is a measure of an IR system’s ability to correctly
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identify the documents that are relevant to a given query. While improving retrieval
effectiveness remains an important area of research, a number of new challenges have
appeared that are rapidly becoming much more pressing. First, IR systems are being asked
to manage larger and larger document collections. Second, the traditional view of document
collections as static and archival is being replaced by the desire for dynamic collections
that can be updated efficiently or built incrementally. Third, information retrieval is being
integrated into more comprehensive information management systems. For this to happen,
IR systems must provide reliable, efficient, multi-user access—features common to more

traditional data management systems.



The goal of this dissertation is to provide solutions to the challenges created by large,
dynamic document collections, and to lay the foundation for a solution to the challenges
imposed by a comprehensive information management system. Our approach to solving
these problems is based on the following observation: the speed and functionality of an
information retrieval system are determined to a large extent by the inverted file implemen-
tation. This notion is depicted in Figure 1.1. The figure shows a number of information
retrieval system goals in white boxes. Conflicting goals are connected by solid lines ema-
nating from a black dot. Solutions to these conflicts are shown in shaded boxes, which are
connected to the corresponding conflict by a dashed line. Finally, both solutions and goals
place requirements on the inverted file implementation, shown as dotted lines directed at
the circle in the center of the figure.

Consider first the goal of retrieval effectiveness in the upper right hand corner. For
small document collections, a simple Boolean model might suffice. On large document
collections (shown in the upper left hand corner), however, simple boolean retrieval will
perform poorly [72, 1, 85]. To resolve the conflict between these two goals and provide
better retrieval effectiveness on large document collections, we turn to more sophisticated
retrieval models. Sophisticated retrieval models place additional requirements on the
inverted file implementation, such as storage of term weights and occurrence locations.

Both large document collections and sophisticated retrieval conflict with the goal of fast
document retrieval, shown at the bottom of Figure 1.1. These two conflicts lead to the use of
query optimization techniques to improve retrieval speed. Query optimization techniques
can require alternative inverted file access methods and storage of additional information
in the inverted lists, placing further requirements on the inverted file implementation.

The goal of supporting a dynamic document collection (shown in the lower left hand
corner) conflicts with the goal of supporting a large document collection. If a document
collection is small enough, modifications to the collection can be incorporated into the

inverted file simply by re-indexing the entire document collection from scratch. With



larger document collections, this solution is impractical. Instead, incremental solutions are
required that allow in-place modifications of the existing inverted file. The functionality
requirements imposed by a dynamic inverted file introduce a whole new set of issues that
must be considered in the inverted file implementation.

The last goal depicted in Figure 1.1 is the incorporation of information retrieval into
a general information management system, shown in the top middle of the figure. For
example, a traditional database management system (DBMS) provides excellent support
for structured, record based data. However, a DBMS provides only limited support for text
data types and generally lacks the sophisticated full-text search capabilities provided by an
IR system. Combining these two technologies into a single, comprehensive system will
result in a more powerful and useful information management system.

Before this integration can take place, an IR system must meet the data management
standards set by the DBMS. A large part of the functionality provided by a DBMS is support
for consistent, reliable multi-user access and update of the database. This is accomplished
through the use of transactions, concurrency control, and recovery—features typically
absent from an IR system. The incorporation of these mechanisms into an IR system will
have a significant impact on the inverted file implementation, imposing a variety of new
functionality requirements for controlled access and manipulation of the inverted lists.

The above observations lead to a problem solving approach centered on the inverted
file implementation. This dissertation presents a comprehensive solution to managing an
inverted file that either directly satisfies the requirements stated above, or enables other new
strategies to be applied in the problem solving effort. Since we are concerned with execution
performance issues, the solution is fully implemented and evaluated empirically. The
experimental test-bed is provided by INQUERY [12], a full-text probabilistic information
retrieval system based on a Bayesian inference network model [88]. INQUERY was chosen

for the following reasons:



e INQUERY uses a general inverted file that includes term occurrence locations, al-
lowing exploration of more complex inverted list data structures. This exploration

would not be possible in a system that stores term weights only in its inverted file.

o The inference network-based retrieval model exemplifies the sophisticated retrieval

solution of Figure 1.1.

o The inference network-based retrieval model provides a general framework in which
a variety of retrieval models can be represented, suggesting that results obtained in

this environment have a better likelihood of generalizing to other retrieval models.

e INQUERY has been shown to provide a high level of retrieval effectiveness [39, 40],
increasing the impact of the results presented in this dissertation. A fast system is

useless if it provides poor retrieval effectiveness.

¢ INQUERY is a commercial quality system and is currently used in a number of instal-

lations [21], again increasing the impact of the results presented in this dissertation.

1.2 Research Summary

The research conducted for this dissertation covers two main areas: indexing and query
evaluation. Indexing includes the initial creation, modification, and overall management of

the inverted file. The specific indexing problems addressed are:

1. Efficient inverted file creation for large document collections.
2. Efficient additions of new documents to an existing document collection.

3. Design of an overall architecture that enables solutions to the first two problems and
provides a foundation for future work on the comprehensive information management

system problem.
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These problems have a strong systems orientation, focusing on the management of
large amounts of data that must be moved back and forth between disk and main memory.
As such, any approach to solving these problems must be sensitive to basic computer
architecture issues and tradeoffs. In particular, the size and access characteristics of the
data to be managed must be taken into account when deciding how to make use of various
computer resources (e.g., CPU, disk, main memory). With these considerations in mind,

the following hypotheses are put forth:

1. Fast, scalable document indexing can be achieved by localizing sort and insertion op-
erations, building intermediate results in main memory, minimizing I/O, and favoring

sequential I/O over random I/O.

2. Document additions can be efficiently supported by an inverted list data structure that

minimizes access to the existing inverted file during the update.

3. A general, “off-the-shelf” data management system can be used to manage an in-
verted file if the data management system provides the appropriate data model and

extensibility mechanisms.

A general document indexing scheme based on the previous work of Witten et al. [90]
was implemented. The extension to their work is a double buffering scheme for parsing
documents and building inverted lists in main memory without the use of a term dictionary.
The overall indexing scheme is able to index documents at a rate of over S00 MB an hour
on a current, midrange workstation, and results show that the technique scales well with
document collection size. The issues identified in the first hypothesis were considered
throughout the implementation, and the results obtained lead to the acceptance of that
hypothesis.

An exploration of possible solutions to the problem of managing an inverted file was
conducted, leading to the conclusion that a persistent object store provides the appropriate

level of performance and functionality for this task. In particular, the Mneme persistent
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object store [62] was used as the “off-the-shelf” data management system in the inverted
file architecture. The data model provided by Mneme allowed the design of an inverted list
data structure that meets the requirements stated in the second hypothesis. Experimental
results show that the new inverted file architecture supports document additions with costs
significantly less dependent on the size of the existing document collection than traditional
techniques, which require redundant indexing of the document collection or scanning of the
entire existing inverted file. Moreover, additions in the new implementation are performed
in-place, substantially reducing temporary disk space costs. These results confirm the
second hypothesis, although there is still room for improvement.

Other inverted file management tasks were explored within the context of the Mneme
based architecture. While many of these additional features have been implemented,
including document deletions, concurrency control, recovery, and transactions for multi-
user access, a full evaluation of these features is beyond the scope of this dissertation.
The implementation of these features, however, does lead to the acceptance of the third
hypothesis above.

A single problem was addressed within the context of query evaluation, namely, how
to provide fast evaluation of structured queries in statistical ranking retrieval systems. Re-
trieval systems of this kind are characterized by a statistical or probabilistic term weighting
function and a query language that provides a variety of query operators for combining
term weights, proximity information, and the results of nested query operators. A struc-
tured query can be represented as a tree with operators at the internal nodes and terms at
the leaves. During query evaluation, a document’s score is calculated by propagating term
weights for the document from the leaves toward the root, combining the term weights
according to the semantics of the query operators at the internal nodes to produce a final
score for the document at the root of the query tree.

A technique for reducing query evaluation costs can be categorized as either safe or

unsafe. A safe technique has no impact on retrieval effectiveness, while an unsafe technique
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may trade retrieval effectiveness for execution efficiency. A number of safe optimization
techniques were explored, including their implications for the inverted file implementation
and expected impact on query evaluation time. The main focus here, however, was on
unsafe optimization techniques. Our research was guided by the following observation:
relevance scores are generated for a significant percentage of the documents in a document
collection when evaluating a query. This observation has been made by others. Moffat and
Zobel [58] found that for queries containing around 40 terms, nearly 75% of the documents
in the collection are scored. Even relatively short queries suffer from this problem. We
have observed that for queries containing around 8 terms, 35% of the documents in the
collection are scored. If the document collection contains 1 million documents, hundreds
of thousands of documents will be scored, far exceeding the number of documents an end

user is likely to be interested in. In light of this, the following hypothesis is put forth:

e The set of documents to score, called the candidate document set, can be significantly
constrained with minimal effort, which in turn will produce a significant savings in

query evaluation execution time.

A new optimization technique was developed based on this hypothesis. The technique
populates the candidate document set in a light-weight preprocessing step using heuristics
to select the documents most likely to be relevant to the query. These documents are then
fully scored to generate the answer to the query. An evaluation of the new optimization
technique on large document collections using a variety of query sets showed that the
candidate document set can be reduced by over 90%. This in turn translates into a savings
in wall-clock execution time of over 50%, proving the above hypothesis. Furthermore,
retrieval effectiveness is maintained in the portion of the query result most likely to be
viewed by the end user.

The new optimization technique was also compared to and combined with a previously
proposed optimization technique, term-elimination. While the individual techniques per-

form comparably on certain query sets, our new technique was shown to be more robust in
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all situations. Moreover, the two techniques are complementary, such that combining them
yields an additional improvement in performance.

Finally, the efficacy of applying the new optimization technique and term-elimination
on short, unstructured queries was evaluated, and the usefulness of high frequency (i.e.,
low idf) query terms was explored. It was found that high frequency query terms can
often be eliminated to yield substantial improvements in both execution speed and retrieval
effectiveness. While this is gratifying, it is actually indicative of a problem in the retrieval
model, suggesting that high frequency terms are not being handled properly. Appropriate
query modifications were explored to better incorporate high frequency query term infor-
mation into final document scores. These efforts led to a better understanding of both the
impact of high frequency query terms, and which techniques provide the best combination

of retrieval effectiveness and execution speed.

1.3 Research Contributions

The contributions of this thesis work are primarily practical in nature, with implications

for information retrieval system implementation. The contributions include:

e Implementation and evaluation of a fast, scalable indexing system.

e Design and implementation of an inverted file management architecture using “off-
the-shelf” data management technology, providing opportunities for all aspects of
an information retrieval system to benefit from traditional database management

features, such as buffer management and efficient low-level storage management.

e Development and evaluation of an incremental indexing strategy enabled by the

above architecture.

e Ground work for a comprehensive information management system where informa-

tion retrieval is a full-featured component.
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e Development and evaluation of a structured query optimization that reduces execution

time by over 50% with no noticeable impact on retrieval effectiveness.

e An investigation of the impact of high frequency query terms in short, unstructured
queries and how to handle them for best retrieval effectiveness and execution perfor-

mance.

1.4 Outline of the Dissertation

In the remainder of this dissertation, we begin with a survey of related work (Chapter 2).
We then consider the problems of indexing a document collection and managing an inverted
file, describe our solutions, and present results (Chapter 3). Next, we address the problem
of providing fast evaluation of structured queries, describe our solution, and present results
(Chapter 4). Finally, we summarize the conclusions drawn from this research and discuss

future work (Chapter 5).
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CHAPTER 2
RELATED WORK

In this chapter we survey related work that is not specifically addressed in other parts
of the dissertation. We begin with a discussion of inverted file implementation issues
and alternatives, and then survey work on query optimization techniques for information

retrieval.

2.1 Inverted File Management

Inverted file management has been pursued from a number of perspectives. We begin
with a discussion of efforts to support information retrieval with a traditional database
management system, which range from treating IR as just a relational database application,
to loose integration of separate IR and database management systems. We then consider
custom inverted file management solutions, and briefly review alternative indexing schemes

for information retrieval.

2.1.1 Traditional Database Support for IR

The first body of work related to the research presented in this dissertation is the general
technique of providing information retrieval services using a standard database management
system (DBMS). Documents are stored by the DBMS and represented in such a way that the
query language of the DBMS can be used to construct information retrieval style queries.
Some of the earliest work was done by Crawford and MacLeod [18, 54, 17, 55], who
describe how to use a relational database management system (RDBMS) to store document

data and construct information retrieval queries. Similar work was presented more recently
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by Blair [5] and Grossman and Driscoll [38]. Others have chosen to extend the relational
model to allow better support for IR. Lynch and Stonebraker [53] show how a relational
model extended with abstract data types can be used to better support the queries that are
typical of an IR system.

In spite of evidence demonstrating the feasibility of using a standard or extended
RDBMS to support information retrieval, the poor execution performance of such systems
has led IR system builders to construct production systems from scratch. Additionally, most
of the work described above deals only with document titles, author lists, and abstracts.
Techniques used to support this relatively constrained data collection may not scale to true
full-text retrieval systems. Moreover, sophisticated retrieval models such as the inference
network-based retrieval model are difficult to represent using an RDBMS. A custom re-
trieval engine will inevitably provide superior performance and is certain to better represent
the semantics of the retrieval model.

Other work in this area has attempted to integrate information retrieval with database
management [27, 74], and is representative of our comprehensive information management
system goal. The services provided by a database management system and an IR system
are distinct but complementary, making an integrated system very attractive. In this case, a
separate, self-contained information retrieval system is loosely coupled with a more tradi-
tional database management system. There is a single user interface to both systems, and
a preprocessor is used to delegate user queries to the appropriate subsystem. Additionally,
the DBMS is used to support the low level file management requirements of the whole
system.

Whether an RDBMS is used to implement an IR system or provide low-level storage
support for a loosely coupled IR system, the inverted file index required by the IR system
must be managed efficiently. We will see in Chapter 3 that the data management require-
ments of an inverted file are not easily satisfied by an RDBMS. Rather than use an RDBMS,

we propose the use of a persistent object store, favoring a data management system that
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more naturally satisfies the unusual storage requirements of an inverted file. In particular,
the inverted lists in an inverted file will come in a broad range of sizes, with some of the
lists being very large. We will see that the persistent object store offers a straight forward
solution to the problem of managing these large objects.

Generic support for storage of large objects has been pursued elsewhere in the database
community. The EXODUS storage manager [13] supports large objects by storing them in
one or more fixed size pages indexed by a B+tree on byte address. For example, to access
the 12 bytes starting at byte offset 10324 from the beginning of a large object, the object’s
B+tree would be used to look up 10324 and locate the data page(s) containing the desired
bytes.

The Starburst long field manager [50] supports large objects using a sequence of variable
length segments indexed by a descriptor. As an object grows, a newly allocated segment
will be twice as large as the previously allocated segment. This growth pattern continues up
to some maximum segment size, after which only maximum size segments are allocated.
The last segment in the object is trimmed to a page boundary to limit wasted space. This
known pattern of growth allows a segment’s size to be implicitly determined, eliminating
the need to store sizes in the descriptor. A key component of this scheme is the use of a
buddy system to manage extents of disk pages from which segments are allocated. This
scheme is intended to provide efficient sequential access to large objects, assuming they are
typically read or written in their entirety.

Biliris [3] describes an object store that supports large objects using a combination
of techniques from EXODUS and Starburst. A B-+tree is used to index variable length
segments allocated from disk pages managed by a buddy system. This scheme provides the
update characteristics of EXODUS with the sequential access characteristics of Starburst.

A comparative performance evaluation of the three schemes can be found in [4].
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2.1.2 Custom Inverted List Management

Efficient management of full-text database indexes has received a fair amount of at-
tention. Faloutsos [29] gives an early survey of the common indexing techniques. Zobel
et al. [97] investigate the efficient implementation of an inverted file index for a full-text
database system. Their focus is on compression techniques to limit the size of the inverted
file index. They also address updates to the inverted file using large fixed length disk blocks,
where each block has a heap of inverted lists at the end of the block and a directory into the
heap at the beginning of the block. As inverted lists grow they are rearranged in the heap or
copied to other blocks with more space. Techniques for handling inverted lists larger than
a disk block are not discussed, nor is the disk block technique fully evaluated.

A more sophisticated inverted list implementation was proposed by Faloutsos and
Jagadish [31]. In their scheme, small lists are stored as inverted lists, while large lists are
stored as signature files. They have a similar goal of reducing the processing costs for long
inverted lists, but their solution is inappropriate for the inference network model. In [32],
Faloutsos and Jagadish examine storage and update costs for a family of long inverted
list implementations, where the general case is their “HYBRID” scheme. The HYBRID
scheme essentially chains together chunks of the inverted list and provides a number of
parameters to control the size of the chunks and the length of the chains. At one extreme,
limiting the length of a chain to one and allowing chunks to grow results in contiguous
inverted lists, where relocation of the inverted list into a larger chunk is required when the
current chunk is filled. At the other extreme, fixed size chunks and unlimited chain lengths
give a standard linked list.

Harman and Candela [41] use linked lists for a temporary inverted file created during
indexing. Their linked list nodes are quite small, consisting only of a single document
posting. Accessing the inverted file in this format during query processing is much too
inefficient, so the nodes in a linked list are ultimately conglomerated into a single inverted

list before the file is used for retrieval.
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Tomasic et al. [84] propose a new inverted file data structure to support incremental
indexing, and present a detailed simulation study over a variety of disk allocation schemes.
The study is extended with a larger synthetic document collection in [76], and a comparison
is made with traditional indexing techniques. Their data structure manages small inverted
lists in buckets (similar to the disk blocks in [97]) and dynamically selects large inverted
lists to be managed separately. It is notable that they expect the scheme with the best
incremental update performance to have the worst query processing performance due to
fragmentation of the long inverted lists.

Moffat and Zobel [60] describe an inverted list implementation that supports jumping
forward in the list using skip pointers. This is useful for document based access into the
list during conjunctive style processing. The purpose of these skip pointers is to provide
synchronization points for decompression, allowing just the desired portions of the inverted
list to be decompressed.

Properly modeling the size distribution of inverted file index records and the frequency
of use of terms in queries is addressed by Wolfram in [91, 92]. He suggests that the
informetric characteristics of document databases should be taken into consideration when
designing the files used by an IR system. This is an underlying theme of the work described

here, where term frequency and access characteristics are carefully considered throughout.

2.1.3 Inverted File Alternatives

The most popular alternative to an inverted file is the signature file [30]. A signature
file contains document signatures, one for each document in the collection. A document’s
signature is a bit-string created by applying a hash function to each of the terms in the
document (documents may be sub-divided into blocks, with a separate signature for each
block). The hash function identifies one or more bits in the signature that should be set
to “1.” The width of the bit-string and the number of bits set by the hashing function are

parameters that control the likelihood of different terms setting overlapping bits.
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During query evaluation, a signature is created from the terms in the query in the
same way. The query signature is then compared with all of the document signatures in
the signature file. A document will potentially match the query if the intersection of its
signature and the query signature is equal to the query signature. The match is “potential”
because terms different from those in the query may set the same signature bits as the query
terms, resulting in a false drop. In this case, a document is flagged as matching the query,
when in fact it does not. Note that the opposite cannot occur. If a document does contain
all of the query terms, this strategy will never fail to flag the document as matching. The
possibility of false drops means that documents with matching signatures must be processed
further to determine whether or not they truly match the query.

Signatures are commonly stored and manipulated in bit-slices. The n™ bit-slice contains
the n™ bit from all of the signatures, stored as a sequential string. With this organization,
we need to process only the bit-slices identified by the query signature, greatly reducing
the amount of data that must be read from the signature file. The cost of using a bit-
sliced organization is more expensive updates. This organization, however, is particularly
amenable to parallel processing, and a number of parallel implementations have been
described in the literature [63, 82].

It has long been argued that signature files provide performance superior to that obtained
with inverted files. Any performance advantage, however, comes at the cost of a more
restricted retrieval model—signature files typically support Boolean queries only. Croft
and Savino [23] show how signature files can be extended to support document ranking,
but ultimately find that equivalent performance can be obtained by using an inverted file.
More recently, Zobel et al. [96] give both analytical and empirical results that show inverted
files to be superior to signature files in all respects, regardless of the retrieval model. Given
their greater flexibility in terms of retrieval model and the recent results demonstrating
their superior performance, inverted files appear to be the index of choice for a full-text

information retrieval system.
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2.2 Query Optimization

The database community has a rich history of query optimization techniques. In [37],
Graefe gives a comprehensive survey of query execution and optimization techniques,
concentrating mainly on the relational model. These techniques are generally based on an
algebra or calculus where query manipulations can be performed to reduce execution time
without modifying the semantics of the query. While some of these execution techniques
are applicable to information retrieval (e.g., set intersection techniques), the vague nature of
ranked retrieval makes it drastically different from the traditional database query paradigm,
where there is a single correct answer to any given query. In ranked information retrieval,
we can trade answer precision for speed using unsafe optimization techniques.

The unsafe query optimization techniques have their roots in the upper bound optimiza-
tions used to solve the nearest neighbor problem in information retrieval. In this model, a
query and the documents in the collection are represented as vectors in an n-dimensional
space, where n is the number of terms in the vocabulary. The problem is to find the docu-
ment closest to the query in this vector space. Distance in the vector space is defined by the
similarity measure used between a document and the query. This is typically some form of
dot product between the vectors. The dot product is limited to the terms that appear in the
query, so only documents that contain at least one of the query terms need be considered
in the nearest neighbor search. Inverted lists are used to identify documents that are the
potential nearest neighbor to the query. When a previously unseen document is encountered
in an inverted list, the document’s representation vector is retrieved to calculate its exact
similarity to the query. If this document is closer to the query than the current nearest
neighbor, it becomes the new nearest neighbor. When the inverted lists for all of the terms
in the query have been processed, the current nearest neighbor is returned as the answer to
the query.

Smeaton and van Rijsbergen [78] describe how an upper bound on the similarity of any

unseen document can be calculated based on the unprocessed query terms. If this upper
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bound is less than the similarity of the current nearest neighbor, processing may stop. By
processing terms in order of increasing inverted list length, they achieve a 40% reduction
in the number of similarity calculations required to find the nearest neighbor.

An alternative technique for locating the nearest neighbor uses counters to gradually
accumulate a document’s similarity to the query. The accumulated similarity is based
solely on the information stored in the inverted lists, thus eliminating the need to retrieve
the document representation vectors. After all inverted lists have been processed, the
nearest neighbor is identified by selecting the maximum similarity from the counters. Perry
and Willett [64] show how the upper bound technique can be applied to this processing
strategy to reduce main memory requirements. The upper bound on the similarity of a
previously unseen document is calculated in the same way as before. If this upper bound is
less than the current best similarity for any previously seen document, the new document
is not allocated a counter since it cannot be the nearest neighbor. The overall number of
counters is reduced, resulting in main memory savings.

This processing strategy can be extended to support full ranking by computing the
complete similarity for every document encountered and sorting the set of counters to
produce the final ranking. This strategy is at the core of most modern ranking retrieval
systems, and can be restated as follows. A query consists of a set of terms, where each
term contributes a term weight for every document in which it appears. To evaluate the
query, the term weights for a given document are combined according to the semantics of
the particular similarity measure to produce a final score for the document. The documents
are then ranked by their final scores to produce the answer to the query. In essence, this
procedure involves allocating an array large enough to hold an identifier and final score for
each document, updating this array as each term weight from the terms is processed, and
sorting the final array by score.

In this processing strategy the goal of a query optimization is to avoid processing the

term weights that do not contribute significantly to the final document ranking. This can

24



be accomplished by identifying some subset of the term weights that will result in a final
ranking close to the “exact” ranking achieved when all term weights are processed. As this
subset becomes smaller and smaller, we expect the final ranking to differ more and more
from the exact ranking. The question now is how to select this subset. There are a variety
of methods to make this selection, and they all can be classified based on how they decide

the following:

e which term weight to process next

e when to stop

Both of these seemingly simple questions have interesting and subtle implications for
performance and implementation. The order in which term weights are processed will
affect the rate at which the array of scores is populated with discriminating information,
and has implications for the inverted list organization. The stopping condition is intimately
related to the term weight processing order and will determine how much work will be done
to answer the query and what claims can be made about the quality of the answer returned.

We consider possible answers to these questions below.

2.2.1 Term Weight Magnitude Ordering

The first term weight processing order is to greedily process term weights in order
of decreasing contribution to the final ranking. For a similarity measure that treats all
term weights equally, this is equivalent to processing term weights in order of decreasing
magnitude. This ordering is very appealing in that the document ranking scores will initially
grow very quickly and the relative order of the documents should be established early in the
processing. Term weights processed later in the order will be smaller, having less chance
to change the relative ranking of the documents.

To support this processing order, the term weights must be extracted from the inverted

lists in decreasing sorted order. Practically speaking, this would be accomplished by storing
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the document entries in the inverted lists in decreasing term weight order. The next term
weight to process would be chosen by examining the next term weight in each inverted list
and selecting the largest of these values.

The stopping condition for this processing order can be defined in a number of ways.
First, we might simply stop after processing some arbitrary percentage of the term weights,
assuming that retrieval effectiveness is a logarithmic function of the number of term weights
processed and execution time is a linear function of the number of term weights processed.
Determining what these functions actually look like might be done experimentally or
analytically. The problem with this scheme is that, short of processing all of the term
weights, it gives us no guarantees on the correctness of the final ranking obtained. This
scheme was proposed by Wong and Lee [93], who describe two estimation techniques for
determining how many term weights must be processed to achieve a given level of retrieval
effectiveness.

An alternative to this ad-hoc stopping condition would be a stopping condition that
takes advantage of the organization of the term weights. Each term will contribute at most
one term weight to each document being considered. If we keep track of which terms have
contributed a term weight to a given document so far, we can calculate an upper bound
on the final score for that document using the current term weights from each of the terms
which have not contributed a term weight for that document (since a term’s term weights are
processed in decreasing sorted order). Moreover, we can use the current partially computed
score for a document as a lower bound for that document’s final score. At any given
time, if a document’s lower bound exceeds all other document’s upper bounds, then further
consideration of that document can stop and the document can be returned as the current
best document. With this stopping condition, we can guarantee that the top » documents
will be returned in the correct order, making the scheme safe for the top n documents. The

disadvantage of this scheme is the computational costs of the required bookkeeping, which
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may exceed any savings in term weight processing. This scheme is described by Pfeifer
and Fuhr [66].

If we are more concerned with obtaining the top n documents and less concerned with
their relative ranking, we can define another stopping condition. At any given time, an
upper bound on the remaining increase in any document’s score is given by the sum of the
current term weights from each of the terms. Assume the documents are ranked by their
current partially computed scores. When the n+ 1% document’s current score plus the upper
bound on the remaining document score increase is less than the n* document’s score, we
know that the top n documents will not change and processing can stop. We can return the
top n documents, but we cannot guarantee their relative ranking.

Rather than place a hard limit on the size of the set of documents returned, thresholds can
be established that determine how a term weight is processed. Such a scheme is described
by Persin [65]. If a document is not in the set of documents currently being considered
and has no current score (i.e., no term weights have been processed for that document), an
insertion threshold is used to determine if a term weight for that document is significant
enough to place the document into the consideration set. If the document is already in the
consideration set, an addition threshold is used to determine if a term weight is significant
enough to modify a document’s current score. The addition threshold allows us to stop
processing an inverted list as soon as its term weights fall below the addition threshold.
The insertion threshold ensures that we consider only documents which have a significant
term weight contribution from the terms. With this scheme, we can make no claims about

the quality of the final ranking.

2.2.2 Document Based Ordering

None of the previous schemes can guarantee that a complete score for a given document
has been computed. All that might be guaranteed is that the top n documents have been

returned, and in one case, that they are correctly ranked. If we require that complete final
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scores be calculated for all documents ranked, then the term weight processing order may
be document driven using a document-at-a-time query processing strategy. In this scenario,
once the current document to process has been identified, the term weights for all of the
query terms that appear in that document must be processed. This requires document based
access into the inverted lists and is most easily supported by storing the document entries
in the inverted lists in document identifier order. Now we must decide the order in which to
process the term weights for the current document. The order of decreasing contribution to
the document’s final score is most useful. Assuming a #f - idf style term weighting function,
this can be accomplished by processing the term weights in decreasing order of idf.

This per document term weight processing order allows us to use the following stopping
condition. Assume we wish to return the top n documents. We begin by initializing the
set of top n documents with complete scores for the first n documents. We then identify
the minimum score S from these top » documents. For each of the remaining documents,
an upper bound on the current document’s final score can be calculated from its currently
accumulated score and the idf of the terms not yet processed for the document. If this upper
bound becomes less than S, processing of the current document can stop because it cannot
appear in the top n documents. If a complete score for the document is computed which is
greater than S, the document is placed in the set of top » documents and S is recalculated.
This scheme guarantees that the top » documents are returned, correctly ranked and with
complete final scores. Processing savings will accrue whenever a document’s upper bound
descends below S and the document is eliminated from consideration before its complete
score is calculated. I/O savings may accrue if we have the ability to skip portions of inverted
lists. Frequent terms will occur late in the processing order and will have long inverted
lists. Many documents will be eliminated from consideration before these frequent terms
are processed, such that much of the inverted list information for these terms can be skipped.

This scheme is called max-score by Turtle and Flood [89].
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The document processing order used above will attempt to calculate a score for every
document that appears in the inverted lists of the query terms. In fact, we can identify
another stopping condition at which point all document processing can stop. As processing
proceeds, all of the term weights from short inverted lists will eventually be processed,
such that those terms no longer need to be considered. If the upper bound contribution of
the remaining terms which still have term weights to process descends below S, then all
processing can stop. We may be able to achieve this condition more quickly by altering the
document processing order to process first those documents which appear in the shortest

inverted lists, encouraging the early exhaustion of these lists.

2.2.3 Term Based Ordering

The last term weight processing order is term based, where all of the term weights for a
given term are processed at once. This corresponds to term-at-a-time query processing (see
[89] for a comparison of term-at-a-time and document-at-a-time processing). As with the
per document term weight processing order above, terms are processed in decreasing order
of document score contribution, approximated by the term’s idf score. This strategy will
cause the terms to be processed in order of inverted list length, from shortest to longest.

The first stopping condition we will consider was originally described by Buckley and
Lewit [10] and later discussed by Lucarella [52]. It is intended to eliminate processing of
entire inverted lists, and is similar to the third stopping condition described in Section 2.2.1.
Assume that we are to return the top n» documents to the user. After processing a given
term, the documents can be ranked by their currently accumulated scores, establishing the
current set of top n documents. An upper bound on the increase of any document’s score
can be calculated from the unprocessed terms in the query, assuming the maximum possible
term weight contribution from each of those terms. If the n + 1 document’s score plus the
upper bound increase is less than the n* document’s score, then we know that the set of

top n documents has been found. At this point we can stop processing and guarantee that
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the top n documents will be returned. We cannot, however, guarantee either the relative
ranking of the documents within the set or that complete scores have been calculated for
those documents.

This scheme elegantly addresses the irony where the most expensive terms to process
contribute the least to the final score. Since the terms are processed in order of decreasing
score contribution, the upper bound score increase will diminish as quickly as possible, and
the most expensive terms to process will be eliminated by the stopping condition. Note also
that since the processing order and stopping condition are completely term based, there are
no constraints on the organization of the document term weights within an inverted list.

There are three variations on this stopping condition, all of which are similar to the last
stopping condition described in Section 2.2.1. The first variation was proposed by Harman
and Candela [41], called pruning. Rather than place a limit on the number of documents
returned to the user, we can establish an insertion threshold for placing new documents
in the candidate set. In this case, the insertion threshold is term based, such that a term’s
potential score contribution must exceed some threshold in order for the term to contribute
new documents to the candidate set. Processing will then have two distinct phases. First,
during a disjunctive phase, documents will be added to the candidate set and partial scores
updated as usual. Then, after the insertion threshold is reached, a conjunctive phase will
occur where terms are not allowed to add new documents, only update the scores of existing
documents. This scheme can make no guarantees about the membership of the set. It does,
however, calculate complete scores for the documents in the candidate set, guaranteeing a
correct relative ranking.

The second variation was proposed by Moffat and Zobel [60, 58, 59]. Rather than
use an insertion threshold related to a term’s potential score contribution, a hard limit is
placed on the size of the candidate document set. The disjunctive phase proceeds until the
candidate set is full. Then, the conjunctive phase proceeds until all of the query terms have

been processed. This variation makes the same guarantees as the previous one.
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The third variation is a term-at-a-time version of max-score described by Turtle and
Flood [89]. New documents are added to the candidate set until the upper bound score of an
unseen document (determined from the maximum possible term weight contributions of the
unprocessed terms) falls below the current partial score of the n document. At this point,
we know that no unseen document can appear in the top n documents. Processing then
continues in a conjunctive fashion, updating the scores for just those documents currently
in the candidate set. When a given document’s score is updated, its maximum possible
score is computed assuming it contains all of the unprocessed terms. If this maximum score
is less than the n™ score, this document is eliminated from the candidate set. This variation
will guarantee that the top n documents are returned in the correct order.

During the conjunctive processing phase of the last three variations, access into the
inverted lists will be document based. This suggests that, for the most efficient process-
ing, document entries within the inverted lists should be sorted by document identifier.
Moreover, as in Section 2.2.2, the ability to skip portions of inverted lists should provide
significant I/O savings during this processing phase.

There are two other optimization techniques that do not easily fit into the the taxonomy
used above. First is the two stage query evaluation strategy of the SPIDER information
retrieval system [75, 47]. In SPIDER, a signature file is used to identify documents that
potentially match the query, and an upper bound is calculated for each document’s similarity
to the query. Non-inverted document descriptions are then retrieved for these documents
in order of best upper bound similarity and used to compute an exact similarity measure.
As soon as a document’s exact similarity measure exceeds all other documents’ upper
bound (or exact) similarity measures, this document can be returned as the best matching
document. Correct document scores and rankings are guaranteed.

The second optimization technique, list pruning, was proposed by Smith [79] for the
p-norm retrieval model (an extended Boolean retrieval model). During term-at-a-time

evaluation, intermediate result lists are pruned by removing all document entries whose
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current score is less than some score threshold. This threshold may be constant, or it
may be determined dynamically based on the contents of the intermediate result. Pruned
intermediate result lists require less computation as query evaluation proceeds, resulting in
potential execution time savings. A document eliminated from one part of the query may be
re-introduced in another part, however, allowing documents to have inaccurate final scores.

The accuracy of the final document ranking, therefore, cannot be guaranteed.
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CHAPTER 3
INDEXING

In this chapter we consider two problems: efficiently building an inverted file index
for a document collection, and updating that index to reflect modifications to the document
collection. Indexing is an important procedure in any information retrieval system—a
document collection cannot be searched efficiently (if at all) unless it has been indexed. A
variety of indexing procedures have been proposed in the literature [41, 35, 42], although
only recently have procedures been described that claim to index large document collections
efficiently [57, 90]. While we are certainly concerned with finding an efficient indexing
technique for large document collections, we are equally concerned with supporting dynamic
document collections. A document collection is dynamic if new documents can be added to
an existing collection, old documents can be deleted from an existing collection, or existing
documents can be modified. We will, therefore, pursue a more comprehensive solution to
the problem of building and managing a document collection index.

The ability to modify an existing document collection is a natural requirement for
any information retrieval system. New documents will forever be created, discovered,
delivered, or requested. If the information contained in these new documents is to be
integrated into and accessible from the current information base, then the new documents
must be added to the existing document collection. Some applications have very explicit
requirements for supporting document collection modification. For example, an on-line
news wire service with a current events document collection must grow the collection
frequently and efficiently. There will be a continuous stream of new articles coming in on

the news wire. In order to answer queries about recent newsworthy events, the new articles
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must be added to the current events document collection shortly after they are received.
Additionally, old news articles will eventually expire and must be deleted from the current
events document collection. Articles may expire either because their content is relevant only
for a certain period of time, or because the size of the current events collection must be held
below some threshold due to performance requirements or capacity limitations. Expired
articles will either be discarded or archived in a larger secondary document collection,
leading to further document addition operations.

Even if all of the documents that are to be added to the document collection are available
simultaneously, the ability to add new documents to an existing document collection can
be useful. As we will see in Section 3.1 when we consider the mechanics of document
indexing in more detail, if the inverted file does not support growth, the indexing process can
require substantial temporary disk space resources, especially if the document collection to
be indexed is large. If instead the inverted file does support growth, then temporary disk
space requirements can be significantly reduced using incremental indexing. An incremental
indexing strategy indexes the documents in batches, where each batch indexing step requires
little or no temporary disk space and yields a complete index for the documents processed
so far. The key to this strategy is the ability to build on the output of previous batch indexing
steps by growing the inverted file that was built during those steps. Underlying all of this
is the ability to add new documents to an existing collection.

Modifications to documents in an information retrieval system may come about for a
number of reasons. Consider, for example, a collaborative authoring system. In this ap-
plication, multiple authors will be simultaneously modifying documents in the collection.
The information retrieval system must be able to incorporate these modifications in order
to faithfully track the information content of the document collection. Of course, document
modifications are not restricted to applications specifically intended to support document
creation. An information retrieval system that stores manuals or documentation will in-

evitably be asked to modify those documents as they are revised and updated. Although
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document modifications arise in a variety of situations, most of these situations can be ac-
commodated using a versioning scheme. A modified document is simply a new version of
the original document, and is added to the document collection as a new document, distinct
from the original. The original document can then be deleted, or a higher level mechanism
can be used to track multiple versions of the same document in the document collection.
Either way, as long as document additions and deletions are supported by the information
retrieval system, no extra functionality is required to support document modifications.

The level of functionality provided by the inverted file implementation will determine
how well the overall system can satisfy the requirements of a dynamic document collection.
During query evaluation, rather than operate on the documents themselves, the retrieval
engine processes the contents of the inverted file. As far as the retrieval engine is concerned,
the membership of the document collection is defined by the inverted file. A document has
not been truly added to the document collection until the inverted file has been updated to
reflect that addition. The same holds true for document deletions. The question of how
to support a dynamic document collection is in large part a question of how to support a
dynamic inverted file.

In the rest of this chapter we will pursue this question in detail. We begin with a
discussion of the general indexing process—how to build the inverted file in the first place.
For large document collections, building an inverted file efficiently is a difficult problem.
We have extended a previously described indexing technique to produce a fast, scalable
indexing system. The output of this system is complete inverted lists for the input document
collection. These lists are handed to the Inverted File Manager, which is responsible for
the low-level storage and retrieval of the inverted file. The Inverted File Manager is the
core system component that determines the overall functionality available for inverted file
manipulation. We will describe the issues pertinent to building an Inverted File Manager,
the particular solution we have chosen, and our implementation of that solution. This

discussion is followed by an experimental evaluation of our solution. The measurements
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will focus on indexing whole document collections from scratch and adding new documents
to an existing document collection. These two activities represent the most common and
crucial indexing activities that must be performed by an information retrieval system. This
emphasis stems from the traditional role of IR systems in managing archival document
collections, which are either static or growing. The experimental results are followed by

conclusions.

3.1 Document Inversion

The process of indexing a document collection and building its inverted file is called
inversion. Initially, we can easily identify the terms that appear in a given document simply
by inspecting the document—the terms are what make up the document. Ultimately, what
we want is the inverse of this, such that given a term, we can identify the documents
that contain that term. Suppose we create a tuple (d,#, 1) to represent each document/term
occurrence pair, where d is a document identifier, ¢ is a term identifier, and [ is the location
of the occurrence of term # in document d. An example is given in Figure 3.1. There is
a tuple for every term occurrence in the document collection. When we scan a document
collection from start to finish, the tuples for the collection will come out in an order sorted
first on d and second on /. For an inverted document collection, we want these tuples sorted
first on ¢, second on d, and third on /. As such, the inversion process can be viewed as a
large tuple sorting problem, going from the collection sort order to the inverted sort order.

A closer look at the problem, however, shows that a full sort of the collection tuples is
not actually necessary. A comparison of the collection sort order and the desired inverted
sort order reveals that the collection sort order is partially in the desired inverted sort order.
In the collection sort order, the tuples are fully sorted on d. In the inverted sort order, all
of the tuples for a given ¢ are sorted by d. Furthermore, in both the collection sort order
and the inverted sort order, all of the tuples for a given (d, ) pair are sorted by /. This

suggests the following inversion strategy. First, maintain a separate list of tuples for each
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Tuples

D Collection Inverted
ocuments Terms Order Order

1. The cat ate the snake :12 the <}, ;, ;> <}, 1, 1>

2. The dog chased the cat 3 g?é :1' 3 3: :2’ { 1:

3. The snake chased the dog 4. snake <11, 4> <2 1. 4>

5. dog <1, 4, 5> <3, 1, 1>

6. chased <2, 1, 1> <3, 1, 4>

<2, 5, 2> <1,2, 2>

<2, 6, 3> <2, 2, 5>

<2, 1, 4> <1, 3, 3>

<2, 2, 5> <1,4,5>

<3,1, 1> <3, 4, 2>

<3, 4, 2> <2, 5, 2>

<3, 6, 3> <3, 5, 5>

<3, 1, 4> <2, 6, 3>

<3, 5, 5> <3, 6, 3>

Figure 3.1 Document collection tuples

term in the collection. Then, scan the document collection and process the tuples in their
collection order. As each tuple is processed, append it to the tuple list for the term that
appears in the tuple. The document id order and term occurrence location order will be
preserved automatically in the new term based tuple lists, and the inverted tuple order will
be obtained.

We must consider a number of issues before implementing this inversion strategy.
First, large document collections contain a large number of distinct terms. The 1 GB
TIPSTER [39] document collection used in the experiments below (Tip1) contains 639,914
terms. During the inversion process we need appropriate data structures to keep track of
639,914 distinct term lists. Second, large document collections contain a large number of
term occurrences. The 1 GB TIPSTER document collection contains 112,812,693 term
occurrences, translating into 112,812,693 tuples. If a four byte integer is used for each
element of a tuple, each tuple will occupy 12 bytes and the total memory requirement for

all of the tuples will be 1.3 GB. If the inversion process is run on a workstation equipped
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with 64 MB of main memory (a likely scenario these days), all of the tuples clearly will
not fit in main memory. It is therefore inevitable that inverting a large document collection
requires some amount of disk I/O. Careful management of this disk I/O is essential for
efficient inversion of large document collections.

There are two basic guidelines regarding disk I/O that will govern our implementation.
First, perform as little I/O as possible. Second, when I/O must be performed, favor
sequential I/O over random I/O in an effort to avoid disk head positioning. The first
guideline is somewhat obvious. The second guideline is based on the costs associated
with the different components of a disk access [14]. The time to perform a disk access is
made up of head positioning time, which includes seeking and rotational latency, and data
transfer time. Average head positioning times are currently around 15 milliseconds, and
data transfer rates are around 5 MB per second. Given the relatively fast data transfer rates
and slow head positioning times, it is advantageous to amortize the head positioning cost
over larger data transfers. Sequential I/O provides this desirable behavior, while random
I/O does not.

With these guidelines in mind, the following document indexing procedure was imple-
mented for INQUERY. The overall process is a unique combination of the main memory
linked list and multiway merge schemes with compressed temporary files described by Wit-
ten et al. [90], and consists of two main operations: parsing and merging. The subsystem
responsible for parsing is called the Parser. It creates partial inverted lists by scanning,
lexically analyzing, and inverting documents. A partial inverted list contains document en-
tries for a subset of the documents in the collection. It must be combined with other partial
inverted lists for the same term to create a final inverted list for the document collection.
The Parser buffers partial inverted lists in main memory and flushes them to temporary files
when the buffer is full. The subsystem responsible for merging is called the Merger. After
all of the documents have been parsed, the Merger combines the temporary files to produce

the final inverted lists for the collection.
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document
token node location

node

document token node location node
struct doc_token struct location
{ {
struct doc_token *left; int position;
struct doc_token *right; struct location *next;
struct location *loc_list; }
int tf;
char term([];
}

Figure 3.2 Document buffer binary tree

3.1.1 Parsing

Document indexing begins with parsing. The Parser scans and lexically analyzes each
document, producing a stream of tokens from the documents. The Parser checks each
scanned token against a stop words list (a list of terms too frequent to be worth index-
ing) [33, 34] and discards any tokens that it finds in the list. Tokens that survive the
stop words list are run through a stemmer [36]. Stemming reduces a term to its root
form, mapping different morphological variants to a common stem. This process con-
flates different representations of the same concept into a single representation, improving
retrieval effectiveness by eliminating mismatches between morphological variants of the
same term. It also compresses the index by reducing the total number of terms that are
indexed. Our indexing implementation uses document scanning, stopping, and stemming
utilities developed by others at the University of Massachusetts [12]. Our contribution to

the implementation is the portion of the system the handles the tokens from this point on.
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The next step in the parsing process is assembly of the stemmed tokens and their
locations into partial inverted lists for the current document. This occurs gradually as the
Parser stores the location of each token occurrence in the document buffer. The document
buffer is organized as a binary search tree of token nodes sorted on term strings, depicted
in Figure 3.2. Each token node in the tree contains a count of the number of times the
associated term occurs in the current document and a pointer to a linked list of location
nodes containing the locations of each occurrence of the term. The Parser searches the
binary tree for each scanned token and either finds a token node for the current token in the
tree, or creates and inserts a new token node for the current token. The Parser then creates
a location node for the current token and adds the location node to the head of the linked
list of locations for the token.

The primary motivation for building partial inverted lists on a per document basis is to
reduce the time spent searching for each token’s partial inverted list as the tokens are parsed
out of the document. Since the document buffer contains inverted list entries just for the
current document, the number of token nodes in the binary tree will grow only to the size
of the vocabulary used within the current document. Documents in the 3.2 GB TIPSTER
collection [39] contain an average of 132 unique terms, while the entire collection contains
1,062,677 unique terms. Searching for each parsed token in the binary search tree requires
O(1g(n)) time, where n is the number of nodes in the binary search tree. For the average
document, we will traverse O(l1g(132) = 7) binary tree nodes for each parsed token using a
per-document binary search tree. In comparison, if the binary search tree contained a node
for every term in the collection, we would traverse O(1g(1062677) = 20) binary tree nodes
for each parsed token.

When all of the tokens have been parsed out of the current document, the document
buffer is flushed to the batch buffer. The batch buffer holds partial inverted lists for a batch
of documents, where a batch consists of as many documents as can be parsed before the

batch buffer is full. The batch buffer is organized as a hash table of token nodes keyed on

40



batch token
node

hash /

table -
document
entry
-1
batch token node document entry
struct batch_token struct doc_entry
{ {
struct batch_token *next; int doc_id;
struct doc_entry *doc_ents; int tf;
int coll_freq:; int max_tf;
int doc_cnt; int locations(];
int data_bytes; }
int first_doc_id;
int last_doc_id;
char term(];
}

Figure 3.3 Batch buffer hash table

term strings, depicted in Figure 3.3. The batch buffer could actually be organized using any
dynamic data structure that supports search and insert operations (e.g., a binary search tree).
The choice of a hash table is motivated by incremental indexing requirements, which are
discussed below in Section 3.2.3.3. The hash table size is fixed at 8191 slots and collisions
are resolved by chaining together tokens that hash to the same slot. A batch token node
stores a document count, collection frequency, and byte count for the current partial inverted
list. It also points to a linked list of document entries—the “data” of the partial inverted list.
The document count is equal to the number of document entries in the partial inverted list,

the collection frequency is equal to the total number of term locations stored in the partial
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inverted list, and the byte count is the total number bytes occupied by all of the document
entries in the linked list.

The Parser flushes the document buffer to the batch buffer by traversing the document
buffer in a preorder tree walk. At each document token node, the Parser either finds the
corresponding node in the batch hash table, or creates a new batch token node and inserts it
into the hash table. The Parser then builds a document entry, which contains the document
identifier, term frequency, maximum term frequency for the document, and token locations
list (see Figure 3.3). Document identifiers are assigned from a global document counter,
which is incremented as each document is processed. The term frequency, tf, is obtained
from the document token node. A document’s maximum term frequency, max_tf, is the
maximum of {#f1,#,,...}, where ff; is the frequency of term i in the document. max_tf
is calculated on the fly as each f; is updated during document parsing. The locations list is
obtained by walking the linked list of location nodes.

The Parser compresses all of the numbers in a document entry using a variable length
byte encoding scheme [73]. The encoding scheme represents each integer in base 2 using the
minimum number of bytes. The 8 bit in each byte serves as a termination flag, indicating
whether or not the last byte for the current integer has been processed. This leaves seven
bits per byte to store the integer, such that the largest integer representable by a sequence
of n bytes is 2™*7. In this compression scheme, smaller integers consume less space. We
will achieve better compression, therefore, if we can reduce the magnitude of the integers
to be compressed. A common technique for reducing the magnitude of integers that form
a sequence of nondecreasing numbers is delta encoding [25] (the deltas are called gaps by
Bell et al. [2]). To delta encode a sequence of numbers, the first number is stored as an
absolute value and each subsequent number is stored as the difference between itself and
the previous number.

An inverted list provides two opportunities for delta encoding. The first opportunity

is found in the token locations list within each document entry. The locations list is delta
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encoded when the linked list of location nodes is traversed to create a document entry. The
second opportunity is found in the sequence of document identifiers across the document
entries in an inverted list. To delta encode the document identifier in a document entry, we
must keep track of the document identifier in the last document entry that was chained onto
the batch token node’s linked list of document entries in the batch buffer. This information
is kept in the batch token node and updated as each document entry is added.

After a document entry’s locations list and document identifier have been delta encoded,
the entry is compressed as described above. The compressed document entry is placed in
the batch buffer and chained onto the batch term’s linked list of document entries. The batch
term’s document count, collection frequency, and byte count are then updated to account
for the new document entry. When all of the token nodes in the document buffer have been
processed and added to the batch buffer, the next document in the collection is parsed.

When the batch buffer is full, it is flushed to a temporary file block. To facilitate the
eventual merging of temporary files, the partial inverted lists in each temporary file block
must be written in the same order. The token strings provide a natural key on which to sort
the partial inverted lists and ensure a consistent ordering across temporary files. Since the
batch buffer is organized as a hash table, the batch token nodes are not directly available
in token string order; they must first be sorted by token string. This is accomplished using
an array of pointers to the batch token nodes. The pointers are sorted based on the strings
in the token nodes that they reference, and an iteration through the array yields the token
nodes in sorted order.

A batch token node is written to the temporary file block in three steps. First, the token
string is written with a terminating null character. Second, the statistics for the partial
inverted list are compressed and written. The statistics consist of the collection frequency,
document count, byte count, and document identifiers in the first and last document entries
for the partial inverted list. Third, the compressed document entries are written in document

identifier order.
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This parsing scheme generates a large number of small main memory data structures (i.e.,
token nodes, location nodes, and document entries). Main memory allocation, therefore,
must be fast. The Parser preallocates main memory for the document and batch buffers
and manages each buffer as a heap. To allocate memory from one of the heaps, the Parser
need only advance a current pointer and perform a limit check to ensure that the heap
has enough room to satisfy the current request. This heap based buffer implementation
provides fast memory allocation and simple reclamation of an entire buffer—we merely
reset the current pointer to the beginning of the heap. If the document buffer heap cannot
satisfy the current memory request during document parsing, additional main memory is
temporarily allocated to the document buffer, allowing the system to finish parsing the
current document. Similarly, if the batch buffer cannot satisfy the current memory request
during document buffer flushing, additional main memory is temporarily allocated to the
batch buffer so that the system can finish flushing the document buffer, after which the
batch buffer is flushed.

3.1.2 Merging

A temporary file produced by the Parser will contain one or more blocks of partial
inverted lists, where each block corresponds to a batch of documents. The partial inverted
lists within a block are complete inverted lists for the documents indexed during the corre-
sponding batch. To build final inverted lists for the entire document collection, the partial
inverted lists from all of the blocks must be merged.

The merge is performed in main memory by allocating an M byte merge buffer and
dividing it evenly among all of the temporary file blocks. If there are N temporary file
blocks, the merge buffer can be filled using N disk reads. Ideally, each disk read will
consist of a single disk seek followed by a single data transfer of M/N bytes. This behavior
is encouraged by the Parser, which sequentially writes batches to their temporary file blocks.

If the aggregate space occupied by the temporary file blocks is T bytes, the total number



of disk seeks required will be % For example, using a 20 MB merge buffer, 2500 disk
reads are required to merge 50 temporary file blocks that occupy a total of 1 GB on disk.
Assuming ideal conditions—each disk read requires one disk seek and one data transfer—
the 15 millisecond average head positioning time and 5 MB per second data transfer rate
cited above yield 37.5 seconds for disk seeks and 200 seconds for data transfer. Even
though reading the temporary file blocks in this fashion might appear to require significant
random disk I/O, this example shows that disk seek time can be limited to less than 16% of
the total I/O time.

The merge buffer provides an interface to the temporary file blocks for the Merger. In
the rest of this discussion, we will describe the Merger as if it were interacting directly with
the temporary file blocks. Bear in mind, however, that the Merger is actually manipulating
the portions of the temporary file blocks that are currently buffered in the main memory
merge buffer.

Once the merge buffer has been primed from the temporary file blocks, the actual merge
process can begin. Recall that the Parser sorts a batch of partial inverted lists by token
string before flushing the batch to its temporary file block. This ensures that all of the
blocks will present their partial inverted lists in the same order when the blocks are read by
the Merger. On each iteration of the merge process, the Merger considers all of the partial
inverted lists currently presented for processing by the temporary file blocks and identifies
the partial inverted list with the lexicographically smallest term string. This becomes the
current token. The partial inverted lists presented by all of the other blocks will either have
the same token string as the current token or a larger token string, allowing the Merger to
find all of the partial inverted lists that match the current token simply by inspecting the
current partial inverted list in each block.

When all of the matching partial inverted lists have been found, the Merger must
concatenate them such that all of the merged document entries are sorted by document

identifier. The document entries in a given block pertain to the documents parsed during
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the corresponding batch and are already sorted within each partial inverted list by document
identifier. For any two blocks, all of the document identifiers in the first block will be less
than all of the document identifiers in the second block if the first block was created before
the second block. Therefore, the document identifiers across blocks will be sorted if they
are concatenated in order of block creation time.

Witten et al. [90] point out that the problem of selecting the smallest token from the
set of partial inverted lists currently presented for processing is similar to the problem of
managing a priority queue. A convenient data structure for managing a priority queue
is the binary min-heap [16], which allows quick extraction of the minimum element in a
set. A binary min-heap consists of an array A of n elements numbered 1 through n. Each
element i > 1 in the array satisfies the min-heap property: A[parent(i)] < A[i], where
parent(i) = |i/2|. The min-heap property guarantees that A[1] is the minimum element in
the array, and O(lgn) time is required to arrange A so that it satisfies this property.

The Merger was implemented using a binary min-heap. There is one element in the
min-heap for each temporary file block being merged. Each element corresponds to the next
partial inverted list to be processed from the associated block. The comparison function
used for the min-heap property has two components. The primary component is a string
comparison of the partial inverted list tokens for the two elements being compared. The
secondary component is a comparison of the creation dates for the associated temporary file
blocks. The current token is readily available from the top element in the min-heap, and
matching tokens from the remaining blocks are found by extracting elements from the heap
until a non-matching token appears at the top of the heap. The secondary component of the
min-heap comparison function causes matching tokens to be extracted from the min-heap
in temporary file block creation order, which is also the concatenation order for the partial
inverted lists.

The Merger builds the final inverted list for the current token by concatenating the

matching partial inverted lists as they are extracted from the min-heap. When all of the
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matching partial inverted lists have been processed, the final inverted list for the current
token is output. Each block that contributed a partial inverted list for the current token
is advanced to its next partial inverted list and the new elements are inserted into the
min-heap. A new current token is then selected from the min-heap and the merge process
repeats, iterating until all of the partial inverted lists in the temporary file blocks have been
consumed.

As the final inverted lists are produced, they may be written to disk in a sequential
fashion, adhering to our rule of favoring sequential I/O over random I/O. Storing the final
inverted lists on disk and making them available for future access is the responsibility of
the Inverted File Manager. The Inverted File Manager has a significant impact on the
functionality and performance of the overall system, and its design and implementation
require careful consideration of a number of important issues. In the next section, these
issues are considered and the Inverted File Manager that was designed and implemented is

described.

3.2 The Inverted File Manager

The Inverted File Manager is responsible for storing the inverted lists created by the
document inverter and making their contents available during query evaluation. Access to
the inverted lists is provided through a high-level interface that includes operations such
as store a new list, modify an existing list, open a specified list for access, sequentially
output the document entries from an open list, and close a list. This interface serves to
shield the rest of the system from the low-level inverted file implementation details, and
confines consideration of a number of important issues to just the Inverted File Manager.
In particular, the problem of how to support a dynamic document collection can in large
part be solved within the Inverted File Manager.

To see this more clearly, consider the process of adding new documents to an existing

document collection. The documents being added will contain a combination of old and
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new terms. New terms do not appear in the existing document collection and require new
inverted lists to be built and added to the inverted file. Old terms already have inverted lists
in the inverted file; these lists must be updated with entries for the new documents. Since
document entries within an inverted list are sorted by document identifier, if new documents
are always assigned increasing document identifiers, the new document’s inverted list entries
can simply be appended to the existing inverted lists. The functionality required to support
an append operation is the ability to grow existing inverted lists. In order to add new
documents, therefore, we must be able to add new inverted lists to an existing inverted file
and grow existing inverted lists already in the inverted file. Both of these operations require
low-level support from the Inverted File Manager.

The tasks that must be performed by the Inverted File Manager are suggestive of a
traditional data management problem that can be solved using a general data management
facility. In fact, inverted file modification combined with multi-user access to the overall
information retrieval system introduces a host of data management issues that naturally
fall within the purview of a database management system [28]. Besides the issues of
data storage, modification, and access, a multi-user system must contend with issues of
concurrency control, recovery, and transactions that ensure consistent and complete actions
against the database.

A logical solution to satisfying this long list of data management requirements is to
implement the Inverted File Manager using a relational database management system
(RDBMS). An RDBMS provides a number of tools for sophisticated management of
structured data, including a data definition language for describing the schema of the
database, a declarative query language for populating, manipulating, and accessing the
database, a powerful transaction facility for consistent multi-user access to the database,
and a backup and recovery mechanism to protect the database in the event of failures. An
RDBMS can easily satisfy all of the functionality requirements imposed by the Inverted

File Manager, and others have shown how such a system can actually be built [67, 26].
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The problem with this approach is that an RDBMS is designed to support record based
data with rich structure and interesting relationships. The relational data types are tailored
to this record orientation and the data access methods are optimized for selecting subsets
of records and attributes and joining multiple records based on their relationships. Inverted
lists, on the other hand, have no pre-determined relationships with other inverted lists
and are usually accessed in a sequential fashion. This access characteristic suggests that
inverted lists should be represented as strings of bytes. Although an inverted list can be
decomposed into records and attributes, storing it this way in a relational database forces the
use of expensive join operations in order to effect sequential processing of the overall list.
Basically, an RDBMS provides too much—the general data structures and access methods
are wasted when managing an inverted file. Rather than simplifying manipulation of the
inverted lists, an RDBMS complicates inverted list operations and imposes unnecessary
overheads.

The limited way in which inverted lists are accessed leads to consideration of a custom
software implementation for the Inverted File Manager. This is the route most information
retrieval system developers have chosen. Assuming we are willing to build and main-
tain the system, the specific functionality and performance requirements of inverted list
management can be satisfied exactly. This is a big assumption. While minimum function-
ality requirements can be met without too much work, satisfying the demands of a large,
dynamic, multi-user system requires significant effort. Concurrency control and recov-
ery mechanisms must be built. Some form of transaction model must be implemented.
Low-level storage and retrieval mechanisms must be implemented. We essentially end
up duplicating much of the effort that has already gone into building a generic database
system. The custom software solution suffers from high development and maintenance
costs to provide functionality that is preferably obtained elsewhere.

There are other “off-the-shelf” database management systems (besides an RDBMS)

that are worth considering. To decide what kind of system is most likely to satisfy our
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requirements, we need to consider further the size and access characteristics of the data we

need to manage.

3.2.1 Inverted List Characteristics

The size of an inverted list depends on the number of occurrences of the corresponding
term in the document collection. Zipf [94] observed that if the terms in a document
collection are ranked by decreasing number of occurrences (i.e., starting with the term that
occurs most frequently), there is a constant for the collection that is approximately equal to
the product of any given term’s frequency and rank order number. The implication of this

is that most of the terms will occur a relatively small number of times, while a few terms

will occur very many times.
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Figure 3.4 shows the distribution of inverted list sizes for 2 GB of the TIPSTER
document collection (CD-ROM disks 1 and 2) [39]. The inverted file contains 846,331
compressed inverted lists occupying a total of 720 MB. For a given inverted list size, the
figure shows how many records in the inverted file are less than or equal to that size, and
how much those records contribute to the total file size. As we might expect, the majority
of the inverted lists are relatively small—approximately 95% of the lists are less than 1 KB.
In fact, better than 50% of the lists are less than 16 bytes. It is also clear that these small
lists contribute a very small amount to the total file size. Less than 5% of the total file size
is accounted for by inverted lists smaller than 1 KB. In other words, better than 95% of the
total file size is accounted for by less than 5% of the inverted lists in the file. The lists in
this 5% can be quite large, with the largest list in the file weighing in at 2.5 MB.

If we could assume that inverted list access during query processing was uniformly
distributed over the inverted lists, then supporting this activity (from a data management
perspective) would be simplified, since the majority of the file accesses would be restricted
to a relatively small percentage of the overall file. Unfortunately, this is not the case.
Figure 3.4 also shows the distribution of sizes for the inverted lists accessed by a typical
query set (produced from TIPSTER Topics 51-100). The majority of the records accessed
are between 10 KB and 1 MB. This size range represents a small percentage of the total
number of records in the file, but a large percentage of the total file size. Therefore, we
must be prepared to provide efficient access to the majority of the raw data in the file.

We can, however, anticipate one access characteristic during query processing that
works in our favor. It is likely that there will be non-trivial repetition of the terms used
from query to query. This can be expected for two reasons. First, a user of an IR system
may iteratively refine a query to obtain the desired set of documents. As the query is
refined to more precisely represent the user’s information need, terms from earlier queries
will reappear in later queries. Second, IR systems are often used on specialized collections

where every document is related to a particular subject. In this case, there will be terms
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that are common to a large number of queries, even across multiple users. The implication
of this is that caching inverted lists in main memory should prove beneficial.

In summary, an inverted file will display the following characteristics. Using the
compression techniques described earlier, the inverted file’s size will be 30—40% of the size
of the raw document collection. The inverted lists contained within the inverted file will
vary in size from less than 16 bytes to one or more megabytes, although the vast majority
of the inverted lists will be quite small. During query processing, the longer lists will be
favored and inverted list access will benefit from main memory buffering. During document
additions, new inverted lists will be added to the inverted file and existing inverted lists will
grow, with the longer inverted lists experiencing vigorous growth. Inverted list access must
be efficient during query processing and collection modification, and mechanisms must
exist to ensure that multiple users can simultaneously operate on the inverted file in a safe,
consistent manner. Finally, even though inverted lists are actually built up from smaller
components, at the storage management level they are best viewed as byte strings whose
main operation is sequential scanning.

These requirements point to a data management system that combines a traditional
database transaction facility and low-level storage management subsystem with a simple
data model and low overhead. All of these features are found in a persistent object store
(POS). A POS provides low-level storage and retrieval of objects, where an object is an
identifiable unit of data. The services typically found in a POS include object creation,
storage, and retrieval, disk management, buffering, transaction control, and recovery. The
level of understanding possessed by the system about the contents of an object (i.e., an ob-
ject’s semantics) varies across different POS implementations. Usually, this understanding
is limited to viewing objects as containers of bytes and references to other objects. This
view eliminates the overhead associated with a more complex data model and allows the
application to define the appropriate level of object semantics. The flip side of this is that

the application must provide more functionality. This tradeoff, however, is appropriate
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for a number of applications. For example, we can construct an object-oriented database
management system using a POS as a foundation and building additional layers on top that
provide a data model, data definition language, declarative query language, and other user
interface applications.

The functionality and performance provided by a POS are ideally matched to the
requirements of an Inverted File Manager. As such, we have used aPOS to build our Inverted
File Manager. In particular, we have used the Mneme persistent object store [62, 9, 8]
developed under the direction of Eliot Moss at the University of Massachusetts. In the next

section we consider Mneme in more detail.

3.2.2 The Mneme Persistent Object Store

The Mneme persistent object store was designed to be efficient and extensible. The
basic services provided by Mneme are storage and retrieval of objects, where an object
is a chunk of contiguous bytes that has been assigned a unique ‘identiﬁer. Mneme has no
notion of type or class for objects. The only structure Mneme is aware of is that objects
may contain the identifiers of other objects, resulting in inter-object references.

Objects are grouped into files supported by the operating system. An object’s identifier
is unique only within the object’s file. Multiple files may be open simultaneously, however,
so object identifiers are mapped to globally unique identifiers when the objects are accessed.
This allows a potentially unlimited number of objects to be created by allocating a new file
when the previous file’s object identifiers have been exhausted. The number of objects that
may be accessed simultaneously is bounded by the number of globally unique identifiers
(currently 228),

Objects are physically grouped into physical segments within a file. A physical segment
is the unit of transfer between disk and main memory and is of arbitrary size. Objects are
also logically grouped into pools, where a pool defines a number of management policies

for the objects contained in the pool, such as how large the physical segments are, how the

53



objects are laid out in a physical segment, how objects are located within a file, and how
objects are created. Note that physical segments are not shared between pools. Pools are
also required to locate for Mneme any identifiers stored in the objects managed by the pool.
This would be necessary, for instance, during garbage collection of the persistent store.
Since the pool provides the interface between Mneme and the contents of an object, object
format is determined by the pool, allowing objects to be stored in the format required by the
application that uses the objects (modulo any translation that may be required for persistent
storage, such as conversion of main memory pointers to object identifiers). Pools provide
the primary extensibility mechanism in Mneme. By implementing new pool routines, the
system can be significantly customized.

The base system provides a number of fundamental mechanisms and tools for build-
ing pool routines, including a suite of standard pool routines for file and auxiliary table
management. Object lookup is facilitated by logical segments, which contain 255 objects
logically grouped together to assist in identification, indexing, and location. A hash table is
provided that takes an object identifier and efficiently determines if the object is resident in
main memory. Support for sophisticated buffer management is provided by an extensible
buffering mechanism. Buffers may be defined by supplying a number of standard buffer
operations (e.g., allocate and free) in a system defined format. How these operations are
implemented determines the policies used to manage the buffer. A pool artaches to a buffer
in order to make use of the buffer. Mneme then maps the standard buffer operation calls
made by the pool to the specific routines supplied by the attached buffer. Additionally, the
pool is required to provide a number of “call-back” routines, such as a modified segment
save routine, which may be called by a buffer routine.

Mneme is particularly appropriate for the task of managing an inverted file for a number
of reasons. First, an object store provides the ideal level of functionality and semantics. The
data that must be managed can be naturally decomposed into objects, where each inverted

list is a single object. More sophisticated mappings of inverted lists to objects can also be
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easily supported with inter-object references, which allow more complex data structures
to be built up. The primary function required is object retrieval, or providing access
to the contents of a given object for higher level processing. Object access includes the
traditional data management tasks of buffering and saving modifications. The processing of
objects, however, is highly stylized and unlikely to be adequately supported within the data
management system. Therefore, semantic knowledge about the contents of an object within
the data management system is not only useless, but actually cumbersome. An object store
that treats objects as containers of uninterpreted bytes and inter-object references provides
just the right level of semantics.

Second, because Mneme is extensible, certain functions can be customized to better
meet the management requirements of an inverted file. As we have seen, the objects in
an inverted file come in a variety of sizes and exhibit unusual access patterns, such that a
single physical storage scheme specifying clustering and physical segment layout will be
inadequate. A better approach will be to identify groups of objects that can benefit from
storage schemes tailored to the physical characteristics and access patterns of each group.
In particular, buffer management policies should be customized for each group.

Finally, Mneme is tuned for performance and imposes a particularly low overhead along
the critical path of object access. Memory resident objects are quickly located using the
resident object table, and non-resident objects are faulted in with little additional processing.
This can be contrasted with page mapping architectures of other object stores [49, 77] which
have a fairly high penalty for accessing a non-resident object. These systems are optimized
for localized processing of a large number of small objects, where the cost of faulting a
page of objects can be amortized over many access to the objects in the page. This pattern
of access differs from that expected in an inverted file, where large objects are accessed for

sequential processing with little temporal locality.
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3.2.3 The Mneme Solution

Tobuild an Inverted File Manager using Mneme, we designed and implemented software
for two layers of the system: the application interface layer and the Mneme extensibility
layer. The application interface layer supplies the Inverted File Manager interface to the
rest of the IR system, defines the semantics of the objects that are stored in Mneme,
and translates the interface requests into Mneme operations. The Mneme extensibility
layer provides hooks for extending and tailoring a number of the Mneme operations to
better satisfy the specific requirements of inverted list management. Rather than address
these layers individually, we will describe our implementation of the core inverted file
management tasks and comment as appropriate on each task’s implications for the different
software layers. The core tasks include inverted list storage, inverted list lookup, document

additions, and document deletions.

3.23.1 Inverted List Storage

The first step in the implementation process was deciding on how to map inverted lists
to Mneme objects. To make this decision, we considered the basic operation that must be
performed to retrieve an object from disk, namely, a disk read. A read in a typical Unix
file system causes 8 KB to be read from disk. We chose to partition inverted lists into two
groups: those less than or equal to 8 KB, called short lists, and those greater than 8 KB,
called long lists. A short list is less than or equal to the size of an elemental file system
read; it can be obtained in a single file system access. To guarantee that short lists are
in fact retrieved in a single access, the low-level storage organization must align them so
that they do not span file system page boundaries. Moreover, if the desired short list is
less than 8 KB, the file system access will return more than just the desired inverted list.
The implementation should ensure that the extra data retrieved contains useful information,

such as other entire short lists.
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The size distribution of inverted lists discussed in Section 3.2.1 shows that nearly 99%
of the inverted lists are less than or equal to 8 KB and will be short. The remaining 1% of the
inverted lists are larger than 8 KB and will be long. The long lists account for nearly 90% of
the total inverted file size. Long lists, therefore, can be quite large and will require storage
and access strategies substantially different from the short lists. In particular, long lists will
be the most expensive lists to process during query evaluation and collection modification.

Consideration of these issues led to the following organization. Short inverted lists are
stored in fixed length objects, ranging in size from 16 bytes to 8 KB by powers of 2 (i.e.,
16, 32, 64, ..., 8K). When a new short list is created, an object of the smallest size large

enough to contain the list is allocated. A long inverted list is stored as a linked list of 8 KB

i
8192—k

objects, requiring [ ] objects, where [ is the size of the long list in bytes and k is the
size of the header and next pointer in the Mneme object.

The set of distinct object “types” used in this implementation is rather constrained,
providing an opportunity for performance improvement via custom management of the
objects. To take advantage of this opportunity, we designed and implemented three new
object pools in Mneme. The new object pools constitute the modifications made at the
Mneme extensibility layer. The first object pool, called the small-object pool, stores 16 byte
objects using 4 KB physical segments. Each physical segment contains one logical segment,
or 255 objects. The fixed object size and one-to-one mapping of physical and logical
segments simplifies many of the pool operations, including object creation, object lookup
in the file, and updates to the resident object table when transferring physical segments
to and from the main memory buffer. Simplifying these tasks generally leads to smaller
auxiliary tables and faster operations. The small-object pool will store approximately 50%
of the inverted lists in an inverted file.

The second new object pool, called the fixed-object pool, stores fixed length objects
ranging in size from 32 bytes to 4 KB by powers of 2. Objects are stored in 8 KB

physical segments, where all of the objects in a given physical segment are the same size.
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The number of objects per physical segment varies depending on the size of the objects
residing in the physical segment. For example, a physical segment of 64 byte objects
will contain 128 objects, while a physical segment of 512 byte objects will contain 16
objects. The fixed-object pool affords the same advantages as the small-object pool in
terms of simplifying a number of the pool operations and improving storage and processing
efficiency. Approximately 49% of the inverted lists will reside in the fixed-object pool.

The third object pool that we built for this application is the page-object pool. This
pool manages page sized objects where all objects in the pool are the same size and each
object is allocated in its own physical segment. The object size is specified when the
page-object pool is instantiated. Although this size may be arbitrary, typically it will be
some large power of 2. In this case, the object size is specified to be 8 KB. Again, the
fixed object size and one-to-one mapping of objects to physical segments enables a more
efficient implementation of certain pool operations, such as object creation, object lookup,
and physical segment transfer to and from main memory.

The long inverted lists are stored using two separate page-object pools, with one pool
storing the linked list head objects, and the other storing the remaining linked list data
objects. This separation facilitates the delete operation, discussed below. Roughly 1% of
the inverted lists in the inverted file will be stored this way. However, since all of the lists
stored this way are long, these two object pools will account for the majority of the space
in the inverted file.

This scheme efficiently allocates the large number of short inverted lists in the small
and medium object pools, and provides a scalable storage structure for the long inverted
lists. Physical segment sizes are sensitive to the file system transfer size, and multiple
objects are efficiently packed in the physical segments that contain more than one object.
Each object pool can also be attached to its own buffer manager, allowing the buffer size
and management policies to be individually tuned to the requirements of each object pool.

Furthermore, these policies can be adjusted depending on the current task at hand. For
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example, the amount of buffer space required by the page-object pool during document

indexing is substantially less than during query evaluation.

3.2.3.2 Inverted List Lookup

Once we have assigned the inverted lists to Mneme objects, we must provide some
mechanism for identifying the object (or, in the case of a long list, the linked list head object)
that contains the inverted list for a given term. An indexing structure commonly used for
this purpose in database systems is the B+tree [15] (see [45] for additional references, and
deletion pseudo-code!). A B+tree is a balanced search tree with an upper bound search
time of O(log,, n) for an n node tree with branching factor b. In a disk based application, the
tree nodes are typically the size of a disk page and the branching factor is relatively large,
resulting in very short trees. For example, if we have one million terms and each term entry
in the B+tree requires on average 20 bytes, the height of a B-+tree with 8 KB nodes is 3
(counting the leaves as 1). All of the values associated with the keys are stored in the leaf
nodes, simplifying scanning operations, but forcing all searches to traverse to a leaf node.
With careful buffer management, however, we can keep most of the internal nodes resident
in main memory and limit the number of disk reads to at most one per lookup (to obtain a
leaf node).

The problem with a B+tree is that clustering of key/value pairs within a node is based
on the key sort order. When a leaf node is made resident due to a search on one of its
keys, the chance that we will search for another key in that same node before the node
is flushed from the main memory buffer is no better than random. If instead we cluster
together the key/value pairs most likely to be accessed during query evaluation, we will
reduce the number of disk reads required during query evaluation and achieve a performance
improvement. To accomplish this we need a method for identifying the keys most likely to
be accessed and an indexing data structure that will support the clustering. The discussion

in Section 3.2.1 shows that the more frequent terms are favored during query evaluation,
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Figure 3.5 Inverted file hash table

suggesting that term frequency could be used to guide key clustering. Another, more
pragmatic, approach would be to keep track of query term usage statistics over a period of
time and use them to guide the clustering.

Since a B+tree cannot support arbitrary key clustering, if we want to take advantage
of our clustering heuristic, we must find an alternative indexing structure. An indexing
structure commonly used to store terms in an information retrieval system is a hash table.
A hash table can incorporate an external clustering heuristic, making it the data structure of
choice for this application.

We have implemented a Mneme-based hash table for our Inverted File Manager using
the overall structure shown in Figure 3.5. The length of the hash table is fixed at 8191
slots. Each slot occupies 4 bytes, for a total hash table size of just under 32 KB. Rather
than use a single 32 KB object to store the hash table, four 8 KB page objects are used. The
motivation here is to increase concurrent access to the hash table in the event of updates.

Each slot points to a linked list of buckets, which contain the key/value pairs for the keys
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that hash to that slot. Each bucket is allocated in a 256 byte object using the fixed-object
pool described above. A bucket has an array of values (object identifiers) at one end, a
heap of keys (null terminated term strings) at the other, and a header containing a pointer
to the next bucket in the chain, the number of entries in the bucket (N), and the offset of
the key heap (see Figure 3.6). The value array and key heap grow towards each other, such
that the maximum number of entries in a bucket is variable. The array and heap entries are
paired-up from the inside out, eliminating the need for string heap offsets in the value array
entries and minimizing the amount of space required by the key/value pairs (compression
techniques excluded). The tradeoff is a more complex bucket search algorithm. To find a
key/value pair in a bucket, we must scan the bucket’s key heap from left to right, count the
number of strings scanned before the key is found, and index into the value array with N
minus count to obtain the corresponding value.

To locate the value for a given key, the hash function is applied to the key to obtain
a slot index into the hash table. The appropriate hash table page object is retrieved and a
chain pointer is obtained from the indexed slot. The chain pointer points to the first bucket

object in the chain, which is retrieved and searched. If the key is found, its value is returned.
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Otherwise, the next bucket is obtained and searched. This process is repeated until the key
is found or there are no more buckets, in which case the key is not in the hash table.

The clustering heuristic is incorporated into the hash table by sorting the keys in each
chain in decreasing order of term frequency. This causes within bucket clustering by placing
the most frequent terms in each chain in the head bucket of that chain. We can additionally
cluster across buckets by allocating all of the bucket chain heads in their own set of physical
segments. Furthermore, to ensure that only a single disk read is required in the event that
the desired key is not found in the head bucket, the rest of the buckets in a given chain are
allocated in the same physical segment.

When the hash table is opened, the four 8 KB hash table page objects are read into their
own private buffers, ensuring that they will never be swapped out by Mneme. The amount
of buffer space allocated to the bucket objects is controlled by the application and should
vary depending on the task at hand. When creating a new hash table from scratch, we
allocate a small buffer (at least 16 KB, or enough for two physical segments) to the bucket
objects. In this situation, we are sequentially allocating and filling bucket objects, and the
new physical segments that contain these objects are written to disk as soon as they are full.
During query processing, if our clustering heuristic is effective, we allocate a relatively
modest amount of buffer space to the bucket objects. This can be tuned to a particular
query environment based on observed object reference hit rates. When we are updating an
existing hash table, we allocate as much buffer space as possible (up to the aggregate size
of all of the buckets) to the bucket objects since every new term causes a bucket chain to

be fully traversed during the initial search for the term.

3.2.3.3 Document Additions

New documents are added to an existing document collection in two steps. During the
first step, complete inverted lists are created for the new document batch. In the second step,

the new inverted lists are merged with the existing inverted file. The first step is executed
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by the document inverter, and can proceed as described in Section 3.1 with no changes. The
second step is carried out entirely within the Inverted File Manager. As the Merger outputs
each final inverted list for the new document batch, the Inverted File Manager searches
the existing inverted file for the term associated with the new inverted list. If the term is
found, an inverted list already exists for the term and the new inverted list is appended to
the existing inverted list. Otherwise, the term is new to the original document collection
and the new inverted list is simply added to the existing inverted file.

The critical functionality here is the ability to grow an existing inverted list during an
append operation. The inverted list storage scheme described above easily supports this
operation. A short inverted list may have unused space at the end of its object and can
grow to fill this space. When the list exceeds the object, a new object of the next larger
size is allocated, the contents of the old object are copied into the new object, and the old
object is freed. When a short list exceeds the largest object size (8 KB), it becomes a long
inverted list and is stored as a linked list of 8 KB objects. Long inverted lists are grown by
appending to the tail object in the linked list and adding a new object to the linked list when
the tail is full.

The main advantage of this scheme is that the majority of the existing inverted file is
untouched during an update, keeping the update costs more proportional to the size of the
new document batch, rather than the size of the existing document collection. This behavior
is provided by the long inverted list implementation. When a long inverted list is updated,
only the head and tail objects in the linked list are accessed, leaving the majority of the data
in the long lists untouched. Since nearly 90% of the data in an inverted file is stored in the
long inverted lists, the majority of the inverted file should be untouched during an update.
Note that the head object of a long list must be accessed to update the collection frequency
and document count for the term and obtain the object identifier of the linked list tail. If
instead this information is stored in the term hash table, accesses to the head objects can be

eliminated at the expense of a larger term hash table. Increasing the size of the term hash
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table, however, will cause it to demand more main memory during query evaluation. How
to resolve this tradeoff depends on the frequency of updates versus the frequency of queries.
The implementation described here is tuned for an environment where query evaluation is
more frequent than document additions, hence a smaller term hash table is favored.

A potentially serious problem crops up during update operations on short inverted
lists. Short inverted lists are stored in objects that share their physical segment with other
objects. A physical segment, therefore, will contain multiple short inverted lists. When a
short inverted list is retrieved for an update, all of the other short inverted lists in the same
physical segment are simultaneously retrieved. It is possible that more than one inverted
list in this physical segment must be updated during the batch update. It is also possible,
however, that the physical segment will be swapped out of main memory before the other
inverted lists have been updated, causing the same physical segment to be retrieved multiple
times during the same batch update. If this thrashing behavior is extreme, performance will
suffer.

One way to combat this effect is to allocate a larger main memory buffer so that more
physical segments may be resident simultaneously. This is a bad solution for three reasons.
First, for large inverted files the amount of space occupied by all of the short inverted lists
will still be quite substantial, such that it is impossible to allocate a large enough buffer.
Second, during an update, main memory is also required by the Merger (for its merge
buffer) and the term hash table, making main memory a scarce resource. Third, caching
modified physical segments for extended periods of time will interfere with the amount of
concurrency available in the system.

A better solution to this problem is to apply the short inverted list updates in a more
advantageous order. In particular, all of the short inverted lists that coexist in a physical
segment should be updated simultaneously. As currently described, inverted lists are
updated in sorted term string order. This order is determined by the Parser, which writes

partial inverted lists in term string order. Term string order is unrelated to the assignment



of inverted lists to physical segments. Mneme object identifier order, however, is related
to the assignment of objects to physical segments. We have implemented the small-object
and fixed-object pools in such a way that a physical segment contains objects identified by
a continuous range of the object identifier space. In other words, when the identifiers for
the objects in a physical segment are listed out in the order in which the objects appear
in the physical segment, the identifiers form the sequence {ni,nz,ns,... | nis1 = n;i +1}.
Moreover, the physical segments tend to be allocated in the file in such a way that the
identifiers for the objects in a physical segment earlier in the file will be less than the
identifiers for the objects in a physical segment later in the file.

To take advantage of object identifier order during updates, we extended the Parser to
sort partial inverted lists based on existing inverted list object identifiers. Recall that the
partial inverted lists are sorted just before the batch buffer is flushed to a temporary file
block. Rather than sort on term string at this point, the Parser probes the existing inverted
file’s term hash table for each of the partial inverted lists in the batch buffer and obtains
object identifiers for the existing inverted lists. A partial inverted list associated with a new
term (i.e., for which there is no existing inverted list) is assigned object identifier 0. Note
that the Parser’s batch buffer has the same organization as the inverted file’s term hash table
(Figures 3.3 and 3.5). This is by design, and is intended to improve locality of the term
hash table probes as we iterate through the batch buffer.

Now the Parser can sort the partial inverted lists by object identifier. So that new
partial inverted lists are added to the inverted file after any existing inverted lists have
been updated, object identifier O is considered to be greater than all other object identifiers
during the sort. Furthermore, to distinguish amongst the new terms, partial inverted lists
that have been assigned object identifier O are sorted secondarily on term string. After the
sort, the partial inverted lists are written to the temporary file block in existing inverted list
object identifier order. When the temporary file blocks are merged, the final inverted lists

produced are presented to the Inverted File Manager in the desired object identifier order.
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Updates to existing inverted lists are performed with no physical segment thrashing, and
the physical segments are retrieved in a series of scans over the inverted file. Moreover,
we only need to allocate enough buffer space to hold the physical segment currently being

updated. Once the last object in the segment has been updated, that segment will not be

accessed again during the current batch.

3.2.3.4 Document Deletions

Document deletion is slightly more complicated. Deleting a document involves the
deletion of all of the entries for that document in the inverted lists for the terms that appear
in that document. There are three general approaches for accomplishing this. In the first
approach, the deleted document is re-parsed (lexically analyzed, stopped, and stemmed)
to identify the terms contained within the document and allow the affected inverted lists
to be accessed and updated directly. This approach suffers from two problems. First, the
document source must be available. This may not always be the case, especially if the
inverted file is being updated to reflect the loss or unavailability of the document. Second,
the parse that is performed for deletion must produce the exact same tokens as the parse
that was performed when the document was originally indexed. The parser may have been
upgraded or modified since the document was originally parsed, making an exact match
impossible.

The second approach involves the use of an auxiliary index. For each document, the
index stores a list of the terms that occur in the document. When a document is deleted, its
list of terms is obtained and used to identify the inverted lists that must be updated. This
eliminates the problems inherent in the first approach, but introduces an additional index
that must be maintained and stored. If each term identifier in the auxiliary index requires 4
bytes of storage, then such an index for the 3.2 GB TIPSTER document collection described

below would occupy 541 MB, or 17% of the space occupied by the document collection.
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This estimate is based on 141,929,665 document entries in the corresponding inverted file.
Of course, compression techniques could substantially reduce this overhead.

In the third approach, all of the inverted lists in the inverted file are scanned and entries
for the deleted document are removed from the inverted lists as they are found. This
solution is more robust than the first approach, imposes no storage overhead, and is more
straightforward than the second approach; for these reasons it is the one that we have
implemented. The scan of the inverted file is driven at the object level and is supported
by Mneme’s object scanning facility. This facility allows an object pool to iterate through
its objects in order of object identifier. As we saw earlier, processing objects in object
identifier order results in sequential processing of the inverted file.

Due to the high cost of scanning the inverted lists, individual document deletions are
not immediately applied to the inverted file. Instead, they are buffered up in a document
delete list and eventually applied to the inverted file in a large batch purge. In the mean
time, the document delete list is used to filter query processing results. Before the final
document ranking for a query is returned to the user, documents that appear in the delete list
are removed from the answer. Note that management of the document delete list is external
to the Inverted File Manager and falls outside the boundaries of our implementation (i.e., it
was implemented by others).

The batch purge begins by scanning the small-object and fixed-object pools, which con-
tain the short inverted lists. To process a short inverted list, we decompress the existing list
and search for entries that match the documents in the document delete list. Any matching
entries are deleted from the inverted list and the remaining inverted list is recompressed
into the same object. The newly freed space in the list will appear at the end of the object
and be available for future allocation. If no matching document entries were found, the
decompressed inverted list is discarded and the object is left unmodified. Should all of
the document entries be deleted from an inverted list, the list’s object can be freed and the

corresponding term can be deleted from the term hash table.
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Figure 3.7 Deletion in a long inverted list

The long inverted lists are processed next. The page-object pool that contains the linked
list head objects is scanned, giving us the first object for each long inverted list. A long
inverted list is processed in chunks using two cursors: a source cursor and a destination
cursor, shown in Figure 3.7. A portion of the inverted list (about 8 KB) is read from
the source cursor and decompressed into a work buffer. We scan the work buffer and
remove any entries found for documents listed in the document delete list. When the work
buffer has been processed, it is re-compressed and written to the destination cursor. The
destination cursor follows the source cursor and will gradually lag farther and farther behind
the source cursor as more document entries are deleted. When the entire inverted list has
been processed, the hole for the deleted document entries will have percolated to the end

of the list. Any unused objects at the tail of the linked list can be freed.

3.3 Experimental Results

To evaluate our implementation of the Inverted File Manager, we ran a series of exper-

iments to measure bulk indexing speed, incremental update speed, disk space utilization,
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and the impact of the inverted file construction technique on query processing speed. Be-
low we describe the experimental platform, the test collection used, and the results of our

measurements.

3.3.1 Platform

All of our experiments were run as superuser with logins disabled on an otherwise idle
DECSystem 3000/600 (Alpha AXP CPU clocked at 175 MHz) running OSF/1 V3.0. The
system was configured with 64 MB of main memory, one DEC 1.0 GB RZ26L Winchester
SCSI disk, and one Micropolis 4.3 GB M3243 SCSI disk. The executables were compiled
with the DEC C compiler driver 3.11 using optimization level 2. All of the data files
and executables were stored on the larger local disk, and a 64 MB “chill file” was read
before each parse, merge, or query processing run to purge the operating system file buffers
and guarantee that no inverted file data was cached by the file system across runs. The
effectiveness of the chilling procedure was verified by measuring the number of file inputs
charged to a test program that reads a 1 MB file. The test program was run 10 times, both
with and without chilling between iterations. Without chilling, the number of file inputs
required by each iteration after the first is 0. With chilling before each iteration, the number
of file inputs required by every iteration is 133. Since the file system block transfer size is
8 KB, 128 file inputs are required to read the test file data. The remaining 5 file inputs are
required by the file system to read directory and file structure data. All times reported were

measured with the GNU time command.

3.3.2 Test Collection

For our experiments we used the 3.2 GB TIPSTER document collection distributed for
the Third Text REtrieval Conference (TREC-3) [40]. The TIPSTER document collection is
broken down into a number individual files containing a wide variety documents. Table 3.1

gives the size, number of documents, number of term occurrences (Postings), and number
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Table 3.1 TIPSTER document collection file characteristics

| File | MB [Documents | Postings | Terms |

wsj87 125.6 46448 | 11404792 [ 125035
wsj88 104.4 39904 9729119 53925
wsj89 35.7 12086 3247328 16739
doe 183.8 226087 | 17240754 | 118444
ziff 242.3 75180 | 21247322 96213
ap 254.2 84678 | 22386691 78330
fr_a 156.7 15640 | 14455792 84781
fr b 103.0 10320 9464721 44837
wsj90 69.8 21705 6203493 19339
wsjol 139.2 42652 | 11853656 35432
wsj92 329 10163 2747163 7808
ziff2 175.5 56920 | 15272205 39598
ap2 237.2 79919 | 20607785 46125
fr2 209.2 19860 | 19239417 | 66612
ziff3.a | 1924 56398 | 17146002 43689
ziff3b || 1523 104623 8830722 17795
ap3 237.5 78321 | 20692345 42228
patn 242.6 6711 | 19493312 76986
sjm_a 189.9 60399 | 14106777 34533
sjm_b 97.0 29858 7199499 14228

[ total [[3181.2] 1077872 | 272568895 | 1062677 |

of uniquely indexed terms for each file. The term count for a given file is the number of
new terms added by that file to all of the files listed earlier in the table. The files contain
documents from the Wall Street Journal (wsj*),! Department of Energy abstracts (doe),
Ziff-Davis Publishing Computer Select disks (ziff*), AP Newswire (ap*), Federal Register
(fr*), U.S. Patents (patn), and the San Jose Mercury News (sjm*). This is one of the
first publicly available large scale document collections, and has become a standard test

collection in the information retrieval research community.

1Dye to human error, the local version of wsj89 used for these experiments was missing 294 documents
from the original distribution.
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Table 3.2 TIPSTER file parsing results

[ File [ Time (sec) [ msec/post | Temp Blocks | Temp Size (MB) |

wsj87 800 0.070 9 424
wsj88 674 0.069 8 36.5
wsj89 227 0.070 3 12.3
doe 1398 0.081 14 63.3
ziff 1515 0.071 14 70.3
ap 1583 0.071 18 86.1
fra 889 0.061 7 39.1
fr b 587 0.062 5 26.0
wsj90 449 0.072 5 234
wsjol 849 0.072 9 44.6
wsj92 201 0.073 3 104
ziff2 1075 0.070 10 50.4
ap2 1491 0.072 16 78.9
fr2 1241 0.064 9 51.8
ziff3_a 1145 0.067 11 56.3
ziff3 b 784 0.089 6 29.9
ap3 1494 0.072 16 79.5
patn 1214 0.062 6 42.8
sjm_a 1069 0.076 11 55.0
sjm_b 552 0.077 6 28.1
| total [ 19237 | 0.071 | 186 | 927.1 |

3.3.3 Bulk Indexing

The first question we are interested in is how well the overall indexing scheme described
in Section 3.1 works. To answer this question, we measured the elapsed (wall-clock) time
required to index the entire 3.2 GB TIPSTER document collection. Using an 18 MB batch
buffer, the Parser was run separately on each of the TIPSTER files. Note that for the
experiments described in this chapter, INQUERY’s feature recognizers were not used. The
feature recognizers identify city names, company names, foreign country names (i.e., not

the United States), and references to the United States, and increase the time required for

parsing.
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For each file, Table 3.2 gives the elapsed parsing time in seconds, the number of
temporary file blocks produced, and the aggregate size of the temporary file blocks. The
elapsed parsing time depends on the size of the input document file, so the table also gives
a normalized parsing time in terms of milliseconds per posting. The total elapsed time
required to parse the entire collection was 19237 seconds, or 5 hours 21 minutes. A total of
186 temporary file blocks were produced occupying 927 MB, or 29% of the space required
by the raw document collection. On average, 0.071 milliseconds were required per posting.
The table indicates, however, that parse time per posting fluctuates depending on the size
of the documents being parsed. The Department of Energy abstracts (doe) and some of the
Ziff-Davis publications (ziff3_b) contain relatively short documents and require more time
per posting. The Federal Register (fr*) and U.S. Patents (patn) contain relatively long
documents and require less time per posting. This discrepancy is caused by the overheads
associated with parsing a single document, e.g., flushing the document buffer to the batch
buffer. Longer documents can amortize this overhead over more postings, resulting in
lower per posting costs.

All of the temporary file blocks produced by the Parser were then merged by the Merger
using a 20 MB merge buffer. Mneme was allocated 16.4 MB for its buffers, of which
14.3 MB were allocated for the term hash table objects, 2 MB were allocated for Mneme
system (meta) data, and the remaining 126 KB were allocated for inverted list objects. The
term hash table buffer was large enough to keep the entire term hash table memory resident
throughout the merge. This is done to prevent thrashing during hash table insertions—a
hash table insert typically requires access to an entire bucket chain. The inverted list objects
require a relatively small amount of buffer space since the only operation we are performing
here is creation. Once an object has been created, it can be flushed from main memory.

The Merger required 39 minutes to merge all of the temporary file blocks and store
the new inverted lists. This gives a total time of 6 hours to index the 3.2 GB TIPSTER

document collection, or an overall indexing rate of 530 MB per hour.
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Figure 3.8 Bulk indexing times

The next question of interest is how well this indexing scheme scales. To answer this
question, we divided the TIPSTER document collection into 32 batches of approximately
100 MB each.? The first batch contains the first 100 MB of wsj87, the second batch contains
the remaining 25.6 MB of wsj87 and the first 74.4 MB of wsj88, etc. We then indexed 32
different document collections ranging in size from 100 MB to 3.2 GB, where a document
collection of size n * 1060 MB consists of batches 1 through n. The elapsed time to index
each of these document collections is plotted in Figure 3.8. The figure suggests that total
indexing time scales linearly with the size of the document collection being indexed. This
is due mainly to the Parser, which dominates the total running time, but maintains a constant

time per posting rate (as discussed earlier).

2The last batch is actually only 80.7 MB.
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Table 3.3 TIPSTER Inverted file object statistics

Object || Number Space Usage (MB) Utiliza-
Size (B) Total | Data | Free | Mneme | tion (%)
16 569188 8.7 50| 25| 1.112 59.1
32 228940 70| 44| 22| 0447 62.6
64 104034 6.3 43| 19| 0203 67.6
128 60849 74 51| 22| 0.119 68.8
256 35795 8.7 61| 26| 0.070 69.4
512 21257 | 104 731 3.1 0.042 70.1
1024 13654 | 13.3 94| 39| 0.027 70.7
2048 9170 | 179 126 53| 0.018 704
4096 6536 | 255| 180| 7.5| 0.013 70.5
8192 102093 | 797.6 | 749.1 | 47.5| 1.005 93.9

[ total [[ 1151516 [ 9029 [ 8214 | 785 | 3054| 0910

If we change the collection size units in Figure 3.8 from bytes to postings and fit
a line to the Total points using a least-squares fit linear regression, the line obtained is
y = 114,63 + 7.58x1075x. The coefficient of determination for the linear regression
relationship is 7 = 0.99976, suggesting a very strong linear relationship. The slope of the
line indicates an overall indexing rate of 0.076 msec/posting. This is consistent with the
overall parsing rate of 0.071 msec/posting reported in Table 3.2, with the difference due to
the merge costs included in the Total time.

Space utilization statistics for the final inverted file created for the 3.2 GB TIPSTER
collection are given in Table 3.3. For each object size, the table gives the number of
objects in the file, total space occupied by the objects, amount of inverted list data stored
in the objects, free space in the objects (i.e., currently unused space that may be allocated
in the future), Mneme overhead (object headers and data structures), and effective space
utilization (Data/Total * 100). The smallest objects are poorly utilized, with less than 60%
of their space occupied by inverted list data. However, they account for a very small portion
of the total inverted file size. On the other hand, most of the 8 KB objects are fully utilized

since they are in the middle of a long inverted list. The overall object utilization is quite
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Table 3.4 Indexing variations for 3.2 GB TIPSTER collection

| Variation T A ] B | € | D |
Stemming yes no yes yes
Stopping yes yes yes no
Proximity yes yes no no
Parser (sec) 19297 17909 18744 17327
Merger (sec) 1726 2219 1029 1426
Total (sec) 21023 20128 19773 18753
Temp Blocks (MB) 929 1043 541 673
Inv File (MB) 913 1003 513 634
Vocab Size 1062667 | 1229847 | 1062667 | 1062690
Term Hash Tbl (MB) 13.8 16.5 13.8 13.8

high—better than 90%. Mneme system data and free space in the object file add a negligible
9.7 MB to the object space total, for a total inverted file size of 913 MB. The term hash
table requires an additional 13.8 MB, such that the overall inverted index requires 927 MB,
or 29% of the space occupied by the original document collection.

Given that the Parser accounts for nearly 90% of the total indexing time, a closer look
at how the Parser spends that time is in order. Of the 19237 seconds spent parsing, 18076,
or nearly 94%, are charged to user CPU time. Since the Parser appears to be CPU bound,
it was profiled using the gprof profiler. The resultant profile report indicates that only 16%
of the CPU time is spent assembling and handling inverted lists, i.e., adding entries to the
document buffer, flushing the document buffer to the batch buffer, and flushing the batch
buffer. The rest of the CPU time is spent as follows: 61% is spent scanning and parsing,
14% is spent checking for stop words, 8% is spent updating the document catalog, and 1%
is spent stemming. From this profiling data we conclude that our efforts at improving the
efficiency of inverted list assembly have successfully eliminated the bottlenecks imposed
by that portion of the indexing system. Scanning and parsing are now the most expensive

components of the Parser and have the greatest need for future performance tuning.
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To provide a complete picture of the performance of our indexing system, we evaluated
anumber of variations on the original indexing process described above. Each variation was
run on the 3.2 GB TIPSTER collection. Using an 18 MB batch buffer, the collection was
parsed in 32 batches of approximately 100 MB each. The temporary file blocks produced
were then merged in a single step using a 20 MB merge buffer. Results for the different
variations are shown in Table 3.4. Note that variation A is the original indexing process.

First, the Parser profile suggests that stemming is a relatively insignificant component of
the overall cost. To verify this, we measured the time required to index the 3.2 GB TIPSTER
collection without stemming, shown as variation B in Table 3.4. Compared to the original
indexing process (variation A), parse time decreased by 7%, merge time increased by 29%,
and total indexing time decreased by 4%. The measured effect of stemming on parse time
is actually larger than the profile suggests, although the parse time savings obtained by
eliminating stemming is still modest and is offset somewhat by an increase in the time
required to merge.

The increase in merge time is due to a 12% increase in the size of the temporary
file blocks, a 10% increase in the size of the final inverted file, a 16% increase in the
size of the vocabulary (the number of unique terms indexed), and an overall increase in
the string length of the indexed terms. The temporary file blocks and final inverted file
are larger in the absence of stemming because many of the inverted lists in the stemmed
version are now split into multiple inverted lists for terms that would otherwise stem to
the same term. This increases the average distance between two occurrences of the same
term, eliminating some of the benefits of delta encoding and reducing the effectiveness
of the inverted list compression algorithm. The larger vocabulary and term string length
additionally contribute to the increase in temporary file block size. More importantly, they

increase the size of the term hash table by 19%, which is created and written during the

merge.
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Next, we explored the cost of storing term occurrence locations (i.e., proximity in-
formation) in the inverted file. In variation C, term occurrence locations were not stored
when indexing the 3.2 GB TIPSTER collection. Compared to variation A, parse time is
reduced by 2.8%, merge time is reduced by 40%, and total indexing time is reduced by
5.9%, for an overall indexing rate of 580 MB per hour. The temporary file blocks produced
by the Parser occupy a total of 541 MB, and the final inverted file produced by the Merger
occupies 513 MB, or just 16% of the size of the raw document collection. Compared to the
original indexing process, temporary file block and final inverted file space requirements
are reduced by 42% and 44%, respectively. Viewed another way, storing term occurrence
locations increases the size of the final inverted file by 78%.

When term occurrence locations are not stored, little time is saved during parsing. This
is expected given that the savings are confined to inverted list assembly and handling, which
account for only 16% of the CPU time spent in the Parser. Scanning, parsing, stopping,
stemming, and document cataloging are unchanged. The substantial reduction in the size of
the temporary file blocks, however, yields a large savings at merge time, where the amount
of data that must be merged is nearly halved. The reduction in total indexing time is rather
modest since merging accounts for only 10% of the total time. In the indexing system
described here, the extra processing cost of indexing and storing term occurrence locations
is minimal. The most noticeable expense is an increase in the size of the inverted file. We
should note that this comparison was made using an inversion algorithm originally designed
to store term occurrence locations. It is likely that the algorithm could be better tuned for
the case where term occurrence locations are not stored, resulting in a more significant
savings in parse time.

Finally, the Parser profile suggests that stopping is a relatively expensive operation. The
last variation measured, variation D in Table 3.4, does no stopping and does not store term
occurrence locations (but does stemming). Compared to variation C, eliminating stopping

reduces parse time by 8%, increases merge time by 39%, reduces total indexing time by
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5%, and increases both temporary file block and final inverted file space requirements by
24%. Since the terms eliminated by stopping are highly frequent, indexing those terms (by
not stopping) increases the size of the temporary file blocks and final inverted file. If we
additionally stored term occurrence locations in this variation, the size increases would be
even more substantial—the number of postings indexed increases by 66% when stopping
is turned off. In spite of the increased file sizes and merge time compared to variation C,
variation D is the fastest variation we measured, with an overall indexing rate of 614 MB

per hour.

3.34 Incremental Update

We evaluated the ability of our Inverted File Manager to accommodate document
additions by indexing the 3.2 GB TIPSTER document collection in a series of incremental
updates. In an incremental update, a new batch of documents is added to an existing
document collection and the necessary updates to the inverted file are performed in-place.
We use the term incremental to distinguish this process from the traditional method of
adding new documents, which simply re-indexes the entire document collection from
scratch, building a whole new inverted file.

Using the 100 MB document batches described earlier, we incrementally indexed the
TIPSTER collection by successively adding each document batch. Figure 3.9 shows
the elapsed time required to add each successive batch, where the x-axis enumerates the
100 MB batch updates in the order that they were applied. For example, at batch update
5, we have already indexed 400 MB in the first 4 batches, and are now adding 100 MB of
new documents to the existing 400 MB document collection. The figure shows a rapidly
increasing cost per update when the existing document collection is small. However, as the
existing document collection becomes larger, the cost per update starts to level off. This is

an encouraging result, indicating that the overall technique will scale well. The cumulative
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Elapsed Time per Incremental Update
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Figure 3.9 Incremental update times

elapsed time required to incrementally index the entire 3.2 GB collection in 32 batches is
just over 12 hours, giving an overall indexing rate of 265 MB per hour.

Consistent with the results reported above for bulk indexing, the parsing rate is es-
sentially constant with minor variations depending on the size of the documents in the
particular batch. In the case of an incremental upd<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>