
Using a Reflective Real-Time Operating System to Implement a
Just-in-Time Scheduling Policy for a Flexible Manufacturing

Workcell

Marty Humphrey
Technical Report 95–87

UMass Computer Science Technical Report 95–87
June 16, 1995

Abstract

Research on the automated control of a flexible manufacturing workcell has generally assumed that there
is a low-level computer system to control the machines, without addressing the precise functionality
of this low-level system and how it might uniquely support the manufacture of products. This work
addresses how Spring, a real-time operating system, can be used to implement a Just-In-Time (JIT)
manufacturing policy for a flexible manufacturing workcell. The JIT policy is characterized by the right
amount of manufacturing material being at the right place at the right time. We argue that two schedulers
are desired to control a workcell because of two sets of scheduling requirements and responsibilities.
The High-Level Scheduler (HLS) schedules machine operations need to construct products as close to
their deadlines as possible. Spring schedules the fine-level computational tasks that comprise machine
operations according to the Worst-Case Execution Time (WCET) of the tasks such that the individual
tasks are executed before their deadline. The reflective properties of Spring—retaining at run-time the
worst-case execution time of tasks, their resource requirements, etc.—enable Spring to provide dynamic
feedback to the HLS, which the HLS uses to make scheduling decisions. Simulation studies show that
the two-level scheduling system outperforms both (a) a single scheduler based on worst-case execution
times, and (b) a single scheduler based on average-case execution times. Using only the worst-case
execution times can lead to underutilization of resources and relatively few products manufactured,
while using only the average-case execution times can lead to multiple products missing their deadlines
through a ripple effect. The contribution of this work is showing how the reflective properties of the
real-time operating system allow the HLS to make important decisions in a fast-changing environment.

This work is funded by the National Science Foundation under grant IRI-9208920.

1 Introduction

It is increasingly important for manufacturing systems to operate at the highest level of efficiency in order
to be competitive in today’s global markets. Manufacturers continually evaluate new manufacturing
approaches, machine purchases and machine configurations in order to gain an edge on the competition.
Flexible manufacturing, in which flexibility of machine operations, process routings, and machine layout
is stressed, has been touted as a breakthrough organizational and operational design. A flexible manu-
facturing workcell consists of many machines that collectively provide a variety of machine operations
and a transport system to move material from one machine to another within the workcell. A key form
of flexibility in the workcell is its ability to quickly adapt to new orders and operations. Combined with
new manufacturing policies that place a higher emphasis on the customer, flexible manufacturing in
principle is a attractive operating philosophy for small- to medium-sized manufacturers.

A misconception concerning flexible manufacturing systems is that it is generally assumed that the
low-level computer system that will operate the complex of machines has already been built, or is at
least not difficult to assemble from existing technologies. A problem with this belief is that conventional
technologies will fail to be effective in situations in which the operational bounds are being tested.
Flexible manufacturing is one such domain—there is a high capital investment required to adopt a
flexible manufacturing approach, so management inevitably requires high utilization of machinery.

A key aspect to flexible manufacturing is the automated high-level scheduling system that they
employ. Existing automated scheduling systems rarely have access to, and therefore do not consider,
the second-to-second status of the machinery, buffer space, and transport system. Rather, scheduling is
based on the performance of machines in some past time period and is subject to inaccuracies. Because
of this, utilization will inevitably be lower than if the machinery were controlled by a system that could
recognize unexpected events quickly after they occur and attempt to adjust the operations dynamically.

The goal of this research is to produce a system for a flexible manufacturing workcell in which the
production of a schedule for the machines in the workcell and the execution of the schedule are tightly
integrated. By integrating the scheduling of machines with the current state of the machines, operations
can be scheduled on machines that are most appropriate for the current situation. Less time can be spent
waiting in queues for machines. When machine operations take less than their worst-case execution
times, rescheduling can opportunistically introduce new work plans into the schedule. This leads to
both more orders being satisfied and a higher utilization of expensive equipment.

In this work, we show how the Spring real-time operating system [24] can be used as the basis of
workcell operations. In our model of the workcell, machines of the workcell are invoked only as a direct
initiative to satisfy an order that has arrived from the outside world. Each order has a deadline associated
with it. In this environment, Spring is used in two ways: it is used to execute of the machines, and it
is used as one-half of a two-component scheduling system for the workcell. While in principle there
is no reason why Spring could not perform all of the scheduling, the approach taken is that there are
two separate schedulers. One scheduler, the “High-Level” Scheduler (HLS) is responsible for selecting
which requests for products (i.e., the orders) to attempt to fulfill and scheduling the sequence of machines
to manufacture the product (i.e., the process plans) according to the desired manufacturing policy. The
second scheduler, which is a modified version of the scheduling component of Spring [18], is responsible
for receiving each order from the HLS, which has an single, overall deadline, and dynamically translating
the machines in the process plan into the individual computational tasks that represent the machine
sequence. Spring assigns individual deadlines on the tasks and attempts to schedule the tasks such that
all resource requirements and deadlines are met. The key difference between the two schedulers is that
the HLS maintains a high-level perspective on the manufacturing while the Spring scheduler generates
a schedule in which the integrity and safety of the individual machine operations are guaranteed. For
example, the HLS schedules activities so that the product will leave the workcell at a certain time,
while the Spring scheduler determines start times for all of the computational tasks such that they will

1

complete before their deadline even if they take their worst-case execution times.
A key element of this research is how the reflective properties of the Spring kernel support multi-level

scheduling [25]. Reflection is the computational process of reasoning about and acting on the system
itself. The reflective properties of Spring are used by the HLS both to enable the HLS to ask Spring to
execute a process plan, and to resolve the HLS’s uncertainties of the state of the environment that are
caused by maintaining a high-level perspective. Semantic information exploited by the HLS can include
machine status (up or down), process plan status (complete or still executing), and projected machine
usage.

To evaluate our approach to workcell scheduling and operation, we simulated the machines of
a workcell, and used Spring to invoke the machines. Only the manufacturing environment—the
machines, arrivals, raw materials, etc.—is simulated; Spring itself is a fully-operational real-time kernel.
The efficiency of the Spring kernel and the HLS directly impact performance, because it is not assumed
that scheduling requires zero time. Rather, the deadline of an order is interpreted as the number of real
seconds in which to both schedule a process plan to satisfy the order and to execute the process plan.
A realistic manufacturing approach, Just-In-Time [5], was selected to show applicability to real-world
manufacturing policies. The HLS-Spring system is compared to two single-level schedulers: one that
schedules machines based on average-case duration of machine operations, and another that schedules
only on worst-case execution time. In each of the three paradigms, the expected machine durations were
known, but the actual machine times are not known until after the machine executed. Experiments were
conducted for four environments characterized by the actual machine durations: the average duration
of each machine was as expected, and there was no variance; the average duration of each machine was
as expected, but there was large variance from one instance to the next; the average duration of each
machine was consistently above the expected duration; and the average duration of each machine was
consistently below the expected duration. The rationale for testing our system in each of these four
is that each of these can appear as a phase of normal workcell operations. Therefore, the evaluation
of each scheduling system is not necessarily the performance in each of the four environments, but
rather how well each does on the four environments collectively. The HLS-Spring system is shown to
easily outperform the Average-Case Scheduler, which is prone to catastrophic failure. The HLS-Spring
moderately outperforms the Worst-Case Scheduler in three of the four cases, and readily outperforms
the Worst-Case Scheduler in the fourth case. While the HLS-Spring system outperforms both of the
single-level schedulers, preliminary analysis has shown that even better performance can be attained if
the HLS exploited more of the reflective aspects of the Spring system.

The rest of this paper is organized as follows. In section 2, the basics of the flexible manufacturing
environment and Just-In-Time manufacturing are presented. In section 3, other approaches to the
real-time control and scheduling of manufacturing machines are discussed. These approaches include
Artificial Intelligence (AI) techniques, control-theoretic approaches, and techniques drawn from Op-
erations Research (OR). Section 4 contains the details of our scheduling approach for the operations
of a flexible manufacturing workcell. Section 5 contains experimental results. Section 6 contains the
conclusions, which includes work that we intend to pursue in the future.

2 Flexible Manufacturing and Just-In-Time Manufacturing

This section presents the basics of a flexible manufacturing workcell and the Just-in-Time manufacturing
policy.

2.1 Flexible Manufacturing

A flexible manufacturing system is an integrated, computer-controlled complex of automated material
handling devices and numerically controlled (NC) machine tools that can simultaneously process

2

medium-sized volumes of a variety of part types [2]. Flexible manufacturing is similar to a job shop,
except that the coordination of parts, tooling, fixtures, machines and material handling equipment is
more complex [12]. In theory, the real-time scheduling of a flexible manufacturing system should
be based on the actual system state, such as arrival of parts, machine states, queues at machines, tool
breakages, and rushed jobs [13].

The goal of flexible manufacturing is to create a manufacturing environment in which a wide
variety of products can be made, and new process plans can be readily introduced, without having to
dismantle and reconfigure the production line. Constructing a flexible manufacturing system requires
an appreciable amount of capital expense—it is important to upper-level management that machines
are highly utilized.

In many flexible manufacturing systems, machines are grouped according to functionality into
workcells–each workcell has a group of machines (usually between 3 and 10) that collectively are capable
of performing a wide variety of operations. A typical workcell is shown in Figure 1, and will be the
basis of the experiments conducted for this work. There are four process plans shown in this workcell:

4M

6

Input Storage

Output Storage

M

M1

M

M

M

2

35

Figure 1: An Example Workcell

4–6, 1–2–3, 6, 4–3–5–6. A workcell is generally capable of more process process plans, but only four
are included here both to simplify the presentation of a workcell and to simplify the experiments. In a
flexible manufacturing workcell, each machine is capable of performing multiple operations (incurring
a setup cost for each time the machine changes its current operation), and often two or more machines
in the same workcell can perform the same operation, perhaps at different precision and different cost.
Partially-completed products can be held in either the buffer space local to one of the machines, or in
buffer space in a central location of the workcell. A materials transport system is used for machine-to-
machine routing.

2.2 Just-In-Time Manufacturing

Just-In-Time (JIT) is a manufacturing policy originating from Japan that mandates having only the
necessary items at the necessary places at the necessary times [10]. While the scope of JIT includes

3

shipping finished products out of the factory at precisely the time at which they are due, it also includes
delivering partially-completed products from one machine in the process plan to the next machine at
precisely the time at which it is needed, and having the right amount of raw material available to use as
the basis of manufacture.

There are many advantages offered by effective JIT management [5]:

JIT allows an organization to meet consumer demand regardless of the level of demand. Customers
can be satisfied quickly and efficiently.

JIT allows a reduction in raw material, work-in-progress (WIP), and finished goods inventories.
Fewer goods in inventory means less time for possible damage to the product. In addition, less
factory space has to be allocated for storage. This space is better allocated to operations that add
value to the product (time in storage does not).

JIT eliminates the possibility of over-producing a product (when it no longer is deemed valuable
by market conditions).

JIT allows rapid prototyping of new products and quick modification of process plans, because
machinery has not been allocated to fixed production lines.

An obvious disadvantage of the JIT philosophy is the relatively small amount of inventory space
for products that are projected to be required in the future, but are not actually required yet. An
obstacle to implementing the JIT philosophy that is a problem in non-automated manufacturing
centers is the reluctance of human workers to adopt a much more controlled work policy than traditional
manufacturing. American companies using JIT techniques include Hewlett-Packard, Apple Computers,
Toyota, and Harley-Davidson [21].

3 Other Methods of Scheduling and Control of Workcells

This section presents related work in the real-time scheduling and control of flexible manufacturing
cells. Just-In-Time was selected as the manufacturing policy for this work because it has been shown to
be an effective policy that is quite difficult to implement even in an environment that is less dynamic
than the environment in which we model. This section also introduces alternatives to the two-level
scheduling system adopted in this work. The shortcoming of these alternative approaches is that they
are not appropriate for achieving the high level of responsiveness that the two-level scheduling system
can achieve.

JIT belongs to a class of pull systems, which attempt to “pull” a product through its manufacturing
cell as a respond to some order. The alternative to a pull system is a push system. In a push system,
products are pushed through the system generally in an attempt to keep utilization of resources high.
Finished products are stockpiled in inventory until they are required by a customer. While in inventory,
finished products can become outdated, lost, or even damaged.

In industrial practice, a widely-accepted form of scheduling automation has been Material Require-
ments Planning (MRP) [15]. The objective of a MRP system is to determine requirements, in order
to be able to generate information needed for correct inventory action (procurement and production).
MRP systems meet their objective by computing new requirements for each inventory item, determine
actions to meet those requirements, and time-phasing them. MRP determines capacity requirements
but ignores available or installed production capacity. MRP can often prescribe machine loading in
excess of 100% [19]. When the financial functions are tied into MRP, it is called Manufacturing Re-
source Planning, or MRP II [26]. MRP II is a system that includes manufacturing, finance, marketing,
engineering, and distribution. As opposed to the JIT philosophy, MRP and MRP II are predicated on
the existence of inventory, which JIT seeks to eliminate. Further differentiating our work from MRP

4

and MRP II systems is that the two-level scheduling system reacts much more quickly than MRP and
MRP II systems, which can only generate schedules on a daily or weekly basis.

The alternative approach to MRP that is being more accepted is Finite Capacity Scheduling (FCS),
in which the currently-available production capacity is considered (and generally attempted to be opti-
mized). One area of FCS that is receiving considerable attention is Optimized Production Timetables
(OPT), in which identified resource bottlenecks are the priority for scheduling–by keeping the bot-
tlenecks occupied, production flow is maximized [11]. OPT may require significant time to generate
schedules, because it attempts to optimize bottleneck resources. Thus, it may be inappropriate for highly
dynamic environments, such as the flexible manufacturing workcell of this research.

Research into the scheduling of automated scheduling systems include work from the areas of
Operations Research (OR) and Control Theory. Buzacott and Yao review the application of queueing
network models to flexible manufacturing systems [4]. The OR approach to scheduling is covered by
[8]. Heuristic dispatch rules are often applied at the machine level; an extensive review is offered in
[17]. OR results are generally limited to simplified single-machine environments and are not directly
applicable to the flexible manufacturing workcell. Recent results in the control-theoretic approach to
the production planning, scheduling, and control are covered in [7]. Control theory is a viable approach
to the control of a flexible manufacturing, but, because it is based on rates of operation and product
flow, it offers limited applicability to the goal of this work, which is to manufacture products solely as a
result of an explicit order.

The hierarchical framework for controlling automated manufacturing has been adopted in numerous
work [1, 16, 3]. In these approaches, analysis occurs at more than one time (e.g., before the job is
released to the workcell, at the time the job is released to the workcell to determine priority, and at the
time the machine selects the next job). Our approach attempts to more closely unify these three levels
in order to make better decisions before the job is released to the workcell.

Numerous approaches to control of automated manufacturing arise from the world of Artificial
Intelligence. Job-shop schedulers include ISIS [6], which took solely an order-centered perspective,
and its successor OPIS [22], which attempted to balance the order-centered approach with a resource-
centered approach. Other knowledge-based schedulers include ReDS [9] and Micro-Boss [20]. AI
schedulers are limited in real-time situations because of their inherent lack of predictability concerning
the amount of time required to generate a schedule.

A distinguishing feature of work presented in this paper is, once selected for manufacturing, a process
plan is guaranteed to be executed through the scheduling of worst-case execution times. None of the
alternatives discussed here guarantee that a product will be produced by its deadline (if the product is not
already in inventory). At this level, all schedules are “best-effort”. Another difference between our work
and the work discussed here is that our system both builds and executes a schedule. Real-time guarantees
in combination with another agent that is not constrained to operate according to worst-case execution
times is also adopted in the architecture of CIRCA [14], but has yet to be applied and evaluated in a
manufacturing domain.

4 HLS-Spring Scheduling Methodology

If a flexible manufacturing workcell is going to be truly automated, it must include both a facility for
scheduling and a facility for executing the schedule. In our approach, the process that is responsible for
scheduling is directly tied to the process that is issuing instructions to the machines of the workcell. For
simplicity, we refer to process by which steps in the process plans of products being made are assigned
to machines for discrete periods of time as scheduling, and we refer to the execution of the schedule as
the control of the machines. This section discusses our unified approach to scheduling and control, and
emphasizes that responsive scheduling is achieved through this unified approach.

5

4.1 Control of Machines in the Workcell

The control of the machines in the workcell requires the ability to issue precise instructions to each
machine, and the ability to later check some status information on the machine to determine if the
operation was completed successfully. We assume that each machine is capable of receiving instructions
through a computer network and has the necessary functionality to perform self-regulatory checks. For
example, if the machine is already set up to perform a particular action, then an instruction code can be
issued to the machine to direct the machine to load the part from its local buffering space, perform the
desired operation, and terminate at any point that it encounters a problem. Our control mechanism
is responsible for issuing the command to the machine, and then checking its status after a period of
time equal to the worst-case execution time (WCET) of the action. It is assumed that the machine
indicates when it is done by writing some status register at the point at which the operation terminates
successfully.

4.2 Scheduling of Machines in the Workcell

The scheduling and execution of the tasks that collectively execute machines in the workcell is performed
by the Spring kernel [24]. The Spring multi-processor architecture consists of three application processors
(AP , AP , and AP) and a single system processor (SP). The SP is devoted to scheduling (running the
Spring scheduler) and interacting with outside entities (such as the HLS), while the APs execute the
schedule created by the Spring scheduler. To execute a machine, the Spring scheduler schedules four
tasks (–) on the same AP for every machine invocation. performs some generic setup code.
acquires the machine resource and issues the instruction to the machine. checks the status of the
machine, performs error-correction code if necessary, and releases the machine resource. performs
some additional bookkeeping. can be scheduled immediately after , and can be scheduled
immediately after , but there must be a delay between the end of and the start of equal to the
WCET of the machine.

Process plans are scheduled by allocating time for the individual machines that comprise the process
plans. Because Spring schedules (and executes) the machines, it can be argued that Spring itself is
capable of scheduling all the operations for the workcell. However, we do not take this approach for the
following primary reason. While we believe that real-time is not synonymous with fast [23], we believe
the Spring scheduler must be fast. Scheduling orders from the outside world inevitably consumes a
large amount of time; requiring the Spring scheduler to schedule orders as well as low-level tasks might
compromise the safety and integrity of the machine operations. The Spring kernel is responsible for the
control of the machines, to ensure that products are made correctly and safely.

Instead of creating a monolithic scheduler, we decided to split scheduling into two systems according
to functionality. The Spring system controls the low-level operations of machines, while the HLS
manages uncertainty in the environment and selects between competing sets of alternatives. The split in
functionality is very rough and is an open research issue: which level–the “real-time system” or the “real-
time AI system”–should be responsible for performing each action? We experimented with numerous
versions of the HLS, but settled on a scheduler that schedules based on the worst-case time requirements
of machine operations, but is expected to react when operations take less than their worst-case. The
Spring system continues to schedule based on worst-case execution times of computational tasks.

The way an order is manufactured by the workcell is as follows. First the HLS attempts to schedule
the process plan in its schedule. Its schedule maps operations in the process plan to machines at specific
times, based on worst-case performance. If the HLS cannot fit a process plan into its schedule, such
that the order completes before its deadline, but not so early as to violate the nature of the Just-In-Time
philosophy, the order is retained until a minimum amount of time needed to be scheduled at a remote,
lightly-loaded workcell. The rationale for this approach is that there are multiple workcells that can be
used to satisfy an order, but that orders should be scheduled locally in order to alleviate the issues of

6

distributed scheduling. Once the process plan is scheduled, the HLS waits until a release time that it
has determined, based on the time at which the first machine operation in the process plan is scheduled,
and its understanding of the current load on Spring, and asks the Spring scheduler to schedule the
process plan. The Spring scheduler receives the request, dynamically constructs the task graph that,
when executed, will produce the product intended by the process plan, and attempts to schedule the
task graph with its current schedule. Because Spring is a guarantee-based operating system, if the Spring
scheduler cannot find a schedule in which all of the tasks of its previous schedule, as well as all of the
tasks in the task graph that corresponds to the process plan, are allocated the resources they need for
the time they need, the task graph introduced will be rejected. If the task graph is rejected, Spring
continues executing the schedule it had before the request by the HLS. If a schedule can be found,
it accepts the new task graph, and informs the HLS. In a manufacturing environment, the advantage
of the guarantee is that it provides a mechanism for ensuring that all machine operations of a process
plan will complete before the due date of the product. Without this guarantee approach, it would be
possible for an order to be unpredictably preempted by other orders, causing the overall performance of
the workcell to degrade as products are generated late.

There is a range of information that Spring can provide to the HLS, because Spring retains a
significant amount of information at run-time. When the HLS requests Spring to schedule a process
plan, Spring can return simply yes or no, indicating whether or not the process plan could be scheduled
by the Spring scheduler. However, it is also capable or providing more information, such as the projected
start and finish times of the order if it is schedulable, and the order(s) preventing its schedulability if it
is not. Spring it also capable of replying to queries concerning the current status of an order. Again, a
range of information is capable of being replied—Spring can reply with the up-to-date estimate of start
times and finish times, or it can reply with the machines that have yet to execute. All of this information
is useful to the HLS, because the HLS has a view of the environment that is uncertain. The main
source of uncertainty in the environments tested in this paper are the actual machine durations. In
this work, we configured Spring to reschedule as tasks execute and finish earlier than their worst-case
execution times. By rescheduling, Spring can reclaim the time that had been previously allocated to
the task. By operating in this manner, Spring guarantees that tasks will execute correctly even if they
require their worst-case execution times, but resource utilization will not degrade if they take much less
than their worst-case execution times. While this rescheduling results in higher machine utilization, it
can also exacerbate the uncertainty captured in the schedule of the HLS. For example, assume the HLS
schedules an order to execute on machine from time to , and then on machine

from to . Further, assume that when the HLS submits the order to Spring, the
Spring scheduler schedules tasks such that machine times initially match the expectations of the HLS.
If takes less than 10 seconds, the Spring scheduler will reschedule, causing the operation on to
execute earlier. At this point, the view of the HLS is no longer accurate. If the inaccuracies persist in
the schedule of the HLS, the HLS will schedule orders for particular times that are already being used
by the Spring scheduler. In this case, when the orders are submitted by the HLS, they will be rejected,
and utilization will decrease.

In general, the HLS can use the semantic information capable of being provided by Spring to resolve
its inaccurate view of the state of the machinery. However, in this paper, only a limited amount of
information is actually used. When the HLS submits an order, Spring returns the scheduled start time
and scheduled finish time if it is schedulable, and no if it is not. Spring informs the HLS when a
process plan has completed. The HLS uses this to update its understanding of the current schedule, by
removing the executed order from its current schedule. The HLS reclaims this time, and attempts to fill
the time with other orders. Note that the HLS does not move already-scheduled process plans earlier,
because of the Just-In-Time nature of the manufacturing. The ability to return the status of an order is
not exploited. The intent of this paper is to illustrate the usefulness of this level of feedback, without
attempting to optimize the performance of the workcell. Where appropriate, however, an attempt is

7

made to specify that certain information generated by Spring would aid performance. More complex
feedback is the subject of further research.

5 Experimental Results

To show the utility of our scheduling design, we simulated the operations of a single simplified flexible
manufacturing workcell (Figure 1). The workcell has six machines; each machine is capable of performing
only one operation. In order to test a highly-dynamic environment, the worst-case machine times were
chosen to be on the order of seconds: the WCET for machine is seconds. For example, the
worst-case execution time of machine 6, , is 24 seconds. We deferred the issues of buffer space and
scheduling the transport system for future experiments.

To adequately illustrate the performance of the HLS-Spring system, we compared its results with
two other schedulers, the “Worst-Case Scheduler” and the “Average-Case Scheduler”. The Worst-Case
Scheduler is discussed in Section 5.1, and the Average-Case Scheduler is discussed in Section 5.2.

To simulate the arrivals of orders to the workcell, we used an environment file containing various
information. While the WCET for each machine was fixed for these experiments, the distributions for
the actual durations were specified in this file. The amount of time to simulate was 10 minutes, which
was sufficient to establish steady-state operation of the workcell given the loads used in these experiments.
The arrival rate of each order also was specified in this file. To generate a moderately-heavy load, the
arrival rate of each order was Poisson with an average interrarrival time equal to the sum of the worst-case
durations of the machines in the process plan. Deadlines of each arrival were set fairly tight–deadlines
were the arrival time plus two times the sum of the WCETs of the machines in the process plan. The
environment file, along with parameters that were held constant for these experiments, together were
used to generate a scenario, which is a list of order arrivals for a 10-minute period. Multiple scenarios
were used to statistically evaluate the performance of a scheduler in an environment.

In all three scheduling policies, machines were scheduled to perform an operation of a process
plan only if a contiguous block of time could be found. This was done to adhere to the principles of
Just-In-Time philosophy, in which machine operations are very carefully planned. In order to reduce
work-in-progress, which is very important in Just-In-Time, it is important to attempt to maintain an
accurate view of where each process plan is currently executing. The used of non-contiguous blocks
compromises the ability to regulate what orders are in queues, and what orders are currently executing.
Also, it must be emphasized that we believe that, while “the right amount at the right place at the
right time” is strived for, a little too early is manageable, but a little too late is unworkable. This is
because machines are assumed to have a little buffer space in which to store materials. If a material
transport system has been scheduled to move the material to the next machine at a very precise time, the
material can wait in local storage until the material transport system arrives. However, if the order has
not completed processing, the material transport system cannot wait, because it has key to the overall
performance of the workcell. A second way in which we attempted to implement the Just-In-Time
policy is to not schedule locally a process plan that would finish too soon before its deadline. It is
assumed that there are multiple workcells, and an order that can not be scheduled to finish within a
threshold of its due date is shipped to another cell. This action is taken without addressing whether or
not the other cell has time to schedule this process plan or has time in its schedule for this process plan.
Experiments were conducted to determine what effect the value of this threshold had on the results;
there appeared to be little effect, so a value was chosen that resulted in most orders being scheduled
locally for the Worst-Case Scheduler, and was fixed across all three schedulers.

There are numerous metrics used for determining performance: the number of orders successfully
executed by the workcell before the deadline, the time before the deadline these are executed, the
number of orders executed but completed after their deadlines, the average lateness of these orders,
and the expected and actual utilization of each machine. The overall model of the manufacturing site

8

is not necessarily that the workcell produces finished products; rather it manufactures according to
the principles of Just-In-Time. The workcell is heavily penalized if it manufactures products after the
deadline of the order. Because there is limited space in which to store orders after they are completed,
the amount of time that an order completes early is not as significant.

5.1 Worst-Case Scheduler

In this scheduling and control policy, activities are scheduled for machines for the entire worst-case
execution time of the machine operation. If the machine operation takes shorter than the worst-case
duration, the machine sets idle, and the part being processed resides in local buffer space until the
end of the worst-case duration. As opposed to the HLS-Spring system, parts are not transported early
because there’s no reason to—the Worst-Case Scheduler directs the machines without feedback, so it’s
not going to schedule any operation to use that time. Intuitively, this scenario produces operations that
begin at precisely the time at which they are scheduled (which is the prime objective of the Just-In-Time
methodology). The negative aspects of this scheduling policy are that, in environments in which the
worst-case machine duration is much longer than the expected duration, machine utilization can be low,
and a relatively low number of process plans can be accepted for production.

Because parts are not transported early when they complete earlier than the WCET of the machine,
the amount of time that the product leaves the workcell earlier than expected is equal to the amount of
time that the product finishes early on the last machine in its process plan.

5.2 Average-Case Scheduler

An alternative to scheduling by only the worst-case duration of machines is to use the average-case
durations instead. However, this can only be realistically done if the low-level dispatching mechanism
is different than in the environment of the Worst-Case Scheduler. The rationale for using the average
case is that for every machine operation that takes more than the average-case execution time, there is
a machine operation that takes less than the average-case execution time. Therefore, products should
be completed on time if scheduled by average-case. In the case of a single-machine process plan, the
machine is not scheduled to start its machine operation at a time equal to the deadline minus the worst-
case machine time, but rather at a time equal to the deadline minus the expected machine duration.
Intuitively, the positive aspects of this policy are that it should increase machine utilization and allow
more orders to be accepted for production as compared to the scheduler based only on the worst-case
execution time. The negative aspects are that there might be multiple machines in a process plan that
requirelonger than their average-case durations. This can cause the process plan to be completed after
its deadline. The problem with scheduling based on the average case is that one order taking longer
than average, and thus completing after its deadline, will likely cause other orders to miss their deadlines
as well if the schedule is tightly packed. This can be seen by a simplified example of two orders. If
is scheduled to begin executing immediately after and requires many of the machines that were
used by , then, if takes more than its average time, will be late even if it takes its average time.

5.3 Performance Results

In order to compare the effectiveness of the HLS-Spring system with the other two schedulers, we
evaluated each in four different environments. Each environment is characterized by the amount of
time each machine took with respect its expected average-case duration, which was always defined
as one-half of its WCET. In the first environment, machines executed for exactly their average-case
duration with no variance. In the second environment, actual machine times were drawn from normal
distributions with mean equal to the expected mean of the machine, with variance equal to the expected
mean as well. For example, each time was executed, the actual duration was drawn from a normal

9

distribution with seconds and seconds. In the third environment, machines in reality
consistently required much more time than expected—actual durations were drawn from distributions
of mean equal to WCET and variance equal to 1 second. For , this meant drawing from normal
distribution with seconds and second. In the last environment, machines consistently
took much less time than expected–actual durations were drawn from distributions of mean equal to

WCET and variance equal to 1 second. For , this meant drawing from normal distribution
with seconds and second.

Each of these environments is presented and discussed separately. For each of the four environments,
10 scenarios were generated. The average number of arrivals for each scenario is 73.9, with a standard
deviation of 1.04. Each scheduler was executed on each of the 10 scenarios. The tables contain values
for 10 scenarios of 10 minutes. Each entry in the table is the average over the 10 scenarios, with the
standard deviation in parentheses.

Worst-Case Scheduler Average-Case Scheduler HLS-Spring

On-Time Executions 38.00 (1.84) 55.40 (1.80) 42.30 (2.49)
Late Executions 0.00 (0.00) (0.10) (0.30) 0.00 (0.00)
Average Earliness 9.21 sec. (0.16) 0.47 sec. (0.17) 19.46 sec. (0.60)
Average Lateness 0.00 sec. (0.00) 1.10 sec. (3.30) 0.00 sec. (0.00)

util (planned) 11.65% (0.98) 7.27% (0.38) 12.33% (1.08)
util (planned) 23.31% (1.96) 14.55% (0.79) 24.66% (2.12)
util (planned) 48.97% (2.93) 28.96% (1.26) 51.86% (3.11)
util (planned) 35.78% (1.86) 24.22% (1.32) 37.86% (2.67)
util (planned) 23.39% (0.96) 11.93% (0.48) 24.79% (1.01)
util (planned) 67.04% (3.75) 58.14% (2.68) 87.31% (6.01)

util (actual) 5.83% (0.51) 7.27% (0.38) 6.15% (0.52)
util (actual) 11.65% (0.98) 14.55% (0.79) 12.33% (1.08)
util (actual) 24.48% (1.46) 28.96% (1.26) 25.94% (1.57)
util (actual) 17.89% (0.96) 24.22% (1.32) 18.94% (1.33)
util (actual) 11.71% (0.46) 11.93% (0.48) 12.37% (0.51)
util (actual) 32.50% (1.87) 58.14% (2.68) 43.67% (3.00)

Table 1: Performance When Machines Take Exactly Their Expected Time

Machines that take exactly their expected time. When machines perform exactly as expected, with no
variance, the Average-Case Scheduler performs the best–as shown in Table 1, it successfully completes
the most orders on time (55.40), and completes on the average within a second of their deadlines
(0.47 sec.). Machine utilization is half the expected value in the case of the Worst-Case Scheduler,
because machines always take exactly half of the time allocated, and the Worst-Case Scheduler does not
reschedule. The machines were slightly more utilized in the HLS-Spring system as compared to the
Worst-Case Scheduler, because process plans finish in half of the time expected, and the HLS is able
to reclaim time in the schedule that it had previously allocated to an order that completes early. This
is reflected in the planned utilization of : 87.31%. In the case of the HLS-Spring, the expected
utilization reflects that a time unit on a machine can be scheduled for two different operations and
thus is counted twice. In this case, it is theoretically possible for a machine to be planned for more
than 100% utilization. The reason why machines are not more utilized in the HLS-Spring system is
because, as machines take less than their worst-case time, the HLS’ view of the world is increasingly less
accurate—machine operations are not occurring at the same time as it expects. Therefore, when it places

10

an order in its schedule, and eventually submits the order to Spring, Spring often cannot guarantee the
time, because another process plan is currently executing. Therefore the order is rejected. The reason
why this does not cause the HLS-Spring to be unable to submit any orders is because as orders complete,
(a) the HLS view of the world becomes less uncertain, and (b) the HLS is able to reuse the space
previously allocated to the just-completed order. A reason why machines in general are not utilized more
by any of the three schedulers is because of the mix of orders: given these particular arrival rates for the
four process plans, is the bottleneck resource, and indirectly controls the utilization of the other five
machines. Because the Spring scheduler reschedules as machines take half of their worst-case durations,
process plans finish much earlier than anticipated (19.46 seconds on the average). In future work, we
intend on exploiting more of the information retained by Spring to attempt to reduce this time, in an
effort to reduce the amount of buffer space required for products leaving the workcell. It should be
noted that is is unreasonable to expect machines to always execute for their expected durations. As such,
this environment is meant solely as a baseline.

Worst-Case Scheduler Average-Case Scheduler HLS-Spring

On-Time Executions 38.30 (1.18) 25.10 (4.04) 42.20 (2.52)
Late Executions 0.00 (0.00) 30.40 (4.15) 0.00 (0.00)
Average Earliness 9.79 sec.(0.54) 4.88 sec. (1.04) 17.79 sec. (1.08)
Average Lateness 0.00 sec. (0.00) 6.84 sec. (1.23) 0.00 sec. (0.00)

util (planned) 12.05% (0.78) 7.29% (0.52) 12.81% (0.91)
util (planned) 24.12% (1.54) 14.53% (1.08) 25.60% (1.82)
util (planned) 50.77% (2.64) 29.25% (1.83) 53.86% (3.27)
util (planned) 35.72% (2.02) 23.48% (1.38) 36.36% (3.11)
util (planned) 24.30% (0.87) 12.37% (0.52) 25.78% (1.11)
util (planned) 65.54% (3.18) 58.08% (3.32) 84.44% (7.09)

util (actual) 6.20% (0.65) 7.24% (0.77) 6.57% (0.66)
util (actual) 11.60% (1.86) 13.82% (2.14) 12.32% (0.66)
util (actual) 23.55% (2.71) 27.26% (3.12) 24.95% (2.75)
util (actual) 17.97% (2.07) 23.46% (3.08) 18.20% (2.59)
util (actual) 12.33% (2.51) 12.60% (2.76) 13.12% (2.87)
util (actual) 32.37% (1.29) 55.86% (4.77) 42.72% (5.07)

Table 2: Performance When Machines Take Expected Time with Large Variance

Machines that take expected time with large variance. When machines require in reality on the aver-
age a time equal to its expected average but with large variance (Table 2), the cascading effect of multiple
orders missing their deadlines becomes evident in the case of the Average-Case Scheduler, which on the
average executes 30.40 process plans that complete after the deadline of the order has passed. Even
though there is a high utilization of machines (85.66% on), this is unacceptable for the Just-In-Time
approach. Because so many process plans complete after the deadline of the order, the Average-Case
Scheduler is inappropriate for the operation of the workcell. In comparing the HLS-Spring to the
Worst-Case Scheduler, the relatively large uncertainty in the view of the HLS is apparent. That is, the
HLS did not execute significantly more process plans than the Worst-Case Scheduler, for the reasons
discussed concerning the previous environment. In fact, both the Worst-Case Scheduler and the HLS-
Spring system performed approximately the same as the last environment, implying that both schedulers
are unaffected by variance in the execution time of machines, as long as the times are on the average as
expected.

11

Worst-Case Scheduler Average-Case Scheduler HLS-Spring

On-Time Executions 37.60 (1.27) 0.20 (0.40) 38.90 (1.14)
Late Executions 0.00 (0.00) 55.30 (2.41) 0.00 (0.00)
Average Earliness 5.25 sec. (0.17) 0.00 sec. (0.00) 9.99 sec. (1.08)
Average Lateness 0.00 sec. (0.00) 17.06 sec. (3.49) 0.00 sec. (0.00)

util (planned) 11.71% (0.87) 7.04% (0.55) 12.02% (0.86)
util (planned) 23.41% (1.75) 14.09% (1.11) 24.01% (1.76)
util (planned) 49.31% (2.71) 28.11% (1.83) 50.61% (2.73)
util (planned) 36.19% (2.40) 23.40% (1.22) 35.17% (2.03)
util (planned) 23.73% (1.04) 11.63% (0.60) 24.34% (1.12)
util (planned) 67.23% (3.91) 57.11% (3.57) 73.88% (5.89)

util (actual) 8.79% (0.83) 10.65% (0.81) 9.04% (0.82)
util (actual) 17.56% (1.36) 21.01% (1.88) 18.02% (1.36)
util (actual) 36.90% (2.19) 42.04% (3.09) 37.87% (2.22)
util (actual) 27.25% (1.84) 35.22% (1.86) 26.48% (1.53)
util (actual) 17.69% (0.83) 17.35% (0.93) 18.15% (0.87)
util (actual) 50.41% (2.87) 85.66% (5.43) 55.51% (4.32)

Table 3: Performance When Machines Take Consistently More Time Than Expected

Machines that take consistently more time than expected. The inadequacy of the Average-Case Sched-
uler is markedly apparent when machines take much longer than expected (Table 3): on the average,
it executed less than one (0.20) process that finished before its deadline. Again, because the HLS does
not correctly view the schedule of the low-level machinery, it is unable to significantly capitalize when
process plans complete early. However, performance is still comparable to the Worst-Case Scheduler:
38.90 process plans are completed on time by the HLS-Spring system, while the Worst-Case Scheduler
completed 37.69 process plans on time.

Machines that take consistently less time than expected. When machines take much less than ex-
pected time, the Average-Case Scheduler performs admirably, without executing any orders past their
deadlines. However, the HLS-Spring system performs almost as well as the Average-Case Scheduler,
and significantly outperforms the Worst-Case Scheduler. The only drawback to the HLS-Spring system
is that on the average each completed order must wait a significant amount of time in the buffer before
leaving the workcell (27.83 seconds vs. 14.10 seconds for the Worst-Case Scheduler). The reason why
the HLS-Spring system significantly outperforms the Worst-Case Scheduler in this environment, and
not in the other three environments, is because the inaccurate view of the actual status of an executing
process plan as maintained by the HLS exists for much less time than in the other three environments.
That is, the actual amount of time that an executing-order requires is much less. Given this, even if the
HLS’s view is inaccurate, it is inaccurate for much less time, and thus has little ramifications on other
process plans. Thus, fewer order submitted by the HLS are rejected by Spring.

5.4 Discussion

The importance of these four environments is that they capture phases of the normal life of a workcell.
It is expected that during the normal operation of the workcell, activities will take much longer than
expected, much shorter than expected, and as expected (with or without a large variance). Therefore, the
expected performance of implementing either the Average-Case Scheduler, the Worst-Case Scheduler, or

12

Worst-Case Scheduler Average-Case Scheduler HLS-Spring

On-Time Executions 38.10 (1.64) 54.90 (2.39) 52.90 (1.58)
Late Executions 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Average Earliness 14.10 sec. (0.25) 7.84 sec. (0.36) 27.83 sec. (0.77)
Average Lateness 0.00 sec. (0.00) 0.00 sec. (0.00) 0.00 sec. (0.00)

util (planned) 11.77% (0.92) 7.50% (0.42) 13.82% (1.00)
util (planned) 23.56% (1.79) 14.97% (0.84) 26.62% (1.97)
util (planned) 49.76% (2.55) 30.02% (1.25) 60.14% (2.76)
util (planned) 36.10% (3.49) 24.47% (1.65) 54.26% (2.82)
util (planned) 24.10% (0.78) 12.57% (0.39) 36.21% (1.87)
util (planned) 68.78% (2.98) 60.25% (2.95) 114.01% (13.07)

util (actual) 2.79% (0.46) 3.67% (0.36) 3.23% (0.49)
util (actual) 5.77% (0.46) 7.30% (0.48) 6.48% (0.49)
util (actual) 12.30% (0.99) 14.92% (0.76) 14.48% (2.08)
util (actual) 8.97% (1.00) 12.27% (1.07) 13.32% (2.04)
util (actual) 6.02% (0.26) 6.27% (0.26) 9.53% (1.29)
util (actual) 17.28% (0.86) 30.33% (1.75) 32.4% (3.91)

Table 4: Performance When Machines Take Consistently Less Time Than Expected

the HLS-Spring scheduling system should be evaluated across all four environments. The Average-Case
Scheduler has been shown to perform particularly poorly when machines durations are much longer
than the expected time (only 0.20 process plans were completed on-time in the third environment).
Hence, the Average-Case Scheduler should not be used. The Worst-Case Scheduler performs reasonably
well in all environments but results in low resource utilization, particularly when the average duration of
a machine execution is much less than expected (in the last environment, the actual machine utilization
of was only 17.28%). The HLS-Spring is appropriate for controlling a flexible manufacturing
workcell under these conditions, because it is effective in all four environments. In terms of on-time
executions, it performed as well as the Worst-Case Scheduler in three environments, and much better
in the fourth (52.90 vs. 38.10), and does not fail as the Average-Case Scheduler did in two of the
environments. During the normal life of a workcell, in which the workcell can operate in each of the
four environments, the HLS-Spring effectively manages the machine operations.

In addition, we foresee ways in which the performance of the HLS-Spring system can improve
performance. As mentioned, the machine utilization can be improved if the HLS uses more of the
reflective properties of Spring to improve its current state of the machinery. As discussed in Section 4.2,
Spring has the capability of providing more information as feedback. As the usage of this feedback is
developed in the HLS, the view of the current state of the world by the HLS will more reflect the true
state of the manufacturing environment. This will complicate the scheduling process of the HLS, but
should result in fewer process plans being rejected by Spring. With higher resource utilization and more
process plans executed, the advantage of the HLS-Spring system becomes more apparent.

6 Conclusions and Future Work

We have shown that the Spring real-time operating system can be used successfully in a dynamic flexible
manufacturing setting. The reflective properties of Spring enable it to either respond and adapt quickly,
or provide timely information to an outside agent such as the High Level Scheduler, which can then
guide the response of the system.

13

For each of four instances of a representative manufacturing environment, the HLS-Spring system
performs as well as or better than the single scheduler that bases its decisions on the worst-case execution
time of machines. In the fourth case, the HLS-Spring system significantly outperformed the Worst-
Case Scheduler. It has been shown that scheduling machine operations in this environment based on
average-case performance can in general lead to poor performance.

There are three main directions in which the research will continue. The first direction is to make
a more robust model of the flexible manufacturing environment. This includes removing some of
the simplifications imposed on the workcell itself, as well as investigating distributed scheduling across
multiple workcells. Some features we anticipate adding to the model of the workcell include limited
buffer space, a non-trivial transport system, and machines that can perform more than one operation
(multiple machines can perform the same operation, as well.) Both the High Level Scheduler and the
Spring kernel are capable of performing distributed scheduling, so it will be interesting to investigate
which is more appropriate given the semantics of the domain. The second direction we will pursue is to
more closely study the two-level scheduling system in hopes of determining how the system performs as
a function of the amount and type of information passed between the two levels. Thirdly, the postulated
improved performance when the HLS uses Spring’s ability to reply with more detailed status information
regarding executing process plans will be investigated. This should lead to improved performance in
each of the first three environments, in which the HLS Spring system performed only marginally better
than the Worst-Case Scheduler.

Acknowledgment

The author wishes to thank Professor Jack Stankovic for his important and constructive comments on
earlier drafts of this paper.

References

[1] R. Akella, Y. Choong, and S.B. Gershwin. Performance of hierarchical production scheduling pol-
icy. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, CHMT-7(3):225–
240, September 1984.

[2] J. Brown, D. Dubois, K. Rathmill, S. Sethi, and K.E. Stecke. Classifications of flexible manufac-
turing systems. FMS Magazine, pages 114–117, April 1984.

[3] J. A. Buzacott and J. G. Shanthikumar. Models for understanding flexible manufacturing systems.
AIIE Transactions, 12(4):339–349, December 1980.

[4] J. A. Buzacott and D. D. Yao. On queueing network models of flexible manufacturing systems.
Queueing Systems, 1:5–27, 1986.

[5] T.C.E. Cheng and S. Podolsky. Just-in-Time Manufacturing: An Introduction. Chapman & Hall,
London, 1993.

[6] M.S. Fox. ISIS: A retrospective. In Monte Zweben and Mark S. Fox, editors, Intelligent Scheduling,
pages 3–29. Morgan Kaufmann, San Francisco, 1994.

[7] S.B. Gershwin, R.R. Hildebrant, R. Suri, and S.K. Mitter. A control perspective on recent trends
in manufacturing systems. IEEE Control Systems Magazine, MCS-6(2):3–15, April 1986.

[8] S.C. Graves. A review of production scheduling. Operations Research, 29(4):646–675, July–August
1981.

14

[9] K. Hadavi, W.-L. Hsu, T. Chen, and C.-N. Lee. An architecture for real-time distributed
scheduling. AI Magazine, 7(4):45–61, Fall 1992.

[10] R. Hall. Zero Inventories. Dow Jones-Irwin, Homewood, Illinois, 1983.

[11] F. R. Jacobs. OPT uncovered: many production planning and scheduling concepts can be applied
with or without the software. Industrial Engineering, pages 32–41, October 1984.

[12] M.V. Kalkunte, S.C. Sarin, and W.E. Wilhelm. Flexible manufacturing systems: A review of
modeling appraoches for design, justification and operation. In Andrew Kusiak, editor, Flexible
Manufacturing Systems: Methods and Studies. North-Holland, New York, 1986.

[13] M.H. Kim and Y.-D. Kim. Simulation-based real-time scheduling in a flexible manufacturing
system. Journal of Manufacturing Systems, 13(2):85–93, 1994.

[14] D.J. Musliner, E.H. Durfee, and K.G. Shin. CIRCA: A cooperative intelligent real-time control
architecture. IEEE Transactions on Systems, Man and Cybernetics, 23(6), 1993.

[15] J. Orlicky. Material requirements planning. McGraw-Hill, New York, 1994.

[16] I.M. Ovacik and R. Uzsoy. Exploiting shop floor status information to schedule complex job
shops. Journal of Manufacturing Systems, 13(2):73–84, 1994.

[17] S.S. Panwalkar and Wafik Iskander. A survey of scheduling rules. Operations Research, 25(1):45–61,
January–February 1977.

[18] K. Ramamritham, J.A. Stankovic, and P.-F. Shiah. Efficient scheduling algorithms for real-time
multiprocessor systems. IEEE Transactions on Parallel and Distributed Systems, 1(2):184–195, April
1990.

[19] F.A. Rodammer and K. P. White, Jr. A recent survey of production scheduling. IEEE Transactions
on Systems, Man, and Cybernetics, 18(6):841–851, November 1988.

[20] N. Sadeh, S. Otsuka, and R. Schnelbach. Predictive and reactive scheduling with the Micro-Boss
production scheduling and control system. In Proceedings, IJCAI-93 Workshop on Knowledge-Based
Production Planning, Scheduling and Control, Chambery France, August 1993. International Joint
Conferences on Artificial Intelligence (IJCAI).

[21] M. Sepehri. Just-in-Time, not Just in Japan. American Production and Inventory Control Society
(APICS), Falls Church, VA, 1986.

[22] S.F. Smith, P.S. Ow, N. Muscettola, J.-Y. Potvin, and D.C. Matthys. OPIS: An integrated
framework for generating and revising factory schedules. Journal of the Operational Research
Society, 41(6):539–552, 1990.

[23] J.A. Stankovic. Misconceptions about real-time computing. IEEE Computer, 21(10):93–108,
1988.

[24] J.A. Stankovic and K. Ramamritham. The Spring kernel: A new paradigm for real-time systems.
IEEE Software, 8(3):62–72, May 1991.

[25] J.A. Stankovic and K. Ramamritham. A reflective architecture for real-time operating systems. In
Sang Son, editor, Principles of Real-Time Systems. Prentice-Hall, 1994.

[26] O.W. Wight. Manufacturing resource planning: MRP II: unlocking America’s productivity potential.
Van Nostrand Reinhold, New York, 1984.

15

