Static Scheduling of Pipelined Periodic Tasks
in Distributed Real-Time Systems

Gerhard Fohler Krithi Ramamritham

Department of Computer Science
University of Massachusetts

Ambherst, MA 01003 *

Abstract

Many distributed real-time applications involve periodic activities with end-to-end
timing constraints that are larger than the periods. That is, a new instance of a periodic
activity will come into existence before the previous instance has been completed. Also,
such activities typically involve communicating modules in a distributed system where
some modules may be replicated for resilience. For such activities, pipelined execution
allows us to meet the various resource and timing constraints imposed on them.

In this paper, we discuss an approach to dealing with the pipelined execution of
a set of periodic activities that have the above characteristics. It can be called a
meta-algorithm since it works in conjunction with another scheduling algorithm — one
that creates the actual schedules. The idea is to exploit the existence of many such
scheduling algorithms, which, however, typically work with activities whose deadlines
are equal to or less than their periods. Our meta-algorithm invokes such a scheduling
algorithm, perhaps multiple times, to generate a pipelined execution for the tasks.
Effectiveness of the approach is shown via simulation studies.

Relevant Technical Area: Distributed Real-Time Systems

*This work has been supported by National Science Foundation under grant IRI-9208920.

1 Introduction

Many distributed real-time applications involve periodic activities with end-to-end timing
constraints that are larger than the periods. That is, a new instance of a periodic activity
will come into existence before the previous instance has been completed. For example,
consider a computerized assembly plant where a camera observes incoming parts of many
types, which arrive at a regular rate on a conveyor belt, and sends commands to one of
many robot arms. Each arm is designed to pick up a specific part and so the camera, upon
observing a particular part, must instruct the robot designed for that specific part. In this
case, the object must be recognized, matching must be done with the models of the parts
kept in memory, the robot identified, and command sent to it by the time the object reaches
the robot. Clearly, many modules and resources are involved in such activities and it will be
inefficient for the system to complete handling one part before considering another. That is,
new parts may arrive with a period which is smaller than the deadline for handling a part.
For such activities, pipelined execution allows us to meet the various resource and timing
constraints imposed on them. This way, instead of waiting for the completion of handling
a part before starting another, pipelining allows handling parts as they arrive. Activities
such as this are designed as communicating modules where some modules may be replicated
for resilience in a distributed real-time system. Thus, besides periodicity constraints, the
activities and their components have resource, precedence, communication, and replication

constraints.

In the above example, if the “parts” being handled are hazardous chemicals, then if a
robot does not pick up a part in time, it can lead to a catastrophe. The activities then become

safety-critical. We must make sure that under all circumstances a catastrophic situation will

be avoided.

A lot of work has been done for scheduling periodic tasks, but only a subset of the
above constraints have been considered. [7] considers the allocation and scheduling of simple
periodic tasks having replication requirements on a multiprocessor. The algorithm reported
in [1] aims to balance the loads across the sites while allocating replicated periodic tasks in a
distributed system. Here periodic tasks are independent, simple entities, without precedence
or other constraints. The only requirement is that replicates of a task be on different sites.
More recently, several scheduling algorithms have been reported for more complex task
models. For example, [9] and [16] discuss the scheduling on single processors of periodic
tasks with arbitrary deadlines; these do not consider precedence constraints. Precedence
constraints are considered in [10], and [3], but these solutions are for single processors.

These, as well as [2] assume tasks whose deadlines are less than or equal to the periods.

From our discussion in the previous paragraph, it should be clear that priority-driven
approaches, including those that use static priorities with feasibility checking are not yet
mature enough to handle all the constraints mentioned earlier and provide such a guarantee.
For this reason, resources needed to meet the deadlines of safety-critical tasks are typically
preallocated and the tasks are usually statically scheduled such that their deadlines will
be met even under worst-case conditions. In this paper we discuss an approach to stati-
cally scheduling the pipelined execution of a set of periodic activities that have the task

characteristics described above.

Many scheduling algorithms have been proposed for statically scheduling precedence con-
strained tasks in distributed systems, where task deadlines are equal to or less than their
periods (for example, [18, 14, 6]). Given a set of periodic tasks, such a scheduling algorithm
attempts to construct a schedule of length lem, the least common multiple of the task pe-
riods. The schedule specifies the exact times at which the tasks will begin execution!. A
real-time system with the given set of tasks then repeatedly executes its tasks according to

this schedule every lem units of time.

Suppose we consider two tasks £; and ¢ with periods 3 and 4 and deadlines 5 and 7
respectively. Then the lem is 12. During this time four instances of ¢; and three of ¢, will
arrive. However, at time 12, the fourth instance of ¢; and the third instance of ¢, may still
be in the system. So we cannot simply take the schedule generated until time 12 and use it
as the static schedule. Thus, since tasks can have deadlines larger than their periods, some
subtasks might execute after lcm. How do we then construct a feasible static schedule? That

is the question answered in this paper with the help of the meta-algorithm.

The meta-algorithm invokes such a scheduling algorithm, perhaps multiple times, to
generate a pipelined execution for the periodic tasks. After an invocation, the meta-algorithm
determines if the schedules obtained so far are sufficient to produce the static schedule and,
if not, it determines the inputs — the tasks and their requirements — for the next invocation.

The length of the static schedules produced will be some multiple of the lem.

We have conducted performance studies that indicate that the idea of looking for feasible
schedules beyond the traditional lem and furthermore looking for schedules with length
greater than the lem is very effective in finding feasible schedules for tasks whose deadlines

exceed the periods.

The rest of the paper is organized as follows: Section 2 summarizes the basic ideas
underlying our approach. Detailed description of the steps in the algorithm are presented

in Section 3. An evaluation of the algorithm can be found in Section 4. The paper is

1 As opposed to priority driven approaches, which decide which task to run at run-time.

summarized in Section 5.

2 Review of the Basic Ideas Underlying our Approach

In this section, we present the basic ideas underlying our approach to static scheduling. The
goal is to produce the shortest repeating schedule, one which can be determined off-line and

then used repeatedly on-line.

We consider distributed systems consisting of a number of sites, with a set of resources
attached to each site. We assume communication media and protocols that have predictable
communication delays such that knowing the arrival time and characteristics of a message,
we can predict the time by when the message will be delivered [12]. The scheduler takes

these worst-case delays into account in determining the start times for communicating tasks.

Before we consider pipelining scenarios, we examine the static scheduling of non pipelining
scenarios. For these, the length of the shortest repeating schedule is equal to the lem of the

periodic tasks.

2.1 Scheduling Tasks with Deadlines not Greater than Periods

Let us have a closer look at how static schedules are constructed, that is, how the shortest
repeating schedule is determined with static scheduling algorithms, e.g., [18, 14, 6]. Given
tasks with deadlines, precedence constraints, resource requirements (such as specific require-
ments for processors, memory, etc.), and replication constraints, these algorithms determine
a static schedule which specifies the exact times at which the tasks will begin execution. In
contrast, priority driven approaches determine at run-time which task to execute next based

on the priorities of the tasks ready at a certain time.

We will illustrate our description with a very simple example. This example is not
intended to show the details of how the algorithms cited above work, but is intended to
motivate the meta algorithm proposed in this paper, one that capitalizes on the existence of

such algorithms.

The system under consideration consists of two processing sites and one communication
medium. We assume two tasks, A and B, consisting of one subtask (Ao, Bo) each. The
computation times are ¢y, = 3 and cg, = 3. T* denotes the k-th instance of task 7' in the

schedule. The periods p; and deadlines dl;, 1 € A, B are:

‘ p; dl; site
A3 5 0
B|5 6 1

At time 0, all tasks are considered ready to start?. The set of ready subtasks in our

example is A, BY. The algorithm then selects ready subtasks, possibly allocating them to
the sites in the system. Often, a heuristic function or estimate is used for efficient selection.
As subtasks are scheduled, the algorithm keeps track of precedence relations and adds eligible
subtasks, namely those with fulfilled precedence constraints, to the set of ready subtasks.
At their periods, tasks become ready to start as well, and their subtasks are added to the
set that is to be scheduled. In our example we may get the (partial) schedule depicted in

figure 1, once time has progressed to 7:

site 1| B

site0| A9 [AL |A?Z]

Figure 1: Schedule Construction for Non Pipelined Tasks - Time 7

Thus the search proceeds along the precedence relations until a valid schedule is found or
deadlines are violated. In the latter case, limited backtracking is performed, which undoes
one or more previous decisions, thereby following a different search path. When the search
encounters lem, all tasks have completed execution. The lem in our example is 15, and the

corresponding schedule in figure 2:
lem

sitel| BS|&

site0] A% | At | 4 | A | A* |

Figure 2: Schedule Construction for Non Pipelined Tasks - Time lem

Five instances of Ay and three of By have completed. The created schedule is “self
contained”, i.e., all task executions are completely confined within the lem interval. No task

execution goes beyond the lem. Thus the lem is the shortest repeating schedule in this case.

Once tasks become pipelined, we need to look for shortest repeating schedules that are

found later than lem or longer than the lem, as we will show next.

2We do not consider offsets in this example; they can be handled by the algorithm.

2.2 Scheduling Tasks with Deadlines Greater than Periods

Let us now examine what happens when we apply the above method for constructing the
shortest repeating schedule to pipelined tasks. We extend our example by adding a subtask
to task A: it now consists of Ag and A;. There is a precedence constraint and a message from

Ag to A;. The transmission of the message takes one time unit. A; resides on processing
site 1, ca, = 1.
We start as in the non pipelining case, and get the schedule depicted in figure 3 once we

reach time 7:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
site 1| BY [iE]4e] B [at
site0| A9 | Ay] A2 |

Figure 3: Schedule Construction for Pipelined Tasks - Time 7

Note that task A has not completed when its next instance is ready at 3, thus requiring
pipelining. A;, A’s last subtask finished by 5 and thus kept its deadline. Search proceeds

and we reach the lem, figure 4:
lem

I0,1,2,3,4,5,6,7,8,9,10,11,12,13,14

sitel| By []AS| BY |Ai|Bi| |42 B2 |4%|BZ]

site0] A2 | Ar | a2 | A | A]

Figure 4: Schedule Construction for Pipelined Tasks - Time lecm

The last instances of Ag, Aj and By, BZ are completed. However, the last instance of A,
A%, still needs to be scheduled. Thus we cannot “cut out” this schedule to form the shortest
repeating schedule, but need to search on. A} overlaps the lem boundary. We will call such

subtasks overlapping subtasks or overlaps for short.

We now try to continue constructing the schedule in the same way as before. The
situation encountered at lem is similar to that at time 0: both A and B are ready to start.
The difference is that we have to schedule the overlap instance A} as well. So we add the
overlap to the set of tasks ready at time 0, and correctly reflect the situation at lem. The set
of subtasks ready to be scheduled is now A}, Aj, B;. We proceed with schedule construction

and get the schedule shown in figure 5 once we reach the next lem, 2 x lem = 30:

lem 2 x lem
|11|12|13|14415I16|17|18|19|20|21|22|23|24|25|26|27|28|29¥
site 1| B2 |A3|B2|B3|At| B3 |A3| Bi |A¢|Bi| |A7| B: |4%|B:]

SN IH Y Y Y Y Y R Y

Figure 5: Schedule Construction for Pipelined Tasks - Time 2 X lem

The situation at the end of the schedule is similar to the previous one, the last instance
of A;, A%, has not completed. Counting the number of instances completed in the interval
[lem,2 X lem) gives five instances for Ay and A; and three for B,. These are the numbers
required for an interval of length lem. What happened is that the overlap instance of A;, at
2 x lem, A? was made up for by the overlap instance A} at lem. The set of overlaps at the
lem boundary did not increase, or in other words, the set of overlaps at 2 x lem is a subset
of that at lem. We can see further, that all deadlines and precedence constraints are kept
in the new schedule. That means, if we “cut out” [lem,2 X lem) and execute this schedule
repeatedly at runtime we will get a feasible schedule. We have found a shortest repeating

schedule. Note that the schedule for [0,lecm) is needed once at system start.

So, we execute the following steps to schedule pipelined tasks: Firstly, a normal search
within the first lem is performed. If no solution is found then, we arrange the task set to
reflect the situation at lem, by adding the overlap subtasks to the the ones we started with
at time 0. Again, we search for a schedule within lem, but with the new set of tasks. If no
schedule is found and the next lem is encountered, we check for an additional termination
condition: if the set of overlaps is a subset of that at the previous lem and the overlaps

executed, we have found a feasible schedule which can be repeated at runtime.

As we will detail in section 3, these steps form a meta algorithm, which applies the static
scheduling algorithm for non pipelined tasks and takes over control at lem boundaries. As
will be explained later, this algorithm is also capable of finding schedules at higher lems;
further, the schedule lengths can be multiples of lem.

3 Detailed Description of the Algorithm

We will now give details about the determination of the tasks to consider at the beginning

of each lem, the termination condition, and about the other steps of our meta algorithm.

3.1 Determining the Tasks to be Scheduled at the Beginning of
an lem

Our goal is to determine the set of tasks to be scheduled at the beginning of each lem so

that it allows static scheduling algorithms for non pipelined tasks to be used.

The new set of tasks to be scheduled must consist of the current overlaps along with all
tasks that become ready at lem, the latter being the same as that at time 0. The timing and
other parameters of the overlaps will remain the same as in the previous lem. For subtasks
that executed partially during the previous lem, the execution time is reduced by the time
they have already executed. Those of the additional tasks will reflect the fact that they start

after time lem.

If non preemptive scheduling is used, we need to take special care of subtasks that started
execution before lem and did not complete by lem. Specifically, by adjusting its start time
and deadline, such a subtask is forced to be continued immediately after lecm and at the

same site.

3.2 Termination of the Algorithm

A schedule is successfully found at (I x lem) when either (a) all the subtasks of the task
set have been scheduled or (b) the set of unscheduled subtasks is a subset of the set of
unscheduled subtasks at the end of some previous lem boundary, say (k xlcm). The resulting
schedule will have a length of (({ — k) x lem). Note that schedules of length n x lem, n =
1,2,... are covered by this condition. If no schedule is found at [x lem, the meta algorithm

rearranges the task set as detailed in the previous section and tries again.

We need to extend (b) to handle partially executed overlaps. If a subtask has only been
partially executed at k x lem, its subset condition is fulfilled if the remaining execution time
at this lem is smaller than or equal to that at a previous lem and at least a part of it has
been scheduled. The latter requirement is necessary to avoid the situation where a subtask
is not scheduled at all within an lem. If it is not scheduled at all, its remaining time is
the same at the end and the beginning of the lem, thus fulfilling — incorrectly — the subset

condition.

There are three reasons why it may not be possible to find a feasible schedule for a task
set. Firstly, the set might be infeasible. Secondly, given our task characteristics, knowing if
there is a feasible schedule is an NP-hard problem, that is, a computationally intractable.
For this reason, search-based scheduling algorithms are designed to be terminated beyond

a certain point. However, this means that in some cases, the scheduling algorithm may be

terminated prematurely, even if there is a feasible schedule. Thirdly, with respect to the
meta-algorithm, in pathological cases the set of overlaps may not converge or may even
oscillate. This is the reason for the introduction of mazlem, which is used to terminate the
meta algorithm at some predefined, arbitrary multiple of lem. In practice we find that in a

very large majority of the cases, a feasible schedule is produced with our approach.

3.3 Backtracking

Within lem boundaries, backtracking is provided by the features of the basic algorithm.
That is, if a search-based static scheduling algorithm, such as the one described in section
2.1 is unable to find a schedule by following a particular search path, typically, it would

backtrack in the search tree and try an alternative path.

In order to enable backtracking over lecm boundaries, we need to be able to reconstruct
the state of the task set at some previous lcm so that a different schedule could be attempted
for that lem. This can be achieved, e.g., by a stack of task sets, with one element for each

lem encountered.

3.4 Preparing Shortest Repeating Schedules

We cannot always simply cut out a feasible schedule found at lecm boundaries and use it as
the static schedule. Depending on why the subset condition found a feasible schedule, we
may need to adjust the number of instances and execution times. There are two possibilities

to consider.

One possibility is that the sets of overlaps of the pair of lem points under consideration
— for application of the subset condition for termination detection — are exactly the same,
including identical remaining execution times, as in the example in section 2.2. In that case,
the repeated execution of the cut out schedule will produce the correct number of instances

and execution times: it can be used without modifications.

The alternative situation occurs when the overlaps at the current lem are a proper subset
of that of a previously encountered lem, the remaining execution times at the current lem
are smaller, or both. In that case, we need to eliminate superfluous executions of overlaps

or adjust scheduled execution times.

Let O; denote the set of overlaps at 7 x lem. A task A has to execute U;kg:lﬂ times in
a schedule between lecms k and I. Suppose O; C Of and A € O and A ¢ Oy as illustrated
in figure 6. A schedule is found at lem [, and in the last lcm, the algorithm managed to

schedule A before the lem boundary, which was not the case at lem k. Therefore, the number

k xlem, Oy = {4, B} I xlem, O, = {B}
found schedule A | B

I option

IT option| A | B

Figure 6: Adjusting the Number of Instances

. . I—kYxl
of executions of A is now (=klxlem

+ 1, that is, one too many. Either the overlap instance of
A at lem k or the last one before lem I can be eliminated. Note that both instances fulfill
all timing requirements and the number of instances in the total schedule is correct in either

case. Thus the repetition of the schedule will have feasible task executions.

Let us now assume a schedule found between lems k and [, k < [, and an instance of A is
an overlap at lem [, A'™ with remaining execution time ¢ iem;. At lcm k, it has an overlap
instance A'*™* with c jiem,. The total execution time given to A in [k x lem, [x lem) has to

be Hz)r:ﬂ X ca. If ¢ y1em; < cy1em, (subset condition), a repeated execution of the schedule

will assign too much execution time to A: ¢ iem, + (H})}:ﬂ — 1) X ca + (ca — cptemy) =
(I—k)xlem

- X €4 + Cytem, — C41em; Therefore, the scheduled execution time of either A™ or

A'*™ has to be decreased by cyiem, — C41em;. See figure 7 for an example.

kExlem, ™ =3 I xlem, 5™ =2

found schedu1e| A | B | A | A

Ioption] 4 [B | [4]

II option| A | B |

Figure 7: Adjusting the Execution Times

3.5 Pseudo-code for the Complete Algorithm

Let overlaps[i], 1 = 1,...,k denote the set of overlaps at ¢ x lem. stack[i], 1 > 0 is a stack

to store the task set at lem boundaries.

10

meta algorithm
init) current_lem := 0.
stack[0] := original taskset

taskset := original taskset.

start) do
current_lem := current_lem + 1.
apply basic scheduling algorithm.
if solution found then exit.
until £ x lem reached.
overlaps := {all subtasks}.
foreach completed subtask t:
overlaps := overlaps \ {t}.
foreach : = 1,...,current lem — 1
if (overlaps[i] subset overlaps[k))
then feasible schedule between i and current lcm found (— exit).
done.
stack[current lem] := taskset
taskset := taskset U overlaps|current_lem)].
foreach subtask T; € overlaps[current lcm|:
adjust timing parameters of T;
done.
if current_lem > mazlem exit
Continue at start.

end meta algorithm

backtrack
if lem boundary not crossed
perform normal backtracking (e.g., undo last scheduling decision
and prepare to take a different path
else
taskset := stack|current_lcm]
current_lem := current lem — 1
endif
end backtrack

11

4 Evaluation of the Algorithm

The results of the experiments presented in this section show that the idea of proceeding
with the search to find schedules even at higher multiples of lcm and of permitting schedules

with lengths that are multiples of lems helps produce feasible schedules.

To test the algorithm, it was run under various parameter settings, tightness of deadlines
and periods. We choose the Success Ratio as the performance metric. If the algorithm found
feasible schedules for F' task sets out of a total of T, the success ratio (SR) is said to be
(F/T). Each point in the given plots was produced by (around) 300 different periodic task

sets.

The system is assumed to consist of 10 sites and 5 communication channels. The task
sets were generated by a graph generation package [17]. It can be used to construct acyclic,
directed graphs of arbitrary connectivity. The complexity and other characteristics of the
generated task (graphs) can be specified by various parameters. The computation time of
each subtask is uniformly distributed between 50 and 100 time units. The communication
cost attached to an arc in the precedence graph is (comm_ratio (CR) x C) where C is the
average computation time of a subtask. The trends seen for different C' R values are similar.
Hence we show results only for experiments with a C'R value of 0.4. Some of the subtasks

were duplicated, others were not. The graphs had average sizes of around 200.

We used the following scheme to test the algorithm under different deadline and periodic-
ity constraints: Two parameters, deadline_lazity_factor (df) and period_lazity_factor (pl)
were used to set overall deadlines, D, and periods, P, respectively, as follows:
P = total cost x pl and D = P x df where total_cost is the sum of the computa-
tion as well as communication within a task. We experimented with pl values between 0.4
and 1.2 and df values between 1.0 and 2.5.

Note that df > 1 means that the deadlines of the task set are larger than the periods. A

pipelining algorithm can exploit the fact that tasks can execute beyond their periods.

4.1 Results

We obtained a large number of results from our simulation study, but will confine ourselves

here to those concerning the detection of pipelined schedules only.

Note that each plot is comprised of 3 plots, one for each value of period_laxity.

12

Overall Comparison — Success Ratio: Figure 8 gives the success ratios when pipelin-
ing is exploited (using the meta algorithm) and when it is not (that is, when the search for
the schedule just stops at the end of the first lem). The latter corresponds to using just the
basic algorithm, one that looks for a schedule between 0 and Iem. Since the meta algorithm
invokes the basic algorithm, it finds non pipelining schedules as well, i.e., when the first

application of the basic algorithm in the first lem finds a schedule.
Recall that deadlines are larger than periods when df > 1.

meta algorithm - exploiting pipelining ®——

basic algorithm only - no pipelining®——

pl 0.4 0.8 1.2

sSr

2.0

1 1 1 1 1
n o 1n o un

.
N = = N N

line Factors

Figure 8: Comparison of Success Ratios: Meta Algorithm (exploiting pipelining) and Basic
Algorithm (no pipelining)

The meta algorithm is clearly needed. For pl = 0.4, only the meta algorithm finds
schedules and for pl = 0.8 it contributes about 1/3 of the schedules constructed. Just
stopping after attempting to schedule between 0 and lem may at times fail to produce a
schedule when in fact the task set is feasible. Note, however, that a deadline larger than the
period means that pipelining is allowed, but not always necessary. This is because even if
the deadline of a task is larger than its period, it is still possible that it will finish execution
before the start of the next instance, because the task’s laxity may be high. This is shown by
pl = 1.2: the laxities of the tasks are high compared to the computation and communication

requirements of the tasks, so the basic algorithm can find all the schedules.

13

Schedule Boundaries: We investigated up to which multiple of the lem the algorithm
had to search to find a schedule, i.e., at what outmost boundary the schedules were found.

Figure 9 plots the success ratio for different schedule boundaries.

Pipelining requires higher multiples of lem to be searched, whereas non pipelining situ-
ations were found up to multiple 1, i.e., within the first lem. The “most outmost” schedule

was found between 7 X lem and 11 x lem.

T T T T T T T T T T T T
lem# lo—
‘ lem# 2+--
pl 0.4 0.8 1.2 lem# >=3=
1 F —o—o—2 g
0.8 | i
b
@ 0.6 F -
0.4 1
e L
0.2 | //* / i
; / /
. / o /
: /o /
0 -,,EL—’Q/_@_@,,,,Eg,,f,a,—,f,ﬂ,,,\D,,,,E}%,%E rrrrrrrrrrrrrrrrrrrr B
W © 1h © n o 1 6 n o 1w o n
T 0N N NN+ NN

Figure 9: Success Ratio w.r.t Schedule Boundaries

Lengths of the Schedules: We examined the lengths of the schedules found. Figure
10 plots the success ratio of various schedule lengths. Pipelining requires longer schedule
lengths. All non pipelining schedules, of course, have a length of one lem. The longest

schedule length found was 4 x lem.

Before we conclude this section we note that for the cases tested here, we found that
very little improvement resulted from allowing backtracks even though a very large increase

in overheads occurs. This conforms to the observation made in [14] for non-pipelined tasks.

14

length lcme—
length 2*lcm+--

sSr

Figure 10: Success Ratio w.r.t. Schedule Lengths

5 Summary

In this paper we have been concerned with the problem of guaranteeing the execution of real-
time tasks that require pipelined execution. Since previously proposed algorithms already
handled tasks whose deadlines are less than or equal to their periods, we wanted to exploit
them. Toward this end, we developed an approach that makes use of one such scheduling

algorithm for scheduling within lem and “takes over control” only at lem boundaries.

The basic idea behind our approach is the following: Static schedules need not be re-
stricted to be of length lcm; neither do they have to start with tasks that arrive at time 0
and end at lem. Any schedule of length n x lem (n = 1,2,3...), and hence, an interval
[t x lem, (t4+n) X lem) (1 =0,1,2,3...) will do. So the algorithm may start search at
time 0, continue to lecm, and if no feasible schedule is found, search is continued with the
not yet scheduled subtasks and all subtasks of the original task set. Each time a multiple of
lem is reached, this procedure is repeated. Once a feasible schedule (as precisely defined by
the termination conditions) has been found, the portion of length n X lem, corresponding

to the shortest repeating interval, is “cut out” and used at run-time as the static schedule.

15

As our experiments show, this simple approach is very successful in finding the schedules.

Since the meta algorithm applies a static scheduling algorithm to construct schedules, it

can be used with scheduling under mode changes [5] and aperiodic task scheduling [4].

References

1]

2]

7]

8]

[9]

J. A. Bannister and K. S. Trivedi. “ Task allocation in fault-tolerant distributed systems”.
In Acta Informatica, 20, Springer-Verlag, 1983.

J. Sun, R. Bettati, and J. W.-S. Liu. “An End-to-End Approach to Schedule Tasks
with Shared Resources in Multiprocessor Systems”. In Proc. 11th IEEE Workshop on
Real-Tvme Operating Systems and Software.

H. Chetto, M. Silly, and T. Bouchentouf. “Dynamic Scheduling of Real-Time Tasks
under Precedence Constraints”. Real-Time Systems, 2(3):181-194, Sept. 1990.

G. Fohler. “ Joint Scheduling of Distributed Complex Periodic and Hard Aperiodic Task
s in Statically Scheduled Systems”. In Proc. 16th Real-Tvme Systems Symposium, Pisa,
Italy, Dec 1995.

G. Fohler. Realizing Changes of Operational Modes with Pre Run-Time Scheduled Hard
Real-Time Systems. In Proc. of the Second International Workshop on Responsive Com-
puter Systems, Saitama, Japan, October 1992.

G. Fohler. “Analyzing a pre run-time scheduling algorithm and precedence graphs”.
Research Report 13/92, Institut fiir Technische Informatik, Technische Universitat Wien,
Vienna, Austria, September 1992.

C.M. Krishna and K.G. Shin , “On Scheduling Tasks with a Quick Recovery from Fail-
ure”, IEEE Transactions on Computers, Mjay 1986, pp 448-155.

J.P. Lehoczky, Sha, L. and Strosnider, J. “Enhancing Aperiodic Responsiveness in a Hard
Real-time Environment”, IEEE Real-Time Systems Symp. 1987.

J.P. Lehoczky. “Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Dead-
lines”, IEEE Real-Tvme Systems Symp. 1990, pp. 201-212.

[10] M.G. Gonzalez Harbour, and J.P. Lehoczky. “Fixed Priority Scheduling of Periodic

Tasks with Varying Execution Priority”, IEEE Real-Time Systems Symp. 1991, pp. 116-
128.

16

[11] G. Le Lann, “The 802.3D Protocol: A Variation on the IEEE 802.3 Standard for Real-
Time LANs”. Technical Report, INRIA, July 1987.

[12] N. Malcolm and W. Zhao. “Hard Real-Time Communication in Multiple-Access Net-
works”, Real-Time Systems, Vol 8, No 1, January 1995, pp. 35-78.

[13] K. Ramamritham, J. Stankovic, and W. Zhao, “Distributed Scheduling of Tasks With
Deadlines and Resource Requirements,” IEEE Transactions on Computers, Vol. 38, No.

8, August 1989, pp. 1110-1123.

[14] Ramamritham, K. “Allocation and Scheduling of Precedence-Related Periodic Tasks”
IEEE Transactions on Parallel and Distributed Systems, Vol 6, No 4, April 1995, pp.
412-420.

[15] K.W. Tindell and A. Burns and A.J. Wellings. “Allocating Real-Time Tasks (An NP-
Hard Problem Mad Easy)”, Real-Time Systems, Vol 4, No 2, June 1992, pp.145-166.

[16] K.W. Tindell and A. Burns and A.J. Wellings. “An Extendible Approach for Analyzing
Fixed Priority Hard Real-Time Tasks”, Real-Tivme Systems, Vol 6, No 2, March 1994,
pp.-133-152.

[17] A. Welzl. GRAPHGEN - Generation of Precedence Graphs”. MARS Praktikum, Vi-
enna, Austria, Dec. 1989.

[18] J. Xu and D. L. Parnas. “On Satisfying Timing Constraints in Hard Real-Time Sys-
tems”. IEEE Transactions on Software Engineering, 19(1):70-84, Jan. 1993.

17

