Efficient Transaction Management
& Query Processing

in Massive Digital Databases t

Mohan Kamath and Krithi Ramamritham
Computer Science Technical Report 95-93
Department of Computer Science
University of Massachusetts
Amherst MA 01003
{kamath,krithi} @cs.umass.edu

Abstract

We address several important issues that arise in the development of Massive Digital Database
Systems (MDDSs) in which data is being added continuously and on which users pose queries on
the fly. News-on-demand and document retrieval systems are examples of systems that have these
characteristics. Given the size of data, metadata such as index structures become even more important
in these systems — data is accessed only after processing the metadata, both of which will reside on
tertiary storage. The focus of this paper is on query and transaction processing in such systems, with
emphasis on metadata management.

The performance in these systems can be measured in terms of the response time for the queries
and the recency or age of the items retrieved. Both need to be minimized. The key to satisfying the
performance requirements is to exploit the characteristics of the metadata as well as of the queries
and updates that access the metadata. After analyzing the functionality and correctness properties of
updates, we develop an efficient scheme for executing queries concurrently with updates such that the
queries have short response times and are guaranteed to return the most recent articles. Secondly, we
address logging and recovery issues and propose techniques for efficiently migrating metadata updates
from disk to tape. Thirdly, considering the tape access needs of queries, we develop new tape scheduling
techniques for multiple queries such that the response time of queries is reduced.

Results of the performance tests on a prototype system show the superior performance of the
developed algorithms and reveal that to build high performance MDDSs it is imperative that we adopt
approaches that exploit the data and transaction characteristics.

Keywords: Concurrency Control, Transaction Management, Query Processing, Digital Libraries,
Multimedia Databases, Information Retrieval, Hierarchical Storage, Optimization, Performance

t Supported by the National Science Foundation under grant IRI - 9314376 and a grant from Sun Microsystems Lab

Contents

1 Introduction 1
2 Data and Transaction Characteristics 2
2.1 Data Model 2
2.2 Query and Update Processing 3
2.3 Performance and Correctness Requirements 4
3 System Architecture 6
4 Concurrency Control 8
4.1 Performance Results Lo 10
5 Data Migration, Logging and Recovery 13
5.1 Performance Results L 14
6 Multiple-Query Optimization and Scheduling Tape Accesses 15
6.1 Performance Results 19
7 Related Work 19
8 Scope for Future Work 20

9 Conclusions 23

1 Introduction

Massive Digital Database Systems (MDDSs) store peta-bytes of data with tera-bytes being added every
day [Wor94]. Examples of such applications include digital libraries for news, office article management
systems and earth observation satellite systems. To store, retrieve and manage such massive amounts
of digital data, there is a need to develop efficient MDDSs. MDDSs use hierarchical storage systems
[Wor94] consisting of primary, secondary and tertiary storage devices to handle the huge amounts
of data while achieving a better price-performance ratio. In such a hierarchical storage system, the
tertiary device holds all the data and metadata while the secondary and primary act as a two level
cache. While disk farms! provide secondary storage, tape libraries provide tertiary storage.

In MDDSs, data is typically retrieved based on contents. The most popular form of retrieval is
based on keywords that occur in articles. To retrieve data efficiently, metadata, in the form of indexes,
is required. Typically the size of the metadata is of the same order of magnitude as the data and hence
metadata will also reside on tertiary storage. The disk will only contain metadata that is currently
needed by queries or additions made by updates. Given this, metadata such as index structures become
even more important in these systems — data is accessed only after processing the metadata.

The focus of this paper is on high-performance query and transaction processing techniques for
MDDSs, with emphasis on metadata management. The performance of a MDDS can be measured in
terms of the response time for the queries and the recency or age of the items retrieved. Both need to be
minimized. The special characteristics of data and metadata, the high latency of tapes and the desired
performance criteria demand the development of novel approaches to query and transaction processing
in MDDSs. The key to satisfying the performance requirements is to exploit the characteristics of the
metadata as well as of the queries and updates to the metadata.

We are interested in MDDSs in which data is being added continuously and wherein users enter
the MDDS dynamically and pose queries on-the-fly. News-on-demand, i.e., digital library for news,
and on-line information retrieval systems have these characteristics. Here new articles are constantly
added to the database and the articles retrieved by the dynamic queries must ideally include the most
recent additions. Thus the articles of interest to a user are known only when a query arrives. This is
unlike systems like SIFT [YGM95a] and Tapestry [TGNO92] which are geared to continuously respond
to statically specified queries or filters. In these systems, a user is informed about a new article if it
passes the filtering criterion. Even though we are interested in on-the-fly queries, our techniques do
find applicability in such situations also.

Our contributions are:

e We analyze the functionality & correctness properties of updates and then develop an efficient
scheme for executing queries concurrently with updates. The queries have short response times
and are guaranteed to return the most recent articles.

Our concurrency control technique uses just latches, i.e., short term locks, but still satisfies
atomicity, consistency, and durability of updates. Also, a query is executed so as to return the
most recent articles satisfying the query predicate — including those articles being added by the
concurrent update transaction(s).

e We develop logging and recovery techniques for efficiently migrating metadata updates from disk
to tape. They are designed to minimize the disruption experienced by tape accesses entailed by
the queries and caused by the need to migrate the updates to tape.

1disk farms will be hereafter referred to as disks.

Changes to metadata are migrated to tapes in a lazy manner. However, these are stable logged
and maintained in such a way that query results are based on the most recent state of the
database.

e Since the time to mount a tape and seek data within a tape is in the order of few tens of seconds,
access to tapes must be even better optimized than to disks [SSU90, CHL93]. We develop novel
approaches to scheduling the tape access requests of dynamically arriving concurrent queries such
that the average response time of queries is minimized.

Our approaches minimize the number of tape mounts by reading/writing data from/to a mounted
tape opportunistically. Which tape to mount next is based on the lengths of the queries, measured
in terms of the number of data items accessed, as well as on the specific tapes on which they
reside. The tape scheduling techniques have the nice property that response times are minimized
while fairness to queries of different lengths is maintained.

Results of the performance tests on a prototype system show the superior performance of the
developed algorithms and reveal that to build high performance MDDSs it is imperative that we adopt
approaches that exploit the data and transaction characteristics. For information service providers,
the resulting high performance will be very attractive in order to remain competitive.

It is important to point out that while the traditional transaction model and associated transaction
processing approaches may be able to solve some of the problems in MDDSs, they cater to more
restrictive database situations and hence are likely to be wanting when satisfying the recency and
response time performance criteria. This is because, data components in MDDSs do not have the
tight interrelationships that are the norm in typical database applications. For instance, in a news
database, each news item can be considered independent of another. The metadata about two items
are also not tightly related. Of course, the metadata about a news item must correctly reflect the
contents of that item and this leads to consistency requirements relating a data item and its metadata.
These characteristics have implications for how we design the queries and updates as transactions, in
particular, how we achieve the atomicity, consistency, and durability of updates and the correctness
of query results. Hence issues addressed in this paper to achieve good performance become important
given the current trend to used DBMSs for managing metadata [VCC95].

The rest of the paper is organized as follows. Section 2 discusses the data and transaction char-
acteristics. Section 3 presents the system architecture and some of the details of our prototype sys-
tem. Section 4 describes our concurrency control technique and locking scheme. QOur schemes for
logging/recovery and migrating data from disk to tape are discussed in section 5. Section 6 presents
our optimization technique for scheduling multiple queries. Related work is discussed in section 7.
Scope for future work is enumerated in section 8 and section 9 concludes the paper.

2 Data and Transaction Characteristics

In this section we present our data model and then analyze the performance and correctness require-
ments of transactions in MDDS environments.

2.1 Data Model

MDDSs store data of various types including text, image, audio and video. Metadata in MDDSs pri-
marily consists of indexes. Textual articles are typically indexed based on keywords. An article can
then be retrieved from a huge collection by specifying a set of keywords and the predicates joining them

e

Figure 1: Transactions in MDDS environments

[Fal85, Cro89]. An image can be retrieved by specifying various properties like color, texture, shapes
and sizes [ACF*94, Chi94, CLP94]. The query processor in both these cases refers to several indexes
and determines the articles/images that are appropriate for a query. Thus, metadata is accessed during
initial processing to determine the articles/images that qualify for a query while the article/image as
such is retrieved only based on the matches found during initial processing and subsequent brows-
ing/filtering done by the user. The techniques we describe in this paper are generic even though we
use a text retrieval system as the motivating example.

The metadata consists of a set of keywords and associated with each keyword is an article ID-set?,
the set of IDs® of articles which contain that keyword. Optionally, other information like the number
of articles that contain the keyword (which is essentially the size of the article ID-set) and the location
information about the keyword (within the articles) will also be stored. Making sure that the indices
are updated and maintained in such a way that queries return the most recently added documents
requires careful concurrency control of accesses to the metadata. Modifications and deletions to data
are very rare in such environments [SB94].

2.2 Query and Update Processing

When an article is added to the database, the metadata must be modified to reflect the addition of
this article to the database. For example, consider a new article. It is first analyzed to determine the
keywords in it. Suppose this new article has two keywords, say, “baseball” and “playoffs”. When this
article is added to the database, the two keywords must be added to the metadata, if they are not
already there, and the ID of the article must be added to the article ID-sets associated with them. Thus,
these updates are typically in the form of appends: the article is appended to the set of documents in
the database and the article ID is appended to the article ID-sets associated with each of the keywords.

Zwhich is actually an inverted list
31D refers to the logical identifier

Although it is possible to access and update these indexes on the fly as the articles are analyzed,
it is not done so for two reasons. The cost of accessing the indexes are high, and the locking costs will
be high. Hence the new articles are analyzed first in a batch and the metadata extracted, and all the
article ID-sets are updated at the end in an incremental fashion [BCC94, TGMS94] as shown in figure
1.

A query consists of a set of keywords signifying the articles of interest. To process such queries,
first, the list of metadata to be read is identified. The article IDs corresponding to these keywords are
then extracted from this metadata. To minimize the time a query holds read locks on the metadata,
the required metadata is copied into the query area and the locks released before processing can start
as shown in figure 1. Further query processing is done based on the type of query, for example, to
process an AND query given two keywords, the common article IDs — in the metadata pertaining to the
two keywords — are determined. Once the article IDs are determined, the query is essentially processed
and the user is presented with the basic information about the articles like the abstract or the first few
lines. Several optimizations can be performed to truncate the search process, but we do not go further
into this issue.

Since the articles themselves are immaterial to the query/update transactions, in this paper, we
concentrate mainly on metadata management.

2.3 Performance and Correctness Requirements

To amortize the cost of accessing and updating the metadata, a group of articles are added in a single
update transaction. Thus updates are performed on a large number of metadata objects, increasing
the duration of such updates. Identification of the performance and correctness considerations helps
us design concurrency control schemes that are tailored for MDDSs in the context of such updates.

There are a number of distinctions between the requirements in MDDS environments and that of
traditional applications like banking:

e In banking, an account’s value depends on other subaccounts or related accounts and hence there
exist dependencies between the individual data items. In MDDS applications, each article can be
considered independent of another. The metadata about two items are also not tightly related.
Of course, the metadata about a news item must correctly reflect the contents of that item and
this leads to consistency requirements relating a data item and its metadata.

e Updates only add to the metadata, i.e. a particular metadata is not written based on the con-
tent/value of the same or some other metadata and thus the contents of one metadata is inde-
pendent of other metadata. Thus, in MDDSs, as opposed to arbitrary operations which update
the data in-place, appends/additions are the norm. These changes commute.

These distinctions lead to differences in the way MDDS updates and queries are structured as
transactions and in the atomicity, isolation, consistency, and durability properties associated with
them:

e Atomicity requirement is that all the changes to the article database and the metadatabase must
exist at the end of the update transaction.

e Consistency requirement is that at the end of the transaction both the articles and the metadata
must be mutually consistent.

e The durability requirement is that at the end of an update transaction all the articles and changes
to their metadata must be durable in the database. If there are system failures, the transaction
must continue from the point where the failure occurred since in unacceptable to start the trans-
action all over again from the beginning. Since updates are in the form of appends and appends
to a set can be considered to be idempotent, we can perform forward recovery upon a failure.
To handle failures that may occur during a long update, the update can be programmed as a
mini-batch [GR93]. Since there no dependencies between data items and no operations that can
lead to logical errors, logical failures are rare.

Because update transactions can be of long duration we should be concerned about the isola-
tion properties of these updates especially since queries are typically of short duration. Isolation
requirements can be usually specified based on the dependencies between the read (R) and write (W)
operations. The three dependencies we need to consider are W-W, W-R and R-W.

o W-W dependencies: Since appends from multiple updates commute, these need not be tracked.
If the metadata also stores a count of articles that contain the keyword, it will have to be updated
based on the previous value. However additions of articles entail incrementing this counter and
increment operations are commutative. For these reasons, W-W dependency can be ignored.

o W-R and R-W dependencies: These correspond to a query and an update executing concurrently.
Since (1) an update transaction updates the metadata associated with the data one keyword at
a time and at most once, (2) a query reads the metadata associated with a keyword only once,
and (3) there are no integrity constraints between the keywords, not tracking these dependencies
simply means that a query and a concurrent update are unaware of each other; the metadata
read by the query will reflect all the updates done until then to the metadata and so the query
results will be correct in the sense that it will not return any extraneous articles. Thus, from a
correctness point of view, W-R and R-W dependencies need not be tracked.

Unfortunately, the query results will not reflect updates that are yet to be done by updating transactions
which are still in progress. The net effect is that a query may not return the most recent articles.
Suppose a new article on “relational database products” is being added to the database and the update
transaction has only updated the metadata for keyword “relational” and is yet to update the keyword
“database”. If a query needs articles that contain “relational” and “database” in it, it would read the
updated metadata for “relational” and nonupdated metadata for “database” and miss out on all the
new articles that would have really qualified. Thus tracking updates, and more specifically, the needs
of queries vis. a vis. the concurrent updates, is very important since they affect the completeness of
the result of the query. This is called recall in information retrieval. The number of articles retrieved
by a query is an indication of the recall metric. Another consideration is the recency or currency
of the results. If a query does not return the most recent additions to the database, its results will
be outdated. The age of the articles retrieved is an indication of the recency metric. To improve
performance of a query with respect to both metrics, query processing must be cognizant of concurrent
updates.

Another situation where concurrent updates must be tracked occurs during text-database discovery
[YGM95b]. Here, each site maintains metadata related to articles at other sites such that a query can
be directed to a site that has the relevant articles. If concurrent updates are not tracked, then the
query could be directed to an inappropriate site when there are better sites in reality.

Not having to track dependencies allows us to use just latches, or short term locks, which is a major
advantage — since updates and queries need to latch only one metadata item at a time, metadata

= =
T B = N
U
]
o s
] e U
e |== |== |== B
] TuH|
== = —
=uN =N
—_— —

Figure 2: Storage Hierarchy of MDDS Server

accesses involve only short waits and no deadlocks occur. Because latches do not help track W-R
or R-W dependencies on specific metadata items, we need some other means to satisfy the recency
criterion.

To summarize, the isolation requirements of queries and updates justifies use of latches. But some
mechanism is needed to satisfy the recency requirement. This is the subject of Section 4. Logging
and recovery techniques needed to satisfy atomicity and durability are discussed in Section 5. Finally,
scheduling tape accesses to minimize query response times is the subject of Section 6.

In the above discussion we assumed that there are no deletions or revisions to articles. This is the
case most of the time [SB94]. However if for some reason deletions/revisions occur then additional
steps must be taken. For revising a article, the metadata corresponding to the article to be deleted
is to be removed from all the relevant metadata and new entries are to be added to the metadata to
correspond to the new version. This is a fairly complicated process since the old version of the article
may have to be analyzed to determine the keywords. Since the space consumed by articles that are
occasionally deleted is comparatively negligible, it might be better to use the following approach. The
article IDs for the deleted articles can be maintained in a purged-articles list on the disk and when the
qualifying list of articles is retrieved for any query, a check can be performed against this list and the
IDs of the purged articles deleted from the qualifying list.

3 System Architecture

The storage hierarchy for a MDDS server, shown in figure 2, consists of a primary (RAM-volatile
memory), secondary (disk farm) and tertiary storage (tape library)*. The tape library holds several
tapes and any required tape can be loaded into the reader. The time for mounting a tape is of the

order of a few seconds, sometimes as high as 40 seconds. Once a tape has been loaded a seek is to be

*Instead a read-write optical jukebox can also be used and we return to this issue later in section 6

OO

Figure 3: Software Architecture of MDDS Server

performed to fetch the required data from the tape. Since the seek is linear and not random like disks,
the seek time is also high — of the order of a few tens of seconds. Because of the high mount plus
seek times, accesses to data located on tapes must be carefully planned to minimize I/O delays. The
secondary and the primary media function as a two level cache with one difference — the secondary
cache is non-volatile while the primary cache is volatile. This has implications for logging and recovery.
Traditional strategies can be used for data transfer between secondary and primary storage and for
data/transaction management in the primary. Hence new strategies are to be developed mainly for
data transfer between tertiary and secondary storage and for data/transaction management on the
secondary.

The software architecture for the MDDS server is shown in figure 3. New articles are first analyzed
by the analyzer that extracts the required metadata, i.e., the keywords, and forms the article ID-sets
and then submits an update transaction to the transaction manager. Queries that arrive from various
clients are examined by the query processor and it submits query transactions to the transaction
manager.

The lock manager implements the concurrency control scheme. The data manager performs the
required read and write operations on the metadata. Metadata requested by the query processor is
obtained from the data manager. If the required data is not on the disk, then the data manager requests
the tape scheduler to transfer it from the tape to the disk. The tape scheduler schedules transfers of
the requested data between the tape and the disk. The log manager oversees the operations of the data
manager and logs the occurrence of significant events during updates. Both the log manager and the
data manager operate on data in the disk and the buffer (primary).

We have built a prototype based on our bibliography search system following the above architecture.
The bibliography search system has been in use on our world wide web site® for a few months. The
starting size of our metadatabase is about 1GB. In order to evaluate the system in a real world situation,

®(at URL http://www-ccs.cs.umass.edu/db/bib-search.html). This system has been used for querying over the
WWW more than 5000 times over the last 2 months.

Add items to access-set of Transaction;
If (Transaction == Update)
Add Transaction-ID to active-update-transactions list;
else /* Transaction type is Query*/
Check for conflicts with each transaction in active-update-transactions list;
For each transaction that conflicts, add that Transaction-ID to the query’s conflict-list;
Pass “hints” to the transaction manager to reorder the operations of the conflicting transaction
such that the conflicting operations are performed at the earliest;

Figure 4: Establishing conflict set for a query and passing hints to the transaction manager

most of the queries have been taken from the access log of the web server. The system has been built
on a SunSparc 20 multiprocessor workstation with 96 MB of main memory® running Solaris 2.3 version
of Unix. All the components shown in figure 3 have been implemented as independent Unix processes
communicating using IPC messages. The total disk space for the system was restricted to about 200
MB. To make the implementation very efficient, hash tables have been used for several functions — in
the lock manager for tracking granted and waiting requests and in the transaction manager to track
completed operations, to name just two.

4 Concurrency Control

Our concurrency control scheme uses latches, i.e., short duration locks, for reads and writes. If we
are interested only in correctness and “recency” of article is not a concern then just using latches
is sufficient. However, since recency is of interest to us, we could do the following: When locks are
requested for a query transaction, the lock manager performs a check to see if any other concurrent
update transaction has already updated any data items needed by the query (transaction timestamp
can be used to determine this precedence order). If there are such items, then latches for the rest of the
items needed by a the query are also granted to the update transaction first. That is, for data items
common to an update and a query, the update write locks the metadata first and performs the write
before the query can read lock the metadata and read it. Since the data items are not dependent on one
another, the performance of this scheme can be further improved by using a read-past and write-past
technique. This allows a transaction to perform the next operation even if the current operation has
to wait for a lock. The operations waiting for a lock can be performed later when the lock is granted.
However this still means that the query has to wait for an unspecified amount of time till the last latch
is granted.

Hence to reduce the response time of a query, by exploiting knowledge about data and transactions
we go one step further. Recall that after the articles have been analyzed, the read sets and write sets
for queries and updates are known and an item in accessed only once. Hence we introduce a new
locking technique called latching with operation-reordering. The algorithms are shown in figures 4 and
5. and works as follows: When a transaction arrives, the transaction manager informs the lock manager
about all the items that will be accessed by the transaction. The lock manager also keeps track of all
the active update transactions. Thus, when a query arrives the lock manager will perform a conflict
check with all active update transactions. If there are items common to a query and a concurrently

6The total size of virtual memory is 226 MB although most of it is occupied by the system processes, X Window Server
and other daemons.

1. Read Latch/Unlatch Request from Query:
If (Operation == Latch)
Perform safety check - ensure transactions in conflict-list have completed or written the item;
(the above is done in conjunction with the processed-list of the item);
If safe and latch not granted to write
issue read latch;
else
place request on wait queue for item;
else /* Operation is Unlatch */
If nobody is in the wait queue
release read latch & delete entry from latch table;
else /* somebody is in wait queue */
grant latch to item on wait queue;

2. Write Latch/Unlatch Request from Update:
If (Operation == Latch)
If latch not granted
issue read latch;
else /* latch has been granted */
place request on wait queue for item;
else /* Operation is Unlatch */
Enter Transaction-1D in processed-list of item
If nobody is in the wait queue
release read latch & deleted entry from latch table;
else /* somebody is in wait queue */
grant latch(es) to item(s) on wait queue; /* multiple grants only for reads*/
(locks granted to queries only after safety check)

Figure b: Algorithms for reordering write operations

executing update transaction, then the ID of that update transaction is added to the query’s conflict
list and “hints” are passed to the update transaction to update these common items at the earliest. The
transaction manager in turn reorders the operations of the update transaction and submits operations
on the common items first. Once one of these common items is updated and the write latch is released,
the query can latch the item and read it. Our mechanism ensures that the query does not latch the
item before the update write latches it and that the updates write to these items first. This way the
waiting time for queries is minimized and they also see the most recent articles.

While several read latches can be issued concurrently, only one write latch is issued at a time. The
latching mechanisms and data structures are similar to the locking data structures described in [GR93].
The main data structure is a hash table and each hash chain contains a number of latched items. The
latch header for each item contains a list of transactions for whom a latches have been granted and a
waiting queue for transactions that need a latch on that item. When transactions to whom latches have
been granted finish their work, the next item from the waiting queue is granted a latch. The operations
on the latch table are serialized. We have made some enhancements to the latch hash table to maintain
additional information required for operation-reordering. For each latchable item, there is a processed
list apart from the usual granted list and waiting queue. The processed list contains transaction IDs
of active updates that have already done an update to the data item after obtaining a write latch. A
latch for a keyword is available if there is no entry corresponding to that keyword in the table. The
latch requests corresponding to four keywords are shown in figure 6. We now explain how latching is

Keyword Latches
Processed ‘ Granted ‘ Waiting

ﬁeterogeneous U1 , ‘ U2 (53 U5
Legacy I‘J‘3 Q4;‘Q6 U6
Multidatabase I‘J‘3 U4 Q5
6ptimization U2 , ‘ U3 Q4 U6

Figure 6: Latch Table

done for queries and updates and in the process show how the entries in the table are utilized.

When an update requests a latch, it is handled as follows: A write latch is granted if it is available
else it is put on the wait queue. After a latch is granted and the write has been performed, the
transaction ID of the update is added to the processed list. When all the operations of the update
complete, the entries corresponding to this update are removed from the respective processed lists. For
this purpose all latch table entries for an update transaction are chained.

When a query requests a latch, the latch is granted only if it is safe and available else the request
is inserted into the wait queue. Then when the lock is available it is granted and after the operation is
performed, if nobody else is waiting the entry is removed from the latch table. Note that only updates
are inserted into the processed list.

Note that the above scheme ensures that the query results reflect all articles that have been or will
be added to the database by all active update transactions present in the system when the query begins.
The other case, where a update begins when a query is in progress is also worthy of consideration.
However, as our experimental results show, the payoffs are negligible, especially since queries are short
compared to the update transactions.

Our concurrency control and locking scheme can also be used for static continuous queries in
systems like SIFT and Tapestry. When a new user submits a profile or a user changes her/his profile,
our techniques can be used to ensure that the user does not miss any article during or immediately
after the profile submission/modification. Our techniques can also used for long duration transactions
in other environments where the read and write sets are known and there are no dependencies between
data items.

4.1 Performance Results

Using our prototype system (see section 3 for details) we measured the performance of the schemes
with different multi-programming levels (MPLs). To maintain the desired query and update MPL, a
query and an update spawner fork the required number of threads respectively. The threads in turn
invoke the update and query transactions. In our tests, we have set the update MPL to a particular
value and then varied the query MPL over a range. We have a query intensive environment and hence

10

60 —a- — —a Latch 100 —a- — —a Latch

551 m DB-Lock (Isolation Level 2) 3(5) :l ----- m DB-Lock (Isolation Level 2)
3 50 K e Latch with Operation-Reordering <> 85 |1® ® Latch with Operation-Reordering
g 2 80
.é I T . .é ;(5) U n
E 40} SRR A = e l
2 Lo 2 ..
g 35 .0 S 60 |- .
g] 2 S5SMm
§ 30 é 50 |-
45
%\ 25 E 40
=] 2 351
20 -
< < 30k
:>:° 15 :?D 25 |-
20 -
10 15
¢ —— - -—-—Xx----~-~-° = lg :,_—_f’_/__—i ——————— =2
0 AN Y IS Y [A [A S — 0 AN S I Y I A [N A B
0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22
Query MPL (Update MPL fixed at 1) Query MPL (Update MPL fixed at 2)
Figure 7: Avg. response time of queries
~ 10000 —, _ _ _ ~ 10000 —, _ _ _
S ¢354 4 Latch ' S 6325 1A 4 Latch ‘
I | IECI m DB-Lock (Isolation Level 2) [} | IO m DB-Lock (Isolation Level 2)
g 310217 e Latch with Operation-Reorderi g 302y e Latch with Operation-Reorderi
S 2000 | atch with Operation-Reordering S 2000 | atch with Operation-Reordering
(5] (5]
| S T .
o0 &n
S 316 S 316
200 " > 200 -
o A o
© 100 v m . S 100 T
= R = .-
5 63 B - = 63 m.
% 32 2 32— TcEe. L, -
5 20 |-e - - o b= 20 |-o - g °
é 10 ;] 10
= 6 = 6
s 3 T3
;-t’o 2k ::e’n 2 F
-5 1 AN Y IS Y [A [A S — 5 1 AN S I Y I A [N A B
Z 0 2 4 6 8 10 12 14 16 18 20 22 z 0 2 4 6 8 10 12 14 16 18 20 22

Query MPL (Update MPL fixed at 1) Query MPL (Update MPL fixed at 2)

Figure 8: Auvg. age of latest 100 articles returned by queries

there are no gaps between successive queries within a query thread. The update thread waits for 10
seconds between the completion time of one update transactions and the start of the next. So as to
focus on the performance of our concurrency control scheme, for these tests, the objects (metadata)
reside on the disk.

We first study the average response time of queries. Response time is the time that elapses between
when the query is submitted and when the system determines the article IDs that satisfy the query.
The results are shown in figure 7 (note the two graphs have a different scale along the Y axis).

e Latching refers to the scheme that uses latches and satisfies just the correctness requirement.

e DB-locking provides isolation level 2, i.e., cursor stability. This was implemented to see the effect
of using an off-the-shelf transaction processing approach, one most suitable for our needs.

e Latching with operation reordering is our scheme.

11

As expected we see that the response time with DB-locking is very high compared to that of latching
and our scheme. The difference between our scheme and latching is small and is the order of a second.
This slightly larger response time is due to (1) the cost of checking common items between queries and
concurrent updates and (2) the time spent by read operations from queries waiting for write operations
on those common items to be completed by the concurrent updates.

To study recency properties of the queries executed by the three schemes, we examine the average
age of the top 100 articles returned by the queries. Age of an article corresponds to the difference in
the arrival time of the query and the time when the metadata for the article was written. As shown
in figure 8 (age shown in logarithmic scale) it can be seen that our scheme retrieves the latest articles.
Upon close examination of the system we found that when a query requests a set of latches, the hints
from the lock manager to the transaction manager and the subsequent write operation on the common
items from the updates are done almost immediately in quick succession. Thus our idea of operation
reordering has a huge pay off and contributes to good recency.

The latching scheme performs the worst since it misses most of the updates and hence retrieves less
articles from the updates currently active in the system.

The DB-locking scheme performs moderately. Though on average several queries get the most recent
articles there are certain queries that fail to get the latest articles. These are queries that acquired
read locks on the items before the update could get write locks on them. They are typically the objects
that are written towards the end of the update transaction. Since the update transactions are typically
long duration transactions the possibility of deadlocks are very high. Hence we designed the updates
to access the objects in alphabetical order so that deadlocks can be avoided. In our implementation of
DB-locking, write locks are acquired in a growing phase and then released as a batch at the end. If the
locks were acquired and released the other way, i.e., all locks acquired at the beginning and released
in a slow shrinking phase as the operations are completed, then the results would be slightly different.
The queries will have to wait for the write locks to be released by updates almost all the time and this
will definitely retrieve the latest articles but the average response time will also increase substantially.

Note that there is a slight increase in the average response time and drop in the average age of the
100 latest articles as the query MPL inreases. This is because on average queries stay slightly longer
in the system. This is especially noticeable in the case of DB-locking due to higher contention (queries
waiting for updates and updates waiting for queries). Also, this phenomenon is more pronounced as
the update MPL increases and DB-locking experiences conflicts for write locks as well.

Our experiments show that forcing in-progress updaters to go ahead of new queries on the metadata
items of interest to the query has a good payoff. However, if an update begins when a query is already
in progress, with our current scheme the query does not benefit from the updates. So we tested an
enhanced scheme wherein when a query is about to complete, it checks whether an update started
after it began and if so, the query is retried. Our experiments indicate that such a situation is very
infrequent compared to the case of a query starting after an update begins because queries are short
and updates are long. As a result, average recency remains almost the same as without the extra check
when a query finishes. That is, the rare query that does benefit from this extra check may not warrant
the extra costs that are incurred by the additional check at the end of each query.

In summary we see that our latching with operation reordering can retrieve the latest articles
without paying a high price. If there are no concurrent updates, since there are no checks to be
performed, our scheme performs the same as the latching scheme.

12

5 Data Migration, Logging and Recovery

In this section we present techniques for logging/recovery and migrating updates of metadata to tapes.
We concentrate mainly on issues that arise due to the use of a hierarchical storage system, specifically,
tapes. Since the tape mount and seek time is high, to perform these functions efficiently, data accesses
to tapes should be minimized.

Updates to metadata migrate to tapes in two stages. The update is first made persistent on disk.
Then it has to be transferred to the tape since the disk size is not sufficient to hold all the update. Since
there are no in-place updates, the entire metadata need not be fetched from the tape before a write is
performed, instead metadata is just appended to the tapes. In traditional database systems, the logs
are first written to the disk and a checkpoint process runs in the background to “install” the changes
on the actual data pages. Hence the changes are typically installed in the order in which they were
made. If a similar scheme is used for migrating updated data onto tapes, there would be a continuous
flow of data from disk to tapes. Specifically, while queries are trying to access the data they require
from tapes, there will be a lot of unnecessary intervening tape accesses to store the updates onto the
tapes. This will hurt the performance and hence the average response time of queries will increase
considerably. Instead of taking the above immediate migration approach we take the following lazy
migration approach. The updates on the disk are flushed to tape only when the corresponding tape is
mounted on the tape drive of the tape library. This way, unnecessary tape accesses just for transferring
the updates is avoided. However it may so happen that some of these tapes are never scheduled since
none of the queries need metadata stored on that tape. To handle this situation we establish a bound
on the size of the pending updates that need to be made to a particular tape. Hence when the size
of the pending updates increases beyond this bound, a tape access is scheduled automatically. This
lazy migration approach reduces the number of tape accesses for updates considerably. Hence queries
would be able to get the desired data from the tapes faster, thereby improving the response time of
the queries.

While most of the metadata resides on tape, some of it will be on disk and updates to some of them
will also be residing on the disk. Hence it is important to track where the metadata is currently resident.
For this purpose we use a data structure called the mapping-table which is very similar in functionality
to the page-table used in memory management. The mapping-table essentially stores some metadata
about the metadata and is shown in figure 9. It always resides on the disk (not on tapes). This table is
hashed on the keyword. For each keyword, the mapping table contains information about the tape on

|| Keyword | Tape-ID | On-Disk | Disk-Loc | Dirty | Size | Last Used |
‘I-‘Ieterogeneous 3 1 222’)5 1 34,‘1")42 ‘1‘1:24
iegacy 5 0 0 0 12,‘!‘957 11:10
Multidatabase 2 0 0 0 44,513 11:28
6ptimization 8 1 29"‘72 0 98,568 11:18

Figure 9: Mapping-Table

13

which the keyword’s metadata is stored, if a copy of it is on disk (bit field) and if so the disk address is
also stored. It also contains information about the size of the metadata (which may be used in query
optimization, e.g., for finding the common items across two article ID-sets) and the time of last usage
for data replacement (eviction) purpose on disk. There is also a dirty-bit which indicates that there
has been an update to that metadata on the disk and the update has not yet been flushed to the tape.
If an entry does not exist for a keyword then no instances of that keyword currently exist in any of the
articles in the database.

Now we discuss how updates and queries are processed using this mapping-table. When the meta-
data is updated, the incremental update is stored on the disk in an update list (which is again hashed)
and the corresponding dirty-bit in the mapping table is set to 1. It is also possible that a copy of
the metadata is cached on the disk due to access from a query. In such cases, if a new query arrives,
it is important to ensure that a new query sees the latest version of the metadata. Hence before a
query reads the metadata, the mapping-table is checked to see if the dirty-bit is set. If it is set, then
both the cached metadata for the keyword and the incremental update from the update list has to be
read. Consider another situation wherein a query arrives when the update resides on the disk but the
metadata resides on the tape. When the tape that holds the metadata for the keyword is mounted for
access by a query, the required metadata is first copied from the tape to the disk. If the dirty-bit is
set, the query also reads the incremental update on disk. Only then the incremental update is flushed
to the tape and the dirty-bit is reset.

Next we discuss logging/recovery requirements. Recall that in order to handle failures that may
occur during a long update, the update can be programmed as a mini-batch. The primary and the
secondary act as a two-level cache. Traditional logging techniques deal with ensuring consistency
and durability when data is transferred from primary to the secondary. Here we concentrate on such
issues for data transfers from secondary to tertiary. Since the secondary cache is non-volatile, logging
requirements are quite different — the data values need not be logged since it resides on the disk and
only the actions need to be logged. The logs are minimal in size and are typically stored on the disk.
The log space can be reclaimed periodically.

The main event that is of importance is the transfer of data between the disk and the tape. After
the “transfer completed” message is received from the tape-drive, an action completed message is
written to the log. Only then the corresponding bit is changed in the mapping table. If a system
failure occurs after the initiation but before the action complete message is written to the log, then
the action has to be redone at restart time. Since the mapping-table is the only data structure which
knows the updates that have percolated to tape, changes to it (made in memory) need to be logged to
handle system failures. Traditional database logging techniques are used to ensure the persistence of
the mapping-table.

Persistent savepoints may be necessary even for computations done outside the transactions. Ex-
amples of these include incremental metadata extracted from the analysis phase, partial results of
compute intensive queries (queries that require processing several metadata items). Logical failures do
not occur at any stage during updates in memory and hence there is no need to store before images of
data.

5.1 Performance Results

Though we do not have a tape library in our prototype system but only a tape drive, we have been able
to simulate accesses to a tape library. We do this by having a virtual tapelD attached to every object
ID and by creating a random delay (in the tape-scheduler) with a mean of 10 seconds that simulates

14

40 — A a Lazy-Update

m- — —m [mmediate-Update

35

Avg. Query Response Time (sec)

0 | | |
1 2 3 4

Update MPL (Query MPL fixed at 5)

Figure 10: Avg. response time of queries

tape mount delays. Since the access characteristics of metadata and the articles are different, MDDSs
should be equipped with two tape libraries — one for the articles and the other for metadata. Because
we are concerned only with metadata management, we focus only on the tape library that holds the
metadata.

We studied the average response time of queries for the two migration techniques we discussed
earlier — immediate and lazy. These tests were performed at a fixed query MPL of 5. The results are
shown in figure 10. The lazy migration scheme clearly performs better than the immediate scheme.
We can also observe that the response time of queries increases non-linearly for both the schemes
with the increase in update MPL. The increase however is more pronounced for the immediate update
technique. This is because of the very large number of intervening tape accesses from updates. Thus
it is clear that to improve response time of queries in a hierarchical storage environment, updates have
to be migrated lazily from disk to tape.

It is not difficult to see that if the tape mount delays are larger than the assumed average of 10 secs
then the response times will also increase for both schemes. Further, the performance gap between the
two schemes will also increase.

6 Multiple-Query Optimization and Scheduling Tape Accesses

In this section we discuss query optimization techniques to reduce the response time of queries. We
primarily focus on multiple-query optimization techniques with the goal of minimizing the number of
tape swaps and through that reducing the average query response time. We do this by considering 4
different aspects — arrival time of queries, metadata needed by queries, metadata to tape mapping
and the tape currently mounted in the tape reader.

Query optimization in hierarchical storage systems consist of two parts — one to optimize data
transfers from disk to buffer (primary optimizer) and the other from tape to disk (secondary optimizer).
Traditional query optimization schemes have addressed the primary optimizer where due to buffer size
constraints, information about the size of the data and the buffer size is used to fetch the data/metadata

15

Q1l: A1 A3B2C5Fé6

Q2: B3 F9

Q3: B2 C2E2F4
Q4: F2

time —

Objects are represented by (Tapeld-Objectld)

Figure 11: Objects Accessed by each query (Objects cached on disk not shown)

in a certain order for processing the queries. We concentrate only on the secondary optimizer. Since
in a MDDS, only specific metadata has to be brought to the disk (and not the articles themselves),
there are hardly any ordering constraints imposed due to disk space limitations. Thus we can reorder
object accesses dynamically by using information about the query arrival time and the ID of the tape
mounted currently. Once the metadata is on the disk, they can be fetched from the disk to the buffer
in the order specified by the primary optimizer. This is done when for example common articles have
to be identified from a set of metadata. Since some of the metadata might already exist on the disk,
only metadata that is to be fetched from the tape is considered in the secondary optimizer. Transfer
time for metadata from tape to disk is negligible compares to the tape mount/seek time and hence is
ignored for our present discussion. The effect of data compression is also ignored since it only affects
the transfer time. For all the examples we present in this section, we assume an average tape exchange
time of 10 seconds and an average tape seek time of 20 seconds. In the figures, LD refers to a tape
load (mount) and SE refers to a seek.

Consider for example the four different queries shown in figure 11 that need to access objects from
tape. The objects required by the queries are shown as a concatenation of the tapeld and the objectID
on the tape. Figure 12(a) shows a simple strategy where objects required by queries are fetched on a
first-come first-server basis. This is improved in figure 12(b), by rearranging the list of objects in the
access plan such that all objects required from a tape are fetched at a stretch once the tape is mounted.
This will prevent unnecessary tape swaps and seeks on the tape (figure 12(a)) and thus optimizes tape
I/O time. Also, if two queries need the same object, in this second case a single retrieval of the object
is sufficient. The average query access time in the first case is 250 and the second case is 240 seconds
and hence there is not much of an improvement. Thus such naive strategies are not sufficient to reduce

LD-A SE-A1 SE-A3 LD-B SE-B2 LD-C SE-C5 LD-F SE-F6 LD-B SE-B3 LD-F SE-F9
LD-B SE-B2 LD-C SE-C2 LD-E SE-E2 LD-F SE-F4 SE-F2
Access Time per Query: Q1 = 140 sec, Q2 = 200 sec, Q3 = 320 sec, Q4 = 340 sec
Average Query Access Time = 250 sec

(a) Linearly Combined access pattern (Original Strategy)

LD-A SE-A1 SE-A3 LD-B SE-B2 SE-B3 LD-C SE-C2 SE-C5
LD-E SE-E2 LD-F SE-F2 SE-F4 SE-F6 SE-F9
Access Time per Query: Q1 = 250 sec, Q2 = 270 sec, Q3 = 230 sec, Q4 = 210 sec
Average Query Access Time = 240 sec

(b) Interleaved access pattern

Figure 12: Combined access patterns (LD indicate Load, SE indicates seek)

16

LD-F SE-F2 SE-F4 SE-F6 SE-F9 LD-B SE-B2 SE-B3

LD-E SE-E2 LD-C SE-C2 SE-C5 LD-A SE-A1 SE-A3
Access Time per Query: Q1 = 270 sec, Q2 = 140 sec, Q3 = 200 sec, Q4 = 30 sec
Average Query Access Time = 160 sec (1.56 times faster than original)

Figure 13: Optimized Access Pattern after rearranging objects

Q1: Al A3 B2 C5 Fé

Q2: B3 F9

Q3: B2 C2 E2 F4
Q4: F2
time —

Figure 14: Dynamic Arrival Pattern of Queries

the response time of queries and we need more efficient strategies for multiple-query optimization.

Now we present our strategy of rearranging the object accesses such that the average query access
time is reduced. The key idea here is to rearrange the objects in the access plan such that both
the objectives of reducing the average query access time and reducing the number of tape exchanges
(swaps) are met. We select a query that requires the least number of object accesses and retrieve those
objects first. While retrieving these objects, objects required by other queries from the same tape are
also retrieved. Then the next shortest query is considered and so on. The actual object access pattern
for the queries is shown in figure 13. Unlike previous strategies, queries which require fewer object
accesses have shorter access times. Hence as shown in the figure the average access time of queries is
160 seconds, an improvement by a factor of 1.56 over the original strategy.

However in reality queries arrive in a dynamic fashion as shown in figure 14. Hence we modify
our optimization strategy such that information about the the arrival sequence of queries and the tape
currently mounted is made use of. Before a tape is dismounted a check is performed to see if any of
the newly arrived queries access the data on the tape being dismounted. If so the required objects are
retrieved before the tape is dismounted. The decision to mount the next tape is based on the number
of objects required by queries. We select a query which has the least number of objects to be accessed
yet. Then we schedule a tape that contains objects required by the selected query. In case of a tie, the
tape which is in more demand is selected, i.e., contains objects required by other queries as well. This
is called the shortest query first algorithm and is shown in figure 15.

Our new strategy as applied to dynamically arriving queries is shown in figure 16. As shown in
the figure the average access time of queries is 125 seconds an improvement by a factor of 2 over the
original strategies (of course in the present case queries arrive dynamically). This algorithm is “fair”

do forever:
mount the next tape after making a selection as follows:
select query with least number of objects yet to be retrieved;
If several tapes qualify, select the one which is needed most by other queries as well;
before unmounting a tape check if any other newly arrived query needs data from that tape;
if so transfer the required data from tape to disk;

Figure 15: Shortest-Query-First Algorithm

17

LD-A SE-A1 SE-A3 LD-B SE-B3 SE-B2 LD-F SE-F9 SE-F2 SE-F4 SE-Fé
LD-C SE-C5 SE-C2 LD-E SE-E2
Access Time per Query: Q1 = 220 - 0 = 220 sec, Q2 = 130 - 60 = 70 sec,
Q3 = 270 - 80 = 190 sec, Q4 = 150 - 130 = 20 sec
Average Query Access Time = 125 sec (2 times faster than original)

Figure 16: Access Pattern during Dynamic Optimization

do forever:
mount the next tape after making a selection as follows:
select query with least value for (arrival time + estimated time to retrieve the objects required by the query);
If several tapes qualify, select the one which is needed most by other queries as well;
before unmounting a tape check if any other newly arrived query needs data from that tape;
if so transfer the required data from tape to disk;

Figure 17: Farliest- Fxpected-Completion- Time-First Algorithm

since the response time actually depends on the number of objects accessed. However consider a long
query which requires tape access to several objects, none of which are accessed by the short queries
that keep coming. If the shortest-query-first algorithm is used, the long query will starve since the
tape which have objects needed by the long query may be mounted very late. Hence it is important
to consider the arrival time of the queries as well. We enhance the shortest-query-first algorithm to
include the arrival time of query. A query which has the least value for the sum of the [arrival time +
estimated time to retrieve the rest of the objects of the query (as of the current instant)] is selected and
a tape which contains the objects needed by that query is mounted and the required objects retrieved.
We called this the earliest expected completion time first algorithm and is shown in figure 17. The
retrieval time is estimated based on the average mount and seek time of tapes on the specific system.

Note that the above scheme handles the tape accesses arising from the need to migrate updates as
well. Basically, the migration process sends its requests to the tape scheduler and the tape scheduler
handles these in conjunction with requests of queries.

It is very important to decide when to stop accessing objects from a tape and exchange tapes so that
queries requiring access to other tapes do not starve. For this purpose a threshold limit is established
and if the number of objects accessed from a tape is more than the threshold, the tape is exchanged
and mounted again later after object requests for other pending queries have been satisfied.

Our algorithm has been developed assuming there is a single tape reader to read the tapes. Recent
trends indicate that such large tape libraries may be equipped with multiple tape readers. Excepting
for the fact that several tapes can be accessed concurrently thus reducing tape I/O time, there are no
other special issues and our algorithm can be easily extended to handle such systems.

Our query optimization strategies are general and can be adapted to other types of tertiary devices
as well. For example in the case of optical disks, disk exchange time (8 sec) is of a large magnitude
compared to the seek time (0.1 sec). Hence our strategies will prove to be very beneficial for optical
disc jukeboxes. Our optimization strategies can also be used in RDBMS/ODBMS environments that
use hierarchical storage systems to answer queries that just need accesses to indexes (queries requiring
access only to index fields).

18

25 A A Earliest-expected-completion-time first

m- — —m Shortest-query first

L EREERE o Simple (first-come first-server with grouping)
20 -

Avg. Query Response Time (sec)

0 5 10 15 20
Query MPL (No Updates)

Figure 18: Results of tape scheduling tests

6.1 Performance Results

The average response time of queries was studied for three different schemes — simple (first-come
first-serve with grouping), shortest-query first and the earliest-expected-completion-time first. The
results are shown in figure 18. The average response time of the queries increases almost linearly
with the query MPL. The earliest-expected-completion-time first scheme performs the best followed by
shortest-query first scheme and the simple scheme performs the worst. The simple scheme performs
badly because it just mounts a tape from which data is needed and fetches from the tape objects
required by other queries as well and does not consider the number of objects needed by queries or
their arrival time. Thus it does not use “information” regarding which queries should finish first and
which can finish later. The shortest-query first scheme performs better; it uses information about the
number of objects required by the queries and hence queries which need fewer object finish quicker.
The earliest-expected-completion-time first scheme performs the best; it considers the arrival time of
queries and the objects needed by them. It attempts to be fair to both short and long queries. Hence
it wins over the shortest-query first scheme where some long queries can starve. Thus we see that
by carefully planning accesses using knowledge about the tertiary device and the queries, the average
response time of queries can be reduced considerably.

7 Related Work

In this section we relate our work to previously proposed concurrency control enhancements, recovery
in hierarchical storage systems, and multiple query optimization.

Recall that our concurrency control scheme uses latching, exploits information about the read sets
of queries and write sets of updates, makes use of the commutativity of appends and increments, and
benefits from the ability to reorder update operations. Thus, whereas in static locking (conservative
2PL) [BHGS87] a transaction obtains all locks before it submits any of its operations and as soon as
the last operations is done all the locks may be released, our locks are of short duration and our
scheme is non two-phase. Our scheme is different from altruistic locking [SGMS94] since we do not

19

use any long-term locks and we exploit update and query semantics to reorder update operations.
This allows the updates to perform the operations and release the write locks early. The read-past
and write-past capabilities allow queries to proceed faster because they can obtain other locks that are
available while waiting for a particular lock. Even though we are exploiting the structure and semantics
of metadata which are akin to index structures, it should be clear that simpler solutions than those
developed for concurrency control of B-tree based index structures [Moh90, ML92] suffice because
of the independence of different metadata items. The compensation based techniques discussed in
[SC92] to handle queries or make changes to access structures concurrently with ongoing updates is not
suited for our environment. Applying the technique will be very inefficient for MDDS metadata since
updates hold long term write locks and queries will have to wait till the conflicting updates complete
to determine the final outcome of the query. As we mentioned in section 4 the additional payoffs from
adding such a compensation to our latching with reordering approach is negligible. The online index
building technique described in [MIN92] concentrates mainly on consistently handling duplicates and
deletions of keys from the index as the index is being built. However in our environment such situations
do not arise.

Issues related to hierarchical storage systems are discussed in [FR94, GT95] but they mainly focus
on storage design for supporting continuous delivery of multimedia data. Recently database technology,
specifically transaction management, has been applied for mass storage management in the context of
ADSM (IBM’s ADSTAR Distributed Storage Manager [CRH95]). The nature of their applications
and requirements are quite different from ours. While we focus on exploiting metadata and update
semantics for metadata management, they try to achieve transactional semantics for archiving and
transferring files between storage devices.

In the context of the POSTGRES system, [SS95] discusses multiple query optimization for data
residing on tertiary storage. It primarily concentrates on caching and scheduling strategies for efficiently
processing relational two-way joins. Their main concern is the limited size of the disk-cache since not
just the indexes but entire relations may have to be fetched to the secondary storage. In an MDDS,
processing queries requires accesses just to specific metadata and not the data itself and hence the
size of the disk-cache is not a major consideration especially for the typically short queries. Only the
response time is critical.

8 Scope for Future Work

In this section we discuss some of the issues which came up during our discussion but were not ad-
dressed since they are orthogonal to the main focus of this paper. They relate to data management on
disk/tape and system integration. Problems presented here need to be addressed to further improve
the functionality and performance of MDDSs.

Data Management on Disk:

In a hierarchical storage system, deciding what data to cache on the disk is still an open problem.
Periodic schemes that use heuristics and history are needed to cache hot data on disk to reduce tape
I/Os. Defining “hot” data is difficult since it may relate to the latest data (e.g., data pertaining to
last 2 weeks) or most commonly asked data (e.g., information about the internet) or seasonal data
(e.g., facts about Olympics). This definition changes over time and the periodic caching schemes are
responsible for automatic migration of hot data between tapes and disks. This type of caching will
have a significant impact on the performance of the system. Some caching strategies for information
retrieval systems are discussed in [?].

20

Figure 19: Disk Space partitioning

New schemes are needed for disk space partioning as well. The disk space has to be partitioned
to hold the different types of data as shown in figure 19. The amount of space allocated for each is
a critical factor and can largely dictate the performance of the system. The space requirements have
to be determined after proper modeling of a number of parameters. The query area stores metadata
read for queries and the partial results. Hence query area for example is approximately the product
of (no-of-queries - no-of-keywords - size-of-inverted-list). The disk cache holds data cached from tape.
An LRU algorithm has be used for data replacement (eviction) from the disk cache. Further studies
are needed to see if any other better strategy is possible. Note that the disk cache is a read only area
and none of the data from the disk cache is to be flushed to the tape. The update lists hold updates
to be applied to data on tape. A threshold value is used to flush data to tape to prevent update lists
from growing too big. The document processing area holds all the arriving documents and incremental
inverted lists extracted after analyzing the documents before they are inserted into the database. The
area allocated will depend on the arrival rate of documents and their sizes. The log files store the
sequence of significant actions performed on data in the memory, on disk and on the buffer. Also the
performance of queries is determined largely by quick accesses to the mapping-table and hence enough
space is to be allocated such that the entire mapping table always stays on the disk (as opposed to
migrating parts of it to the tape).

Data Management on Tape:

Due to their sequential nature, an important problem to be addressed is the location of updates
on tapes. If data is to be layed out contiguously on tapes, then additional space is to be allocated
for each metadata as shown in figure 20. Since metadata does not grow uniformly (some grow faster
than others), it is a difficult task to decide how much space is to be allocated for each metadata. At
retrieval time the seek delays will be the same irrespective of the size of the metadata, i.e., smaller size
metadata will incur same overheads are larger size metadata. As shown in the figure, another option is
to just append new the metadata on tape in the order in which they come. This implies each metadata
will be scattered throughout the length of the tape. Hence at access time, the entire tape might have
to be searched. The tradeoffs involved here are to be studied and efficient schemes can be designed.

Clustering and placement strategies are also needed for data on tapes, i.e., which tape a particular
metadata should go to. This will depend on the access frequencies of the different metadata. Data
layout issues on tertiary storage in the context of scientific databases is discussed in [?]. Since metadata
keeps growing, and there are multiple metadata on a single tape, strategies are needed to handle spills,

21

Figure 20: Data Scattering on Tape

i.e., updates to metadata that cannot fit onto the same tape. Although some simple strategy is
discussed in [CRH95] additional study is needed. If the updates are stored on a new tape then query
optimization will become more complicated. An alternative is to reorganize the metdata such that the
whole metadata fits on a single tape. The tradeoffs here have to be investigated thoroughly. Another
problem has to do with how the metadata are organized themselves. Although B-trees are ideal for disk
based systems they are difficult to maintain on tapes. For example it is very complicated to handle a
node split of a B-tree on tape. Hence new access methods may have to be developed for metadata on
tapes. Special algorithms like the elevator scheduling algorithms for disk scheduling can be developed
to reduce seek time on tapes (by knowing current position of head on the tape). Such schemes can also
improve the performance of the system as it can avoid unecessary rewinding to the beiginning of tape.
Finally in our technique, we append data at the end while some information retrieval systems try to
keep the document IDs sorted based on occurence frequency. Hence special schemes might have to be
developed to store, manage and retrieve sorted data from tapes.

System Integration Issues:

One of the important issues that need to be addressed is how can the techniques we proposed
be put into practice. They can be developed as a new class of DBMS on integrated with current
commerical DBMS. To integrate them into current commercial DBMS, several componenets have to be
modified, including the lock manager, transaction manager, index manager, resource manager, query
optimizer and the log manager. In the query optimizer, even if a query requires access to metadata of
several keywords, in our scheme the metadata was fetched to disk at a stretch without considering the
possibility of double buffering, i.e., pipelining data from tape to disk and disk to memory. Queries can
be processed even faster if double buffering is done since they can be processed partially even before
all the metadata is retrieved.

Another key retrieval aspect that has an impact on system performance is direct transfer of data
from tape to memory. If data is transferred directly from tape to memory, then there is considerable
savings in time since additional copying to and reading from the disk is avoided. This can be used in
our system for example in the case of the document (as opposed to metadata) tape library since no
additional processing is involved in retrieving documents given the document ID. It is clear that to
process queries, updating metadata and storing partial results, metadata for queries have to be brought
to the disk. However the documents themselves need not be brought to the disk and instead can be
directly transferred from tape to memory. Direct transfer can be exploited when the results of the
query contain only static objects and the size of the objects is within a certain limit. However this is
not possible in cases where the result of a query contains large objets containing dynamic media. The

22

tape library will become a bottleneck since no other objects can be retrieved while this transfer takes
place. Since the time taken for the transfer will be large, several other queries needing access to object
on other tapes will have to wait. Hence in such cases it is better to transfer data from tape to disk
and from disk to memory. An incentive to bring data from tape to disk before is to cache on the disk
some of the objects which can be shared between concurrent queries. Hence these tradeoffs have to be
studied. In the case if audio and video objects, admission control and bandwidth allocation may also
needed to transfer the objects to the client.

9 Conclusions

MDDSs of the future will have to manage huge amounts of growing data and hence they have to use
hierarchical systems to store data in a cost-effective manner. The size of the data, the delay character-
istics of the tertiary storage devices and the performance requirements render traditional techniques
inappropriate for several data management functions. In this paper we focused on developing efficient
transaction management and query processing techniques for MDDSs. Our specific contributions are
as follows:

e We analyzed the characteristics of transactions in MDDS environments by studying queries and
updates on metadata and determined the ACID properties. Our observation is that traditional
transactions and transaction processing techniques are unnecessarily restrictive for these environ-
ments and can degrade performance.

e We proposed a concurrency control scheme which exploits data and transaction knowledge, uses
short term locks for both reading and writing, and allows dynamic reordering of accesses to
achieve high performance.

e We analyzed how data can be made persistent on tapes along with the logging requirements for
recovery from system failures. By migrating updates from disks to tape in a lazy fashion, our
scheme avoids a lot on costly tape I/Os that interfere with tape I/O requests from queries. Thus
the response time of queries is improved.

e We also developed a new multiple-query optimization technique for queries needing access to
metadata on tapes. By considering the arrival time and data requirements of queries in addition
to the possibility of tape swaps, our query optimization algorithm is capable of considerably
reducing the average response time of queries.

e To quantify the benefits of our schemes, we implemented the schemes on a prototype system and
compared the performance of competing approaches. Our schemes showed substantial improve-
ment in performance. Due to limitations in our computing resources, metadata size was confined
to atmost 1.25 GB. However we believe that similar performance improvements will be observed
even in larger metadatabases.

By concentrating on correctness and system related performance issues, our work complements the
work done thus far in information retrieval for building efficient MDDSs. All of our techniques are
general enough to be used independently, however maximum benefits can be obtained by combining
them. During the course of our work, several other new issues surfaced. These relate to the management
of data within the disks and the tapes as well as system integration. We have presented them separately
in the previous section thus providing some directions for future work.

23

Each of our schemes is based on simple ideas and is founded on sound observations about the nature
of the data, of the queries and updates, and of the data storage devices. Nevertheless the practical
impact of these ideas has been shown to be significant.

References
[ACF*94] M. Arya, W. Cody, C. Faloutsos, J. Richardson, and A. Toga. QBISM: Extending a DBMS

[BCCY4]

[BHGS7]
[Chi94]

[CHL93]
[CLP94]

[CRH95]

[Cro89]

[Fal85]
[FR94]

[G+95]

[GR93]

[ML92]

[MN92]

[Moh90]

[SB94]

to support 3D medical images. In Proc. IEEFE Int’l. Conf. on Data Fng., page 314, Houston,
TX, February 1994.

E.W. Brown, J.P. Callan, and W.B. Croft. Fast incremental indexing for full-text infor-
mation retrieval. In Proc. of Intl. Conference on Very Large Databases (VLDB), Santiago,
Chile, 1994.

P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison Wesley, 1987.

T. Chiueh. Content-Based Image Indexing. In Proc. of Intl. Conference on Very Large
Databases (VLDB), pages 583-593, Santiago, Chile, 1994.

M. Carey, L. Haas, and M. Livny. Tapes Hold Data, Too: Challenges of Tuples on Tertiary
Store. In Proc. of SIGMOD Intl. Conference on Management of Data, pages 413-419, 1993.

T. Chua, S. Lim, and H. Pung. Content Based Retrieval of Segmented Images. In Proc. of
ACM Multimedia, pages 211-218, 1994.

L.F. Cabrera, R. Rees, and W. Hineman. Applying Database Technology in the ADSM
MasshStorage System. In Proc. of Intl. Conference on Very Large Databases (VLDB),
Zurich, 1995.

W. B. Croft. Research and development in information retrieval. ACM Trans. on Inf. Sys.,
7(3):181, 1989.

C. Faloutsos. Access Methods for Text. ACM Computing Survey, 17:50-74, 1985.

C. Federighi and L. Rowe. A distributed hierarchical storage manager for a video-on-
demand system. In IS&T/SPIE Symposium on Electronic Imaging Science and Technology,
San Jose, CA, February 1994. SPIE.

S. Ghandeharizadeh et al. On configuring hierarchical storage managers. Technical Report
95-601, Computer Science Department, University of Southern California, Los Angeles, CA,
1995.

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann, San Mateo, CA, 1993.

C. Mohan and F. Levine. ARIES/IM: An efficient and high-concurrency index management
rélzthod using write-ahead logging. In Proc. ACM SIGMOD Conf., page 371, San Diego,
, June 1992.

C. Mohan and I. Narang. Algorithms for creating indexes for very large tables without
quiescing updates. In ACM SIGMOD Conf. on the Management of Data, San Diego, June
1992.

C. Mohan. ARIES/KVL: A key-value locking method for concurrencty control of multi-
action transactions operating on BTree indexes. In Proceedings of the 16th Conference on
Very Large Databases, Morgan Kaufman pubs. (Los Altos C’Ag, Brisbane, August 1990.
Also pubﬁshed in/as: IBM lea,den Res.CI‘;r, Res.R. No.RJ7008, Mar.1990, 27pp.

A. Strawman and F. Bretherton. A Reference Model for Metadata. In
http: //www.llnl.gov/liv_comp/metadata/papers /whitepaper-bretherton.html, University of
Wisconsin, March 1994.

24

[SC92]
[SGMS94]
[5595]
[SSU90]

[TGMS94]

[TGNOY2]

[VCC95]

[Wor94]
[YGMY5a]

[YGMOY5b]

V. Srinivasan and M. J. Carey. Compensation-based on-line query processing. In Proc.

ACM SIGMOD Conf., page 331, San Diego, CA, June 1992.

K. Salem, H. Garcia-Molina, and J. Shands. Altruistic locking. ACM Trans. on Database
Sys., 19(1):117, March 1994.

S. Sarawagi and M. Stonebraker. Query Processing in Tertiary Memory Databases. In
Proc. of Intl. Conference on Very Large Databases f VLDB), Zurich, 1995.

A. Silberschatz, M. Stonebraker, and J. Ullman. Database systems: Achievements and
opportunities. SIGMOD Record, 19(4):6-22, December 1990.

A. Thomasic, H. Garcia-Molina, and K. Shoens. Incremental Updates of Inverted Lists for
Text Document Retrieval. In Proc. of SIGMOD Intl. Conference on Management of Data,
May 1994.

D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over append-only
databases. In Proc ACM SIGMOD Conf., pages 321-330, San Diego, California, 1992.

S.R. Vasanthakumar, J. Callan, and W.B. Croft. Integrating INQUERY with an RDBMS
to Support Text Retrieval. In ACM SIGIR Conference on Research and Development in
Information Retrieval Post-Conference Workshop on Information Retrieval and Databases,

Seattle, WA, 1995.

MDDS Workgroup. Proceedings of the Massive Digital Data Systems Workshop, February
1994.

T. W. Yan and H. Garcia-Molina. SIFT - A Toll for Wide-Area Information Dissemination.
In In Proc. of 1995 USENIX Technical Conference, pages 177-186, 1995.

T.W. Yan and H. Garcia-Molina. Information Finding in a Digital Library: the Stanford
Perspective. SIGMOD Record, 24(3), September 1995.

25

