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Abstract

Anytime algorithms are playing an increasingly important role in the construc-
tion of effective reasoning and planning systems. Early work on anytime algorithms
concentrated on the construction of applications in such areas as medical diagnosis
and mobile robot navigation. In this paper we describe a programming environment
to support the development of such applications as well as larger applications in
which several anytime algorithms are used. The widespread use of anytime algo-
rithms depends largely on the availability of such programming tools for algorithm
construction, performance measurement, composition of anytime algorithms, and
monitoring of their execution. We present a prototype system that meets these
needs. Created in lisp, this library of functions, graphical tools and monitoring
modules will accelerate and simplify the process of programming with anytime
algorithms.

1 Introduction

Anytime algorithms are algorithms that trade performance for time. As the amount
of time is increased, the quality of the output which an anytime algorithm returns
increases. As computational systems become more complex and flexible, specific
situations will demand more out of certain algorithms and less out of others. Since
complete computation in many complex systems is not feasible, as well as not warranted,
anytime algorithms provide a technique for allocating computational resources to the
most useful algorithm. Currently, anytime algorithms are being used in a number of
systems in such areas as diagnosis and repair, mobile robot navigations and decision
under uncertainty [1,2, 3,5, 9, 12]. Anytime algorithms differ from normal algorithms
in a number of ways:



1. Quality measure Instead of a binary notion of correctness, an anytime algorithm
returns a result with a measure of it’s quality. This may be in terms a group of
possible answers, ranges for answers, or other measurements.

2. Predictability Anytime algorithms also contain statistical information about the
output quality given a certain amount of time and information about the data it
receives. This can be used for meta-reasoning about computational resources to
give an anytime algorithm.

3. Interruptibility and Continuation Anytime algorithms can be interrupted and re-
turn the partial results they have calculated up to that point or continued past the
contract time they are given. This allows systems that use anytime algorithms to
change the computation allocation to an anytime algorithm as it is executing.

4. Monotonicity Anytime algorithms always improve the output quality of data they
work on as they are given more time.

Anytime algorithms deal with data-structures in a slightly different way then tradi-
tional algorithms. In a traditional algorithm, internal information about where and how
work is proceeding is maintained separately from the data, and thus interrupted func-
tions cannot continue and often intermediate answers are lost. In an anytime algorithm,
location information is maintained with the data and data manipulations are done in a
way so that the data is still usable. Much like object-oriented data-structures maintain
information about manipulators, anytime algorithm data-structures maintain informa-
tion about the state of those manipulators as they work on the data. This information
allows the system to make more intelligent decisions about the data and it’s value. For
example, a database may contain information about how sorted certain columns are and
what needs to be done to finish the sorting along with an estimate of the time required.
This type of information makes it possible to decide how to organize a search more
effectively.

As the applicability of anytime algorithms grows, there is a growing need to de-
velop programming methodologies and tools to support their unique characteristics.
Current applications of anytime algorithms are based on incompatible representations
of performance profiles and incompatible interface between the anytime components
of the system. As a result, anytime algorithms are not reusable and each system must
be developed from scratch.

In designing and developing an anytime programming environment, it is our hope
that researchers in this field will be able to share useful libraries of anytime functions
and easily compose those functions to create more flexible and powerful anytime
systems. Additional tools could accelerate research in this field by allowing the user
to visualize the performance of an anytime algorithm and analyze its properties. With
the system presented in this paper, the user can easily develop additional anytime
functions, examine and store their performance description, activate them and monitor
their execution, and modify the existing library of programming tools.



Another goal of our system is to facilitate and standardize the anytime algorithm de-
velopment cycle which is quite different from traditional algorithm development. This
cycle begins with creating an iterative improvement algorithm in standard Common
Lisp, then putting this algorithm through a tool that makes it into an anytime algorithm.
The resulting algorithm can be activated with a certain time limit or it can be interrupted
by the system. Once an anytime algorithm has been created, our system can automati-
cally create a performance profile that relates input quality and computation time to the
quality of the output. The combination of an anytime algorithm and its performance
profile defines an anytime function. Our system also allows the composition of several
elementary anytime functions into larger anytime systems. Finally, the user can select
a monitoring strategy from a library (or define a new monitoring function) that would
actually activate the anytime system and control the activation and interruption of the
components.

The resulting system eliminates much of the redundant work involved in creating
anytime systems and automates several related tasks from performance gathering to
run-time monitoring. In addition to offering a basic set of programming tools, this pro-
gramming environment offers a framework to study different methods of representing
performance profiles, different techniques to combine anytime functions, and different
monitoring schemes. The rest of this paper describes the components of our pro-
gramming environment and its current capabilities. Section 2 describes the process of
developing an elementary anytime algorithm. In Section 3, we show how composition
of several modules is performed. Section 4 describes how monitoring of an anytime
system is performed. We conclude with a summary of the benefits of the system and
future work.

2 Developing elementary anytime algorithms

This section describes the process of developing a single anytime algorithm in our sys-
tem. Our system supports and encourages the notion of modularity and re-usability of
code. The difficulty with anytime algorithms is that we have to measure the time/quality
tradeoff offered by each algorithm as well as test their correctness.

2.1 Extracting a single improvement step

The first step in creating an anytime functioninvolves taking an iterative task, extracting
a single quality improvement step and designing a data structure that can represent an
intermediate state of the algorithm. A single quality improvement step must be a small
computational task with respect to the work needed to solve the problem. This may
be working on one element of an array, expanding a single node of a search graph,
or running one pass with a filter. This function is passed to the anytime development
system, which wraps time interruptible code around the algorithm and makes it into a
lisp function that can run for a given amount of time or until the termination condition
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Figure 1: The quality map of an anytime quick-sort function

of the algorithm is met.

By recording the state of the process after each step, the anytime algorithm can
work on data exactly as a normal iterative function would. While the basic processing
step is kept the same, the order of the operation on the data may be modified to optimize
partial performance.

The anytime algorithm is the function that actually does the computation on the
structure that the system uses. Learning how to extract the basic quality improvement
step from a given iterative algorithm is not hard, but does take a little practice. Two
variables are needed by the anytime function. The first is a pointer to the data structure
itself, this data structure will be destructively changed using a setf, so if the system needs
the old version a copy must be made. The second variable is a location variable that
keeps track of the anytime function’s location in the data or returns true if the anytime
function is complete. During each pass the anytime algorithm should do the smallest
step possible, since at this point the function will not be interruptible. In the quick-sort
case, the single improvement step consists of partitioning the array around a pivotin a
given range of indices. A location variable is returned by the function after each pass
(in Lisp, this location variable can be any data type that facilitates manipulating the
data structure). It may be a list, vector, value or pointer. In the quick-sort instance we
use a list of partition boundary pairs.
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2.2 Support functions

Our system requires the user to supply two auxiliary functions. First, a sample genera-
tion function must be provided for creating random problem instances. These problem
instances are used to automatically track the algorithm’s performance and create its
performance profile. The sample generation function should be designed to generate
cases that would generally appear in the real-world application.

In addition, an output quality function must be provided that returns the actual
output quality of the result structure. Determining a good measure of quality for the
problem is important since it has a major effect on the accuracy and applicability of the
performance profile. At the same time, a complex quality function may complicate the
construction of the performance profile and may not be useful at run-time when quality
of intermediate results must be determined within a short time. In our sorting example
we use the percentage of elements that are less than their left neighbor.

2.3 Creating the performance profile

From an early stage, performance profiles played an important role in anytime com-
putation. Early representations of performance profiles included a mapping from time
allocation to expected output quality [1, 5]. This representation has been later extended
by conditional performance profiles that include a mapping from input quality and
run-time to a probability distribution of output quality [8, 10]. We use the latter type of
performance profiles in our system.

Generation of the performance profile consists of several control structures that
continually give the anytime algorithm small amounts of time and keep track of the
new output quality. The system starts by estimating the average completion time of
the algorithms by using a relatively small number of problem instances. This time is
essential for determining the size and resolution of the table used to collect performance
data. Then the system automatically generates a large number of problem instances
and records the quality improvement of the algorithm as a function of time for each
problem. This data, called the quality map of the algorithm, is used to construct the
probability distribution of output quality for a given time. If input quality is variable,
the system repeats the above process for a set of different initial input qualities so that
the conditional performance profile of the algorithm can be constructed.

Figure 1 shows the 20 by 20 table representing the quality map of the quick-sort
algorithm. Figure 2 shows how the system displays the resulting performance profile.
The vertical axis represents output quality of the function on a scale of 0 to 100. This
represents the quality measure defined by the quality function that the user supplies. In
our sorting example, quality is determined by counting the number of entries that were
less then their left neighbor. In a fully sorted list each number should be less then its left
neighbor and this corresponds to quality of 100. The horizontal axis represents run-time
measured in milliseconds. Other information in the window contains the average time
for completion, the size of the list to be sorted (200 in this case) and the number of
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Figure 2: The performance profile of an anytime quick-sort algorithm (left) and the
distribution of output quality at time 1170.2ms (right). Horizontal bars represent one

standard deviation.

trials (200).

The discrete probability distribution of quality can be displayed graphically for any
time period by the performance profile tool (see Figure 2). This discrete probability
record does not cost much in terms of memory (since we are just storing 400 counts),
but it allows a great deal of probabilistic information to be used in determining the
output quality. As we will see latter, this performance representation allows us to
make accurate calculations about the performance of a complex anytime function that
includes several anytime functions as components.
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Figure 3: The performance profile of the anytime greedy selection algorithm with
maximal input quality (left) and minimal input quality (right).



Quality maps can also be built for a number of different input qualities. The
greedy-selection anytime algorithm, for example, will give different qualities of output
depending on both the time allotted for it and the input quality (see Figure 3). The input
quality in this case relates to the output quality of the anytime sort function. Thus some
anytime functions have a conditional performance profile that captures the dependency
on input quality.

3 Performance profiles of complex anytime systems

An important capability of our system is the automatic computation of performance
profiles of complex anytime systems based on the performance profiles for the ele-
mentary components. We are currently implementing the compilation techniques that
were formulated in [10, 13]. These compilation techniques construct the best contract*
algorithm for a complex anytime system. This contract algorithm can be made inter-
ruptible (if necessary) with only a small, constant penalty [8]. Our system is capable of
compiling both linear chains of anytime algorithms and n-trees of anytime algorithms
(see Figure 4).

Figure 4: An anytime chain (left) and an anytime tree (right)

3.1 Compilation of an anytime chain

For example, consider the chain composition of two anytime algorithms. The first
anytime algorithm manipulates data that the second anytime algorithm then uses to
produces the final output. Combining anytime components in this manner allows us to
build up more complex anytime systems from components that preprocess information.
Chain compilation is the same as sequential function calls where the output from one
function is the input of the next.

Fortunately, building chains of anytime functions only requires that we compose two
components at a time. Local compilation has been proven to be optimal citezil:ope so
long as three constraints are true: The input function can be represented as a DAG, each
anytime algorithm is monotonically increasing in quality with time, and the number of
inputs for each module is bounded by a constant.

L A contract algorithm offers a tradeoff between computation time and output quality but the amount of
time available form computation must be determined when the algorithm is activated [10].



In order to construct the combined performance profile, the system first determines
the maximum amount of time needed to generate output quality of 100 by both compo-
nents. It is assumed that this time will be sufficient to generate an output quality of 100
for the combined function, and this time is used as the maximum time needed for the
combined function. This time is then used in the creation of the performance profile of
the combined function.

Once we have the maximum time from summing the maximum time of the compo-
nents, we use a multiple resolution search to determine the optimal time allocation. A
multiple resolution search allows the user to trade optimality for speed, by setting the
number of division per time increment to search and the depth of search. The multiple
resolution search divides the time window into n divisions, picks the best time(see
below) and creates a new time window that is one time division below and above the
best time. The compiler continues narrowing the time window until it has reached the
depth specified.

Time window 1

0 seconds _ 2.0 seconds 0.4 seconds 1.6 seconds

< Best time allocation
Anytime function 1 = 0.5 sec

Anytime function 2 = 1.5 sec

<~ Best time allocation
Anytime function 1 = 0.54 sec
Anytime function 2 = 1.46 sec

2.0 seconds L 0 seconds 0.6 seconds 1.4 seconds
Anytime Anytime Anytime Anytime
function 1 function 2 function 1 function 2

Figure 5: Multiple resolution search with divisions=20, and depth=2

In figure 5 we can see the compiler looking at one group of time points and then
using the best time point to narrow the search to the next time point. Resolution is
time/divisions?®Pt* and compile time is O(divisions xdepth). Since a small number
of divisions may make the compiler miss an optimal time allocation the user must
experiment with different time divisions and depths to determine the best compilation.

Once a specific time allocation for £ (the first anytime function) and £ s (the second)
have been picked by the multiple resolution search, we can use the corresponding output
quality distribution of the first function and the conditional performance profile of the
second to determine the output distribution of the combined function. Figure 6 shows
graphically how ¢ and Zr are used to index the conditional performance profiles of
the two functions. The bestty and ¢, are selected based on the expected output quality
of the combined function. The expected output quality is determined by the following
equation:
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Where:

E{Qo} = Z(Z Qn (tn)[e:]Qm(gis tar)g;])g;

q; q:

is the output quality of the first function

is the output quality of the second function

is the overall output quality

is the performance profile of the first function

is the performance profile of the second function
is the time allocation to the first function

is the time allocation to the second function

For any total time allocation ¢, the best time allocation to the components (¢ to the
first function and s to the second) is recorded as part of the combined performance
profile for monitoring purposes. The score is used to determine if this is the best time
allocation for the current time window.

3.2 An example of an anytime chain

Using the system, we combined the greedy selection algorithm and the quick-sort
anytime. The greedy anytime function was tested with initial qualities of 50, 70, 90, 95,
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Figure 7: The distribution of output quality of the greedy selection algorithm with max-
imal input quality (left) and minimal input quality (right) for the same time allocation.

97 and 99. We focused more on the higher input qualities since this is where we need
more accurate data. We used a minimum input quality of 50 since a randomized list has
an input quality of 50 by our rating function. Figure 3 shows the resulting performance
profile for maximal and minimal input qualities. Notice in Figure 7 that with low input
quality, the output quality distribution is much broader then with high quality, making
output quality more predictable as input quality increases.
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Figure 8: The combined performance profile of the quick-sort and greedy selection
algorithms (left). The optimal time allocation (right) to quick-sort (light-gray) and to

greedy selection (dark-gray).

The quick-sort and the greedy selection algorithms can be combined to solve the
activity-selection problem in process management. Given a set of jobs characterized
by their start and an end times, the activity selection algorithm guarantees to maximize
the number of jobs completed in a specific time period. The list of possible jobs is
first sorted by end times and then the selection algorithm runs through the sorted list
selecting jobs that leave the least amount of free space, namely, selecting the first job
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with a start time after the end time of the current job. Both these algorithms demonstrate
markedly different performance profiles and how two functions can be combined to
create a more complicated and useful anytime function.

After calculating the best time allocation for both of the anytime functions and the
probabilistic output quality, the system displays the combined performance profile (see
Figure 8).

.o 600 a0.0 120.0 150.0 1B80.0 210.0 240.0 270.0 300.0 i} 60 a0 120 150 180 210 240 270 300
Time (ms3) Time

Figure 9: The combined performance profile of a three component anytime function
(left). The optimal time allocation for each sub-function (right).

The process of combining anytime functions can be applied to more complex
structures. We have implemented the local compilation technique introduced in [10].
Figure 9, for example, shows the composition of three test functions. The local
compilation technique works by first combining the performance profiles of function
two and function three and then combining the result with the performance profile of
function one. Since the performance profiles of complex anytime functions contain all
of the same information that an elementary function does, complex anytime functions
may be manipulated and used in exactly the same manner as elementary functions.

3.3 Compile N-tree Anytime Functions

Chain compilation is actually just a subset of n-tree compilation. Where the root of
a chain anytime function has a performance profile indexed on one input quality, an
N-tree root needs N input qualities to index the performance profile. And the multiple
resolution search must go through all the possible time allocations for the root and each
of its children. Figure 10 shows the multiple resolution search for one time window.

The scoring function also becomes slightly more complicated with the compilation
of N-trees.
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Figure 10: The time allocation of a binary tree anytime compilation

B{Qo}=>_( > Qn(tw)lg] - Qn(tn.)le:]Qur(gis, 1 9irr tar)[g5])as

95 iy i

Where:
gi, -+ -qi, are the output qualities of the leaf functions
g; 1s the output quality of the second function
Qo isthe overall output quality
Qn  is the performance profile of the first function
Qur  is the performance profile of the second function
tn, -+ -tn, are the time allocations to the leaf functions

tar  is the time allocation to the second function

Just as with the chain function the compilation of N-trees requires the scoring of all
possible time allocations to the children and the parent. The compiler then selects the
best time allocation, and creates a new time window around that time allocation.

34 An N-tree Example

In this example we create an anytime function called merge. Merge takes two sorted
lists and outputs the merged results, it does this by calling two anytime sort functions
on two lists and passing the results to the anytime merge function. The compiler
determines the best time allocations by using the multiple resolution search technique
described above. In figure 11 we can see the results of the compilation, the system
displays both the performance profile and the optimal time allocation.

Just as with compiling anytime chains, anytime n-trees can be combined with
other trees and chains to build more complex anytime functions. Since anytime n-tree

12
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Figure 11: The combined performance profile for the binary-tree anytime merge func-
tion(left). The optimal time allocations for each of the three sub-functions(right).

structures have the same performance profiles, they can be manipulated in the exact
same manner as an elementary anytime function.

4 Monitoring

Monitoring of execution is an important component of an anytime system. Two mon-
itoring strategies have been developed for the system. The first is a fixed-contract
monitoring scheme and the second is an adaptive monitoring scheme.

Both monitoring strategies use a time-dependent utility function (TDUF) that the
user must supply. This function describes the value of approximate results produced by
the anytime system in various situations. Our system passes the TDUF two arguments:
the time and the quality of the results. Using this information the TDUF returns a
utility based on the current environment, and the task trying to be accomplished. For
example, the time allocated to path planning may not be important during normal
operation, but when moving objects are nearby, path-planning time may be needed for
reactive obstacle avoidance.

The monitor is designed to control the activation and interruption of the anytime
algorithms so as to maximize overall utility. Figure 12 shows how the system combines
the TDUF with the performance profile to generate a time vs. utility function, from
which it can determine the best time allocation.

The use of TDUFs to define the objective of the monitor allows us to develop
generic monitoring schemes that may be useful in many applications. In addition,
the user need not know how to access the performance profiles or develop resource
allocation algorithms (unless the “standard” available monitors are not suitable for the
particular application).
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Figure 12: Using a TDUF and a performance profile to determine the best amount of
time to allocate to an anytime function

Best Time

The contract monitoring scheme uses the TDUF once to determine the optimal time
allocation to the anytime function. Once the total time allocation is determined, the
anytime function is run for that amount of time and the TDUF is not checked again.
The monitor receives no more information from the anytime function.
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Figure 13: The graphical display for the adaptive monitoring scheme.

Figure 13 shows the adaptive monitoring scheme. Initially, adaptive monitoring be-
haves much like the fixed-contract scheme, using the TDUF to select the time allocation
that will maximize utility. Instead of allocating time to the complex anytime function,
the adaptive monitor uses the sub-part time allocations in the complex anytime record to
assign time to each sub-part. Then the adaptive monitor executes each sub-component
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and re-executes the TDUF, at each stage with more information about how the anytime
algorithm is progressing and with current information about the environment. This
allows the monitor to adapt to environment changes or unexpected data quality by
reallocating time to the rest of the sub-components.

The monitor displays information about the intermediate quality of the data, the
performance profiles of the sub-functions and the expected utility based on the time
spent so far, the state of the world and the state of the data.

Once more monitoring strategies are developed, the user will be able to select a
monitor based on the characteristics of the domain of operation and the nature of the
time-dependent utility function. Several monitoring strategies that are currently under
development have been analyzed in [10]. They offer provably optimal solutions to
several general classes of domains. Examples include:

1. Scheduling contract algorithms in an environment with predictable utility change.

2. Adaptive modification of contract time based on monitoring the actual change in
the environment and actual quality of results produced by the system.

3. Scheduling interruptible algorithms based on the marginal value of computation
criterion.

5 Conclusions

We have described a prototype system for programming with anytime algorithms.
Working on this project has given us an opportunity to study anytime algorithms as
new class of functions instead of just dealing with the development of a single anytime
algorithm. Although many traditional programming techniques can produce useful
anytime algorithms, programming with anytime algorithms is different from traditional
programming. Nevertheless, we found that the ideas of modularity and re-usability are
largely applicable in anytime system development, but anytime systems impose new
requirements on the programmer.

We are still working at expanding and improving the anytime programming envi-
ronment. Current effort is aimed at increasing the scope of compilation, implement-
ing additional monitoring strategies, and improving the capabilities of the interactive
graphical tools. We are also using the system to develop an anytime database system to
demonstrate the applicability of anytime algorithm composition to solving real-world
problems.
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