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Abstract
We prove asymptotic upper and lower bounds on the asymptotic decay rate of per-session queue length tail

distributions for a single constant service rate server queue shared by multiple sessions with the generalized
processor sharing (GPS) scheduling discipline. The simpler case of a GPS system with only two queues needs
special attention, as under this case, it is shown that the upper bounds and lower boundsmatch, thus yielding exact
bounds. This result is established in this part (Part I) of the paper. The general case is much more complicated,
and is treated separately in Part II of the paper [42], where tight upper and lower bound results are proved by
examining the dynamics of bandwidth sharing nature of GPS scheduling. The proofs use sample-path large
deviation principle and are based on some recent large deviation results for a single queue with a constant service
rate server. These results have implications in call admission control for high-speed communication networks.

1 Introduction

In the future high speed digital networks, e.g., ATMnetworks or future integrated services Internet, an important open
and challenging issue is how to effectively and efficiently manage network resources, by means of call admission
control, bandwidth allocation and packet/cell scheduling, to support a variety of applications including voice, video
and datagram traffic with diverse traffic characteristics and quality of service (QoS) requirements. This issue has
been studied extensively from both theoretical and practical point of view (see [1, 2] for some recent theoretical
effort). One solution for dealing with the diversity of traffic characteristic and QoS requirements is to provide
different QoS service classes with dedicated queues shared only by sources in the same class. More sophisticated
scheduling mechanism other than the simple First-In First-Out (FIFO) service discipline is needed to provide both
protection and bandwidth sharing among service classes.
For this purpose, the Generalized Process Sharing (GPS) service discipline [34, 33] was proposed recently and is
recommended for use in future integrated services packet networks [11, 36]. GPS is a work-conserving scheduling
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Figure 1: A two-queue GPS system.

discipline, it assumes a fluid source model where source traffic is treated as infinitely divisible fluid . Consider
sessions sharing a GPS server with rate , each session with its own queue (see Figure 1 for a GPS server with
two queues). Associated with the sessions are parameters (called GPS assignment) which determine the
minimum sharing of bandwidthof each session. Each session is guaranteed aminimum service rate of .

More generally, if the set of sessionswith queued packets at time is , the session receives
service at rate at time .

The performance of GPS has been studied in both deterministic [34, 35, 33] and stochastic setting [41, 44] using
the so-called bounding approach [30]. For sources conforming to certain general bounding source models [12] and
[40], upper bounds on the interested metrics such as loss or delay are derived. In the deterministic case, Parekh and
Gallager [34, 35, 33] show that the upper bounds are attainable in the worst-case. In the stochastic setting, how tight
the upper bounds are is still an open question.
In this paper, we study the asymptotic behavior of the GPS system by applying the theory of large deviation. In
particular, we are interested in deriving upper and lower bounds on the asymptotic decay rate of the queue length
tail distribution of each session. We consider a discrete-time fluid model, by which we mean that arrival and service
happen at discrete-time slot indexed by integers, but arrival and service are in the form of fluid, i.e., they are infinite
divisible.
In Part I of the paper, we look at a two-queue GPS system. Under this special case, bandwidth sharing of the two
sessions in the system can be easily captured. Let the GPS assignment for the two sessions is such that

and . Whenever both sessions are busy (i.e., both queues are no empty), then each
session gets exactly share of the total bandwidth . But, if one session is not busy (hence its queue is empty),
then the residual bandwidth not consumed by this session is taken over by the other session if its queue is not empty.
Due to this simplicity in bandwidth sharing, the upper bound and lower bounds we obtain are exactly the same for
the two-queue GPS system.
In part II of the paper [42], we consider a general GPS system with more than two queues. Due to the complexity of
the bandwidth sharing mechanism in the general GPS system, the upper and lower bounds we obtain do not match
exactly, but have similar form, indicative of their tightness.

Hence there is no notion of “packet” in this fluid traffic model [34, 33]. For practical implementation, a packetized version of GPS, called
packet-by-packetGPS (PGPS), is designed that closely approximates the behavior of the ideal fluid GPS with the error term bounded by the
transmission time of the largest packet [34, 33]. Thus results about the ideal fluid GPS can be easily adapted to the packetized version of GPS
or any its variations by properly taking the error terms into consideration [34, 33, 41]. Equivalent forms of GPS and PGPS are also proposed
in [15], where the packetized version PGPS is known as Weighted Fair Queueing (WFQ) and the ideal fluid GPS as bit-by-bit WFQ. The
name, Fluid Fair Queueing (FFQ), is also used in the literature [24] for GPS.
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Study of asymptotic behavior of queueing systems has its implication in call admission control with QoS guarantees
for the future high-speed networks. The theory of effective bandwidths (see , e.g., [26, 25, 22, 27, 21, 29, 39, 6, 23,
18, 31]) developed in recent years exploits this asymptotics to provide a simple theoretical call admission control
scheme for networks represented by a single server with a shared queue. This scheme is asymptotically optimal. For
networks employingGPS service discipline, a theoretical admission control framework is laid out in [43] for various
network service models based on the results in [44]. Optimal and sub-optimal call admission control schemes are
designed using the stochastic envelope processmodel [6] and the theory of effective bandwidths. Although the upper
bounds obtained in this paper are tighter than those in [44], they are generally impossible to compute effectively.
Hence they are mostly of theoretical interests. In [32], approximation methods are used to obtained tight bounds for
the GPS system.
The result for the two-queue GPS system is first stated in [16] and proved under weaker assumptions than ours.
However, due to their resort to a Loynes-type argument [28] , their lower bound argument is somewhat less
convincing and rigorous. In contrast, we argue directly with the stationary version of the processes. To obtain the
lower bound, we apply the sample-path large deviation principle [14, 7] which requires stronger assumptions on the
arrival processes. Our results for the GPS system with more than two queues are more general than theirs, as we
exploit the bandwidth sharing dynamics in more details.
The rest of Part I of the paper is organized as follows. Section 2 briefly reviews the large deviation principle and
state several results regarding discrete-Time G/D/ 1/ queueing systems which will be used later. In section 3 we
state and prove the upper and lower bounds for the two-queue GPS system. Section 4 concludes Part I of the paper.

2 Large Deviations and Discrete-TimeG/D/ 1/ Queueing Systems

In this section, we briefly review some concepts and results from large deviation theory on the real-line that are
needed in this paper and its application to performance analysis of discrete-time, single-server G/D/ 1/ queueing
systems.
The large deviation principle (LDP) on characterizes the limiting behavior of a sequence of probabilitymeasures

on . We say a function from to is a good rate function if all the level sets
, , are compact.

Definition 1 A sequence of probability measures on satisfies the large deviation principle
with a good rate function if,

For an excellent survey on the theory of effective bandwidths, see [9].
Note that when applying Loynes’ Theorem [28], stationarity of both arrival and service processes are required. Although by applying

Loynes’ Theorem to the whole GPS system [16], we know that the queue length distribution for each session, , converges to a stationary
process in distribution, but it is not necessarily true that converges monotonically to in distribution, as would be the case if
Loynes’ Theorem could be applied to the individual queue directly. Due to this technical difficulty, when passing from the non-stationary
regime to the stationary regime, great caution should be exercised. The first equality involving in the lower bound proof
(p. 11) of [16], where and are simultaneously replaced by and , is dubious.

For simplicity, we do not state the results in their most general form. [14, 20, 37] are good sources for reference on the subject. For
application of large deviation theory in communication networks, see the excellent survey paper [38].
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Upper Bound: For every closed set ,

(1)

Lower Bound: For every open set ,

(2)

Let be a sequence of random variables on and be corresponding
sequence of probability measures of the random variables. If satisfies the large deviation
principle with a good rate function , we also say satisfies the large deviation principle with a
good rate function .
For any , define

Note that is the logarithmic moment generating function of .

Theorem 1 (Gärtner-Ellis Theorem) [20] Let be a sequence of random variables on . If
exists (as a finite number) and is differentiable for all , then

satisfies the large deviation principle with the good rate function defined as follows:

is called the Legendre-Fenchel transform (or convex conjugate) of . Note that under the assumption of
the theorem, is a strictly convex function.
Definition 1 to a space of functions on and this leads to the sample path large deviation principle on . Let

denote the space of right continuous and left limit functions from to equipped with the
supremum norm topology, i.e., , for . We say a sequence of probability
measures on satisfies the sample path large deviation principle with a good rate function if

is a function from to with compact level sets and the upper bound (1) and the lower bound
(2) hold for any closed and open sets in , respectively.
Let be a set of random variables on . Define the partial sum process ,

. Assume that exists (as a finite number) and is differentiable for all
and denote its Legendre-Fenchel transform as . From Gärtner-Ellis Theorem,

satisfies the large deviation principle with the good rate function .
Now for , define a sequence of scaled partial sum processes of on :

Clearly, . Let be the probability measure of . In [13], conditions are established under
which satisfies the sample large deviation deviation principle and the good rate function
is identified with the following form: for any ,

if
otherwise
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where is the space of absolutely continuous functions from to with , and is
the derivative of at .
Following [7], we say the sequence of probability measures (or ) satisfies
the sample path large deviation principle with respect to .
Large deviation theory has been widely applied in queueing theory to study the tail probabilities of various queueing
behaviors (see, e.g., [3, 5, 6, 10, 19, 23, 39, 4]). Of particular relevance to us are the results on the discrete-time
G/D/ 1/ queueing system. The presentation below follows primarily the formulation in [6].
We describe the arrival process to a discrete-timeG/D/ 1/ queueing system by a sequence of bounded, nonnegative
random variables on , , where is the set of nonnegative integers. In other words, at time , the
amount of arrivals to the queue is . For any and any , , define ,
the number of arrivals during the time interval . Also let . We call the cumulative arrival process.
We make the following assumptions on the arrival process [7].

(A1) The arrival process is ergodic and stationary.

(A2) For any ,
(3)

and is differentiable.

(A3) is adapted to a filtration with the following property: for any ,
there exists a function , such that for any , ,

a.s. (4)

Note that (A3) implies (3) by taking in (4). To emphasize (A2), we list it separately. Examples of random
processes that satisfy (A1), (A2) and (A3) can be found in [8].
By Gärtner-Ellis Theorem, (A1) and (A2) imply that satisfies the large deviation principle with
the rate function

Moreover, if (A3) is also satisfied, then satisfies the sample path large deviation principle [7].
More precisely, for , define the scaled process

(5)

Let be the distribution of . Then satisfies the sample path large deviation principle with
the rate function defined as follows:

if
otherwise.

Let be the rate of the server in the G/D/ 1/ system. Assume that the system starts with an empty queue at time .
Denote the backlog at time (or the queue length at time ) by . Then . Moreover, by Lindley’s
equation, for ,

(6)
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Expanding (6) recursively, we have

(7)

where takes only integer values. Throughout the paper, whenever a discrete-time system is considered, all time
indices are integers.
A necessary and sufficient condition for the G/D/ 1/ queueing system to be stable is that the average arrival rate
is less than the service rate, i.e., . Under this stability condition, by Loynes’ Theorem [28], assuming
that the system starts with an empty queue at time 0, the distribution of increases monotonically to a stationary
distribution as and almost surely (a.s.).
Given that the assumptions (A1) and (A2) on the arrival process and the above stability condition are satisfied, it has
been proven (see, e.g. [6]) that for any ,

(8)

where is the unique solution to the equation or .
In other words, for any ,

iff (9)

Define . is called the effective bandwidth of the arrival process or
the corresponding cumulative arrival process .
For any , let , where is the number of departures at time . Thus
is the (cumulative) departure process. Using the sample path large deviation principle, it is proved in [7] (see also
[17]) that the satisfies the large deviation principle with the rate function

if
otherwise (10)

Thus
if
if

(11)

where is such that , i.e., .
Therefore, is the effective bandwidth of the departure process.
We remark that the condition is equivalent to where

or (12)

In [17], is called the decoupling bandwidth of the arrival process .
For reasons that will be clear later, we are primarily interested in stationary G/D/1/ queueing system. More
specifically, we assume the backlog process of the system has reached its steady state, thus having the same
distribution as . We study the system at time and look backward in time. Since the arrival process is
stationary, this will have no effect on the assumptions (A1), (A2) and (A3). However, for easy reference, we re-state
them from this point of view.
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(A1 ) The arrival process is ergodic and stationary.

(A2 ) For any ,

exists and is differential.

(A3 ) is adapted to a filtration with the following property: for any , there
exists a function , such that for any ,

a.s.

As has the same distribution as , from (8), it can be proved that for any positive ,

(13)

The following lemmas are instrumental in proving the main theorem of the paper regarding the GPS system, the
proofs of which are included in the appendix.

Lemma 2 Assume , then for any positive ,

(14)

Let . For any , define

(15)

Lemma 3 Assume . Then for any ,

(16)

where
if
otherwise (17)

Moreover, let be such that . Then for any ,

(18)

where
if
if

(19)

Remark 4 From the convexity of and the definition of , . Thus
, and the condition is equivalent to where is the decoupling bandwidth of

defined in (12).
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For any , define the scaled process , . Let

(20)

Lemma 5 satisfies the large deviation principle with the rate function defined as follows:
If , then

if
otherwise (21)

and if , then
if
otherwise. (22)

3 Discrete-Time, Two-Queue GPS Systems

In this section, we consider a two-queue GPS system (Figure 1). Let be the service rate of the GPS server and
the GPS assignment for the two sessions sharing the GPS server such that and , .

For any time , let denote the amount of arrival from session to queue at time , and for any time interval
, let denote the total amount of arrival during . Similarly, let denote the amount

of service session received at time and the total amount of service session received during
. The backlog of queue at time is denoted by . From the definition of GPS scheduling, if session

is busy throughout (i.e., for ), then . In other words, session is
guaranteed a service rate of whenever it is busy.
Given that the arrival processes , are stationary, and that the stability condition, ,
is satisfied, the two-queue GPS system is stable. In particular, the queue length process tends to a finite random
variable a.s., as . In the following exposition, we consider the stationary two-queue GPS system, i.e.,
the system has reached its steady state. In particular, we assume the queue length distribution of each queue has
reached its steady state at time 0 (hence it has the same distribution as ). We examine the system at time and
look backward in time. To derive upper and lower bounds for the two-queue GPS system, we make the following
assumptions on the arrival processes : for ,

(A1 ) The arrival process is ergodic and stationary.

(A2 ) For any ,

exists and is differential.

(A3 ) is adapted to a filtration with the following property: for any , there
exists a function , such that for any ,

a.s.

The time index used reflects the point of view of looking backward in time. Recall that the set of assumptions (A1 ), (A2 ) and (A3 ) is
equivalent to (A1), (A2) and (A3).
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Under this set of assumptions, we have that

Theorem 6 (cf. [16]) Suppose that , , are independent and satisfy (A1 ), (A2 ) and (A3 ).
Moreover, assume that the stability condition is satisfied. Let be the
effective bandwidth of the arrival process . Define

if and
if and
if

where is such that .
Then, for ,

(23)

where is the unique solution to the following equation:

with if and if .
In other words,

iff . (24)

Remark: This theorem is first stated in [16] under weaker assumptions and proved there using an argument based on
Loynes’ construction [28]. However, to make the proof completely rigorous, the issue of stationarity of the departure
process from each queue needs to be addressedwhen applyingLoynes’ construction. In this paper, instead of dealing
with such technicality, we argue directly using the stationary version of the queue length process , .
Without loss of generality, we prove (23) for queue 1. Then (24) becomes

(25)

where is the unique solution to the equation .
The proof of (25) is divided into two parts:

Upper Bound:
if , then

(26)

thus

Lower Bound:

(27)

We prove (26) in § 3.1 and (27) in § 3.2.
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3.1 Proof of the Upper Bound

First observe that
(28)

where as , the maximum is attained whenever .
In particular, choose be such that queue 1 is not empty at any time between and , i.e, for
any integer , . In other words, session 1 is busy throughout . Hence, . But

, we have

where .
Therefore, (28) becomes

(29)

where and the last equality follows as .
Case 1: .
Consider a single queue system where the session 2 is serviced exclusively by a server of service rate . In other
words, the arrival process to the system is . The assumption ensures this single queue
system is stable. Assume the system has already reached steady state, let denote the amount of the service
session 2 received in , and the backlog in the queue at time .
By the definition of GPS scheduling, whenever session 2 is busy (i.e., queue 2 of the two-queue GPS system is not
empty ), the rate of service received by session2 is at least in the two-queueGPS system. Hence,
for any . Therefore,

(30)

From (29), we have
(31)

Let . From Lemma 2, for any ,

(32)

where
if
otherwise

and is such that .
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This, together with the fact that
(33)

yields that for any , there exists a such that for any , ,

(34)

and
(35)

Now from (31), we have

(36)

where the last equality follows from (34) and (35). is a constant that depends on .
Note that if , then

Therefore if or . By Chebyshev’s
Inequality, for any ,

Thus if , then

Taking , and noting that , we have (26).
Case 2: .
This case is easier to prove. First note that from (29), we have

Hence, for any ,

Using (33), we can show that for any , if , then is finite. Therefore, by
Chebeshev’s Inequality, if ,

Taking , and noting that , we have (26). This completes the proof of the upper bound.
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3.2 Proof of the Lower Bound

For any , let denote the aggregate backlog of the two queues at time , i.e., . Since
GPS is work-conserving, we have that, at time ,

(37)

Note that if the maximum in the above equation is attained at , then is contained in the system busy period
of the two-queue GPS system starting at , i.e., , but for any , , . Note also that

implies that .
Applying (29) to queue 2, we have

(38)

Again if the maximum is attained at , then is contained in the session 2 busy period starting at . We
observe that if maximize (37) and maximizes (38), we must have . Therefore,

where .
Since the arrival process, , is stationary, we can replace by without
changing the associated probability distribution. Hence

In other words, for any ,

(39)

For any , let where is a constant fixed temporarily. Then

(40)
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where .
From Lemma 5, satisfies the LDP with the rate function as defined in Lemma 5.
Moreover, also satisfies the LDP with the rate function . Hence, by the Contraction
Principle (see, [14]), we have

As is arbitrary,

We claim that

(41)

then (27) holds.
For any , define

and let be the Legendre-Fenchel transform of , i.e., . It is easy to see that
where . In particular, let be such that .

Then for ,
if
otherwise

and for , . From the definition of , we see that in either case, .
Clearly . To show (41), we note that

(42)

Then, for any such that , . Hence,
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Since the above inequality is true for any such that , we have

Now let , then . But, from the definition of , we
have , therefore

Hence (41) holds. This completes the proof of the lower bound.

4 Conclusion

In this part of the paper, we prove an exact bound on the asymptotic decay rate of the queue length tail distribution
for the two-queue GPS system. Our proof uses the sample-path large deviation principle, thus avoiding the subtle
technical pitfall faced by the work of [16]. However, a stronger technical assumption on the arrival processes are
needed. Upper and lower bounds for the general multiple-queue GPS system is presented separately in the second
part of the paper.
We have looked at the discrete-time GPS system. The results of the paper may be extended to the continuous-time
model by imposing appropriate conditions (corresponding to (A1), (A2) and (A3)) on the continuous-time arrival
processes. Then the arguments of this paper can be applied to pass from the discrete case to the continuous case
(cf., the proof of Theorem 5.1.19 in [14]). Methods, for instance, employed in [23, 4], may also be used to establish
results for the continuous-time GPS system.
The paper deals only with the large buffer asymptotics under the GPS scheduling. Another future direction is to
study the asymptotical behavior of the GPS scheduling with a large number of sources à la the methods of [37, 5].

Acknowledgement I am indebted to Prof. Richard Ellis for teaching me Probability Theory and Large Deviation
Theory and to my advisor Don Towsley for encouragement and many helpful discussions.

A Proofs of the Lemmas in Section 2

Proof of Lemma 2:

From (A ),
(43)

Thus,
(44)
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Since we assume that the queue is in its steady state, for any , , i.e., and have the same
stationary distribution, i.e., that of in (8). (13) implies that for any . This together
with (44) yields (14).

Proof of Lemma 3: The lower bound parts of (16) and (18), namely, for any ,

(45)

and
(46)

are easy to prove. For any , as ,

(47)

Since satisfies the large deviation principle with the rate function and is a
continuous function in , by the Contraction Principle (see, e.g., Theorem 4.2.1 in [14]), it is easy to see that

also satisfies the large deviation principle with the rate function . In particular,
for any ,

If , clearly . Otherwise, follows from the
continuity of . Therefore, (45) holds.
To prove (46), note that for any , is bounded above by . Applying Varadhan’s Integral
Lemma (see, e.g., Theorem 4.3.1 in [14]) yields that

For the upper bound parts, we first prove that for any ,

(48)

Case 1: . Then clearly . But in this case, , hence (48)
holds trivially.
Case 2: . As and is the infimum of over , (48)
holds trivially as well.
Case 3: , where . By Chebyshev’s Inequality, for any ,
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For any , by Lemma 2,

(49)

Since is arbitrary, we have

We claim that for ,
(50)

First note that by continuity of , . By strict convexity
of , if and only if . Since is increasing and and

, we have that for , . As , , hence
. Therefore, . This proves the claim (50).

We now proceed to prove that
(51)

.
Since , by a change of variable, , we have that

As for , the last integral vanishes. Let denote the first integral, and denote
the second. Then

(52)

We will show that
(53)

and
(54)
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Then, from (52), we have

To prove (53), note that , thus

as .
To prove (54), we consider two cases and separately.
Case 1: .

(55)

where (55) follows from Chebyshev’s Inequality and (55) from Lemma 2.
Case 2: .

where Chebyshev’s Inequality and Lemma 2 are used again in the derivation.

Proof of Lemma 5:
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The Upper Bound:
It suffices to prove that for any , , or , where ,

(56)

We first prove (56) for .
if , then , thus

If , as , using the fact that satisfies the LDP with
the rate function , we have

Note that if , then implies that , hence . If
, then clearly, . In either case, (56) holds for .

For , we consider the cases and separately.
In the case that , note that for any , by the definition of , .
But on the other hand, . Hence the upper bound (56) holds trivially
in this case.
The case that is a little harder. Note first that if , then .
Again as , the upper bound (56) holds trivially when .
If , then . But , hence (56) also holds trivially when .
We now consider . Since , . Observe that

Since satisfies the sample path large deviation principle, we have that

where is an absolutely continuous function on and .
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For any absolutely continuous function on such that and . Let ,
, be such that . Since is nonnegative and convex, we have

Since and , by convexity of , we have .
Therefore,

This completes the proof of the upper bound (56) for .
The Lower Bound:
For any , let denote a neighborhood of of radius . It suffices to prove that

(57)

First note that if , then by the definition of , , hence the lower bound (57) holds trivially.
Moreover, if but , then again , (57) holds also trivially in this case.
Therefore we assume that if , and if . Let be any real number such that

. Hence . As ,

(58)

The left condition on in (58) can be tightened as follows:

(59)

where last equality holds as .
To deal with the right condition on in (58), we consider the cases and

separately.
If , then . As ,
always holds. Therefore, from (58) and (59), we have

Now from the fact that satisfies the sample path large deviation principle, we have

19



where is an absolutely continuous function from to and .
Clearly . Moreover, if , then

. Therefore, . But in this
case, . Therefore, (57) holds.
Now we consider the case that . Since ,

(60)

Hence, combining (59) and (60) with (58), and recalling that satisfies the sample path
large deviation principle, we have

(61)

where is an absolutely continuous function on and .
Note that (61) holds for any such that . We claim that

(62)

Therefore (57) holds in this case too.
We now prove the claim (62).

If , then . On the other hand, the left-hand side of (62) is always
nonnegative, and it attains zero with . Therefore (62) holds.
If , then for sufficiently small , . Observe that for any absolute continuous function
on such that and , by the convexity of , we have

On the other hand, for , . Therefore,

Take , we have (62).
If , (62) can be similarly proved by using the fact that for sufficiently small , .
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