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Abstract
We prove asymptotic upper and lower bounds on the asymptotic decay rate of per-session queue length tail

distributions for a single constant service rate server queue shared by multiple sessions with the generalized
processor sharing (GPS) scheduling discipline. The special case of a two-queue GPS system has been dealt with
separately in Part I of the paper [33], where exact bounds are obtained for each queue. A general multiple-queue
GPS system is treated in this part (Part II) of the paper and tight upper and lower bound results are proved by
examining the dynamics of bandwidth sharing nature of the GPS scheduling. We are not able to obtain exact
bounds in this general case due to the complex nature of dynamic bandwidth sharing under the GPS scheduling.
The proofs use sample-path large deviation principle and are based on some recent large deviation results for a
single queue with a constant service rate server. These results have implications in call admission control for
high-speed communication networks.

1 Introduction

In the future high speed digital networks, to support a variety of applications such as voice, video and datagram traffic
withdiverse traffic characteristics and quality of service (QoS) requirements, it has been suggested to providedifferent
QoS service classes to accommodate this diversity of traffic characteristic and QoS requirement [1, 8, 28]. As a
result, more sophisticated schedulingmechanism other than the simple First-In First-Out (FIFO) service discipline is
needed to provide both protection and bandwidth sharing among service classes. For this purpose, the Generalized
Process Sharing (GPS) service discipline [26, 25] (also known asWeighted Fair Queueing), has been proposed, one
important feature of which is its ability to provide isolationamong different classes, while, at the same time, allowing
bandwidth sharing among classes.
More specifically, GPS is a work-conserving scheduling discipline, it assumes a fluid source model where source
traffic is treated as infinitely divisible fluid (hence an ideal model). Consider sessions sharing a GPS server with
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Figure 1: A two-queue GPS system.

rate , each session with its own queue 1. Associated with the sessions are parameters (called GPS
assignment) which determine the minimum sharing of bandwidth of each session. Each session is guaranteed a
minimum service rate of . More generally, if the set of sessions with queued packets at time is

, the session receives service at rate at time .

The performance of GPS has been studied in both deterministic [26, 27, 25] and stochastic setting [32, 35] and upper
bounds on the interested metrics such as loss or delay are derived. In the deterministic case, Parekh and Gallager
[26, 27, 25] show that the upper bounds are attainable in the worst-case. In the stochastic setting, how tight the upper
bounds are is still an open question.
In this paper, we are interested in deriving upper and lower bounds on the asymptotic decay rate of the queue length
tail distribution of each session. We consider a discrete-time fluid model, by which we mean that arrival and service
happen at discrete-time slot indexed by integers, but arrival and service are in the form of fluid, i.e., they are infinite
divisible.
In Part I of the paper [33], we have looked at a two-queue GPS system. Due to the simpler bandwidth sharing
mechanism of this special case, we are able to obtain exact bound on the asymptotic decay rate of the queue length
tail distribution for each queue.
In this part (Part II) of the paper, we consider a general GPS system with multiple queues. Due to the complexity of
the bandwidth sharing mechanism in the general GPS system, the upper and lower bounds we obtain do not match
exactly. However, they have similar form, indicative of their tightness. In particular, if there are only two queues, the
lower and upper bounds are the same. Our results are derived based on the sample-path large deviation principle and
exploring the complicated bandwidth sharing structure in more details. A key concept introduced is partial feasible
setswhich captures the dynamics bandwidth sharing nature of the GPS scheduling. Our results are more general and
includes those in [11] as a special case.
Study of asymptotic behavior of queueing systems has its implication in call admission control with QoS guarantees
for the future high-speed networks. The theory of effective bandwidths (see , e.g., [19, 18, 16, 20, 15, 23, 31, 4, 17,
13, 24]) developed in recent years exploits this asymptotics to provide a simple theoretical call admission control
scheme for networks represented by a single server with a shared queue. This scheme is asymptotically optimal. For
networks employingGPS service discipline, a theoretical admission control framework is laid out in [34] for various
network service models based on the results in [35]. Optimal and sub-optimal call admission control schemes are
designed using the stochastic envelope processmodel [4] and the theory of effective bandwidths. Although the upper
bounds obtained in this paper are tighter than those in [35], they are generally impossible to compute effectively. In

For an excellent survey on the theory of effective bandwidths, see [7].
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[21], approximation methods are used to obtained tight bounds for the GPS system.
The rest of Part II of the paper is organized as follows. Section 2 lists some large deviation results regarding
discrete-Time G/D/ 1/ queueing systems which will be used later. Section 3 presents the assumptions, and some
important sample-path relations regarding the GPS system, and states the main theorem. Section 4 proves the main
theorem. The paper is concluded in Section 5.

2 Large Deviations for Discrete-TimeG/D/ 1/ Queueing Systems

In Section 2 of Part I of the paper, a brief overview of some key concepts and results from large deviation theory and
its application to the study of discrete-time G/D/ are presented. To save space, in this section we only list a few
results that are to be used later in the paper The following presentation follows closely the formulation in [4, 5].
We describe the arrival process to a discrete-timeG/D/ 1/ queueing system by a sequence of bounded, nonnegative
random variables on , , where is the set of nonnegative integers. In other words, at time , the
amount of arrivals to the queue is . For any and any , , define ,
the number of arrivals during the time interval . Also let . We call the cumulative arrival process.
We make the following assumptions on the arrival process [4, 5].

(A1) The arrival process is ergodic and stationary.

(A2) For any ,
(1)

and is differentiable.

(A3) is adapted to a filtration with the following property: for any ,
there exists a function , such that for any , ,

a.s. (2)

Note that (A3) implies (1) by taking in (2). To emphasize (A2), we list it separately. Examples of random
processes that satisfy (A1), (A2) and (A3) can be found in [6].
By Gärtner-Ellis Theorem, (A1) and (A2) imply that satisfies the large deviation principle with
the rate function [4]

Moreover, if (A3) is also satisfied, then satisfies the sample path large deviation principle [5].
More precisely, for , define the scaled process

(3)

Readers who are interested in general large deviation theory should consult [9, 14] or any other books on the subject. [30] gives an
excellent survey of large deviation theory and its application to communication networks. [7] and reference therein is a good source on
application of large deviation theory to effective bandwidths and queueing theory.

Throughout the paper, whenever a discrete-time system is considered, all time indices are integers.
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Let be the distribution of . Then satisfies the sample path large deviation principle with
the rate function defined as follows:

if
otherwise.

Let be the rate of the server in the G/D/ 1/ system and denote the backlog at time (or the queue length
at time ) by . A necessary and sufficient condition for the G/ D/ 1/ queueing system to be stable is that
the average arrival rate is less than the service rate, i.e., . Under this stability condition, by Loynes’
Theorem [22], assuming that the system starts with an empty queue at time 0, the distribution of increases
monotonically to a stationary distribution as and almost surely (a.s.).
Given that the assumptions (A1) and (A2) on the arrival process and the above stability condition are satisfied, it has
been proven (see, e.g. [4]) that for any ,

(4)

where is the unique solution to the equation or .
Define . is called the effective bandwidth of the arrival process or
the corresponding cumulative arrival process .
For any , let , where is the number of departures at time . Thus
is the (cumulative) departure process. Using the sample path large deviation principle, it is proved in [5] (see also
[12]) that the satisfies the large deviation principle with the rate function

if
otherwise (5)

Thus
if
if

(6)

where is such that , i.e., .
Therefore, is the effective bandwidth of the departure process.
In this paper, we primarily interested in the stationary G/D/ 1/ queueing system. More specifically, we assume
the backlog process of the system has reached its steady state, thus having the same distribution as . We study
the system at time and look backward in time. Since the arrival process is stationary, this will have no effect on
the assumptions (A1), (A2) and (A3). However, for easy reference, we re-state them from this point of view.

(A1 ) The arrival process is ergodic and stationary.

(A2 ) For any ,

and is differentiable.
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(A3 ) is adapted to a filtration with the following property: for any
, there exists a function , such that for any and ,

a.s.

As has the same distribution as , from (4), it can be proved that for any positive ,

(7)

The following lemmas are instrumental in proving the main theorem of the paper regarding the GPS system, the
proofs of which can be found in the appendix of Part I of the paper [33].

Lemma 1 Assume , then for any ,

(8)

Let . For any , define

(9)

Lemma 2 Assume . Then for any ,

(10)

where
if
otherwise (11)

Moreover, let be such that . Then for any ,

(12)

where
if
if

(13)

For any , define the scaled process , . Let

(14)

Lemma 3 satisfies the large deviation principle with the rate function defined as follows:
If , then

if
otherwise (15)

and if , then
if
otherwise. (16)
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From Varadhan’s Integral Lemma (see, e.g., Theorem 4.3.1 in [9]), we have that for any ,

Therefore, if , then
if
if

If , then for all .

3 Multiple-Queue GPS Systems: Assumptions, Sample Path Relations and State-
ment of the Main Theorem

Consider a GPS system with queues, where (Figure 1). Let be the service rate of the GPS server and
the GPS assignment for the sessions sharing the GPS server where , .

For any time , let denote the amount of arrival from session to queue at time , and for any time interval
, let denote the total amount of arrival during . Similarly, let denote the amount

of service session received at time and the total amount of service session received during
. The backlog of queue at time is denoted by .

An equivalent way to define GPS [26, 25] is that

(17)

for any session that is backlogged throughout the interval . A session is backlogged throughout an interval
if there is always traffic from that session queued through the interval. From the definition of GPS scheduling, if
session is busy throughout (i.e., for ), then . In other words, session
is guaranteed a service rate of whenever it is busy.
Given that the arrival processes , are stationary, and that the stability condition, ,
is satisfied, the GPS system is stable. In particular, the queue length process tends to a finite random variable

a.s., as . In the following exposition, we consider the stationary two-queue GPS system, i.e., the system
has reached its steady state. In particular, we assume the queue length distribution of each queue has reached its
steady state at time 0 (hence it has the same distribution as ). We examine the system at time and look backward
in time.

3.1 Assumptions

We make the following assumptions on the arrival processes : for ,

(A1 ) The arrival process is ergodic and stationary.

The time index used reflects the point of view of looking backward in time. Recall that the set of assumptions (A1 ), (A2 ) and (A3 ) is
equivalent to (A1), (A2) and (A3).
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(A2 ) For any ,

exists and is differential.

(A3 ) is adapted to a filtration with the following property: for any
, there exists a function , such that for any and ,

a.s.

We prove upper and lower bounds on the asymptotic decay rate of the stationary backlog process for each session
. Without loss of generality, we consider session 1. Before we state the results, some notation are necessary. We
draw the reader’s attention that in the definitions of the following sections, since session is the queue under study,
it is always treated specially, e.g, in the definition of partial feasible set, session 1 is excluded.

3.2 Partial Feasible Sets

Let . For any fixed , we say a (possibly empty) set is a partial feasible
set with respect to if can be partitioned into such that for any , , and for

, if , then

where .
are called the partial feasible partition of . For , let

where and for , is defined above. Clearly if , then .
are called the associated delimiting numbers for (or ). In particular, we write

as .
Let be the collection of all partial feasible sets with respect to . Partial feasible sets have the following
monotonicity properties.

Lemma 4 (Monotonicity Properties of Partial Feasible Sets)
(a) For any where , let and be the partial feasible partitions of and

respectively. Then for (note that ),

and In particular, .
(b) For any , if , then . In other words, . Moreover, .
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From the above lemma, we see that is an increasing function in and a decreasing function in .
For any , let be the largest element in . Then the partial feasible partition, of

and its associated delimiting numbers, are defined recursively as follows: for ,

and

where and . Note that is defined in such a way that if ,
then ; otherwise is the largest such that but . Hence, for any and ,

. In either case, . It can be verified that is the largest element in .
Therefore, for any .

3.3 Sample Path Relations

For any and fix an . For , define and for , . We
call the feasible rate of session with respect to and .
Suppose be the partial feasible partition of , thus, . Let and be any partition
of , i.e., , where either of them can be empty. Also let . Then from
the definition of , we have that for and for any ,

(18)

In particular, for any or , the equality holds, otherwise the strict inequality holds.
Following the notation in [35], the relation (18) says that form a feasible partition of the
sessions in with respect to . For , We consider a G/D/ 1/ queueing systems where the
arrival process is the session arrival process and the service rate of the server is . Let denotes the
backlog of the queue at time , i.e.,

(19)

Clearly, .
Now define

(20)
is difference between the session backlog of the GPS system and the backlog of the independent session

G/D/ 1/ queue.
From (19), it follows that for any integer and such that ,

(21)

As , then from (21) and (20), we have

(22)

We claim (see Lemma 1 in [35]) that

8



Lemma 5 Let be such that , , then for any ,

(23)

This lemma is very important, it suggests a way to compare the sample path behavior of GPS system with that of a
decoupled system consisting of a set of (independent) single queue systems, where each session is serviced by a
server of rate . Lemma 5 says that if is chosen as required, then the aggregate backlog over sessions in of
the GPS system is bounded above by the sum of the backlogs over the same set of sessions in the decoupled system.
Moreover, we have the following sample path lower bound on the output processes. The proof of the lemma is
relegated to Appendix A.

Lemma 6 Let be such that , , then for any ,

(24)

(25)

3.4 Statement of the Main Theorem

For any fixed , let and . For , is the feasible rate of session with respect
to and defined in § 3.3.
For and for , define

if
otherwise

where is such that .
Note that is the effective bandwidth of the departure process when session is serviced by a server of
constant rate .
Let , in particular, if , . For any ,

(26)

For any , define
(27)

and
(28)

9



From (26), clearly . Moreover, from the fact that with ,
we have

Therefore, for any ,

(29)

Now we are in a position to state the main theorem of the paper.

Theorem 7 Suppose that , , are independent and satisfy (A1), (A2) and (A3).
Moreover, assume that the stability condition is satisfied. Then,

(30)

where

and (31)

and
(32)

where
(33)

4 Proof of the Main Theorem

The proof of the Main Theorem is divided in two parts. The upper bound part is proved in § 4.1 and the lower bound
part is proved in § 4.2. In § 4.3, some ramifications of the Main Theorem are discussed.

4.1 Proof of the Upper Bound

To prove the upper bound (30), it suffices to prove the following lemma.

Lemma 8 Given the assumption in Theorem 7, for any , let and . If

(34)

then
(35)
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Proof: First observe that
(36)

where the maximum is attained by any such that .
Let be the smallest such that . In other words, session is idle at time , but is busy
throughout : for any , , .
Applying Lemma 5 with and using (22), we have,

(37)

as and .
Then from the definition of GPS, we have

where the second inequality follows from (37) and the last inequality holds as .

Note that , thus

(38)

where we recall that .

On the other hand, applying Lemma 5 for , we have

as .
Using (21) for , we have

(39)
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Therefore,

(40)

where the second inequality follows from (39) and the last inequality holds as .
Combining (38) and (40), we have

Hence,

(41)

where the last equality follows from the definition of .
For any , recall that

(42)

and from the concavity of the function where , we have

(43)
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(42) and (43) implies that for any , there exists a such that for any , ,

(44)

and
(45)

Moreover, for , if , then . Then, from (7), . Therefore, by independence of
, we have that for ,

(46)

Now from (41), we have that for ,

(47)

where the last equality follows from (44), (45) and (46) with being a constant that depends on .
Note that if , then

Therefore if or
, then .

Now by Chebyshev’s Inequality, for any ,

Thus if , then

(48)

Taking , and noting that , we have that if
, or , then, (48) holds for any positive such

that .
Lastly, taking , we have that if

then
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4.2 Proof of the Lower Bound

To prove the lower bound (32), it suffices to prove the following lemma.

Lemma 9 Given the assumption in Theorem 7, for any fixed and , let be such that

(49)

i.e., is the solution to . Then

(50)

Proof: Recall that
(51)

As , we have that , hence

Applying Lemma 6 to , we have

Hence

In other words, for any , we have

(52)

For any , let where is a constant fixed temporarily. From (52), we have

(53)
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where by stationarity of
the arrival processes.
From Lemma 3, satisfies the LDP with the rate function as defined in Lemma 3 with
replaced by . Moreover, also satisfies the LDP with the rate function . Hence,
by the Contraction Principle (see, [9]), we have

As is arbitrary,

We claim that

(54)

where, by definition, .
For any , define

and let be the Legendre-Fenchel transform of , i.e., . It is easy to see
that where . In particular, let be such that

. Then for , as ,

if
otherwise.

For , as , . . From the definition of
, we see that in either case, . Clearly

. To show (54), we note that

(55)
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Then, for any such that , . Hence,

Since the above inequality is true for any such that , we have

Now let , then . But, from
the definition of , we have , therefore

Hence (54) holds. This completes the proof of the lemma.

4.3 Discussion

In this section, we discuss some ramifications of the main theorem (Theorem 7).
First we claim that for any , , there exists and such that the condition (34) in
Lemma 8 holds. This is a consequence of the following lemma, the proof of which is relegated to Appendix B.

Lemma 10 For any , if there exists and such that the condition (34) in Lemma 8 holds,
then for any , (34) also holds, i.e.,

From the proof of Lemma 10, we see that as long as , the right hand side of (34) is an decreasing function
of .
In particular, for any , as , we have

(56)

where is independent of . is the upper bound obtained in [11] for a general multiple-queue
GPS system.
Now we fix a such that , and see how the choice of and affect the right hand side of (34).
Consider two arbitrary pairs of sets and where and , . Let

and . Define and be such that if if ,
and ; whereas if , and . Then
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Using this relation, it can be easily checked that

(57)

if and only if

(58)

In the case where and (thus ), then (57) holds if and only if

On the other hand, in the case where and (thus ), then (57) holds if and only if

In particular, let and . Then for any , we have , thus
. Therefore,

(59)

This fact can also be proved directly using Lemma 4(a).
Define

(60)

Then from (59), we have

Hence, we have the following corollary.

Corollary 11 Under the same assumptions in Theorem 7, we have that

(61)
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This corollary can be proved under much weaker assumptions than those of Theorem 7 (see Theorem 1 in [34]). In
practice, since is usually impossible to compute, (60) may be more useful than (31). In [34], (60) is
used as the basis for constructing feasibility tests and call admission control schemes under GPS scheduling. The
interested reader is referred to the paper for more details.
We now turn our attention to the lower bound. For any and , let be defined in (49). Then by
definition, .
Define

For any , by definitionof , for all . As for afixed ,
is an increasing function of , we have for all . Therefore .
In particular, for any , from the definition of and Lemma 10, there exists such that the right hand
side of (34) holds. By the following lemma (the proof is left to Appendix B), we have that .

Lemma 12 For any , if there exists and such that

then for any ,

As a consequence,

On the other hand, for any , there exists such that . Again as for
a fixed , is an increasing function of , we have . Therefore .
Therefore, .
In summary, we have the following relation.

Lastly, as a special case, we consider a two-queue GPS system. Without loss of generality, we assume .
First, if , then for all , . As and , we
see that and are equal and are the unique solution to .
If , for any , contains either or and . As , we
see that and are again equal and are the solution to .
Hence in the case of two-queue GPS system, the upper bound equals the lower bound and we arrive at the
same conclusion as in Part I of the paper.
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5 Conclusion

In this part of the paper, we present tight upper and lower bounds on the asymptotic decay rate of the queue length
tail distribution for a general multiple-queue GPS system. When there are only two queues, the lower and upper
bounds match, yielding exactly the same result proved separately in Part I of the paper [33]. The proofs are based
on the sample-path large deviation principle and exploit the complicated bandwidth sharing structure of the GPS
scheduling by introducing the notion of partial feasible sets. Our results are more general than the results of [11] on
the multiple-queue GPS systems.
TheGPS systemwe examined uses a discrete-timemodel. The results of the papermay be extended to the continuous-
timemodel by imposingappropriate conditions(corresponding to (A1), (A2) and (A3)) on the continuous-timearrival
processes. Then the arguments of this paper can be applied to pass from the discrete case to the continuous case (cf.,
the proof of Theorem 5.1.19 in [9]). Methods, for instance, employed in [17, 2], may also be used to establish results
for the continuous-time GPS system.
The paper deals only with the large buffer asymptotics under the GPS scheduling. Another future direction is to
study the asymptotical behavior of the GPS scheduling with a large number of sources à la the methods of [29, 3].

Acknowledgement I am indebted to Prof. Richard Ellis for teaching me Probability Theory and Large Deviation
Theory and to my advisor Don Towsley for encouragement and many helpful discussions.

A Proof of Sample Path Lower Bound on Output Processes

Proof of Lemma 6: First note that (25) follows directly from (24) as .
Let , we prove (24) by induction on . The proof follows the same line of argument as in the proof of
Lemma 1 in [35].
From the definition of , we see that there exists a partial feasible ordering among sessions in . In particular,
an ordering of the sessions in such that any sessions in are ordered before sessions in for any
and sessions in the same are ordered arbitrarily is a partial feasible ordering. Fix such a partial feasible
ordering. For simplicity in notation, we denote this ordering as . We also drop and in in the
following proof.
When , let , , be such that for any , , and where
if and only if and . In other words, session 1 is busy throughout the time interval which is
contained in . Note that by this choice of , we have

By the definition of GPS and the fact that , we have

Therefore,
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Now suppose the lemma is true for over any time interval , we show that it is also true for
.

Let be such that for any , and where if and only if
and . In other words, session i is busy throughout the time interval which is contained in . Note
that by this choice of , we have

(62)

As

if , then .
Hence

Using the induction hypothesis, (24) then follows easily.
Now assume . Let , then and

(63)

As

from (63), we have

(64)

Moreover, by the definition of GPS, for any ,

Thus

Using (64), we have

(65)

On the other hand, since the system is busy throughout ,

20



From (65)

(66)

Adding (63) to (66) yields

(67)

Applying the induction hypothesis to sessions over , we have

This, combining with (62) and (67), yields

This concludes the proof for the lemma.

B Proofs of the Two Lemmas in Section 4.3

Lemma 10 For any , if there exists and such that

(68)

then for any ,

(69)

Proof: From Lemma 4(b), and . Therefore, for ,
. Hence, for any ,

(70)
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Moreover,

(71)

where the last inequality holds as .
Now from the definition of and using (70) and (71), we have

as for .
Therefore,

(72)

substituting (72) in (68) and noting that , we have (69).

Lemma 12 For any , if there exists and such that

(73)

then for any ,
(74)

As a consequence,

Proof: Let and . We first observe that (73) implies (74) with , this
is because
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where the first inequality follows from (73) as , the second inequality follows from

the fact that and the last equality holds as for ,
.

As for , and for , , we have

(75)

If , from Lemma 4(a), , thus for any , .
Therefore, . Moreover, for , . Therefore (74) holds for
any .
Now we consider any such that . We first prove a somewhat different claim, then use this claim
to show that (74) holds for any such that .
Let , and . Then . Furthermore, define
and . Then .

Claim 13 Let be such that and for any , . Then

(76)

implies

(77)

To prove the claim, we first note that
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Let , then . Now

and

where the last inequality holds as for , .
Hence,

Now for any , recalling the definition of , we have
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where the last two inequalities follow from the fact that for .
Therefore,

(78)

Now from (76), we have

(79)

Since for , , and , we
have

(80)

From the assumption in the claim, for , . This, together with (79) and (80),
yields that

where the second inequality follows from (78) and the fact that for , . This
completes the proof of the claim.
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We now use the claim to show that (74) holds for any such that .
Let be the partial feasible partition of and be the associated delimiting numbers.
Let and . Then and for any , , . In
particular, for all , . Let . Since , byLemma4(a), there exists
, , such that but . In other words, we must have .

Let , , and for , with . Then we can
check that for any , , . In particular, for ,

and , where the last
two steps follow from the definition of and Lemma 4(a).
As , clearly (73) implies that (76) holds with . Then by the claim, (76)
is then true for . Applying the claim recursively to , we have that (76) is true for .
Therefore (with and appropriately defined)

This completes the proof of the lemma.
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