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Abstract

The problem of determining feature correspondences across multiple views is considered. The
term “true multi-image” matching is introduced to describe techniques that make full and
efficient use of the geometric relationships between multiple images and the scene. A true multi-
image technique must generalize to any number of images, be of linear algorithmic complexity

in the number of images, and use all the images in an equal manner.

A new space-sweep approach to true multi-image matching is presented that simultaneously
determines 2D feature correspondences and the 3D positions of feature points in the scene. The
method is based on the premise that areas of space where several viewing rays intersect are the
likely locations of observed 3D scene features. It is shown that the intersections of viewing rays
with a plane sweeping through space can be determined very efficiently, and a statistical model
is developed to tell how likely it is that a given number of viewing rays will pass through an area
of the plane by chance. The method is illustrated on a seven-image matching example from the

aerial image domain.

*Funded by the RADIUS project under ARPA/Army TEC contract number DACA76-92-C-0041.



1 Introduction

Due to advances in computer processing speed, coupled with larger and cheaper storage devices,
computer vision methods that process multiple images are more feasible than ever. Indeed,

scene reconstruction from a set of multiple views is currently of great interest in the field.

This paper considers the problem of multi-image stereo reconstruction, namely the
recovery of static 3D scene structure from an unordered set of images taken by perspective
cameras with known extrinsic (pose) and intrinsic (lens) parameters. The dominant paradigm is
to first determine corresponding 2D image features across the views, followed by triangulation to
obtain a precise estimate of 3D feature location and shape. The first step, solving for matching
features across multiple views, is by far the most difficult. Unlike motion sequences, which
exhibit a rich set of constraints that lead to efficient matching techniques based on tracking,
determining feature correspondences from a set of widely-spaced views is a challenging problem.
However, even disparate views contain underlying geometric relationships that constrain which
2D image features might be the projections of the same 3D feature in the world. The purpose of
this paper is to explore what it means to make full and efficient use of the geometric relationships

between multiple images and the scene.

In Section 2, a set of conditions is presented that must hold for a matching algorithm to
be called a “true multi:image” method. Briefly, we claim that a true multi-image matching
technique should be applicable to any number of images n > 2, that the algorithmic complexity
should be O(n) in the number of images, and that the images should all be treated in an equal
manner. Examples from the literature are presented to illustrate the meaning and motivation
for each condition. The few p;)sitive examples that are found are examined for characteristics

that they have in common.

In Section 3 we present a new approach to true multi-image matching that simultaneously

determines 2D feature correspondences between multiple images and the positions of the ob-



served 3D features in the scene. The method can be visualized as sweeping a plane through
space, while noting positions on it where many backprojected feature rays intersect.! A careful
examination of the projective relationships between the images and the plane in space, and
between different positions of the sweeping plane, shows that the feature mappings involved can
be performed very efficiently. A statistical model is also developed to help decide how likely it

is that the results of the matching procedure are correct.

Section 4 of this paper shows an illustrative example of the space-sweep method as applied
to imagery from the RADIUS aerial image understanding project. The paper concludes with a

brief summary and a discussion of extensions and improvements to the approach.

2 True Multi-Image Matching
2.1 What is a “True Multi-Image” Method?

This section presents, for the first time, a set of conditions that a stereo matching technique
has to meet before it can be called a “true multi-image” method. By this we mean that the
technique exploits the information present in a set of images in an effective and efficient manner.
The use of the adjective “true” is not meant to denigrate methods that do not satisfy this set
of conditions, but rather denotes that a method that does pass the test truly operates in a

multi-image manner, and is not just a repeated application of two- or three-camera techniques.

Definition: A true mulli-image matching technique satisfies the following conditions:

1. the method generalizes to any number of images greater than 2,
2. the algorithmic complexity is O(n) in the number of images, and

3. all images are treated equally (i.e. no image is given special status as a “reference” image).

Condition 1 is almost a tautology, stating that a multi-image method should work for any

number of images, not just two or three. Although the term “multiple” arguably does apply to

1 Although we are tempted to call this a “plane-sweep” approach, since the geometric entity doing the sweeping
is a plane, we defer to the computational geometry literature where the term plane-sweep denotes sweeping a
line through a plane, and space-sweep refers to sweeping a plane through space [15).



the numbers 2 and 3, it also applies to the numbers 5, 10, and 20. An algorithm for processing
three images is not a “multi-image” method, but rather a trinocular one. Condition 2 speaks
directly to the issue of efficiency. If one is serious about processing large numbers of images, the
method used should be linear in the number of images. This condition precludes approaches
that process all pairs of images, then fuse the results. Such an approach is not a multi-image

method, but rather a repeated application of a binocular technique.

Condition 3 is the most subtle (and perhaps controversial). It states that the information
content from each image must be treated as equally important. Note that this is not intended
to mean that information from all images must be equally weighted in the final reconstruction;
all images are not created equal, and some may be from better viewing positions, of higher
resolution, or more in focus. Instead, condition 3 is meant to preclude singling out one image,
or a subset of the images, as somehow being special, and deserving of a different algorithmic
treatment than all the others. A common example is the selection of one image as a “reference”
image. Features in that image are extracted, and then the other images in the dataset are
searched for correspondence matches, typically using epipolar constraints between the reference
image and each other image in turn. Although a popular approach, there is an inherent flaw
in this style of processing - if an important feature is missing in the reference image due to
misdetection or occlusion, it will not be present in the 3D reconstruction even if it has been
detected in all the other views, because the system won’t know to even look for it in the other

views.

We hope the reader agrees that the three conditions presented above seem well-motivated
and reasonable. However, one is hard-pressed to find stereo reconstruction algorithms in the
literature that meet all three conditions! We first present some negative examples from the
computer vision literature - the aim is not a complete literature review, but rather an illustrative

sampling of the range of different methods that have been proposed. We then show some of the



positive examples that were found, and examine them to extract characteristics they have in

common.

2.2 Examples from the Literature

2.2.1 Multi-Baseline Stereo

Okutomi and Kanade developed a method called multi-baseline stereo for producing a dense
depth map from multiple images taken by a coplanar set of cameras with parallel optical axes
[14]. It is a generalization of two-image, correlation-based stereo where the correspondence of
each pixel in the first image is found by sliding a correlation window over an epipolar line in
the second image, and declaring a match at the pixel where a sum of squares difference (SSD)
function is minimized. Okumomi and Kanade compute a SSD function with respect to inverse
distance (rather than disparity) for all pairs of images, then combine them by adding to produce
a sum of SSD (or SSSD) function. The minimum point of the SSSD function identifies the inverse
distance to the point in the scene. They show convincingly that integrating information from
multiple images reduces the inherent matching ambiguity that exists when only two images are
used. Using all pairs of images makes this an O(n?) algorithm, however, and violates condition

2 of the true multi-image definition.

The basic multi-baseline system design was later transfered to hardware, resulting in a fast,
real-time stereo machine [11, 22]. Rather than combining SSD functions from all pairs of views,
these implementations combine SSD functions computed between a “base” view and all other
views. A similar approach was developed in software by Tsai [21]. This processing strategy
yields an O(n) method rather than O(n?) (and the added efficiency is no doubt important for
making a system that runs in real-time), however these implementations now violate condition
3, since one image is given special importance as a base or reference view. Any areas of the

scene that are occluded in that image can not be reconstructed using this method.
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2.2.2 Constrained Multiphoto Matching

Gruen and Baltsavias describe another correlation-based system for determining correspon-
dences across multiple views [7], but the camera stations are allowed to be in general position.
An intensity template extracted from a reference image is searched for along epipolar lines in
a set of remaining views. To take into account wide differences in camera viewing angle, affine
warping of the correlation template is performed for each image, and the the position of intensity
templates in each image are constrained to move by fixed “step ratios” along an epipolar line in
order to guarantee that all template positions correspond to a single point in space. Once again,

however, condition 3 has been violated by choosing templates from a special reference image.
2.2.3 Plane 4 Parallax Approaches

An interesting result from projective geometry is that after compensating for the difference in
appearance between two images of four points on a planar surface, other feature points on the
plane have zero-disparity, and can thus be trivially matched. Points that do not lie in the
plane have disparity vectors that lie along lines converging to a single point in the image, with
lengths related to the distance of each point to the plane. Kumar et.al. describe a multi-image
extension of the basic plane+parallax approach[12]. They compensate for the appearance of a
known 3D surface between a reference view and each other view, then search for corresponding
points along parallax lines, and compute 3D scene structure using the recovered parallax. Once
again, a special reference vie\.)v has been chosen, and the approach is basically that of repeatly

applying a two-image method to pairs of images that containing the reference view.

2.2.4 Multilinear Constraints

The reason why so many approaches attempt to solve the multi-image matching problem by
splitting the set into pairs of images that are processed binocularly is because matching con-

straints based on the epipolar geometry of two views are so powerful and well-known. Given a



point p in one image, its corresponding match p’ in a second view is constrained to lie along an
epipolar line that passes through a single point in that image called the epipole. The epipole is
literally a picture of the focal point of the first camera as seen by the second, and the epipolar
line is how the infinite viewing ray associated with p appears in the second image. The epipolar
constraint is enormously powerful, since it reduces the search for a corresponding features from

two dimensions down to one.

What is ﬁeeded for simultaneous matching of features across multiple images is to generalize
the two-image epipolar geometry to some multilinear relationship between the views. In this
respect, results from the study of projective geometry at first appear to be promising. Shashua
presents a “trilinear” constraint [19] in which points p, p’ and p” in three images can be the
projections of a single 3D scene point if and only if an algebraic function vanishes, that is

f(p, ', p") = 0. Hartley devised a similar constraint for lines in three views [9].

Can multilinear constraints be devised for any number of images? Unfortunately, the answer
is no. A recent paper by Triggs [20] provides a framework for studying multilinear relationships
between m projective images by considering an abstract joint image space formed by concatenat-
ing the homogeneous coordinates of the set of images together. Within this framework, all possi-
ble multilinear relationships can be enumerated: the binocular epipolar relationship, Shashua’s
trilinear relationship for points, Hartley’s trilinear relationship for lines, and a quadrilinear
relation for points in four views. The number of views is limited to four since the homoge-
neous coordinates of 3D space have only four components. Thus, hypothetical correspondence
matching approaches based on multilinear relationships are strictly limited to four or fewer im-
ages. This violates condition 1 of the definition of a true multi-image method, namely that the
method should generalize to any number of images. This result also calls into question whether

any approach that operates purely in image space can ever be a true multi-image method.



2.3 Positive Examples

2.3.1 Object-Space Least Squares Matching

In contrast to the correlation and feature matching approaches outlined above, which can be
considered strictly image-level approaches, most recent photogrammetric applications favor an
object-space approach where correspondences between multiple images are determined by back-
projecting image features into some surface in the world and performing correspondence match-
ing in object space. These methods are primarily used to generate digital terrain maps (DTM),
and correspondences correlations are determined via least-squares adjustment while simultane-

ously estimating the surface topography and radiometry of the terrain.

Helava presents a typical example of this kind of system [8], where a grid of ground ele-
ments or “groundels” in the scene is estimated along with the precise correspondence of intensity
patches appearing in multiple images. An iterative least-squares procedure is used to simulta-
neously estimate groundel elevation and intensity parameters. The least-squares residuals are
terms of the form G; — Tj(I;, Z;) where G; and Z; are the unknown grey-value and elevation of
groundel 2, and Tj is the transformation function that determines how image intensities from the
j-th image I; backproject onto the i-th groundel based on the current estimate of its elevation
Z;. The objective function to minimize is formed as the sum of squares of terms of this form,

summed up over all images and all groundels. Similar systems are described in (3, 17).

Although this least-squares approach potentially involves solving for a huge number of
parameters (DTM grid sizes of 500 x 500 are not uncommon), it does meet all three conditions
for a true multi-image method. It generalizes to any number of images, the algorithm is linear
in the number of images (although the run-time will typically be dominated by the number of
groundels that have to be estimated), and most importantly, information from all of the images

is treated on an equal footing.



2.3.2 Object-Centered Reconstruction via Image Energy Minimization

Fua and Leclerc describe an approach that combines reconstruction in object-space within a
framework of image energy minimization [5]. Object-centered triangulated mesh representations
of surfaces in the scene are directly reconstructed from multiple intensity images. An objective
function is formed that contains energy terms based on image intensity information and object-
level shape constraints. The surface shape is optimized iteratively by adding an adjustable
regularization term and minimizing the total energy using a heuristic continuation method.
Loosely speaking, the triangular surface elements are adjusted so that their projected appearance
in all the images is as similar as possible to the observed image intensities, while still maintaining

a consistent shape in object-space. This work also fits the definition of a multi-image method.
2.3.3 The Utility of Object Space

One thing that the true multi-image matching/reconstruction methods above have in common
is the explicit reconstruction of a surface or features in object space simultaneous with the
determination of image correspondences. In this way, object-space becomes the medium by
which information from multiple images is combined in an even-handed manner. This does not
mean that a matching technique that operates only in image space can not be a true multi-image
method (however, see the comment about the limitations of multilinear matching constraints),

but to date we know of none.

Unfortunately, the two object space approaches mentioned here involve setting up huge
optimization problems with a large number of parameters. Initial estimates of scene structure
are needed to reliably reach convergence. We present a much simpler and efficient approach in

the next section that is suitable for matching point-like features across multiple images.
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3 An Efficient Space-Sweep Approach

This section presents a true multi-image matching algorithm that simultaneously determines the
image correspondences and 3D scene locations of point-like features (e.g. corners, edgels) across
multiple views. The method is based on the premise that areas of space where several image
feature viewing rays (nearly) intersect are likely to be the 3D locations of observed scene features.
A naive implementation of this idea could be achieved by partitioning a volume of space into
voxels, backprojecting each image point out as a ray through this volume, and recording how
many rays pass through each voxel. Voxels with large numbers of viewing rays passing through
them would be output as a set of likely 3D feature locations. Each detected 3D location could
then be projected back into each of the images to trivially determine the locations of 2D image

features in correspondence with it (and with each other).

The main drawback of this implementation would be its intensive use of storage space,
needed to maintain a complete set of voxels, particularly when partitioning the area of interest
very finely in order to achieve accurate localization of 3D features. In Section 3.1 we present
a different approach where a single plane partitioned into cells is swept through the volume of
space along a line perpendicular to the plane. At each position of the plane along the sweeping
path, the number of viewing rays that intersect each cell are tallied, and any cell with sufficient
numbers of intersections is output as the likely (z,y, z) location of a 3D scene point. The plane

then moves on.

Organizing the computation as a space-sweep algorithm not only saves a great deal of storage
space, it also leads to a very efficient algorithm in terms of time. The operation of determining
where viewing rays intersect the sweeping plane is crucial to the efficiency of the proposed
algorithm. We show in Section 3.2 that ray intersections with the plane at any position along
the sweep can be computed from the ray intersections at any other position of the plane along

the sweep, by applying a simple dilation transformation. A second important issue that has to



be addressed is how many viewing rays need to intersect a cell in the sweeping plane before it
is considered to be the likely location of a 3D scene feature. Section 3.3 develops a statistical
model to help decide whether a given number of ray intersections is statistically meaningful, or

could instead have occurred by chance.

We note in passing a method developed by Seitz and Dyer that, while substantially different
from the approach here, is based on the same basic premise of determining positions in space
where several viewing rays intersect [18]. They assume a uncalibrated, affine camera model, and
first rectify each image using an affine plane+parallax approach. The affine subspace projecting
to each image feature is explicitly constructed, and feature evidence is combined by intersecting
these subspaces to localize the location of the observed 3D scene feature. Because evidence
combination is performed via subspace intersections, only the correspondences and 3D structure

of features detected in EVERY image are found - a severe limitation.
3.1 The Sweeping Plane

Our proposed method can be visualized as sweeping a plane through space along a line normal
to the plane. Without loss of generality, assume the plane is swept along the Z-axis of the scene,
so that the plane equation at any particular point along the sweep has the form Z = z;. A
bounded region of interest within the plane is partitioned into a grid of cells. Again without loss
of generality, assume that the grid is aligned with the X — Y axes of the scene, and that each
cell in the grid is indexed by the location (z,y) of its center. The volume of interest in space is
bounded by the two planes Z = z,;, and Z = zmax. This volume is sampled by the sweeping

plane at a discrete number of equally spaced Z-intervals within the limits z,;; to zmax.

At each position along the sweep, every cell on the sweeping plane Z = z; accumulates a
count of the number of viewing rays passing through it. Each point feature in image I; determines
a viewing ray that intersects some cell in the plane. This cell is determined by backprojecting

the feature onto the plane Z = z;, and incrementing the counts in cells whose centers fall within
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some radius of the backprojected point position (selection of this radius is done automatically,
and is described in Section 3.3). The backprojection function that maps feature points from the
image plane onto the sweeping plane is a planar projective transformation that is determined
by the perspective camera lens and pose parameters for I;, and the position z; of the sweeping

plane along its path, as developed fully in Section 3.2.

After accumulating counts from feature points in all of the images, cells containing counts
that are “large enough” (in a sense to be determined in Section 3.3) are considered to be the
locations of 3D scene features, and their locations (z,y, ;) in space are output. The plane then
continues its sweep to the next Z location, all cell counts are reset to zero, and the procedure
repeats. For any feature location (z,y, ;) output by this procedure, the set of corresponding
2D point features across multiple images is trivially determined as consisting of those features

that backproject to cell (z,y) within the plane Z = z;.
3.2 Efficiency Considerations

The operation of determining where features in each image backproject onto each position
Z = z; of the sweeping plane is crucial to the efficiency of the proposed algorithm. For a central
projection camera model, the transformation that backprojects features from an image plane
onto the sweeping plane is a nonlinear, 2D planar homography, representable as a 3 x 3 matrix
H; in homogeneous coordinates. In this section we will see that it is more efficient to compute
feature locations in the plane Z = z; by modifying their locations in some other plane Z = z,
to take into account a change in Z value, than it is to apply the homography H; to the original

image plane features.

Let matrix Hy represent the planar homography that maps image points onto the sweeping
plane at some canonical position Z = z, and matrix H; represent the homography mapping
image points onto the plane Z = z; (refer to Figure 1). Since homographies are invertible

and closed under composition, it follows that we can write a homography that maps features

11



between the plane Z = 2z and Z = ; directly, by first (forward) projecting them from the zo-
plane onto the image, then backprojecting them to the z;-plane. This projection-backprojection
homography is represented by the matrix H,-H(',l. We will see that the homography H.-H,',1

has a very simple structure indeed.

A change in notation makes it easier to discuss corresponding feature locations across dif-
ferent positions of the sweeping plane. Consider the (X,Y) location of a backprojected feature

point to be indexed by the Z location of the plane it occurs in, written as (¢(Z),y(Z)). We now

have
z(z;) z(20)
y(lz-') ~ HH;! y(lzo) (1)

where the symbol ~ stands for equality up to a scale factor. Written in this way, it becomes
convenient to view the different (X,Y) locations of an image feature backprojected onto the set of
Z-planes as a curve or trajectory, parameterized by Z, within a stationary sweeping plane. The
planar homography H;H(',1 can thus be viewed as a transformation acting on this stationary

plane, mapping points (2(20),y(20)) into their new locations (z(z;), y(z:)).

To be precise about the actions of transformation H;Hj', consider a standard central pro-
jection camera model, described by the following projection equation relating the homogeneous

coordinates of 3D points in the scene to their corresponding 2D points in the image:

u°
v ~ A[‘l‘lrz'l'st]
1

(2)

= ana 8

where A is a 3 x 3 matrix describing the camera lens parameters and photo-processing effects
such as enlargement and cropping, and the pose of the camera is represented as a 3 X 4 matrix
composed of a translation vector £ and an orthonormal rotation matrix with column vectors r;.

For later reference, the 3D location of the camera focal point in scene coordinates is determined

12



(Cz, Cy, Cz) = (—1'1 . t, —Fa t, —7g * t) . (3)

Restricting attention to scene points lying on the plane Z = z,, we can immediately simplify the
3D-to-2D projection equation (2) into the invertible 2D-to-2D homography that maps sweeping

plane coordinates z(zo) and y(2o) into image plane coordinates u and v:

u
v
1

Note that this equation represents the forward projection that maps features from the plane

1

z(z)
~ A [ry r3 zrs+t] [y(zo)] - (4)

Z = zg onto the image plane. The backprojection labeled Hp in Figure 1 is found by inverting

this 3 X 3 homography matrix.

An equation similar to (4) can also be written for the plane Z = z;, yielding an equation

for the homography labeled H; in Figure 1. We can now determine the homography H;H'

describing the direct mapping between (z(20),y(20)) and (z(2;), y(z)) as

HH;' = [r, r3 zirg+t]” (A7 A4) [ry 7, zors+t]

~ [rax(zirs+t) (zirs+t)xry r1Xr3]T [r1 2 zors+i]

Z;+1‘3°t 0 (Z,'—ZO)T;[ ot
= 0 24 + Ts* t (2,' - Zo)‘l'z .t (5)
0 0 Zo+1'3 -t

where we have used the 3 x 3 matrix identity

[@abe]™ ~ [(BXxe) (cxa) (axb)F

as well as identities related to orthonormal vectors, e.g. #y « 7y = 1,7, - 73 = 0,71 =73 X rs,

and the vector triple product ([10], Appendix A), e.g. (ra X &) -7y = (ry X £3) +t =1y - L.
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Finally, recalling the identity from Eq. (3), the equations governing the trajectory from
point (z(20),y(20)) to (z(z:),y(2:)) can be written as

z(z) = d=(z) + (1-9)C:

y(z) = Sy(z) + (1-4)C, } where & %(Zi-cz)/(zo—cz) (6)

This is a special affine transform known as a dilation [13]; the important point is that it is linear
in inhomogeneous coordinates. The trajectories of all points are straight lines passing through
the fixed point (C:,C,), which is the perpendicular projection of the camera focal point onto
the sweeping plane (see Figure 2). The effect of the dilation mapping is an isotropic scaling

about point (Cz, Cy). All orientations and angles are preserved.

Our strategy for efficient feature mapping onto different positions of the sweeping plane is to
first perform a single projective transformation of feature points from each image I;,j = 1,...,n
onto some canonical plane Z = 2y, where 2o can be chosen as the Z-position midway between
Zmin and zmax, for example. These backprojected point positions are not discretized into
cells, but instead are represented as full precision (X,Y) point locations. For any sweeping plane
position Z = z;, each of these (X,Y) locations is mapped into the array of cells within that plane
using formula (6), taking care to use the correct camera center (C., Cy, C.); for the features from

image I;.
3.3 A Statistical Model of Clutter

Recall that our technique is based on backprojecting feature rays onto a planar array of cells
sweeping through space. At each Z-location of the plane, every accumulator cell counts the
number of viewing rays passing through it to determine the X,Y locations where several rays
intersect. In a sense, each backprojected feature “votes” for whether or not that cell is the
location of a 3D scene feature. The more votes a cell accumulates, the more likely it is that
an observable 3D scene feature is present in that location. In this section we develop a simple

statistical model that describes how this likelihood increases as a function of the number of votes
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in the cell. We can expect a certain number of viewing rays to pass through an accumulator cell

purely by chance; our model allows us to quantify this expectation.

An approximate statistical model of clutter is developed that tells how likely a set of viewing
rays could coincide by chance. The model will be used to choose a threshold on the number
of votes needed before an accumulator cell will be considered to reliably contain a 3D scene
feature. The term “clutter” as used here refers not only to spurious features among the images,
but also to sets of correctly extracted features that just don’t correspond to each other. Loosely
speaking, any particular 3D point in the scene induces a correspondence involving only one pixel
from each image, and for the purpose of deciding whether there is a scene feature located at

that point in space, all other image pixels are clutter.

In order to determine the expected number of votes (viewing rays) a cell in the sweeping
plane receives, two values must be estimated: how many points from each image are mapped to
the sweeping plane, and how many cells each point votes for. Computation of the first quantity
is simplified by assuming that extracted point features are roughly uniformly distributed in each
image. This is manifestly untrue, since features in the image exhibit a regularity that arises
from the underlying scene structure. In fact, point-like features such as edgels are obviously
not uniformly distributed, but instead tend to spatially organize into chains. Nonetheless, these
features will be uniform enough for our purposes as long as any k X k block of pixels in the image
contains roughly the same number of features as any other k x k block. Under this assumption,

the density of point features in image 7 is

number of features in image 2
number of pixels in image 7

E; = (7)

which represents the expected number of point features (E; << 1) extracted per pixel in image
i. This is multiplied by the number of pixels O; that have viewing rays that pass through any

cell in the sweeping plane. O; is computed by projecting the boundary of the accumulator cell

15



array onto the virtual plane containing the boundary of image ¢, and computing the number of
pixels in the intersection of the two polygons. The expected number of features that image 2
projects into the sweeping plane is this number of pixels times the expected number of features

per pixel, namely E; = O;.

Recall that each point feature in image ¢ is allowed to vote for a set of cells surrounding
the intersection of its viewing ray with the sweeping plane. Votes are given to the set of cells
roughly contained in the region subtended by a pixel-shaped cone of viewing rays emanating
from the point feature in image i. Pixels from images farther away from the sweeping plane
thus contribute votes to more cells than pixels from images that are closer. This mechanism
automatically accounts for the fact that scene feature locations are localized more finely by

close-up images than by images taken from far away.

The number of cells in the sweeping plane that a pixel in image i votes for is specified by
the Jacobian of the projective transformation from image 7 onto the sweeping plane. We make a
second simplifying assumption that the Jacobian of this projective mapping is roughly constant.
This is equivalent to assuming that the camera projection equations are approximately affine
over the portion of the scene that is of interest. Let the four corners {ci, k = 1,...,4} of the
rectangular boundary of image i map to the sweeping plane as a quadrilateral with vertices
a, = {Hcy,k = 1,...,4}. The approximate Jacobian for the mapping from image i onto the

sweeping plane is computed as

number of pixels in {¢;,¢3,c3,¢4}

5 =

number of cells in {a;,a2,as,a4} (8)

The expected number of votes that image i contributes to the sweeping plane is estimated
as the number of features mapped to the plane, times the number of cells that each feature votes
for, that is

votes from image: = E;*O0; % J; . (9)
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The probability §; that any cell in the sweeping plane will get a vote from image % is therefore

0 = E; x O; * J; (10)
' 7 number of cells in the sweeping plane

For each cell, we model the process of receiving a vote from image 7 as a Bernoulli random
variable with probability of success (receiving a vote) equal to 8;. Let z; = {0,1} be a Bernoulli
random variable representing the number of votes a cell receives from the i-th image. Then the
probability distribution of z; is [4]

AN pmi( _ayt-e _ ) (1—6i) ;2=0
Ploé) = & (1 =4 B { 6; ;=1

(11)

The total number of votes in any sweeping plane cell is simply the sum of the votes it
receives from all images, namely V' = Y@, #;. The distribution of V is clearly that of a sum
of n Bernoulli random variables with probabilities of success 6y,...,0,. The range of V is
0,1,...,n. The expected value of V is E(V) = E(X 2;) = ¥ E(=:) = ¥ 6;. We are unaware of
a closed-form function representing the distribution of a sum of Bernoulli random variables, but

it is easily computed by the following pseudo-code fragment:

; Compute the distribution function D[k], £ =0,1,...,n for the sum
; of n Bernoulli random variables with probabilities of success 6;.
Let D[k] =0, k=0,1,...,n
For each bitstring B between 0 and 2" — 1
Set z;, 1 = 1, ...,n equal to the i-th bit of B (0 or 1)
Compute the event probability @ = [] P(z;, ;).
Let k =} z; (number of 1 bits in bitstring B).
Increment D[k] by Q.

The probability distribution function D[k] tells, for any possibly number of votes k = 0,1, ...,n
in a cell, what the probability is that k votes could have arisen by chance. In other words, D[k
specifies how likely is it that k backprojected feature rays could have passed through that cell

due purely to clutter or accidental alignments.
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Once the clutter distribution function D[k] is known, a solid foundation exists for evaluating
decision rules that determine which sweeping plane cplls are likely to contain a scene feature
based on the evidence provided by backprojected image feature rays. A simple decision rule is
to compare the number of votes V in each cell against a global threshold T', and declaring that
cell location to contain a feature when V' > T'. For each potential threshold T' € {1,...,n}, the
false positive rate F[T'] of this decision rule is easily computed as F[T] = ¥~ ; D[i]. A threshold
T can then be chosen based on how certain we wish the matching results to be. For example, if
a value T is chosen for which F[T| = 0.10, this implies that approximately 10% of the computed
matches may be false positives due purely to clutter. Although it will always be the case that
some percentage of the matches will be false positives (F[T] descends to the value 0 only for
T > n, which would reject every accumulator cell), the threshold value 7' can be chosen to exert

some control over the percentage of them.
4 Experimental Example

This section presents an in-depth example of the space-sweep approach to multi-image matching
using aerial imagery from the RADIUS (Research and Development for Image Understanding
Systems) project [6]. Seven images of Fort Hood, Texas were cropped to enclose two buildings
and the terrain immediately surrounding them. The images exhibit a range of views and reso-
lutions (see Figure 3). Included with each image is accurate knowledge of the absolute camera
position and orientation, as measured with respect to a local cartesian coordinate system with

its Z-axis pointing up in the scene, parallel to gravity.

The point features used are edgels detected by the Canny edge operator [2]. This operator
classifies pixels in a grey-level image to produce a binary edge image where a pixel is set to 1 if
it is located on an intensity discontinuity, and 0 otherwise. Figure 4 shows a binary edge image
extracted from one of the views. Note the significant amount of clutter due to trees in the scene,

and a row of parked cars in front of one of the buildings.
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The input data to the space-sweep matching system is the set of canny edge images plus
the camera lens and pose information. The goal is to determine edgel correspondences across
all seven images, as well as the 3D positions of significant surface and intensity discontinuities
in the scene. Structural features of particular interest are the building rooftops and the network
of walkways between the buildings. Reconstruction was carried out in a volume of space that
is fully visible in all the images. The X, Y and Z dimensions of this volume are 136 x 130 x 30
meters. A horizontal plane of containing an array of cells is swept through this volume along
the Z-axis. Each cell is 1/3 meter square, a size chosen to roughly match the resolution of
the highest resolution image. The sweeping plane pauses to sample the space of viewing ray
intersections at 100 equally-spaced locations along the sweeping path, yielding approximately a

1/3-meter resolution in the vertical direction as well.

Figure 5 shows three sample plane locations along the sweeping path (specifically, locations
number 28, 44 and 61 out of 100). These three levels were chosen to illustrate the state of the
sweeping plane when it is coincident with ground-level features (a), roof-level features (c) and
when there is no significant scene structure (b). Also shown are the results of thresholding the
sweeping plane at these levels, displaying only those cells with five or more viewing rays passing

through them, in order to detect significant 3D feature locations.

The approximate statistical model of clutter presented in Section_ 3.3 needs to be validated
with respect to the data, since it was based on two simplifying assumptions, namely that edgels
in the each image are distributed fairly uniformly over the image, and that the Jacobian of
the projective transformation from each image to the sweeping plane is roughly constant. We
performed two simple tests of the clutter model. The first was to compare the number of ray
intersections recorded at each Z-position of the sweeping plane with the expected number of
votes estimated by summing up the term in Equation 9 over all images. This comparison is

plotted in Figure 6a, where the dotted curve shows the actual number of votes cast, and the
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solid line the number estimated by our statistical model. They are in fairly good agreement,
with the largest absolute error being on the order of 2110 votes difference out of 97032, yielding
a maximum relative error of roughly 2.2%. The average relative error over all 100 sweeping

plane positions is around 1.7%.

The second test of the clutter model is to compare the theoretical clutter probability distri-
bution D[k],k = 0,1,...,7 against the empirical distributions of feature votes collected in each
of the 100 sweeping plane positions. Recall that the clutter distribution D[k] tells how many ray
intersections are likely to pass through each accumulator cell purely by chance. This theoretical
distribution should match the empirical distribution well for sweeping plane positions where
there is no significant 3D scene structure. The well-known chi-square statistic [16] is used to
measure how similar these two discrete distributions are for each Z-position of the sweeping
plane; the results are plotted in Figure 6b. Lower values mean good agreement between the two
distributions, higher values mean they are not very similar. Two prominant, sharp peaks can be
seen, implying that the dominant 3D structure of this scene lies in two well-defined horizontal
planes, in this case ground-level features and building rooftops. More importantly, the plot is
very flat for Z-levels that contain no significant scene structure, showing that the theoretical
clutter model is actually a very good approximation to the actual clutter distribution. The
ground-level peak in the plot is a bit more spread out than the peak for roof-level features,

because the ground actually slopes gently in the scene.

Recall that once the clutter distribution D[k] is computed for any Z-position of the sweeping
plane, a vote threshold T = 1,...,n for classifying which cells contain 3D scene features can
be chosen taking into account its expected false positive rate F[T]. The false positive rates

computed for this dataset are very consistent across all Z positions of the sweeping plane. A
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representative sample is:

T 1 ] 2] 3 |4][5] 6 | 7
100 F[T] || 88.4 | 59.0 | 27.3 | 8.3 | 1.6 | 0.17 | 0.01

(12)

This table displays for any given choice of threshold T, what the percentage of false positives

would be if cells with votes of T' or higher are classified as the locations of 3D scene features.

We arbitrarily choose a desired confidence level of 99% for recovered 3D scene features.
That is, we are willing to tolerate only 1% false positives due to clutter. Based on this choice
and the above table, the optimal choice of a threshold should be between 5 and 6, but closer
to the former. Figure 7 graphically compares extracted 3D ground features and roof features
using these two different threshold values. Each image displays the (x,y) locations of cells that
are classified as scene features within a range of Z locations determined by the two peaks in
Figure 6b. Specifically, the range of sweeping plane locations for ground features was chosen as
23-35 (a vertical extent of 3.6 meters) and for roof features the range was 59-63 (1.2 meters).
Positions of ground features span a larger vertical range due to the slope of the terrain. It can
be seen that feature locations extracted using a threshold of 5 trace out the major rooftop and
walkway boundaries quite well, but there are a noticable number of false positives scattered
around the image. A threshold of 6 shows significantly less clutter, but far fewer structural
features as well. Choosing an optimal threshold is a balancing act; ultimately, the proper

tradeoff between structure and clutter needs to determined by the application.
5 Summary and Extensions

This paper defines the notion of a “true multi-image” matching technique, in order to formalize
what it means to make full and efficient use of the geometric relationships between multiple
images and the scene. Three conditions are placed on a true multi-image method: it should
generalize to any number of images, the algorithmic complexity should be linear in the number

of images, and every image should be treated on an equal footing, with no one image singled out
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for special treatment as a reference view. Several multi-image matching techniques that only
operate in image-space were found not to pass this set of conditions. Techniques that can be
considered to be true multi-image methods all explicitly reconstruct scene structure in object
space while determining correspondences in image space. Object space seems to be the conduit

through which successful multi-image methods combine information from each image.

A new space-sweep approach to true multi-image matching is presented that simulta.neously
determines 2D feature correspondences between multiple images together with the 3D positions
of feature points in the scene. The method is based on the premise that areas of space where
several viewing rays intersect are the likely locations of observed 3D scene features. It was shown
that the intersections of viewing rays with a plane sweeping through space could be determined
very efficiently. A statistical model of feature clutter was developed to tell how likely it is that
a given number of viewing rays would pass through some area of the sweeping plane by chance,
thus enabling a principled choice of threshold to be chosen for determining whether or not a 3D
feature is present. This approach was illustrated using a seven-image matching example from

the aerial image domain.

Several extensions to this basic approach are being considered. One that is currently un-
derway is the development of a more sophisticated model of clutter that adapts to the spatial
distribution of feature points in each image. Rather than characterize the distribution of fea-
tures in each image as a single uniform density, each image will be partitioned into small, local
patches, with separate uniform densities estimated for each patch. Thus, areas containing many
features will have a high feature density, while areas with few will have a low density. The ex-
pected benefit is the development of a scene feature detection threshold T' that can automatically

adjust to be higher in textured areas, and lower in very homogeneous regions.

The example in Section 4 dealt with matching and reconstruction using Canny edges across

multiple images. Each edgel was simply treated as a point, however, with only an (X,Y) image
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location to identify it. Gradient edgels have considerably more geometric structure, however.
When matching edgel features, the orientations of potentially corresponding features should be
taken into account. For example, when accumulating feature votes in a sweeping plane cell, only
edgels with compatible orientations should be added together. Each backprojected edgel can be
considered to be a tiny line segment in the sweeping plane - this line segment and the proper
camera focal point form a plane. Only edgels whose plane normals are all roughly perpendicular
to some 3D orientation vector should be allowed to vote for the occurance of a 3D scene edgel
within the sweeping plane cell. With the introduction of orientation information, detected 3D
edgels could begin to be linked together in the scene to form 3D chains, leading to the detection

and fitting of symbolic 3D curves.
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Figure 1: Projective transformations Hy and H; between one image and two Z-positions of a
plane sweeping through space can be replaced with the direct transformation H;H}®.
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Figure 2: Transformation H'.-H(‘,l is a dilation that maps points along trajectories defined by
straight lines passing through the fixed point (C., C,).
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Figure 3: Seven aerial subimages of two buildings at Fort Hood, Texas.
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Figure 4: Canny edges extracted from the upper left hand image in Figure 3.
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Figure 5: Three sample Z-positions of the sweeping plane coinciding with (top) ground-level features,
(middle) no structure, and (bottom) roof features. Left shows votes in the sweeping plane, encoded
by 0 = pure white and 7 = pure black. Right is the results of feature classification using a threshold
value of 5.
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Figure 6: Two validations of the statistical clutter model. Top: expected number of votes (solid
curve) versus actual number of votes (dotted curve) at each Z-position of the sweeping plane.
Bottom: plot of chi-square test values comparing theoretical and empirical clutter distributions
at each sweeping plane position (see text).
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Figure 7: XY locations of detected scene features for a range of Z-values containing ground
features (top) and roof features (bottom). Results from two different threshold values of 5 (top)
and 6 (bottom) are compared.
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