Using Weighted Bipartite Matching
to Solve the General 3-D Rigid Motion Problem *

Xiaoguang Wang, Yong-Qing Cheng, Robert T. Collins,
Allen R. Hanson, Richard Weiss, and Robert Moll

Department of Computer Science
Box 34610, University of Massachusetts
Ambherst, MA. 01003-4610

Abstract

This paper presents a solution to recovering the rigid transformation (rotation and translation)
that brings two 3-D point sets into alignment, when the correspondences between the points are
not known and there exist missing data. This is called the general 3-D rigid body motion problem
(also known as absolute orientation problem). For ideal cases with no missing points, a closed-form
solution based on eigenstructure decomposition is proposed to recover the correspondences of the two
point sets and their motion. For general cases where missing points occur, this paper proves that the
correspondence problem could be reduced to a weighted bipartite matching problem. Using a heuristic
measure of point pair affinity derived from the eigenstructure decomposition, an efficient weighted
bipartite matching algorithm is used to determine the correspondences. Qutlier issue is explored. A
fast outlier removal algorithm is combined with the weighted bipartite matching algorithm to improve
the the correspondence recovery. The robustness of the algorithm to both noise and outliers is shown

i stmulations and experiments on data from real images.
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1 Introduction

Motion estimation is an important problem in many aspects of computer vision and has been
extensively studied [1, 5, 7, 8, 13, 15, 16]. The problem is to recover the 3-D motion parameters
and/or the structure of the objects undergoing motion from images taken at two or more time
instances. We restrict our attention to rigid body motion, in which the structure of the object stays
the same before and after the motion, and 3-D based motion, meaning the motion analysis is based
on 3-D feature points that are obtained from low-level processing. 3-D based motion estimation
i1s important for two reasons. First, 3-D devices such as range sensors are becoming more readily
available. Second, 3-D based motion is useful in those cases where 3-D data can be reconstructed
from 2-D image data. In addition, 3-D based methods can be used in solving 2-D based motion
problems with certain constraints [8, 14]. In this paper, we do not consider either the derivation of
the initial 3-D feature points from low-level processing or how to make use of the methods in 2-D
problems.

The difficulty of motion estimation is due to a cyclic dilemma existing inherently in the problem:
it would be easy to solve for the motion parameters if we knew the correspondences of the 3-D
points at two time instances, and the correspondences would not be hard to obtain if the motion
parameters were known; but when neither the correspondences nor the motion parameters are
known, simultaneously solving for both becomes difficult. Given a set of 3-D points on a rigid body
in one Cartesian coordinate system and another set of points from the same body in a rotated and
translated coordinate system, to estimate the rotation and translation parameters is called a motion
estimation problem (also known as absolute orientation problem [7]), to recover the correspondences
of the points in the two sets is called a correspondence problem.

Previous motion research has been divided roughly into two approaches, depending on whether
or not the correspondences are recovered. Some researchers [2, 3| tried to recover the point corre-

spondences prior to estimating the motion parameters. They used the structure invariance property



of rigid bodies to make local structural comparison between the points in the two sets. That is a
combinatorial search problem, which is considerably time-consuming. The other research trend is
the estimation of motion parameters without knowing correspondences. Notable results are shown
in Aloimonos and coworkers’ work [1, 8], Huang and his colleagues’ work [5, 15] , and others [13, 16].
These researchers all developed a similar approach to motion estimation without correspondence.
The approach rests on a property that the eigenstructure of a scatter matriz is invariant to rota-
tion, so that the rotation can be solved linearly in a closed form. The advantage of this approach
is its mathematical elegance and algorithmic efficiency. As pointed out by the authors, the philos-
ophy behind this approach is to avoid the difficulty of the correspondence problem and to use the
invariance to access the motion parameters directly.

In this paper, we adopt a different philosophy. We emphasize that correspondences reveal much
information about a motion, and thus are important in motion estimation. Roughly speaking,
errors in motion estimations based on feature points come from two causes: noise and outliers.
Nozuse refers to the case where the same point on the rigid body appears in both sets before and
after the motion, but their positions are not precise due to corruption of the spatial coordinates by
noise. Qutliers in a set are those points whose corresponding points in the other set are missing. To
deal with noise, knowing correspondences is useful, since there is evidence [20] showing that more
stable motion parameters can be computed when correspondences are given. To deal with outliers,
correspondence analysis is even more crucial. With the knowledge of correspondence, the motion can
be estimated on a point-by-point basis, whereas the correspondenceless algorithms can only work in
a globally approximated way. The existence of outliers would make the global approximations very
unreliable. This makes the correspondenceless algorithms work in a very narrow domain, called
the ideal motion problem, where the point numbers of the two sets are equal and each point in a
set must have a corresponding point in the other set. Correspondenceless algorithms for general
motion problems have not been reported in the literature.

With this point of view, the methodological question follows: without knowing the motion



parameters, is it possible to recover the correspondences efficiently? In this paper we propose a
new method for solving the correspondence problem, and give an affirmitive answer to the question.
The method is based on a discovery that the correlation matrix of the observed 3-D point set has
the property of eigenstructure invariance with respect to point permutation. With this property, a
closed-form solution can be obtained for ideal motion and correspondence problems. As oppposed
to correspondenceless methods that recover the rotation from the scatter matrix, the immediate
goal of the new method is to recover a permutation matrix representing the correspondences of
the points. In general motion problems, where outliers exist, the permutation matrix recovery is
replaced by a well-defined weighted bipartite matching problem, which has solid foundation in graph
theory. Using weighted bipartite matching, badly-matched points can be detected and removed as
outliers. As a result, the method is able to deal with general motion problems. In summary, we
break up the chicken-and-egg dilemma of resolving motion and correspondences by recovering the
correspondences first, from which we try to separate the “good” ones and use them to estimate the
motion. This is different from the global approximation philosophy of correspondenceless methods.

The rest of the paper is organized as follows. Section 2 describes the theory and method of the
closed-form solution to correspondences for ideal cases. Section 3 discusses general correspondence
problems using weighted bipartite matching. Simulation results are shown in Section 4, and results

from real data are given in Section 5. In Section 6 we discuss future work.

2 A Closed-Form Solution to 3-D Motion Estimation

In this paper, motion is defined in terms of a fixed 3-D point S; represented in two R?® Cartesian
coordinate systems O4 and Op. Suppose S;’s coordinates are observed to be a; and a} in O4 and

Op, respectively. a; and a} are 3 x 1 vectors related by equation

a;= Ra; + T, (1)



in which R is a 3 X 3 matrix that reflects the rotation between O4 and Op, and T a 3 x 1 vector

reflecting the translation between O4 and Op. R is an orthogonal matriz, satisfying
RTR=1 (2)

We are given two sets, A and B, of observed points in O4 and Op: A = {a;}2; and B = {b;}}_,,
but we don’t know the correspondence of any particular a; € A and b; € B. The motion estimation
problem is to estimate the R and T from these observed points. The correspondence problem is
to recover the correspondences of the points in A and B. Juxtaposing the observed vectors, we get

two matrices with the sizes of 3 X m and 3 x n:

A = ay, ..., am]7 (3)

B = |b, .., bn]. (4)

We call A and B the observation matrices. Note: the columns a; in A and b; in B are not cor-
responding points. a; may have its corresponding points residing at b; in B. That is, b; = a; €
B.

A general motion problem may have data in A and B with m # n, signifying non-corresponding
points (due to occlusion or feature mis-detection). For convenience, in this section we first investi-
gate the ideal case where m = n and assume that, for each a; € A, there always exists an a} € B

satisfying (1), and vice versa.

2.1 Centralization of Observed Vectors

A good property [1, 15, 7] of the ideal case is that the geometric centers of A and B satisfy

equation (1) as well. This property enables the elimination of T"s influence when we estimate R.



Formally, define

1 m
Cp = — a;
mg v
=1
1 n
cg = —> b,
n <
1=1
and
a; = a;—cy, fori=1,...,m,

B; = bj—cp, forj=1,..,n.

It holds that, if a; € A and a} € B satisfy (1), then

I .
o; = Roy, fori1=1,...,m,

(9)

in which o = a. — cp is ;s corresponding point in B. We call o; and §; centralized vectors.

Obviously these centralized vectors maintain the same correspondences of the observed points.

In a manner parallel to the observation matrices, we define the centralized observation matrices

by

Ac = a1, ... am]7

BC — ﬁl; ) ﬂﬂ] :

2.2 Permutation Matrix

(10)

(11)

Now we introduce a permutation matriz, P, as a tool for solving the correspondence problem. In this

paper, permutation matrices are defined as those that swap columns when they are multiplied with

a matrix, Z, from the right hand side. That is, the matrix ZP is just a re-ordering of the columns



of Z. A strict form of permutation matrices is an identity matrix with its rows re-ordered [6], e.g.

000 1
1000
(12)
001 0
010 0

It is easy to see that, given a particular matrix Z as well as its column re-ordered version Zp, there
always exists a permutation matrix P, in strict form, such that Zp = ZP. With this property and
equation (9), the following claim holds: in the ideal motion problem, there always exists an m x m

permutation matrix P such that
Bc == RAcP; (13)

particularly, there is such a P in strict form. Equation (13) shows that the correspondence problem
of the centralized observation matrices can be described by a permutation matrix.

The existence of permutation matrix does not guarantee the uniqueness. In fact, given a par-
ticular matrix Z, there may exist an infinite number of matrices that swap the columns of Z when
they are multiplied from the right hand side. Furthermore, these matrices may or may not be in the
strict form as in (12). Throughout this paper, we call them “permutation matrices in general form”.
Similarly, a permutation matrix may or may not be an orthogonal matrix; however, permutation

matrices in strict form must be orthogonal, i.e.
PTP=1. (14)

2.3 Eigenstructure Decomposition

Our correspondence-based method is rooted in the observation that the correlation matrices of

the centralized observation matrices are insensitive to rotations, and that the eigenstructure of



the correlation matrices are invariant to permutations. Correlation matrices of the centralized

observation matrices are defined by

Ca= ALAc, (15)

Cp = B Be. (16)
From equation (13)(15)(16), we directly get

BLBo = PTALRTRACP = PTAL AP (17)

or

CB = PTCAP7 (]‘8)
in which R is eliminated due to its orthogonality. When P is orthogonal (there is at least one
orthogonal P as describe above), equation (18) shows a similar transformation[6]. It reflects the
eigenstructure invariance of the correlation matrices C4 and Cp. With this discovery, we have
eliminated R from the problem, and converted the motion estimation problem to the computation
of the permutation matrix P. Because (4 and Cp are symmetric matrices, the computation of

P can be done in a very simple way. From the eigenstructure decomposition theory, there exist

orthogonal matrices Uy and Up and a diagonal matrix D, such that
Ca = UaDUJ, (19)
Cg = Usg DUg (20)

C4 and Cp share the same eigenvalues on D’s diagonal. The columns of Uy and Up are known as

eigenvectors of Cy and Cp. It follows from (18) that
UsDUE = (U5 P)T D(US P). (21)
One solution of P is given by

Ug =USP. (22)



Equation (22) holds only if the signs of the eigenvectors in Uy and Up are consistent. We will
discuss this issue later. At the moment, we assume that U4 and Up are consistent. Immediately

from (22),
P = (UD'U§ = ULUE. (23)

This tells us that the correspondence permutation matrix can be obtained in closed form from a
very simple computation. The matrices D, Uy and Up can be calculated using the Jacobi Trans-

formation [17].

2.4 Solving for R and T

Recall equation (13). After we have solved for P, we can get AcP by permutating the centralized
observation matrix A¢. Each column of A¢P is a corresponding vector to the same column in
Be. Adding back the center vectors cg and ¢y to the columns of B and A¢P, we will get the
the original observation matrix B and a permutated matrix A’ of A. B and A’ are correponding
matrices, reflecting the correspondences in A and B.

So far we solved the 3-D rigid body correspondence problem in a closed form, and the problem
is converted to a rotation and translation recovery problem with correspondences known. This is
a subject that has been extensively studied. Recent work on the subject is done by Wang and
Jepson [20]. They proposed a novel closed-form algorithm solving for the translation and rotation,
which is claimed to be very robust in the presence of noise. Although closed-form solutions are
also presented for ideal motion problems by Aloimonos’s group [1, 8], Huang’s group [5, 15], and
others [13, 16], they do not explicitly know the correspondences of the two data sets and thus
are not able to take the advantages of noise resistant algorithms that have been developed. That
is, from the viewpoint of noise resistance, our correspondences-recovering method is potentially
advantageous.

It 1s worth noting here that eigenstructure decomposition methods have long been used in solving



motion problems in that eigenvectors are an important structural representation of a rigid body.
Equation (13) is a sufficient description of the ideal rigid body motion problem: two centralized
observation matrices are related by the unknown R and P. Correspondenceless methods [1, 5, 8,
13, 15, 16] were based on the analysis of the eigenstructures of the 3 x 3 scatter matrices Ac AL and

B¢ BE. In essence, they used the property of the orthogonality of P to solve for R:
BeBE = RAcPPTALRT = RACALR. (24)

To the contrary, our method uses the the orthogonality of R to solve for P, as seen in equation (17).
It is easy to see the perfect symmetries between equation (17) and (24), the scatter matrix and the
correlation matrix, and the rotation matrix and the permutation matrix. These symmetries reflected
the inherent cyclic dilemma of motion problems. The traditional correspondenceless methods and
the new method we present exploit different philosophies and use symmetric ways to avoid the
dilemma. This is the clearer and more complete view of the ideal rigid body motion problem.
Moreover, correlation matrices preserve more structural information than scatter matrices. So our
method based on correlation matrices is easy to extend to more general motion problems, which is

discussed Section 3.

2.5 Implementation Issues

Equations (19)-(23) are only theoretical derivations based on general symmetric matrices. A further
observation of the correlation matrices reveals that each of C4 and Cp has at most three nonzero
eigenvalues. This is because A¢ is a 3 X m matrix, containing at most three independent row
vectors. The rows of Oy = AL A¢ are merely linear combinations of the rows of Ag; consequently,
it has at most three linearly independent vectors. This fact brings a number of interesting results
with regard to implementations.

First, an immediate corollary is that there are only three eigenvectors, the three that correspond

to the nonzero eigenvalues, that represent the eigenstructure of a correlation matrix. (m — 3) of the

10



eigenvectors in Uy have nothing to do with the eigenstructure of C4. They have only a mathematical
meaning to expand the three dimensional space of the eigenstructure to R™ space.

Second, as we shall see, the (m — 3) eigenvectors with zero eigenvalues can be neglected when
we try to solve for the correspondences. So the eigenstructure decomposition problem reduces to
solving for the three nonzero eigenvalues and the associated eigenvectors, rather than the whole
matrices Uy and Ug. It is known [6] that eigenvalues and eigenvectors can be solved for efficiently

provided only a small number of them are desired.

Third, let

W = diag(dl, dg, dg), (25)

QA = Uy, U, U3] , (26)

QB = V1, Vg, 1)3] , (27)

in which d;, ds, d3 are the three nonzero eigenvalues of the correlation matrices, u;, us, us the asso-
ciated eigenvectors of C4, and vy, ve, v3 the associated eigenvectors of Cg. With the fact that other

eigenvalues are zero, it is easy to derive a set of equations parallel to equations (19)-(23):

Ca = QuWQT, (28)
Cs = QsWQE, (29)
QeWQp = (QAP)"W(QLP), (30)
Qs = QLP. (31)

We call Q% and Q% eigenvector matrices. Since Q% and Q% are 3 x m matrices, it is obvious from

equation (31) that P has infinitely many solutions, one of which is

P = Q.Q%. (32)

11



The P obtained from (32) is generally not in strict form, but it is easily provable that it is a
permutation matrix that makes the column vectors in B¢g and A¢ P correspond to each other.
Fourth, the eigenvectors’ sign issue must be treated carefully when using the eigenstructure
decomposition method. Only consistent signs of the eigenvectors in U4 and Up, or in Q)4 and @ p,
can derive a correct P in formulas (23) and (32). In the event that no a priori knowledge is given,
usually we have to examine all the sign combination cases. The analysis above ensures that there
are only eight cases to be examined when P is computed, since only three eigenvectors are needed.
In other words, the decomposition of correlation matrices has no more complexity than that of
scatter matrices in terms of the sign issue. (See [1, 13, 15] for details of the approach to solving the

eigenvector sign problem as well as a complexity analysis.)

3 Correspondence via Weighted Bipartite Matching

The previous section ends up with a closed-form solution to motion parameter estimations. A
shortcoming of this solution is that it is limited to ideal motion problems. In case that the numbers
of observed points in the two sets are different (m # n), equation (30) cannot be established, and
thus P cannot be determined. In addition, in general cases the two sets of observed points are
obtained separately from different observing environments, such that there will usually be some
points in B that have no corresponding points in A, and vice versa. We cannot detect these
outliers solely by using the closed-form solution (32). Traditional methods based on scatter matrix
decomposition cannot do it, either.

In this section, we extend the correlation matrix decomposition method to deal with general
motion problems, that is, we try to determine the corresponding point pairs from the two observed
point sets while removing the non-corresponding points. The existence of non-corresponding points
may make two observed point sets no longer appear as a rigid body. In particular, eigenstructure-

based algorithms depend heavily on the correctness of the eigenstructure of the observed data.
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Outliers can ruin the eigenstructure, especially when they severely bias the geometrical centers of
the observed data sets. In this paper, we deal with the case where the outliers are not so dominant

and the observed point sets still “look like” they come from a rigid body.

3.1 Affinity

The term affinity is defined by Ullman [19] as a measurement of the pairing likelihood of two objects
in two sets. One reason why the closed-form method fails to eliminate the non-corresponding points
is that it does not consider the affinity of the correpondences — although matrices B¢ and A¢P
are column-to-column corresponding, we don’t know the degree of affinity of each column pair. Our
task is to find out a pairing affinity of the observed points in A and B. Pairs with high affinity
values are to be considered the corresponding points; others to be outliers.

From Section 2 we know that the correspondences of A and B are represented by the cor-
respondences of the columns in the centralized observation matrices A¢ and Bg. Furthermore,
equation (31) indicates that the column correspondences of A¢ and B¢ are equivalent to column
correspondences of the eigenvector matrices Q% and Q%. In fact, in ideal cases where there is no

noise, for each column vector in Q%, there should be an identical column vector in Q%. For this

reason, the column vectors in Q% and Q% are called feature vectors [18].
We define the pairing affinity of the observed points as the negative of the Euclidean norms of
the feature vectors’ distances in their eigenvector matrices, weighted by eigenvalues. Formally, if

Q4 and Qp are defined as (26)(27) and

- T
U = |Pik, P2k, - pmkl , for k=1,2,3, (33)

- T
vy = | %k, @k, -y an] , for k=1,2,3, (34)

13



then the affinity can be represented by a m x n matrix H|[h;;], whose elements are likelihood values

hij = —(d} | pn—qin || +d5 || pio — g2 ||* +45 || pis — qjs [|?), (35)

T T
where [pﬂ;piz;pis] and [qjl;qj27qj3] are feature vectors. The purpose of the negative is to
make h;; an increasing function with respect to the similarity of the two feature vectors. The
multiplications by eigenvalues make the eigenvectors that correspond to bigger eigenvalues have
more influence on h;;. Practically, the eigenvalues of the two correlation matrices will not be

exactly the same due to noise and outliers. So the formula to calculate h;; should be replaced by

hij = —(dadp || pia — g1 ||* +dazdps || pi2 — gj2 ||* +dasdps || pis — gjs ||*), (36)

where dy and dpg, k = 1,2, 3, denote the nonzero eigenvalues of Cy and Cp, respectively.

It is worth noting that Shapiro and Brady [18] have presented an eigenstructure method similar
to ours in solving correspondence problems. They defined affinity in a similar way to (36). However,
the motion problem was not their main focus, and they did not give a systematic, computational

method for determining the correspondences from affinity measurements.

3.2 Weighted Bipartite Matching

Weighted bipartite matching [12] is a mature mathematical tool which can be used to solve motion
correspondence problems with affinity. Let G(V,4, Vg, E) be an undirected complete bipartite graph,
whose nodes are partitioned into two disjoint sets V4 and V. The edge set E consists of all the
edges between nodes in V4 and Vp. A subset M C E is said to be a matching if no two edges
in M are incident on the same node. Given an edge-weighted bipartite graph, a weighted bipartite
matching problem is to find a matching for which the sum of the weights of the edges is maximum.

The correspondence problem with the affinity measure defined above can be modeled by a

weighted bipartite matching problem. The partitioned node sets V; and Vg are composed of the
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feature vectors in the eigenstructure matrices )4 and ¢)g. The weight associated with each edge is
the h;; defined in affinity matrix H. A matching algorithm will find a maximum weighted matching
such that the feature vectors have the most affinity to each other between ¢4 and @ p.

Weighted bipartite matching problems, also known as assignment problems, have long been
investigated in graph theory. From a theoretical point of view, matching problems are tightly
related to network flow theories. Particularly, weighted matching problems can be reduced to a
set of flow problems called minimum cost flow. A classic algorithm, called the Hungarian method,
for solving the assignment problem was given by Kuhn [9]. The time complexity of the Hungarian
method is O(m?n), where m = |V,| and n = |Vg|. In 1980, Karp [10] gave an algorithm to solve the
assignment problem in expected time O(mn log(min(m,n))), provided that the weights of the edges
from any fixed node in V), are identically distributed random variables. We adopt Karp’s method
in our problem to solve for the correspondences of the feature vectors. In the problem, the weight
distribution of edges from a fixed node in the bipartite graph are determined by the relationship of
the eigenstructure and the spatial position of the particular point. Since we don’t confine our rigid
body to certain sizes and shapes, the weights of edges from a fixed node (i.e. a 3-D point) have an

statistically identical distribution.

3.3 Outlier Removal

The weighted bipartite matching algorithm results in a matching that describes the point corre-
spondences in set A and B. From (35)(36), we know that the correct correspondences dominate the
matching. Consequently, a LMS (Least Median Square) method can be used to filter the matching,
thus solving the correspondence problem. As the LMS method is time-consuming, here we propose
a fast algorithm for outlier removal. The algorithm makes further use of the affinity heuristic.
The ultimate goal of correspondence computation is the estimation of motion parameters. To get
a good estimate, attempts can be made in two directions: to get as many correct correspondences as

possible, and to remove as many incorrect correspondences as possible. Usually the second direction
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i1s more important, since outliers tend to cause big errors in the estimated motion parameters. With
this idea, the principle of our algorithm is to work in the second direction.

First, the matching algorithm always outputs a matching with cardinality min(m,n). If m < n
then there are (n — m) nodes in Vp that are not matched with any nodes in Vy, because they failed
in competing with other m nodes in Vg. That means these (n —m) feature vectors have low affinity

with the other set. We remove these vectors as outliers.

Second, for each of the edges in the matching, the associated weight shows the affinity of the
two nodes. Those edges with big affinity value are considered to be true correspondences; those
with small affinity value tend to be outliers. A partitioning operation is applied to the matching
M = M'+ M", in which any edge in M’ has a higher weight than any edge in M". The set M"
is then removed as outliers. The heuristic criterion we use for partitioning M is to minimize the

function
t(M', M") = |s(M') —vs(M")], (37)

in which s(M') and s(M") are the sums of the weights of the edges in M’ and M", and ~v is a
parameter that affects the size of M" to be removed.

Due to errors in eigenstructures, the affinity obtained from @4 and @ is erroneous. Some true
correspondences may be associated with low affinity values, and thus removed as a result of the
above two steps. This results from our algorithm’s principle of outlier removal. We sacrifice some
true correpondences for removing outliers faster. In criterion (37), v can be set empirically. A
smaller gamma tends to cause a bigger set of M", removing more outliers in the cost of sacrificing
more true correspondences.

The ability to remove outliers is the most distinguishing property of the eigenstructure decompo-
sition method based on correlation matrices. Correspondenceless algorithms cannot detect outliers
from the observed data because they never perform a correspondence analysis. When outliers exist,

correspodenceless algorithms have a hard time determining accurate motion estimations. In the
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new method, the motion parameters are estimated from the “purified” set M’'. Therefore, the new

method has a much wider application domain.

3.4 Implementation Issues

An outline of an outlier-removing motion estimation algorithm is as follows. The input is the

observation matrices A and B. The output is the motion parameters R and T'.
1. Centralize A and B to get A¢ and Be.
2. Compute the correlation matrices C4 and Cp using formula (15)(16).

3. Decompose the eigenstructure of C'4 and Cp using the Jacobi transformation to get eigenvalue

matrix W and eigenvector matrices ()4 and @p.
4. Compute the affinity matrix H using formula (36).
5. Get the maximum weighted matching using Karp’s algorithm.
6. Remove the low affinity correspondences from the matching.

7. Use the high affinity correspondences to compute R and T'.

We now discuss some implementation issues regarding the algorithm. The first issue concerns
the signs of the eigenvectors. In Section 2 we mentioned that there are eight possible combinations.
Traditional methods usually compute the R’s in all the eight cases (sometimes four cases with some
constraints) and use each R to determine the correct case. In our method, the correct sign case
can be determined without computing R. The weighted bipartite matching algorithm outputs a
matching associated with the maximum sum of the affinity (weights). Obviously, if the sign setting
is incorrect, the affinity of the matching will be worse than the correct case. Therefore, we can test
all the eight sign cases using the matching algorithm, and choose the one with the biggest weight

sum as the correct setting for computing R and 7.
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Second, as mentioned in Section 2, noise resistant approaches exist for solving for R and 7' when
correspondences are known. This is applicable to Step 7 in the above algorithm. We have proved
that the correspondences of the feature vectors in ()4 and @) p precisely reflect the correspondences
of the observed vectors in A and B. After the outliers are eliminated, the stable approach to com-
putation of R and T can be applied to the subsets of A and B containing “good” correspondences.

Third, we point out that better estimation of the motion parameters can be obtained by itera-
tively running the algorithm. Due to noise and outliers, the centers of A and B do not reflect the
centers of the well-corresponding points in A and B. Errors are thus introduced from the central-
ization of the observed vectors. After the first round of running our algorithm, some outliers are
removed, and thus we can have a better estimation of the centers, which we use to do the second
round, and so on. When all outliers are removed, we can get an accurate translation and rotation

estimation.

4 Simulations

Simulations are performed on a set of 3-D points representing a rigid body. 20 points are randomly
generated with a uniform distribution in a (100 100x 100) volume. The points are then transformed
to a rotated and translated coordinate system as the second observation data set of the rigid body.
The translation vector is set to (10,20,30). The rotation is set to (40°,50°,60°) in Euler Angles.
The points in the two sets are reordered randomly for our algorithm to recover the correspondences.
The experiments are designed to test the effects of both noise and outliers on algorithm performance.
Gaussian noise, with zero mean and variance o ranging from 0 to 9, is added to each point in the
two sets. To simulate outliers, we use a random dropping technique to drop off [, points from one
set and [, points from the other. No corresponding point pair is dropped from the two sets. That
is, the input sets of the algorithm are A, with (20 — [,) points, and B, with (20 — [;) points, and

there are (20 — I, — ly) pairs of corresponding points and [, and [ outliers in A and B, respectively.
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We propose a hit rate, p, as the evaluation for the performance of the algorithm:

_ | Mt |
M|’

(38)

in which M is the output matching of the algorithm, and Mp;; C M is the subset of correct
correspondences in M. As mentioned in Section 3, the most important thing is to get rid of the
outliers in the matching, i.e. to improve the hit rate. In the experiments, the algorithm is run for
two iterations. The first iteration is to get the initial matching My of A and B. The second iteration
is to get a new matching M; out of My, which is the purified matching using criterion (37). We
set v = 1 in the criterion. Both of the hit rates of My and M; are calculated for evaluation. For
each configuration of (o,l,,1;), the algorithm is performed one thousand times, from which we get
po and p; (the average hit rates of My and M), and sdy and sd; (their standard deviations).

Our first experiment is on perfectly corresponding sets: there are no missing points in A and
B. The curves of average hit rates as a function of noise variance are shown in Figure 1. The
second experiment is to test the algorithm’s performance on outliers without noise. We keep set B
with the 20 points (i.e. §, = 0) and drop points from A. So there are [, points in B missing their
correspondences in A. Results are shown in Figure 2. The third experiment is on testing noisy data
with outliers. The hit rate response curves for this condition are shown in Figures 3 and 4 for the
two particular cases: 1) I, =l =2, and 2) [, = 4,1, = 0.

Some conclusions can be drawn from the simulation results. Firstly, the algorithm performs
well in the presence of noise. For ideal motion problems where there are no ouliers (Figure 1), the
correspondences are perfectly recovered when the noise is small. When noise increases, the stability
goes down only slowly. For general cases (Figures 3 and 4), the average hit rate curves show the
same flatness. Secondly, when outliers exist, the iteration of low affinity correspondence removal
makes a significant improvement in performance, with or without noise. From Figures 2, 3 and 4
we can see that the average hit rate rises about 10 percentage points consistently at any number

of outliers and any noise levels. Thirdly, when the number of outliers is small, i.e. the motion
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keeps good rigidity, the algorithm can recover the correspondences that are almost all correct.
Fourthly, when the number of outliers increases, the hit rate drops. However, averagely speaking,
correct correspondences account for the majority in the resulting matchings in a wide range of input
conditions. In Figure 2, when nearly half of B miss their corresponding points in A, the algorithm
still results in matchings with about 50% correct correspondences on average. In those cases, the

LMS method could be applied to the resulting matchings for more refinement.

5 Experiments on Real Images

The 3-D correspondence algorithm is applied to two sets of real images known as the BOX sequences
and ROOM sequences. The image sequences were captured with a SONY B/W AVC-D1 camera,
with an effective field of view of approximately (23° x 23°) and (40° x 40°) for the BOX and
ROOM sequences respectively [11]. The intrinsic parameters of the camera were calculated from
the manufacturer’s specification sheets. The images were digitized to 256 x 256 pixels. Within each
sequence, the relative poses between frames were recorded when capturing the pictures.

There are two sources of 3-D point data in the experiments. One source, refered to as model,
are points on the rigid body (box or objects in the room) that were measured in advance with
respect to a world coordinate system. The other source is triangulated data, which are acquired
by a triangulation procedure using corresponding 2-D data extracted from images in the sequence,
together with the relative pose information between the frames in the sequence [4].

Both model and triangulated data are noisy. The noise in the model is due to the error in
measurement and was estimated during measurement. The noise in the triangulated data is due
to many factors such as camera distortion and errors in low-level image processing (feature point
extraction). It is well-known that these 2-D errors have a big effect on the triangulated 3-D data,
especially when the frames for triangulation are very close to each other. To estimate the noise

between two 3-D point sets of a rigid body, we transform one set of points to the other’s coordinate

20



system using the relative R and 7', and then calculate the deviation (DEV) of each corresponding
point. The average DEV and the biggest DEV are of most interest. It is worth noting that
the DEV’s in our experiment are only used to show the reliability of the algorithm. They are
typically not available beforehand in 3-D correspondence problems, because the R and 7' and the
correspondences of the points are not known. DEV is only an absolute value. To show the effects of
the noise, we must also consider how far the points in a set are apart from each other. The Distance
to the Nearest Point (DNP) of each point is used for this consideration. The average DNP and the

minimal DNP in a set are of most interest.

5.1 BOX sequences

The experiment performed on the BOX sequences addressed this problem: given two independent
image sequences of a rigid body, with only relative poses known within each sequence, can we
recover the motion between the two sequences? Suppose we have two viewers of the same object,
each having an image sequence of the object captured independently. Can we compute the positional
relationship between these two viewers from their image sequences?

We have two sequences of the same box. 30 points were picked for the experiment. Their
depths to the camera ranged from 550mm to 700mm in both sequences. We only know the relative
poses between frames within each sequence. With this knowledge, 3-D points are triangulated in
each sequence independently and represented with respect to the first frame’s coordinate system
of each sequence. So the problem is reduced to a 3-D correspondence problem for these two sets.
Figure 5 shows the 30 points with one of the images in the sequences. The average DNP of the
30 points was about 27mm and the minimal DNP was 15mm. The average DEV between the two
triangulated sets was 1.1lmm and the maximal DEV was 1.5bmm. Because all the points appear in
both sets, it is an ideal correspondence problem with fairly low-level noise. The eigenvalues of the

correlation matrices of the two triangulated 3-D point sets are (103859, 51418, 17248) and (103587,

51639, 17123). Our algorithm perfectly recovered all the correspondences in one iteration, and thus
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solved the problem of the motion between the two independent sequences. The actual and recovered
rotation (in Euler Angles) and translation parameters between the first frames of the two sequences

are shown in Table 1.

Table 1: The actual and recovered motion parameters between first frames of the two box sequences

‘ Actual Parameters ‘ Recovered Parameters

0 —1.59° —1.22°

¢ —21.45° —21.17°
P —13.45° —13.50°
T —240.7 mm —241.1 mm
T, —12.9 mm —9.4 mm
T, 55.6 mm 54.6 mm

5.2 The ROOM sequence

The ROOM sequence was generated by fixing a camera to a moving PUMA arm. The location
of 30 points (marked in Figure 6) in the world coordinate system was measured to an accuracy of
approximately 0.2 feet along each axis. The depth of these model points varied from 13 feet to 33
feet in the sequence.

Model matching is the experiment we designed for the ROOM sequence. From the image
sequence we triangulate the points that appear in the model and try to match the triangulated data
with the model. Once the correspondences are correctly recovered, the transformation from camera
coordinate system to the world coordinate system is easily solved. However, as seen in Figure 5,
some points were not captured in the image sequence due to the limited view of the camera. Only 26
points were successfully triangulated with respect to the camera coordinate system in the sequence.
So it is a general 3-D point correspondence problem. Moreover, the triangulated data turned out
to be very noisy in the ROOM sequence. The average and minimal DNP’s of the 30-point model
are 1.46 feet and 0.65 feet respectively, but the average and maximal DEV of the triangulated data

from the model are 0.30 feet and 1.25 feet. That is, the maximal error in the triangulated data are
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even bigger than the distance of a pair of points in the model. The eigenvalues of the correlation
matrices of the model and the triangulated data are (1351, 322, 77) and (1084, 254, 63).

The algorithm starts with the 30 and 26 points in the data sets, and gets an initial matching of 26
points in both sets, among which there are 16 correct corresondences. As mentioned above, the hit
rate is the most important thing in the matching analysis. Although the LMS method is applicable
to this initial matching, we run the fast outlier removal algorithm iteratively, with v = 1, for better
hit rates. The algorithm ends up with a fully correct matching after 7 iterations. The variation of
the hit rates in these iterations are shown in Figure 8. At the last iteration, the cardinality of the
matching is 11. That is, we find a correct matching of 11 points in both sets without the help of
the LMS method. Using this correct matching, the motion between the camera coordinate system

and the world coordinate system is recovered. Table 2 shows the actual and recovered rotation (in

Euler Angles) and translation parameters between the two coordinate systems.

Table 2: The actual and recovered motion parameters between the model and the triangulated data

in the room sequence

‘ Actual Parameters ‘ Recovered Parameters

9 —163.37° —163.52°
¢ 17.40° 17.73°
P —131.80° —131.74°
T, 0.05 ft 0.11 ft
T, —3.11f —3.07 ft
T, 32.57 ft 32.57 ft

6 Conclusions and Discussions

In this paper we first reveal a theoretical symmetry in 3-D motion problems: the symmetry between
the rotation matrix R and the permutation matrix P. Unlike the correspondenceless philosophy in
3-D point motion estimation, we emphasize instead the importance of the correspondences in outlier

elimination and solution stability. A closed-form method based on correlation matrix eigenstructure
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decomposition is proposed, parallel to the traditional scatter matrix eigenstructure decomposition.
In this method, correspondences are determined before estimating motion parameters. Using a
heuristic measure of point pair affinity computed from the eigenstructure, a weighted bipartite
matching algorithm is adopted to determine the correspondences. We also emphasize the importance
of hit rate in matchings, because a high hit rate ensures that LMS methods can work out an outlier-
free matching. By using the affinity heuristic again, a fast outlier removal algorithm is proposed to
improve the hit rate in bipartite matchings.

Simulations and experiments on real images were done to test the proposed algorithms. The
experiments show that the algorithms are noise resistant, and are feasible in general motion problems
where outliers exist. Thus our method potentially has a wider application domain than traditional
eigenstructure-based methods. Also, it is easy to see that the method is not confined to 3-D rigid
body motion problems. It could be extended to 2-D motion and even deformable body motion
problems.

Some remaining issues are subject to future study. One of them is the criteria for purifying the
matchings in the outlier removal algorithm. Currently we have no theoretical proof or direct evidence
that the criterion in (37) is the best. The criterion to remove low affinity correspondences determines
both the quality and the speed of outlier removal, and hence is an important problem. A related
issue is the stopping criterion for the algorithm’s iterations. It is seen from the simulations that
the outlier removal iterations sometimes increase the standard deviation of the hit rate, although
they consistently improve the average hit rate. This indicates that the the algorithm iterations
sometimes lead to a local minimum. How to improve these liabilities of the algorithm is under
current study.

Further issues to consider include studying the limitations of the eigenstructures-based methods.
High speed is one of the advantages of eigenstructure methods. However, when there are too many
outliers in the point sets, the eigenstructure is totally destroyed and such methods are problematic.

The method proposed in this paper has a wider application domain because it has the ability to
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deal with ill-eigenstructured data by iteratively improving the eigenstructure of the two observed
data sets. An interesting research direction for many applications is to pre-process the observed 3-D
data so that they have similar eigenstructures, then input the pre-processed data to our algorithm
to recover the correspondences and motion parameters. The combination of clever pre-processing
with the algorithms proposed in this paper might lead to methods that solve even more general

motion problems.
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Figure 1: Performance against noise without outliers: [, = l, = 0 (solid line: po; dash line: py;

dot-dash line: sdp; dot line: sd;)
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Figure 2: Performance against outliers without noise: o = 0,5, = 0 (solid line: po; dash line: py;

dot-dash line: sdp; dot line: sd;)
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Figure 3: Performance against noise with outliers: [, = I, = 2 (solid line: po; dash line: p;; dot-dash

line: sdp; dot line: sd;)
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Figure 4: Performance against noise with outliers: [, = 4,0, = 0 (solid line: po; dash line: py;

dot-dash line: sdp; dot line: sd;)
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Figure 5: Triangulated 3-D points with respect to a local camera coordinate in the box sequence

Figure 6: A measured 3-D model displayed with one of the image in the room sequence
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Figure 7: Triangulated 3-D points with respect to a local camera coordinate in the room sequence
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Figure 8: The hit rate in each iteration of the outlier removal algorithm
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