3 73

T d

%—'§\

-y

e

(,__% L

—32 —3 —3 -3 3

"3

ADAPTIVE PARALLEL DISTRIBUTED PROCESSING:
NEURAL AND GENETIC AGENTS

PART ONE:

NEURO-GENETIC AGENTS AND A STRUCTURAL THEORY
OF SELF-REINFORCEMENT LEARNING SYSTEMS

Stevo Bozinovski
CMPSCI Technical Report 95-107

November 1995

St B |

—3 3

T3

Preface

I hesitate to comment on the history of reinforcement learning. Being deeply absorbed in this
research myself, my view is hardly detached, and I hope that the most outstanding develop-
ments are yet to come. But this report requires me to provide some historical comments. It
chronicles research on aspects of machine learning that Dr. Stevo Bozinovski conducted when
he visited what was then the Department of Computer and Information Science at the Univer-
sity of Massachusetts in 1980 and 1981. This research built upon his earlier machine learning
work under the influence of what we were doing at the time. I was a postdoctoral researcher
working with graduate students Rich Sutton and Chuck Anderson on a project whose goal was
to investigate an approach to machine learning that later became widely known as reinforce-
ment learning. Stevo arrived as we were working on an approach to the credit assignment
problem of reinforcement learning that had roots in animal learning theory and early artificial
intelligence. This work reached one level of fruition in Sutton’s 1984 Ph.D. thesis "Temporal
Credit Assignment in Reinforcement Learning”. We used one of Sutton’s algorithms as part
of the "actor—critic” architecture that we illustrated using the pole-balancing problem, having
been inspired by the 1968 “Baxes” system of Michie and Chambers. Sutton further developed
this work into the TD(A) class of algorithms. Motivated by the credit assignment problems
we were studying, Stevo developed his own approach, calling it the Crossbar Adaptive Array
(CAA) architecture. Although no one knew it at the time, Stevo had developed an architecture
falling in the other of the two main classes of reinforcement learning architectures. Unlike the
actor—critic architecture, which learned a value function of states, the CAA architecture learned
a value function defined on state-action pairs. Although learning values for state-action pairs
had already been present in the Boxes system, this general approach did not become widely ap-
preciated until Watkins presented the Q-learning class of algorithms in 1989 within the context
of dynamic programming, proving that they could find optimal values under certain conditions.
Stevo’s CAA architecture should therefore be recognized as an early example of this class of
state-action value learners. Moreover, a special case of the general CAA architecture that
Stevo calls the “greedy—emotion CAA”, turns out to be the same algorithm Watkins indepen-
dently developed in 1989, calling it one-step Q-learning. Consequently, Stevo’s work with the
CAA architecture deserves recognition as an early contribution to this class of reinforcement
learning architectures. Having acknowledged this, however, I am certainly not willing to credit
Stevo with the “invention of Q-learning”, since the most significant part of this invention was
Watkins’ development of Q-learning within the context of optimal control theory and dynamic
programming, and his proving that these algorithms converge to optimal solutions, something
that is not true for all instances of the CAA architecture. But I invite readers of this report,
as does Stevo, to form their own opinions about how the CAA architecture deserves to be
regarded by reinforcement learning researchers. This report was produced while Stevo was a
visiting Fulbright scholar during 1995/96. I was his hosting faculty associate for this visit. I
was not, and never have been, his academic adviser, as he states in his recent book.

Andrew Barto
Ambherst, 1996.

| ‘38 T3 "% T3 T3 T3

3

—3 T3 3 T3 T =2 1

VT3 T3

ACKNOWLEDGMENTS

This is the first written report of the project "Adaptive
parallel distributed processing: Neural and genetic agents" carried
out under the Fulbright Grant at ‘the Adaptive Networks Group,
Computer Science Department, University of Massachusetts, Amherst,
USA.

Ms. Susan Krause, the Director of the American Center in Skopje,
was the person who carried out the competitive procedure which
enabled me, along with other candidates, to obtain the Fulbright
Grant.

Professor Andy Barto enabled me to rejoin the Adaptive Networks
Group after 14 years. My first visit to this group was in 1980-1981,
also under the Fulbright Grant. At that time, under his leadership,
and influenced by his broad insight into learning theory, I was able
to produce results which turned out to be highly relevant in light
of contemporary research on learning systems, and which I discuss in
this report. This time he had patience to read this report in
several iterations of its development, and give valuable criticism
for improving its quality.

Professor Spinelli was the person who accepted my application
(suggested by professor Michael Arbib) fourteen years ago and who
enabled me to meet scientific workers like Andy Barto, Rich Sutton
Chuck Anderson, and Harry Klopf, and to share my previous experience
with them, and learn from them. Professor Spinelli also gave me the
financial support to extend my stay with the Adaptive Networks Group
beyond the Fulbright Grant Period. That was indeed the period when I
developed the Crossbar Adaptive Array architecture which I discuss
in this report.

To all of them I express great gratitude to be able to write this
research report.

~—g 3

3

3 3

c-—3

3

—% —3 3

—3 T3 —31 T3 "T& — 1

V"8 T 3

ABSTRACT

The project Adaptive Parallel Distributed Processing: Neural and
Genetic Agents has three parts. The first part is a review of our
previous work with emphasis on neuro-genetic agents and its
significance for contemporary and future work. The second part deals
with distributed reinforcement learning agents. The third part is
concerned with genetic agents involved in models of adaptive
parallel distributed production, a notion we developed in relation
to the protein biosynthesis system.

This first part of the project connects previous research of the
author with the contemporary issues of adaptive and learning
systems. The research in Adaptive Arrays, carried out fourteen years
ago, is evaluated from the perspective of the contemporary state of
the art in reinforcement learning and dynamic programming. The
previously proposed systems are considered within a framework called
the structural theory of reinforcement learning systems.

T3 T3 3

-3

T3 —3 T2 3 7% T4 73 T3

B

TABLE OF CONTENTS

ACKNOWLEDGEMENTS -

ABSTRACT

1. INTRODUCTION

1.1. The framework
.2. Agents and architectures
1.3. Neural architectures
1.3.1. Crossbar Adaptive Arrays
1.4. Problems, solutions, and tools

-

2. A STRUCTURAL THEORY OF LEARNING AGENTS

2.1. Basic notions

2.2. Learning interfaces and a taxonomy of the learning paradigms
2.3. Consequence learning systems

2.4. A generic learning agent: Neuro-genetic agent

2.5. Infering learning rules from the agent’s structure

2.6. Structural adaptation of the NG agents

3. CLASS A LEARNING SYSTEMS: ADVICE TAKING LEARNING AGENTS

3.1. Class A learning agents

3.2. Greedy policy perceptrons

3.3. Harware designs: Adaptive arrays

3.3.1 A classical conditioning model
3.3.2. Class A adaptive array

3.3.3. Isothreshold adaptive network

4. Toward a theory of teaching systems

5. Parallel design of the teacher-learner interaction
6. Teaching strategies

.7. Teaching grammars and languages

8. The tutorial algorithm

9. Class A teaching as integer programming
.10. Class A teaching as dynamic programming

WWWWLWWwW

4. CLASS B LEARNIG SYSTEMS:
ADVICE FREE, EXTERNAL REINFORCEHENT LEARNING AGENTS

4.1. Introduction
4.2. Associative Search Network
4.3. Actor-Critic Architecture

5. CLASS C LEARNING SYSTEMS: SELF-REINFORCEMENT LEARNING AGENTS

5.1. Conceptual framework =)
5.2. Self-reinforcement learning and NG agents !
5.3. The Crossbar Adaptive Array class C architecture B
5.4. How it works .
5.4.1. The one-step computations -
5.4.2. The sequence of the one-step computations
5.4.3. Defining primary goals from the genetic environment
5.4.4. The secondary reinforcement mechanism: backward chaining =
5.4.5. The CAA learning method
5.4.8. The higher order system: Modulating actions and emotions
5.5. Example of a CAA architecture ™
5.5.1. Actions: learned and modulated
5.5.2. The state evaluation function
5.5.3. The learning and value backpropagating function =
5.6. Solving problems with the CAA architecture
5.6.1. Learning in emotional graphs: Delayed reinforcement
learning problem: Maze running example
5.6.2 Learning in loosely defined emotional graphs: The =
undeterministic environment problem: Pole balancing example ‘
5.6.2.1. Representing the problem as emotional graph
5.6.2.2. Dynamics of the Cart-pole system ™
5.6.2.3. Parallel programming for pole-balancing learning
5.6.2.4. Some results of the experiments
5.6.2.5. The limited value backpropagation method for solving -
problems in learning in losely defined graphs |
5.7. Another example of a CAA architecture: Greedy emotion CAA
5.8. Using entropy in Markov Decision Models
5.8.1. Compuing entropy with known transition probablities 'ﬁ
5.8.2. Compuing entropy with unknown transition probablities
5.9. CAA as a neuro-genetic agent
5.9.1. Species vectors and subjective graphs =
5.9.2. Two-chromosome genome CAA: Building an environment model i
5.9.3. CAA architecture as optimization architecture

5.9.3.1. Convergence in deterministic environment
.9.4. Distinstion from the genetic algorithms
.9.5. Self-reinforcement based on the genetic environment

[H]

6. RELEVENCE OF THE CAA TO THE DEVELOPMENT OF THE CONTEMPORARY !
REINFORCEMENT LEARNING THEORY

6.1. After 1982...

B6.2. Q-learning is a CAA-learning method
.2.1. The problem: Credit assignment
.2.2. The approach

.2.3. Q-values

.2.4, Q-learning: A special case of the CAA learning method

.2.5. A taxonomy of CAA-method based learning algorithms 7

(o0«) M2 I e) I o)}

6.3. Producing optimal solution in stochastic environment

6.4. A summary of the observed relevance
6.4.1. CAA as a 1981 neural architecture e
6.4.2. CAA as a state-of-the-art neural architecture ﬂ

1

r—

38 T3 T3

A A - T e e

3 3

3

3

10.

. CLOSING DISCUSSION

Unified theory of learning agents

CAA architecture

Q-learning as a CAA learning

CAA as neuro-genetic agent

Adaptive Networks Group -

RIS
X

CONCLUDING REMARKS

APPENDICES

9.A. First CAA written report, Nov 25, 1981

9.B. First talk about the CAA, Dec 2, 1981

9.C. First announcement of the CAA pole balancing solution, Dec 10
9.D. First published report, April 13, 1982

9.E. The early papers of the ANW group, 1981-1983

REFERENCES

3 T3

—3

3

T3

CHAPTER 1
|

INTRODUCTION

In this chapter we will present the global concepts discussed in
this report. The issues discussed are: the three-environment
framework assumed in this work, the notion of agent and its
architecture, and some issues on problem solving using particular
agent.

1.1. THE FRAMEWORK

The main motivation for this part of the project is to explore
some issues around the notion of neuro-genetic agents. Those are
agents which for their function take advantage of a neural
architecture but also rely on their connection to the genetic
environment.

The general framework can be denoted as three-environment
framework, as shown in Figure 1.1. According to the Figure 1.1. we
assume existence of three environments: 1) the genetic environment,
2) the organismic environment, usualy represented by an agent, and
3) the behavioral environment, or some kind of reality, where the
agent express its presence and/or behavior.

This framework assumes that all the three environments are
performing some kind of an optimization process which reflects
itself on the agent. The behavioral environment optimization loop is
actualy a learning loop: it represents itself 1in the software
structure of the agent. The genetic environment optimization loop is
a hardware and firmware loop. It represents itself in the optimizing
structure of the agent or variety of agents, and also in their
primary intentions, drives (hunger, thirst, ...) underlying
behavior. Also, it optimizes the solutions of some problems produced
by the agent, as we discuss further in the text.

BEHAVIORAL ENVIRONMENT

behavioral optimization loop

evolutionary optimization loop

GENETIC ENVIRONMENT

Figure 1.1. The three-environment framework

A number of 1issues can be pursued in such stated research
framework. Let us mention that there is contemporary a remarkable
research effort in the area of genetic algorithms [Holland 1975].
The problem considered in genetic algorithms research is to produce
an agent at the genetic environment level and test its performance
at the behavioral level. Usualy no optimization in sense of learning
is considered at the behavioral level. If the performace is below
some level, a probability exists that that agent (organism) will be
removed and some other will be generated. The obective of the
optimization process is to produce organisms which will express high
level of performance.

This research will use the basic idea of the genetic algorithms
but will be mainly focused on the learning process, i.e. the
behavioral optimization loop. We will be interested in constructing
artificial organisms, which will receive initial information from
the genetic environment, which in turn will bias their learning
behavior. After learning, the learned information is exported to the
genetic environment in form of genetic message (genome). The
exporting process contains an optimization mechanism. Alhough (as
far as we know) there is no evidence of such a process in the
nature, it seems a feasible hypothesis for building simple agents
with small memory requirements.

1.2. AGENTS AND ARCHITECTURES

We will be interested in learning agents which have sophisticated
design to the extent that they are able to solve some nontrivial
problems in the behavioral environment in which they exist. The
notion of agent will be assumed intuitively understandable in the
sense of an organism or/and a social entity. The notion of an agent
acting in an environment is a common paradigm in contemporary
understanding of the intelligent systems [Kaelbling 1993, Bozinovski

2

T3

T3 T3 3

~3

1993, Russel and Norvig 1995]. An agent can represent an animal,
robot, or other system with some assumed level of intelligence.

An agent has its functional architecture. The notion of
architecture encompasses the conceptual relations among the
sybsystems and elements of a system. The architecture can be
represented at various level of abstraction, and by various types of
basic elements. An architecture can be of neural type, of protein
type, or some other even abstract type. Considering the functional
architecture of an agent, an assessment can be made about the
ability of the agent to survive in an environment or to solve some
problems represented by the environment. The notion of architecture
has implicit engineering sense: for a given problem we usualy
construct an agent architecture which will be used to solve the
considered problem.

1.3. NEURAL ARCHITECTURES

This work will be interested in agents having neural nerwork
architectures. The research of artificial neural networks, starting
by work of McCulloch and Pitts (1943) has been greatly intensified
after the influential book of Rumelhart, McClelland and the PDP
Group (1986). It is very difficult to make systematisation over the
great number of neural network architectures proposed so far. An
example of a successfull taxonomy is the attempt of Simpson (1990).

For purposes of this work, we will use only a general taxonomy
dividing the neural networks in two architectural classes: 1)
multilayer perceptrons and 2) adaptive arrays. Figure 1.2. shows
these basic neural architectures.

:—l
i
1
i

- i
3[]‘“2"3
1— r — r 4 I
et S y
b4 n n—=| i i
=[P n :3[:}9 23
x | £ £ 5 I I
el iz i3
n = n =

I:Ti
T

B.

Figure 1.2. Basic neural network architectures.
A. Multilayer perceptron B. Adaptive array

Multilayer perceptrons are cascaded multistage networks,
vwhere basic processing units, neurons, are placed in layers. The
usual terminology is that we should recognize and input layer and
the output layer. There are several layers in between, denoted as
hidden layers.

Adaptive arrays are matrix memory structures. The neurons are
represented with their dendritic structure, to which input signals
are connected. The matrix is usualy refered to as synaptic matrix,

3

or learning matrix [Steinbuch 1960]. The synaptic weights {w} (on
the Figure 1.2. represented by the symbol %) are indexed in a
straight-forward manner, by the indices ie€[l,..,n] representing
outputs, and jell,..,m] representing inputs.

This report will be concerned with adaptive arrays, although the
multilayer perceptron representation will also be mentioned.

Important issue of an architecture is the interpretation of its
input and output set of signals. For our purpose we adopt that the
input signals represent a situation (or set of possible situations)
and the output an action (or set of admissible actions) performed by
the agent.

1.3.1. CROSSBAR ADAPTIVE ARRAYS
A special class of neural architectures, denoted as crossbar

adaptive arrays, will be of particular interest in this text. Figure
1.3. shows example of such a crossbar architecture.

LIl L |
)

[max imum|

=

ZI ZZ 23

Figure 1.3. A crossbar neural architecture

The architecture shown on Figure 1.3. computes two different
types of outputs. Several interpretations can be given for the
nature of the different types of actions. We can think of y-actions
as physical actions and of z-actions as emotional (and/or mental)
actions. For example, the y-actions can be used for moving objects
in the behavioral environment, whereas the z-actions can be used to
represent an emotion, internal evaluation of some state of the
agent and/or the environment.

The architecture shown on Figure 1.3. also computes a maximum
function over the set of actions. In general case, for this type of
architecture it is not neccesary that the maximum selector function
be used. Some other function, depending on the problem challenged,

4

]

3

3

"3

3

can also be defined.

The crossbar adaptive array architectures can also have recurrent
connections. Figure 1.4 shows an architecture which will be of ma jor
interest in this report.

Figure 1.4. A recurrent crossbar adaptive array

The architecture on Figure 1.4. has recurrent connections toward
its memory matrix. It has also two types of outputs, interpreted as
physical actions and emotional actions. The emotional actions in
this architecture are expressed toward the environment, possibly
shown to some other agent. In addition, a computation is performed
to extract the most dominant emotional component and to feed it back
to the system. It is internal emotion of the system, and in this
architecture it is broadcast back to the memory matrix, such that it
will have an impact on the learning process. In some interfaces with
the environment, the vector z is not expressed outside the agent.

Let us note that the emotional computation is not neccessarily
made by the functions maximum and multiplex. Some other functions
can be used in this architecture. Example is a function sum, which
will sum the feelings and somehow give a global emotional state of
the system. A function average can also be used. What kind of
emotion computing functions will be chosen will depend on some
higher order emotion controlling strategy, which in turn depends on
the considered task objectives.

1.4. PROBLEMS, SOLUTIONS, AND TOOLS

A notion of problem is central in Artificial Intelligence (AI)
and many textbooks in AI (e.g. Russel and Norvig 1995) consider that
notion as an introductory one in exploring intelligence. Assuming
the notion as intuitively understandable, we will observe that the
notion of problem is always contingent with the notion of solution
of that problem.

An important 1issue around the concept of problem is its
representation. There are various ways a problem can be described
and represented. A standard problem representation in AI is the
state space graph, where there is given a set S of states, a subset
S.S of starting states, and a subset F.S of final states. Some of
the final states are goal states, i.e. G.S S F.S vwhere G.S is a set
of goal states. The states are arranged such that they are nodes of
a graph, in which the edges are denoted as actions or operators,
with interpretation that if being in a state s € S and taking action
a € A(s) will cause a transition from the state s to some other
state s* € S. Here A(s) is a set of admisible actions being in the
state s. A solution of the problem in this representation concept,
is a path between some given starting state and some given final
state. Sometimes the problem is stated such that more starting
states and/or more final states can apear in the solution(s) of the
problem.

An important class of state space graphs are the graphs where the

edges and/or nodes are assigned elements of some (partially) ordered
set, for example real numbers. If numbers are assigned to actions,
the graph is usualy denoted as "weighted". If numbers are assigned
to states, the graph is usualy denoted as "valued" or “colored”.
Such a set can be the set & of emotionally represented (cartooned)
human faces, and the partial ordering relation can be the subjective
human (e.g reader’s) Jjudgement. Figure 1.5 shows an example of a
sub jective emotional graph.

start

1 L 2 3 R N
oflo o | o ojlo
[el T Iq

6 7 8
ole
(___
.
[|
9 10 —~p\—ll
L] |. .T.

: "

Figure 1.5. Example of an emotional graph

The graph on Figure 1.10 shows that some transitions between
states are unidirectional, and some bidirectional. Some states are
terminal, as state 1 and 11, and state 2 is a starting state. The
goal state is the state 1. A solution is found if a path from state

6

ﬁ?

R

3

T3

3

3

2 to state 1 is found. Emotional graphs are very useful for
qualitative analysis and visualization of a problem. They show which
states are desirable, and which are not desirable. Having those
notions, the solution of a problem can be seen as a path from a
starting state to a goal state while avoiding undesirable states. It
emphasizes the subjectivity of agent’s evaluation of the environment
states. It also implies that two agents can view the same envronment
state with different emotion. In the sequel this representational
concept [Bozinovski 1982b] will be used whenever possible.

We will also distinguish between arbitrary and optimal solutions.
An arbitrary solution is any solution of the problem. Consider going
from Amherst to Boston. If the problem is solved somehow, and an
agent is moved from Amherst to Boston, then it is a solution of the
problem. If a problem assumes constraints, for example going to
Boston but not using bicycle, than any solution which solve this
problem is solution under constraints. Often such types of solutions
can be denoted as satisfactory solutions. An important class of
problems are problems where some optimality criterion is stated. For
example, going to Boston as fast as possible. Here the time spent
for traveling to Boston is measured, and is used as a measure of
performance of the problem solving agent. In so stated problems we
usualy already have a set of possible solutions; what is interesting
is the "best" one, according to some criterion. Usualy, problems are
stated both with constrains and an optimization criterion.

The notion of solution is assumed to be accompanied by the notion
of tools for solution of a problem. Although it is not widely
emphasized in AI, the tool is an important issue in statement of a
problem. Although we can state a problem not specifying tools for
its solution, in real life we always assume a set of tools given to
us when we are going to solve a problem. Tools can be understood as
given constraints in the statement of a problem. Simple example is
stating a problem of solving 2+3 in ordinary sense. If no tool is
specified, it is an easy problem, we will use our brain processors,
where that pattern is almost associated with some tabular value; the
arithmetic routines of our brain will probably not even be
activated. The problem of 2+3 is trivial and not interesting if the
assumed tool is our brain. But, if we state the same problem using a
Neural Architecture, then the problem becomes more complicated, and
for some people maybe interesting. So, specifying the tool as a part
of a problem can formulate a new problem, with possibly challenging
nature.

In that conext, this report is about crossbar adaptive array
architectures as tools for studying and solving some problems. The
general problem of learning, and some important paradigms of
learning, as learning with a teacher which gives advice, learning
with a teacher which only gives reinforcement, and learning with no
teacher at all, will be considered.

Further in the text, a separate chapter will be dedicated to
those problems and agent architectures used for solutions.

— 13

CHAPTER 2
S

A STRUCTURAL THEGRY OF LEARNING AGENTS

It is assumed that an agent (or actor) acts in an environment.
Over time, an abstract impartial observer outside the agent and the
environment, could observe a behavior of the agent with respect to
the considered environment. The environment in which a behavior of
an agent is observed is the agent’s behavioral environment. For
example, for humans the behavioral environment can be the social
environment Iif we <consider social relationships. For some
philosophical discussion we can extend the behavioral environment to
be the "reality" in which the agent exists: the reality can be
"real", dreamed, or computer generated (so-called virtual). We can
assign the behavioral environment to a certain problem space
relevant for some considered task. For a robot, the behavioral
environment can be 1its working environment in some flexible
production system. For a neural network controller, the behavioral
environment can be the plant or process it controls.

An agent can express a learning behavior in some environments. We
assume learning is a process which represents itself on at least two
levels:

1) in the knowledge base (memory) of the learning agent: a
portion of knowledge is being gained which contributes toward the
understanding (building a model) of the environment

2) in the observers memory (it can be a scratch-pad memory or
some longer term memory): the entropy of the agent’s behavior is
decreased. The behavior is shifted from possibly totaly random to
possibly totaly deterministic.

2.1. BASIC NOTIONS

The basic conceptual variables of the theory we are going to
present are given on Figure 2.1.

On that Figure, S is a set of signals which at time step t is
presented from a behavioral environment to a learning agent.

BEHAVIORAL
ENVIRONMENT

LEARNING
AGENT

Figure 2.1. The basic inteface concepts

In this theory we assume that the set S consists of three
subsets, i.e.

S ={r,U,X} (2.1)
where

r is the reinforcement: it is a distinguishable signal in S
which is usualy presented to the learner to show how good
the learner’s performance is according to the evironment;
also it is a variable which the agent will tend to optimize
during the learning process.

U is action advice: it is a distinguishable signal, or set of
signals, representing the action which should be performed
by the learning system in a situation specified by the
environment

X 1is the situation: the set of signals S-{r,U}; usually
considered as "neutral" signals, or context signals

We say that S is a generalized situation. We assume that it
represents the state of the environment at the observed time ¢t.
Below we distinguish between the term generalized situation, S, and
situation, X. We will operate with the situation X, wunless
otherwise specified. Later we will consider environments where S=X.
In these environments, X is a situation which represents the state
of the environment as seen by the agent.

Further, we assume that the acting agent generates the values of
a set of signals, Y, representing an action toward the environment.

2.2. LEARNING INTERFACES AND A TAXONOMY OF THE LEARNING PARADIGMS

The pair
LI ={S,Y} (2.2)

denotes the learning interface between the environment and a
learning agent. Note that here the learning interface is represented
as a set. However, in some cases it is convenient to consider LI as

9

3

3

—3

ordered n-tuple to emphasize the sequence of events appearing in the
learning process.

In this theory we will consider generalized situations where not
all of the three components are present. Let us discuss briefly some
learning paradigms which are defined by ommiting some components of
S. We now present 9 learning interfaces. The first two are
interfaces where X does not appear. We call them context-free
interfaces. The interfaces where X appears we denote as context
sensitive, or context dependent, interfaces.

LI1 = (U,Y). This interface usualy represents a forced training
paradigm. There is a teacher which gives an advice as to what action
should be performed. There is no X-Y association learning. The
learner can learn to repeat the actions advised by the teacher. This
is a primitive type of imitation learning.

LI2 = (Y,r). This is a typical example of context-free
reinforcement learning. The learning agent tries actions in order to
optimize the reinforcement signal. This learning paradigm is used in
learning automata and function optimization.

LI3 = ([X,U],Y). In this paradigm, the situation X and the advice
U appear simultaneously, as a pair. The teacher forces the learner
to adjust the mapping X-Y to be the desired mapping X-U. This is
sometimes called supervised learning paradigm. This paradigm was
widely used in associative memory programming paradigm.

LI4 = (X,U,Y). In this paradigm it is important to emphasize that
between X and U there is a time difference. This paradigm is used in
classical conditioning modeling [Sutton and Barto 1981].

LIS = (X,Y,U). This paradigm in contemporary theory is used in the
backpropagation shemes of neural learning [Rumelhart, Hinton and
Wiliams 1986]. The learner receives the situation X, produces an
action Y, and receives the advised action from the teacher. The
learner, after that, computes the error and backpropagates the error
through the network. Important property of the paradigm is that the
advice is supplied in each step.

LI6 = (X,Y,r). This 1is the context-dependent reinforcement
learning paradigm. It is the classical reinforcement learning
paradigm. The agent learns to associate the appropriate action to
the situation X, in order to optimize the reinforcement r. This
paradigm is also a model of the instrumental conditioning paradim in
animal learning theory. [Barto, Sutton, Brouwer 81].

LI7 = (X,Y,r,(U)). This paradigm we denote as tutorial learning
paradigm. The main property is that the teacher gives advice only if
neccesary, and not in each step. The learner is assumed to know what
to do. If, in an examination trial, there is something the learner
doesn’t know, then it first receives a negative reinforcement r,
(for example the word "No!"), and after that advice as to what to
do. The learner tends to adjust its X-Y mapping toward the requested
X-U mapping, and also to minimize the training trials and the amount
of negative reinforcement received. This paradigm was investigated
in [Bozinovski 1981b].

10

LI8=(X,Y,(r)). This is a delayed reinforcement learning paradigm.
The learner receives a reinforcement only occasionaly. This paradigm
is of interest in contemporary reinforcement learning theory.

LIS = (X,Y). This is the case of a self-learning paradigm. The
environment represents its state only by a set of neutral signals.
Neither advice nor reinforcement is given, not even delayed one. The
learning agent should develop its internal reinforcing mechanism in
order to exhibit a learning behavior. There should be some mechanism
inside the agent which will evaluate the state of the environment.
This paradigm is investigated by Bozinovski (1982). A chapter of
this book is devoted to that paradigm.

Let us Jjust note that the paradigm LIS should be considered
distinct from the so-called "unsupervised learning", where the input
data is clustered according to some measure of similarity. There is
no point of arguing about names, but we believe the term adaptive
clustering should be used instead of the term unsupervised learning
in clustering tasks.

2.3. CONSEQUENCE LEARNING SYSTEMS

In the further discussion we will be interested in the latter
four paradigms: LI6 till L9. Those are context dependent consequence
learning interfaces. In LIB6, LI7 and L8,a special reinforcing signal
r comes as part of the consequence. In LIS only the "neutral"
situation X comes as a consequence. Figure 2.2 shows the three
interfaces which encompass the mentioned learning paradigms. They
define three classes of learning agents.

Figure 2.2. Context-dependent consequence learning agents

In Figure 2.2.a. we have an agent which receives evaluation
(reinforcement) about the previous performance, and also advice U
for the action Y to be performed in the situation X. We denote it as
a class A agent. Class B agents, in contrast, receive only the
reinforcement which the learner tends to optimize. Class C agents
can learn in an advice-free and reinforcement-free environemnts.

We will use the observation from Figure 2.2 to define a generic

learning agent which will be able to learn in all the mentioned
interfaces.

11

2.4. A GENERIC LEARNING AGENT

Figure 2.3 shows the concept of our generic learning agent, which
we call Neuro-Genetic Agent (NG agent, or NGA). The name suggests
the dependence of the genetic environment. (A more suitable name
would be maybe "Geneto-Neural Agent" but somehow it does not sounds).

BEHAVIORAL ENVIRONMENT

situation (X

advised

action action

4]
NG AGENT
r v

performance internal state
evaluation evaluation
(reinforcement) (emotion)

/:;9/\/\/\ \/\QrN/\genome vectors

GENETIC ENVIRONMENT %

lgi'i AR ﬂ!li!H; il
H

Figure 2.3. Generic learning system

As Figure 2.3 shows, we assume that our generic learning agent is
a reinforcement learning system. In addition to the previously
mentioned inteface components, the NG agent computes its emotion.
The emotion is actualy the value of the state the agent is in,
evaluated by the agent itself. An agent needs that component in
order to build up an internal reinforcing mechanism when facing a
non-advising and non-reinforcing environment.

The genetic environment is needed to supply the NG agent with
the basic drives, primary instincts and drives, basing on which the
agent can learn to behave to fullfill the goals stated by the
drives. The prinary drives are supplied by means of genome vectors
which are imported from the gentic environment. It is assumed that
genome vectors can also be exported toward the environment.

Using the generic NG agent concept shown on Figure 2.3 we will

now show the simple idea which allows the generic NG agent to
perform as class A, B and C agent. Figure 2.4 gives the solution.

12

BEHAVIORAL ENVIRONMEN

!

rI NGA rlip| Nea ”=» NGA =ll

a. Class A b. Class B c. Class C

Figure 2.4. A generic NG agent facing various learning paradigms

As shown in Figure 2.4., the generic NG agent can develop
feedback loops and use them as internal advisers. In class B and C
the advice for a next action can indeed be the previous action if
the consequence was desirable. If the previously elicted emotion was
undesrable, the advice will be to avoid the action taken in the
previous situation. In class C, the internaly computed emotion is
used instead the external reinforcer, which is required in a
classical reinforcement learning system.

2.5. INFERRING LEARNING RULES FROM THE AGENT’S STRUCTURE

Observing the structural properties obtained due to defined
feedback loops, we can now recognize some neccesary conditions for
the learning rules for the agents in class A, B and C.

Let W be a memory variable which represents the associativity
strength between the situation X and action Y in time step t. The
equation

AW = cf(X,Y,U,r,v) - dg(W,X) (24319
W(0) =Wo (2.3.2)

is usualy denoted as learning rule. Here AW = AW(t-1) = W(t)-W(t-1),
¢ and d are positive constants, and f and g some functions. Other
simbols are defined in Figure 2.3. The first term in the equation
(2.3.1) we denote as reinforcing (or refreshing) term, and the
second one we denote as forgeting (or extinction) term [Bozinovski
1981b]. In both functions f and g there can be a time difference for
some parameters in the equation; for example, the action Y can
appear as a term Y(t-1). Often, the generic equation (2.3.1) is
written in the form

W(t) = W(t-1) + h(f'(U) - g’ (W,X))X (2.4)

which is known as error-correction form. In that form f’(U) is the
a function of desired (target) behavior, and g’ (W,X) represents the
current behavior. Interpretation is that the current behavior is
changing as to reduce the discrepancy with the desired behavior. The

13

3

parameter h is the learning step size parameter. Other
interpretation is often given in terms of function approximation:

function f’(U) is gradualy approximated by a function g’(¥W,X)
incrementing the learning variable V.

For the discussion that immediately follows we will not be
concerned with the forgetting term (see 2.3.1), and we set d=0.
Further in the text this term will be addressed.

As a results of the analysis in the previous section, we can see
that the class A has no feedbacks. So no time difference will

neccessary appear in the learning rules of this class agents.
Example of a learning rule is

AW(t) = cX(t)U(t)r(t) (2.5)

However, a time difference can appear if some variable is buffered,
i.e. stored for a limited time steps. For example, if X is buffered
from the previous step, the rule can be of form

AW(t) = cX(t-1)U(t)r(t). (2.6)

A bufer of different size can be used to remember several steps
behind; most common is the one-step-behind buffer.

For class B agents, facing the classical reinforcement learning
paradigm, the previous action is used as an advice for some next
actions. Thus, in the learning rule of a reinforcement learning
system, must appear a term Y(t-k), k=1. Examples of such learning
rules are

AW(t)

cX(t)Y(t-1)r(t) (2.7)
and

AW(t) = cX(t-1)Y(t-1)r(t), (2.8)
where c is some constant or additionaly computed function. In
equation (2.8) a term X also appears as time shift not neccesarily
due to a feedback; it can be obtained by some buffer. The learning
rule (2.8) is an associative learning rule, and is used in learning
tasks about which we will talk in this text. The larning rule (2.7)
has not been used as far as we know. It only predicted by this
theory as possible. It could make sense in some schemes of learning
automata application, where the consequence X(t) is searched for by
using the action Y. Also, in classical reinforcement learning the
learning rules can be more complex, and higher order then the first
order rules shown here. However, the contemporary reinforcement
learning theory uses mainly the first order learning rules.

For the class C system (subjective consequence learning system)
we have two loops in the architecture. Thus, if we want to build
such a learning system, in the learning rule a term X(t-h)Y(t-k),
h, k=1 should appear. An example of this rule is

AW(t) = cX(t-1)Y(t-1)v(X(t)), (2.9)

where v(X(t)) is the internaly computed value of the internal state
of the NG agent due to the received situation X(t), which in turn

14

is a consequence of the state-action pair X(t-1)Y(t-1). We call the
learning rule (2.9) state-action-concequence (SAC) learning rule.
This is the rule used in the self-reinforcement learning systems. A
forgetting term can also be present.

In that way, as a result of this theory, we developed learning
rules from the structure. In such a way, we defined learning rules
for the NG agents which will be considered further in the text.

2.6. STRUCTURAL ADAPTATION OF THE NG AGENTS

This theory allows an assumption of structural adjustment toward
an environment. We can easily visualise that a class A architecture
can evolve to a class B architecture, and further to class C
architecture by building feedback connections. Figure 2.5.
jllustrates that structural transformation.

=
I%

Yy
> \
a)
Z
T - X
. il
X
S o
b) > y —p
3 b
2z
r
c)

Figure 2.5. Structural transformation of the NG agent, represented
as a crossbar neural network. a) class A, b) class B c) class C

As shown in Figure 2.5, a NG neural network of class A can
develop recurrent axon connections toward the inputs and can be
transformed into a class B neural network. Also, the class B neural

15

13

—3

network can transform itself into ¢

of its connections from the stat
reinforcement input.

lass C, by apropriate ad justemend
e evaluation outputs toward the

A neuro-genetic mechanism which can justify this assumption is
dendritic filament growing, of microtubili growing. A pure neural
mechanism could be another set of adjustable connectionist weights,
which are used for programming the neural architecture to transform
its structural class. Such a transformation can be reversible.

In the next chapters, within this theoretical framework, we will
consider some examples of class A, class B, and class C agents.

What we would like to stress is that the systems described later
in this text can be represented as a particular NG modification of
the generic NG agent defined in this chapter. In a sense, it

represents an architecture of an unified view toward the learning
paradigms.

16

3

3

CHAPTER 3
I

CLASS A LEARNING AGENTS:
ADVICE TAKING REINFORCEMENT LEARNING SYSTEMS

In this chapter we will describe our work on the class A learning
systems. Those are systems which are taking advice (or request, or
the desired answer) from some kind of teacher or reference model.

The goal of the process is to transfer the reference knowledge of
the teacher to the knowledge base of the learner.

There are a number of issues going around this paradigm and a
large amount of research effort has been allocated to this paradigm
in control theory, neural learning, pattern recognition learning
among others. It is not the intent of this report to review that
effort. Here we will describe our research in this area, since it is

one line of the beackground which lead to the design of the CAA
architecture described later.

Firstly we will describe some of the learner’'s architecture we
have studied in connection with the class A learning paradigm. After
that we will give some directions within the teaching system theory
we developed in connection with this paradigm. The teaching system
theory described here was mainly developed within the Adaptive
Networks Group, although some initial results were stated before.

3.1. CLASS A LEARNING AGENTS

In the previous section we defined a NG agent to be an agent
capable of learning in all the defined learning classes. Figure 3.1.
shows the a NG agent working as a class A learning systenm.

16

BEHAVIORAL ENVIRONMENT

(TEACHER)
§) X
situation
advised
action action
> CLASS A Y

NG AGENT
(LEARNER)

performance
evaluation

Figure 3.1. Class A learning paradignm

In the class A learning paradigm, the environment supplies
complete information about the desired behavior of the learner. The
genetic environment is always present, but here it is not crucial,
and we ommited it from the picture. For arbitrary initial conditions
received from the genetic environment, the class A learning system
can be directed toward the desired behavior, provided that the
learner accepts the teacher’s advice.

We will be interested in paradigms where the temporal sequence of
events is X,Y,r,U, which we call tutorial learning paradigms. In
this section we will describe an algorithm, denoted as tutorial
algorithm, which we used in our research with class A systems.
Before that, we will describe the type of learners which we dealt
with in our previous work.

3.2. GREEDY-POLICY PERCEPTRONS

Here we will describe a class A learning system known as
perceptron [Rosenblatt 1958]. Actualy, the perceptron epitomizes a
broad class of neural networks, and there are different
visualisations about what perceptron is. Our standpoint is that
pattern classifying machines which use neuron-like elements should
be considered a type of perceptron. Early works usualy consider
perceptrons which can classify input patterns into two classes.
Example of such a perceptron is the Adaline network [Widrow and Hof'f
1960], among others. We call it Adaline-type perceptron. Our work
since the begining [Bozinovski 1972a] was concentrated with
perceptrons which could classify into several classes and which use
the principle of maximum-selector. We call those perceptrons greedy
policy perceptrons, or sometimes pandemonium-type perceptrons, due
to Selfridge [Selfridge 1959] who we believe introduced maximum
selector in the neural network research. The term greedy policy is
used from dynamic programming, on which we will talk later.

Figure 3.2. gives a description of the early perceptrons on which
we started our neural network research, in 1971.

17

3

3

m‘rll

3

3

Figure 3.2. Pandemonium-type perceptron
(from Bozinovski 1974)

The perceptron shown in Figure 3.2. consists of several sets of
A-elements (Rosenblatt 1958). They recognize features (or predicats
[Minsky and Papert 1969]) as well as patterns as a whole. An
A-element has excitatory and inhibitory inputs. The state of an
A-element is given by a real number w. Its output is produced when
sum of excitatory inputs exceeds the sum of inhibitory inputs by a
given threshold value; in that case the output is equal to w. In
other words, the A-element, if properly excited, tells its state.

The output of all the A-elements representing a pattern (or a
pattern predicate) is received by a S-element. This element computes
the sum of inputs, and if the sum is above given threshold, it
proceeds the sum as an output signal.

A special element, which we denoted as A-element, detects the
maximum of all the received sums. If the sum representing the i-th
pattern is maximum, then the output of the system is i. If there is
no single maximal element, the output is O.

Each pattern 1is represented as a binary matrix M, named as
retina. Each element of the retina is named receptor. For each
A-element a ternary matrix V is given representing its connection to
the retina. The dimension of V is the same as dimension of M. An

18

entry 1 in the matrix V means that the A-element is connected to the
respective receptor in the retina. If the entry is -1 that means

that an inhibitory input of the A-element is connected on that
receptor of the retina. ’

The system shown in Figure 3.2. can classify m patterns into n
classes , m = n. It can also be used to recognize predicates
(features) about patterns (Minsky & Papert 1969). In our feature
recognition experiments (Bozinovski 1972a), we used this network to
recognize feature "horizontal line" and "vertical line" regardless
on where on the retina such a feature exists. In our pattern
classification exeriments (Bozinovski 1974) we used this network to
recognize letters from aplhabet, as they appear on various computer

terminals. In both cases we used training trials in the temporal
sequence X,Y,r,U.

3.3. HARDWARE DESIGNS: ADAPTIVE ARRAYS

. During 1972-1974 important part of our work was devoted to build
neural units and networks in hardware. We developed a hardware
simulator of a McCulloch-Pits neuron [McCulloch and Pitts, 1944]
with modifiable weights and threshold, and receptor neuron as
voltage controlled oscillator, both in discrete (transistor)
technique [Bozinovski 1972c]. Also we developed in hardware, in
integrated circuits [Bozinovski and Mesaric 1972b], a network
simulating classical conditioning according to Pavlov [Pavlov 1927].
Also we developed a complete design of the perceptron as shown on
Figure 3.2 in integrated circuits hardware, but as difference from
the previous mentioned models which were physicaly built, the
perceptron model was left as paper design only. However the design

was detailed up to the timing diagrams and all the logical equations
[Bozinovski 19741].

The work in hardware was usefull for establishing a notion of
adaptive arrays. Also it was important to understand deeply the
temporal relationships in an adaptive array, which was very helpfull
later during our development of the Crossbar Adaptive Array. In the
two subsections that follow, we will describe briefly the harware
realizations of our classical conditioning model and the perceptron

model.
3.3.1. A CLASSICAL CONDITIONING MODEL

Our hardware implementation of classical conditioning is given in
Figure 3.3.

CS = bell

X

ul = US = no food

or}l—
u2 = US= food

,——)

Figure 3.3. A simple model of Pavlovean conditioning
19

B

4 73 3

3

The neurons used have the following learning rule (x and u binary)
w(t+1) = w(t) + x(t)u(t) , (3.1)

and the following output rule

y(t) = w(t) if w(t)x(t) > 6, O if not (3.2)
Note that we actualy used A-elements as neural elements.

The learning rule (3.1) was easy to implement in digital hardware
using only up-counters. This however limits the number of training
trials to the limit of the counters capacity. In each experiment the
counters should be reset before the experiment starts.

For the design of the digital counters which represented the
weights w1l and w2, we proposed and tested the memory elements
realized solely by inverters, taking advantage of WIRED-OR feature
of some chip technologies. Figure 3.4. shows our design. It was also

stated that if a technology has a WIRED-OR feature, then all the
circuits can be built by inverters only. ‘

S |>° 0
(-4
NN
R |>o)

Figure 3.4. Our inverter-only design of a flip-flop

Let us note that it was a pre-Rescorla-Wagner [Rescorla and
Wagner 1972] model of classical conditioning, and it that sense
naive comparatively to todays knowledge about classical
conditioning. Also, other models of conditioned reflexes existed at
that time (Uttley 1862). However, it is interesting that it was

built in digital hardware. It contributed toward our understanding
of adaptive arrays.

3.3.2. CLASS A ADAPTIVE ARRAY

The notion of adaptive arrays become natural during our work on

hardware design of the greeedy policy perceptrons (Bozinovski 1974,
76, 78). Figure 3.5. shows such a design.

The Figure 3.5. is a figure from [Bozinovski 1978] and it uses
notation Z instead of the notation U, which we use in this text as

the advising input coming from the teacher. In the further text we
Will use the notation U.

20

L
A (i]
0 E X4 Xij Xim
Wal 0 W) 'jggg{__ ~ 4
: : : £
1 . . . S
Z’k "‘i> P E j_l ;g
-.WK‘ . e .dwKi o wwnn ‘ % «
, 3 T D'”@“ g |z,
: p . =]
T : J 2
1 'v h
R A BN w'f[Lm v - :g . in
 EN o Wi A
v ’ r :

Figure 3.5. Class A adaptive array
(From [Bozinovski 76, 78])

-~

The learning rule used in the development of the adaptive array
shown on Fugure 3.5. is a three component learning rule [Bozinovski
19781

AW(t) = Xi(t)Ui(t)r(t) (3.3)

where r is a binary penalty applied if in the previous trial the
pattern Xi was not recognized, and Ui is the advising input, showing

in which class the pattern should have been classified.

Also it is important to note that the design on Figure 3.4 uses
buffers to remember the previous inputs. Having that, we can have
the learning rule '

A(t) = Xi(t-l)Ui(t)r(t) (3.4)
as we stated in the previous chapter.

This adaptive array we denote as One-way Adaptive Array (OAA), to
be distinguished from the Crossbar Adaptive Array (CAA) which we
developed later.

3.3.3. ISOTHRESHOLD ADAPTIVE NETWORK

In the time of our hardware design of neural networks the
question arised about the neural design on the maximum selector
element. It was not trivial to be realized in digital hardware and
required a lot of connetions as the number of classes to be
recognized grows. A short study about that with a boolean expression
solving the problem is given in [Bozinovski and Mesaric 1972].
However it was obvious that the neural mechanism for that is not of
digital nature but of analog one. A possible solution is assuming a

21

3 -3

3

3

3

separate neuron with maximum selector ability instead of summing
ability [Bozinovski 1974, see Figure 3.2]. We proposed a mechanism
which we denoted as isothreshold principle. The mechanism was first
described in [Appendix B], and later in a report [Bozinovski 1985a].
Another solution is the winer-take-all mechanism [see Grossberg 87]
implementing lateral inhibition concept [e.g. Spinelli 1970]. We
will describe our solution.

According to the isothreshold principle, the neurons in a pattern
classification array share the common threshold. The common
threshold is a function of all the summary postsynaptic
potential of the individual units. The function can be defined
in several ways, and for maximum selector mechanism it is defined as

0 = max{si} (3.5)
i

where 8 is the common threshold and 4 is the neuron potential of
the i-th neiron.

Once the threshold is defined that way, than the maximum selector
is given in a natural way, by the output equation of the neuron in
Mcculloch-Pits sense

1 if s iz e
y; = (3.8)
0 otherwise

Figure 3.6. shows the the isothreshold adaptive network as and
adaptive array.

X, X, Xs o X
h 4 —L
b S I ¥ - B W T :EI’:"' > ¥,
b g Y - By BT d had B :T: > ¥y
un - ——wm—wnz—wm—.——wF —> Sn O yn
1™ 1™ T
r r

Figure 3.6. Isothreshold Adaptive Network

Figure 3.7. Shows the same network as an assembly of neural
units.

Note that the neurons are considered as consisting of two
separate parts, the soma with the dendritic tree, and the threshold
part, which is connected to other neural units of the assembly. The
assembly can grow by attaching another neuron at the threshold part
and at the dendritic tree.

22

Figure 3.7. The Isothreshold Adaptive Network in neural representation

(Drawing software written by Rich Sutton)

We have not seen evidence from the biological research that such a
mechanism is confirmed. However it is a simple maximum selector

mechanism which we do not see is not feasible to assume for neural
computation.

3.4. TOWARD A THEORY OF TEACHING SYSTEMS

So far we discussed the learners in the class A teaching
paradigm. In our research in class A learning paradigms the teacher
plays important role. Our research in this teaching paradigm was
actualy a rearch toward a teaching system theory.

“Toward a teaching systems theory" was the title of the first
talk to the Adaptive Networks Group, delivered in September 10,
1980. It was our introductory talk in front of the Group.

In the next several sections we will give a brief overview of
some results of the research of the teaching systems in the class A
learning paradigm.

The conceptual model of the teacher-learner system that we

considered in our research is given on the Figure 3.8. [Bozinovski
1978].

23

2

-1

1

TUDENT

T

S+ CHER)

explanation, examination,

advice, etc test, etc
tutoring examination
trial &« trial

nio

Eg

training
strategy

T

student’s —
L | knowledge

<

—3

pattern|i| percep- ——|perfor- learning, | “—|decision| |[reaction ponsef
presen-|—|tion —> | mance - |knowledge ——|system [»| systenm =
tation |flisystem —|evaluat. base -

evaluation

T

teacher’s
reference

model

Figure 3.8. The teacher-learner setup in the teaching system theory

Let us note that in the teaching system theory as conceptualized
in the Figure 3.8, both the teacher and the learner can be
considered interchangeably in the role of agent or in the role of
the environment. Actualy, the concept of a game applies in the setup
shown in Figure 3.8.

Viewing the problem from the teacher side, the teacher searche

S

through the learners knowledge base in a systematic way in order to
find inconsistencies with its reference model. It introduces the
tutoring trial only when needed in order to guide the students

behavior to converge toward the reference behavior.

Vieweng from the learner’s side, the learner will tend to
minimize that penalty it receives each time a tutorial trial is
applied. Before the tutorial trial is applied in the examination
trial it is asked "Which is this pattern?". After the student’s

answer, if it is wrong, the teacher says "No!, that is not correct.

Now I will tell you the correct answer (or correct behavior)". That
"No!" is always considered penalty. Adaptive systems tend to avoid

24

that, and the learner is traing to minimize appearence of that
signal. That 1is reinforcement signal for the learner, as we
discussed before when we talked about the class A learning systems. =

Let us note that in our teaching system theory the teacher does
control the input patterns. In our research it was always present
[Bozinovski 1972, 1974, 1978, 1981]. As ponted in [Barto 1991] that
type of learning with a teacher is not widely investigated by other
researchers. We always considered it as most natural assumption in
pattern classification training. =

_ 3

3.5. PARALLEL DESIGN OF THE TEACHER-LEARNER INTERACTION ™

In the teaching system theory we assumed that the teacher and
learner are systems which work in parallel, and interchange the
information using some type of dialog [Bozinovski 1972, 1974]. The
software was always written to emphasize the interaction
between the teaching and the learning subroutine.

Figure 3.8. is an English translation of a figure given in
[Bozinovski 1977b]. It represents a parallel interaction between the
processes named TEACHER and LEARNER. _ =

We would like to point out the notion of parallel processing we
used in 1977. Although we simulated the parallelism in a program
package, we were not able to implement it on different programs. In
1981 we succeeded to do that on different terminals, using mailboxes
as communication devices, during our work on pole balancing task
which we will discuss later in this text. il

3.6. TEACHING STRATEGIES

For a learner, for example the adaptive array shown in Figure |
3.5. and 3.6. and working under learning rule (3.3) or (3.4) in '
which the r-signal appears, it is important when the signal r=1
should appear. In other words, it is important when to apply a
teaching trial.

Also, if the signal r=1 appears and a teaching trial is to be =
introduced, which pattern will be taught in that teaching trial?
That is a crucial problem in the teaching system theory, and in
learning with a teacher paradigm. We call it the teaching strategy =
problem. A teaching strategy should exist that will control the
appearence of the patterns both in teaching and in the examination
trials.

-

Various strategies can be used, the simplest one being random !
presentation of the patterns. We considered several strategies, one

of which is indeed shown in the Figure 3.9. ~

=

25 =

3

g

process TEACHER process LEARNER
START
teach for
the 1st
pattern
ad|
i=0
—
—
yes
i= ——> STOP
?
i=i+1 START
—e L
recognize teaching teaching examination
— the i-th or examination
yes pattern ? trial ?
—
teach for E?Zn class ﬁizerclass
the i-th ERe"2ns A £h tglr}gwn
pattern B ongs Be ongs
I
[—
recognize end of the
— the i-th - teaching
no pattern ? process ?
yes yes
STOP

Figure 3.9. Parallel design of the training process
implementing the Poem—-learning strategy

The teaching strategy in Figure 3.9 we call natural strategy or a
poem-learning strategy. It is assumed that a poem consists of
several parts (lessons) which are in particular order. The student
first learns the first part, and goes to learn to the second part.
It will no advance further untill it is clear that it knows the
first two parts. Following that recursive procedure, the student
will advance in its knowledge. The basic strategy is to learn new
knowledge only after it is sure that the previous knowledge is
assimilated in the students knowledge base. The whole teaching
process has only one global iteration. It has learning trials (learn
new lesson) and examination trials (test assimilated knowledge).

26

RIOKLMNGFCRSLOTLVEXYZ

bl
—r—t

We experimented with this strategy in 1978 and presented the

results
English capital

in the mentioned talk to the ANW group.

A set of 26

letters as the appear on a computer terminal

(Figure 3.10.) were presented to the adaptive array shown on the
Figure 3.4. and the system was trained to recognize then.

a“ 008
e

...0..
e ¢
.-
00000 o
H
3

®
®
0000000 000

0080000
00000
PPN
[3
[

e00ceos o

. 20 ee0es
0..
e

o o

Figure 3.10. An experiment with class A system: The training patterns

The result of the training,

the learning curve using the

poem-learning strategy is given on Figure 3.11.

+ J e e s

10 20 s) ac

Vo

Ho

76 30 0

+-

© 109 110

Figure 3.11. Result of the training experiment: The learning curve

27

126

130

T3

T

Viewed as an anytime algorithm (Zilberstein 1995), this strategy,
if tested in examination phase, tells immediately how far the
process has gone with training: if we see that the process moves
toward learning a new lesson, then we know that all the lessons
taught before are have been learned. If lessons are patterns, we
know that all the patterns thaught before will be recognized if we
ask the algorithm to stop with training period and to go to
exploatation (application) phase. This is not the case with usual
perceptron training strategies (Minsky & Papert 1969) with random
presentation of patterns, in which we know that the algorithm will
converge but if we stop training in a moment, we do not know what is
learned and what is still to be learned.

Teaching strategies are interesting issue in pattern
classification teaching and in teaching theory in general. We have
investigated several if them and reported elsewhere (Bozinovski
1981b, 1981c).

3.7. TEACHING GRAMMARS AND LANGUAGES

In our research in teaching grammars we introduced a gramatical
represenatation of the teaching process [Bozinovski 1981b, 1985al.
Here we will give a short description of that research.

Let all the lessons (e.g. patterns) to be learned are ordered
according to some didactic order. Let Xi denotes appearence of the
i-th pattern a teaching trial, and X3 denotes appearence of that

pattern in an examination trial. Than the training process can be
viewed as a string of uppercase and lowercase letters. That string
we denote as curriculum. The teaching process can be viewed as
shown in Figure 3.12.

TEAC“E“*
X, X, X X X curriculum 00100 earner’ X, 0X,%,0
1%1%2%3"3 noyled 172%3

S
e
generator' «——] €evalua 5[‘

I——

LEARNER

Figure 3.12. The teaching process as string generation process

The Figure 3.12. shows that the teacher is recognized as being
composed of two main parts: 1) the evaluator of the student’s
knowledge and 2) generator of the curriculum. If the teacher
performs an examination for the first pattern, Xy it will receive

an answer xi for that pattern. The evaluator will evaluate with 1

(good) or O (bad response). In a case when O is given as evaluation
(see Figure 3.12) the teacher will apply a teaching trial X1 to

28

correct the learner’s knowledge for the noticed error. As a result
of this behavior, the teacher will generate a string consisting of
uppercase and lowercase letters. The set of all strings generated by
that process forms a language. That language can be described by a
grammar.

With this representation we can describe the languages generated
by different strategies using grammars. For example the

poem-learning strategy shown on Figure 3.9. can generate the
languages covered by the following grammar

S — xiM

xiM —_ xix1+1M | xiXixiM | xiXixiS

xM—>xXxM| xS | x.
n n'n'n n n

The languages generated by those grammars we denote as curriculum
(or teaching) languages. It is interesting to observe the generation
of a curriculum language as a Markov source. We considered that and
computed entropies of such languages and compared them to some other
natural languages [Bozinovski and Cundeva 1985]. The computing
procedure is discussed later when we talk abot the CAA network.

3.8. THE TUTORIAL ALGORITHM

Here we will decribe the algorithm used in our research with the
class A systems.

Consider a class A system with learning rule
Aw = cx(t-1)u(t)r(t) (3.7)

where

X is a situation (pattern) vector

u is the advised action vector

r is the penalty, applied each time when the learner fail to
take appropriate action in the given situation

c is some positive constant

Then naturaly the problem of teaching for pattern classification
can be expressed as an optimization problem. From a teacher
point of view the problem can be stated as: find a training sequence
with minimal length. From a learner point of view the problem can be
stated as: adjust the behavior (answer to questions) such that
receive minimal amount of penalty (punishment).

The learning rule shown above is essential for definition of the
training algorithm which we call tutorial algorithm, shown in Figure
3.13.

29

A

T3

e

3

T3 g

3

- TUTORIAL ALGORITHM

repeat
examination: show next x; receive action y(x)
evaluation: if y(x)=u(x) then go to examination
teaching: r=1: adjust Aw(u(x))= cx; go to examination
until y(x)=u(x) true for all x

Figure 3.13. The tutorial algorithm

In other words, whenever the learner fails to recognize x, the
learning rule

W=w+cx, (xbelongs to the class represented by w) (3.8)

is applied.

Two points we would like to stress in connection with this
algorithm. The first is the sequence in the algorithm routine. It is
2 closed loop three-step routine which is repeated wuntil
endcondition. Not always the third step is applied; only when
needed. It is a response sensitive algorithm. However, it doesnt say

which pattern is next to show. That is a responsibility of the
training strategy.

The second point is the learning rule. It is not a difference

learning rule, like for example the so-called perceptron learning
rule

w(t+1) = w(t) + ¢ (ult)-y(t))x(t) - (3.9)

where we can have increments and decrements. This is a selective
increment 1learning rule. Basing on this rule we developed our
integer programming representation of the pattern recognition task
[Bozinovski 1981, 1985], which we are going to describe next.

3.7. CLASS A TEACHING AS INTEGER PROGRAMMIMG

In the pattern classification theory, the geometric
interpretations are usualy given in the feature space and/or in the
weight space [Duda and Hart 64]. In our work [Bozinovski 1874, 78,
81, 85] we introduced the teaching space (or curriculum space)
approach as a convenient representation technique.

Instead of working with N real weight vectors {w}, it can be
shown that the problem can be represented in terms of one
N-dimensional vector p which components are number of appearences of
the situations in the teaching trials. Its length is actualy number
of execution of the teaching trial step in the above algorithm. The

objective is to minimize the penalty (r=1) received each time the
teaching trial is applied.

Figure 3.14 shows the geometrical representation of this process
as an integer programming process. Three patterns, E,T, and F are
represented in a 7x5 dot matrix and the learner is taught to
recognize them. The figure shows a guided search toward a point in a
convex polyhedral cone which represents a solution. Let us note that
solutions of the training process are always in such a cone.

30

Figure 3.14. Pattern classification as integer programming problem

3.8. CLASS A TEACHING AS DYNAMIC PROGRAMMIMG

Instead of teaching as an integer programming problem, using our
curriculum space approach the pattern classification teaching can be
viewed as a kind of dynamic programming problem. Figure 3.15 gives
the basic idea. ‘

Figure 3.15. shows a discrete space in which each point is a
state of the space. The space is divided into two subspaces, a
subspace of desirable states and a subspace of undesirable states.
In Figure 3.15. the subspace of desirable states is represented by a
two-dimensional cone, i.e. as an open end angle. Each (discrete)
point in that region is a desirable state. In the space there are
shown four agents, A, B, C, and D. They are starting from different
states, depending on their initial knowledge about the pattern
classification task. The values of the states can be defined in
various vays, depending of how we want to define the optimization
function. For example we can define the state values inside the
desirability region to be 0, and outside the desirability region to
be -1; in that case we can define optimization task to be a minimum
acquired penalty in the space. In such a task each agent will tend
to avoid the undesirable states in order to obtain minimum penalty.
Or, we can define the values inside the desirability region to be +1
and outside 0. In that case we can define a quest for maximum.

31

B

3

3

3

C,_._—-

Figure 3.15. Search through a teaching space for solution
of recognition of two patterns

(From Bozinovski 1981c)

The problem can be represented in a "grid world" which is more
usual representation in dynamic programming. Figure 3.16. gives such

a representation.

B -

¢ | |
1 1 Pl $ $ —
[] [[[
4 = s s $ $ 8
[[] . :] !
[[[[[[
| | [I [[

l ! |

Figure 3.16. Teaching for pattern classification as

a dynamic programming problem

As we can see from the Figure 3.16. we can have an agent being in
arbitrary initial state in a discrete, valued state space, which is
basic representation for a discrete dynamic programming task. In
this case we have only two values assigned to states,

32

but other

assignment can easily be visualized. However, in the teaching space
approach, we usualy have situations as represented in Figure 3.16.
The admissible steps under the tutorial algorithm shown in Figure
3.13 are "east" and "north". The problem is to learn a policy which
will reach a goal state, possibly in minimum steps.

We would like to emphasize that during our work on integer
programming representation [Bozinovski 81, 85] we were not aware of
research in dynamic programming. However, as we can also see later,
some of the crucial issues as state value, and state evaluation as
interpretation notions naturaly emerged during our research. Further
in the text we will return to this issue again.

As short summary of our work in class A systems we can now say
that it was in a sense not in the main line of the conventional
research in pattern classification learning. The conventional
research was mainly interested in patten clasification learning
where [Barto 1991] the teaching sequence is not controlled. In
contrast, we were dealing with with pattern classification teaching,
where a teacher has control over the teaching sequence, and deals
with optimization issues such as to produce the shortest efficient
curricullum. To make the teaching process more observable, we
developed a curriculum space approach and the algorithm which
transforms the problem of teaching to a problem of integer
programming.

This is the frst area where we explored the possibility of our
generic NG agents. In the next chapter we will deal with teacher
which gives only evaluation and not advice as what to do.

33

3

CHAPTER 4
]

CLASS B LEARNING SYSTEMS:
ADVICE FREE, EXTERNAL REINFORCEMENT LEARNING SYSTEMS

4.1. INTRODUCTION

Important class of learning systems are the learning systems
which do not take advice how to act in a given situation, but do
take information related to their performance. Example of such a
learning system is a student who takes exam consisting of several
questions, answers the questions, and receives a grade for his
overall performance in the exam, but no corrections to each answer.
So, the reaction of the environment is a scalar value (grade) as
overall performance on a typicaly multicomponent action (answers on
several different questions).

The received scalar reaction is used as reinforcer for future
actions. To put it simple, if the grade was good, keep doing the
same way as before; if the grade was not satisfactory, choose a
correction of the behavior. However, the environment does not say in
which direction the behavior should be changed. That must be done by
the learning system itself. In order to change direction, it must
have ability to estimate the gradient of its behavior. So it must
have retained the previous action, y(t-1), or the sequence of the
previous actions, p(t-k), k=1,..,K. That is actualy stated in our
structural theory: a feedback must exist from the previous action
(Figure 4.1).

34

BEHAVIORAL ENVIRONMENT

X
situation
reinforcement action
P Ed
NG AGENT
advised
action

Figure 4.1. Our NG agent as a reinforcement learning system

Figure 4.1 shows a clasical reinforcement learning system.
The system tries an action in a given situation, and receives a new
situation and also a distinguishable signal recognized as
reinforcing (payoff, penalty, reward) signal. The behavior of the
system is devoted to the optimization of the signal r.

The work on reinforcement learning has long history [Minsky 1954;
Mendel, McLaren 1970; Widrow, Gupta, Maitra, 1973, among others] but
the most prominent work on the subject in recent times was carried
out within the Adaptive Networks Group. We believe that the most
significant work is the design of the Associative Search Network
(Barto, Sutton, and Brouwer 1981, Barto and Sutton 1981).

In this chapter we will just briefly describe the main concepts
of reinforcement learning as class B learning systems. More about
that could be found in other reports from the Adaptive Networks
Group [Appendix E].

4.2. ASSOCIATIVE SEARCH NETWORK

Early works on advice free reinforcement learning neural network
was done by Minsky [Minsky 1954]. However, the Associative Search
Network (ASN) (Barto et al. 1981a,b) is the most influential
reinforcement learning neural network.

Two basic versions of the ASN were proposed, a 1) neural assembly
version [Barto, Sutton, Brouwer 1981a] and a 2) neural array version
[Barto and Sutton 1981b]. The neural assembly version is important
because it introduces a predictor component, which later evolved to
a heuristic critic element of the Actor-Critic architecture [Barto,
Sutton, Anderson 1983]. The neural array version is shown on Figure
4.2.

35

reinforcement
situation N S E W action

Figure 4.2. The ASN adaptive array architecture

The ASN as shown in Figure 4.2. is designed to solve a navigation
task. It senses some landmarks denoted as N(orth), S(outh), E(ast)
and W(est). It also receives an reinforcement input denoted as
"TREE". It can take four basic actions in the directions of N, S, E,
and W, but combinations are also possible, like SW, since two actons
can be taken simultaneously. Which action will be taken depends of
the strength of associations between the situations and the actions.
The modifiable weights, shown with %, represent the association
strength. The ASN task is to find a goal place, (TREE) learning how
to behave in vicinity of a landmark.

The basic learning rule which builds the association strength is
given by

wij(t+1) = wij(t) +c[z(t)-z(t—1)]y(t-l)xi(t—ll (4.1)
where wij is the association strength (synaptic weight), z is the

reinforcement, X5 (i=1,2,3,4) are the situations, and y is the

action.

The basic output rule is given by the following pair of relations

4
s.(t) =w_ .(t) + Z w, .(t)x,(t) and (4.2)
J 0J jop 3R
1 s.(t)+NOISE.(t) > O
yyt) = J J (4.3)

0 otherwise

36

The term woj has its own iearning rule which we do not consider

here. More details the reader are given in [Barto and Sutton 1981].

We will not review all the features of the ASN, but we will only
mention the ones which were influent for the work we will
describe in the next chapter.

As equation (4.1) shows, it is a second order, class B learning
system. It wuses the difference term for the reinforcer,
(z(t)-z(t-1)).

In addition to the reinforcement learning rule given in the
relation (4.1), the most important feature of the ASN architecture
for our reserach is the concept of neural search, introduced through
the concept of NOISE, as given in the equation (4.3). The idea is
that before learning the actions of the system are randomly chosen,
according to some probability distribution, here Gaussian
distribution. During the learning, the weights of the strength are
gaining greater values which prevails, and the behaviour of the
system tends toward some purposively one, which is a demonstration
of the learning process.-

Besides the advice free architecture, the main difference between
this network and the network described in the previous chapter is
that this network has no maximum selector as the output decider. It
is a class of so call linear associative memories, studied by

Kohonen (1974). If such a network is used for pattern classification,

the pattern to be distinguished should be linearly independent. That
means that if we have example where three vectors are given such
that x1 = [0 0 1], x2 = [1 1 0], and x3 = [1 1 1], then they cannot
be distinguished since x1+x2=x3. As contrast, the networks we have
used before, with maximum selector and implementing the tutorial
algorithm, can solve this problem. The maximum selector introduces
nelinearity in the network.

Also, very important for the appearence of the ASN architecture
was indeed the exciting experiment of the spatial navigation we
briefly desccribed above. Before that, the neural networks were
mostly engaged in patern classification task.

It is our belief that the landmark learning task, and the ASN
solving it, was a major event in the neural network research since
the appearence of the perceptron.

4.3. THE ACTOR-CRITIC ARCHITECTURE

The Actor-Critic (AC) architecture [Barto, Sutton, Anderson 1983]
is a reinforcement learning neural network architecture, which can

be represented by two principal neural units, as shown on Figure
4.3.

37

External
r Reinforcement

internal
reinforcement

A
r

HZMXZOo0T-H<=m

Decoder

State
Vector

Figure 4.3. The design of the Actor-Critic architecture

The first unit is the Associative Search Element (ASE) which is
responsible for actions, and the second unit is the Adaptive Critic
Element (ACE) which is responsible for supplying internal
reinforcement to ASE. ASE is constructed such that it must receive a
reinforcement signal in each time step, and ACE must supply it. ACE
is actualy a predictor for reinforcement, and evolves from the
predictor element of a previously developed ASN network [Barto at
al. 1981].

The AC architecture is a powerfull and rather complex neural
architecture, implementing higher order learning rules. It has two
principal neural elements, The ASE and ACE elements, but one can
recognize two additional elements of computation within the systen,
for computing memory traces. Here we give a brief description of all
the four elements.

Associative Search Element

The output equation of the ASE element is

n
y(t) = f[= wi(t)xi(t) + noise(t)] (4.4)
i=1
where

+1 if x =0 (control action right)
f(x) = (4.5)

-1 if x<0 (control action left).

38

The ASE learning equation is
wi(t+1) = wi(t) + ar(t)ei(t) (4.86)
where a is some positive constant defining a rate of change Wys
r(t) is the real valued reinforcement at time t, and
e(t) is eligibility at time t of input pathway i.
Eligibility Computing Element
The eligibility is a memory function, and is computed as
ei(t+1) = aei(t) + (1-6)y(t)xi(t) (4.7)
It represents a previous situation-action trace, where 3, 0=d<1,
determines the trace decay rate.
Adaptive Critic Element

The following set of equations describe the computation of the
internal reinforcement computed by ACE

r(t) = r(t) + 7p(t) - p(t-1) (4.8)
where
n
p(t) =2 vi(t)x.(t) (4.9)
i=1 !
where
vy (t+1) = v, (£) + BIr(t)+ap(t)-p(t-1)1x, (t) . (4.10)

In the equations (6.8)-(6.10) we can see that the internal
reinforcement is computed from the external reinforcement r(t) and
the difference between the the predicted reinforcement p(t) and the
prediction in the previous step. The predicted reinforcement is
“discounted" [Witten 1977] by a prediction factor %, here used
¥=0.95. The predicted reinforcement is computed by the ACE. neural
element as a weighted sum of the input stimuli, where weights are
updated according to the learning rule (6.10). The learning rule
contains the positive constant B, the_ internal reinforcement, and
the trace of the input variable. Here x represents the memory trace
of the input signals, computed by a separate memory equation.

Input Trace Computing Element

The trace of the input signals is computed as
X (t+1) = h§i(t) + (1-2)x, () (4.11)

where A is a trace decay factor and 0 = A < 1.
39

3

3

The Actor-Critic architecture is even more popular than the
Associative Search architecture. In parallel with the Crossbar
Adaptive Array architecture, which will be discussed in the next
chapter, it solved the problem of delayed reinforcement learning.
Also, it demonstrated its abilities on the problem of learning for
pole balancing. In short, both the reinforcement learning
architectures, ASN and AC, had a great impact on neural networks
research.

In the next chapter we will consider an other method of solution
of the problems considered by the AC architecture, the CAA method,
which is a self-reinforcement learning method.

In connection to our work, we should say that the Associative
Search Network was of great influence to our understanding and view
toward new horizons in neural network research. It was a line of
research which greatly contributed to the design of a self-learning
system which we wished to know how to design. The concept of neural
search and taking advantage of a random move which turns out to be a
good one, was something which we lacked in our work in class A
systems. As contrast, the AC architecture had no impact on our
research, since it was developed in parallel to our CAA architecture
and they were developed as significantly different architectures.

40

CHAPTER 5
I

SELF-REINFORCEMENT LEARNING AGENTS

This chapter deals with agents which exhibits self-learning. The
notion of self-learning has been around since the appearence of the
problem of learning within the framework of cybernetics. There exist
various definitions on that notion. The basic assumption is that it
is a paradigm of learning without a teacher. Self-organization is a
term also used. It is difficult to make a taxonomy of various models
od understanding around this notion, and we will not make such an
atempt.

In the previous chapters we discussed the paradigms of learning
with environments which give advice, and environments which give
reinforcement (reward or punishment) only, but no advice. In both

paradigms, there is a notion of goal of learning, or a task that has to

be learned. In the advice giving paradigm, the goal is to minimize

the discrepancy between some default behavior and the advised (required)

one. Using control theory terminology, we call it setpoint
learning. In the second paradigm, the goal is to maximize some
reward function, or to minimize some penalty function. This is a
typical optimization task from control theory, and we can call

it optimization learning.

In this chapter we are concerned with the problem how to set a
task, and how to define a goal of learning in a self-learning
paradigm, with no external reinforcement present. We will describe a
method which to the best of our knowledge is the only method of
self-reinforcement learning.

But, before we go in discussion about our self-learning agents,
let us describe our early work with self-reinforcing neurons, which
gave us a motivation for searching for a solution to the

self-learning problem.
41

Let us consider the following problem [Bozinovski 1972a].
Consider a pattern classification network on Figure 5.1. It has a
task to organize its neurons to recognize two letters, the letter L
and the letter I. It has two sets of neurons, which sum their
outputs in ZI and ZL, after which a discrimination unit D decides
~which pattern is recognized.

Figure 5.1.Pattern classification network with self-reinforcing neurons

(From Bozinovski 1972a)

The neural elements used in the network are actualy the
Rosenblatt A-elements, but with the following learning rule: Each
time the neuron produces a (positive) signal, its state is increased
by one. Symbolicaly,

wit) + 1 if y(t) =w(t) =20
w(t+1l) = (5.1)

w(t) if y(t) =0

This is self-reinforcing neural element. Since the network does
not receive additional signal besides the shown pattern, it is a
self-reinforcing network. Two questions can be rased? Can this
system be adjusted to solve the stated problem of pattern
classification? Can this system learn by itself? The answer on the
first question is yes. This is a simple system, and a human operator
can adjust its weights appropriately. The answer on the second
question is no, since the learning task is not well defined. There
is no indication how the inputs are affected by the produced output:
there is no indication how the feedback through the environment is
defined. It can be defined by means of a human operator, but that is
not what is interesting in self-reinforcement learning paradigm.

It took us almost 10 years until a satisfactory concept of

self-reinforcement learning was found. Now we will describe the
framework and our solution of the self-learning problem.

42

5.1. CONCEPTUAL FRAMEWORK

The basic idea is that a learning agent, when it apears in a
behavioral environment, already has some knowledge in its memory,
from the genetic environment. This is hereditary, innate knowedge.
This knowledge is providing the basic instincts, basic preferencies
(desires) of what is "good" and what is "bad" in the behavioral
environment in which the agent is going to perform. Having basic
desires, the agent can generate wishes, hopes, expectancies,
predictions, and feelings which underline its behavior. Having that,
and using the principle of secondary reinforcement, it can state
goals and generate subgoals. Having that, it can generate plans how
to achieve the goals. In acting toward goals, it can learn how to
make it more efficient, by building a model of the environment and
building policies for its behavior. That is our understanding of how
an intelligence evolves in an environment.

5.2. SELF-REINFORCEMENT LEARNING AND THE NG AGENTS

Figure 5.2 shows the design of a self-learning system according
to the structural theory presented in the second chapter.

BEHAVIORAL ENVIRONMENT

situation
e e S R
advised taken
action action
NG AGENT
—
performance internal state
evaluation /////ﬂ evaluation
/////

ENVIRONMENT

GENETIC

Figure 5.2 A class C, self-reinforcement learning system

In this system, the primary drives will be defined by means of
the input genome vectors. The behavior will be developed using
secondary reinforcement principle (e.g. Saltzman 1949), 1i.e.

43

goal-subgoal principle known in AI (e.g. Gelernter and Rochester,
1958). The double-feedback architecture will be used for that
purpose.

In the sequel we will describe a construction of an agent which
is a result of this conceptual framework.

5.3. THE CROSSBAR ADAPTIVE ARRAY CLASS C ARCHITECTURE

Now we will describe the construction of the agent, which we
simply call Crossbar Adaptive Array (CAA). Figure 5.3 shows the CAA
architecture.

BEHAVIORAL
ENVIRONMENT

situation
T T L)

CROSSBAR Tion cottn

ASSOCIATIVE a%lon pa%g ACTION

MEMORY SELECTOR
W

emotion action
computation expressing
path strategy

STATE SUPERVISOR
EVALUATOR

emotion
expressing
strategy

input genome vector output genome vector

GENETICAL, EVOLUTIONARY
ENVIRONMENT

Figure 5.3. The CAA concept

44

3

The basic conceptual blocks of the CAA are:

1) BEHAVIORAL ENVIRONMENT: It is the systems in which the CAA
system expresses itself. It receives the agent’s action and computes
the next situation using its internal state. The state of the
environment is not directly observable by the agent. However, it is
indirectly observable by means of the situation X. The situation X
is an approximation of the environment state. The situation can
represent a vector of situation features, in which case the
components of X are in general real numbers, or it can be a
bit-singleton vector, i.e. vector having only one component with
value 1, others being zeroes. In the sequel we will assume the
latter case, and deal with a set of orthonormal vectors as situation
inputs.

2) CROSSBAR ASSOCIATIVE MEMORY. It represents the internal state
of the system. It is a matrix W, which components, as we will see,
are used both for state evaluation (column-wise) and for action
evaluation (row-wise). With assumption of bit-singleton vectors,
each column of the matrix represents an internal state of the system
stimulated by the received situation. Each component of that column
vector is the evaluation component for an action that should be
chosen as reaction to the stimulating situation. The matrix W can be
viewed as a table of situation-action-evaluation (SAE) components.
Saying in terms of dynamic programming, the matrix is carefully
designed such that it can be used both for policy iteration and
state value iteration, in a crossbar fashion.

3) STATE EVALUATOR. It evaluates the internal state of the
agent. The internal state is a function of the situation the system
is in, which in turn is function of the environment state. In terms
of dynamic programming, this system computes the state value of the
environment. It should be noted that the value of the state of the
environment is evaluated with reference to the internal state of the
agent induced by the considered environment state.

4) ACTION SELECTOR. It takes into accound two tendencies for
taking action: one is the action taking policy learned and stored in
the associative memory, and the other is the action proposed by the
higher order system. Again, for computing actions it uses the SAE
components associated with the received situation X.

5) HIGHER ORDER SYSTEM (SUPERVISOR). It is a component of the
hierarchical control system of the CAA architecture. It can observe
information from all the mentioned systems, and also from the
environment, but can interfere only on two systems, the action
selection and state evaluation, stating a strategy for them. A
strategy for action selection may be, for example: "now apply random
walk"; or "now do what you want”; or "now proceed the same way as
before” etc. A strategy for state evaluation may be, for example:
it is good only if it is meximum", or "it is good only if it is
minimum", or "it is good only if it is an average", or "it is good
only if you are cautious, there is a danger associated", or "it is
good now if you feel nothing anymore" etc. The latest modulation of
feeling is important for learning in stochastic environments, on
which we will talk later in the text.

45

6) GENOME VECTORS. The genome vector, when imported from the
genetic environment, represents the initial state of the associative
memory. It can also be exported, representing some exporting state
of that memory. It is assumed that the "maturity", i.e. the
exporting state, is achieved after some process of learning. It is
detected by the supervising unit. Exporting strategy is part of the
optimization process carried out in a CAA system. Initial state of
the memory can be arbitrary, but we will further assume that all the
column vectors of the memory matrix are zero except some of them,
which are only with positive SAE values, or only with negative SAE
values. The positive vectors represent the desirable initial states
of the CAA agent, and the negative vectors are undesirable states.
It is further assumed, that during the proces of evolution and
implemented genetic algorithms in the genetic environment, the
imported genome vectors represent the environment properly. If the
environment changes dramaticaly, the CAA system with imported genome
vector before that change, there is a probability that such "born"
CAA system will not survive.

7) GENETIC ENVIRONMENT. This system connects the CAA concept to
the evolutionary systems. It is assumed that exported genome vectors
can be imported to some other species. Also, before that, some
genetic operations can be performed over CAA genome vectors such as
mutation, crossover etc. Also, some optimization computation can be
performed in some evolutionary fashion. We will not be concerned how
optimization processes are performed in this environment. We assume
that in some way, if CAA exports a genome to this enviironment, some
optimization process can be perfomed on that genome, by the
same or some other species.

Now having explained the basic CAA anatomy and the interface
toward the environments, in the sequel we will describe its
physiology, i.e. how it works.

S.4. HOW IT WORKS:

5.4.1. THE ONE-STEP COMPUTATIONS

For a discussion about the computational procedure which is
performed in the CAA, we need firstly to explain the one-step
routines, which are part of that procedure.

Figure 5.4 shows the system memory, the action selector, and the
state evaluator of the CAA. It is important to observe that the
actions and the state values are computed using the same memory
matrix. In terms of dynamic programming, the policy iteration and
value iteration processes can be performed using the same matrix.

The architecture is generic, so there are some functions left
unspecified. Those are functions e, f, g, and h. The functions e and
f are responsible for the state-value computation, whereas the
functions g and h are used for action computation.

46

=

=

TR |mwmmmmmmmmmmmmu|'“

Figure 5.4. The CAA architecture

Now we will describe, in general terms, the action, state value,
and the memory values computational processes performed in the CAA.

1) ACTION COMPUTATION. The action is computed according to

y = afunc(W, x, s) (5.1)
where
y= (yl,..,yn) is bit-singleton action vector
= {wij} , i=1,..,n, Jj=1,..,m is the memory matrix of the
SAE-components, or W-components. In general, they are real
numbers.

a7

X (xl, .. ’Xm) is bit-singleton situation vector

s = (sl,..,sn) is a real vector generated by the higher order
system. It interferes the action process according to some strategy
defined by the higher order systemn.

The function action is will be denoted as action selection
function or simply action function.

2) STATE VALUE COMPUTATION. The value of the internal state is
computed according to

v = vfunc(W, x, T, At) (5.2)
where

v is the value of the internal state, a real number
x and W are previously defined
T = (T1)

produced by the higher order system. It controls the influence of
the elicted emotion over the learning process.

..,Tm) is the state evaluation modification which is

At denotes that there is a time difference between the arguments
for example the memory values can be defined as W(t-1) while
situation values can be defined as x(t).

As can be seen from above, the value of the internal state of
the CAA is actualy the value it gives to the situation it faces. The
SAE components of that situation is taken into acount and are used
for computing the state value.

3) MEMORY VALUES COMPUTATION. The CAA is a neural network and its
memory is of incremental type. In each step an increment AW is
computed as

AW = wfunc(W, x, y, v, At) (5.3)

In this equation all the components are defined before. The function
wfunc is the learning rule of the system.

5.4.2. THE SEQUENCE OF THE ONE-STEP COMPUTATIONS

The CAA is not a linear architecture, and, as Figure 5.5. shows,
the computation loop is somehow “folded".

The left side of the Figure 5.5. shows a standard sequential
computing architecture denoted by SA. On the right side it is shown
that the CAA performs a crossbar computation which can be seen as
three passes through the memory matrix: two times vertically and
once horizontally in the same time step.

The first vertical flow (denoted with 1) passes through the
current situation, the second vertical from passes through the
previous situation, and the third flow passes through the current
action.

48

3

.3

.3

Figure 5.5. The three pass computation flow through the CAA memory

The flow through the CAA matrix can be "linearized", and the
linearized sequence of steps is given on Figure 5.86.

start — afunc —

Action

4

W

—— wfunc — sample
Consequence |«— x —and
Learning «—— y —hold

— W —

v

envir(x,y):

— vfunc ——
State —
Evaluation

Figure 5.6. The CAA first order learning procedure

Figure 5.6. emphasizes that the behavioral loop starts with an
action. It is an important feature of the reinforcement learning
systems in general, self-reinforcement learning system being a
subset of them. The CAA tries an action, the environment responds

439

with a new situation, and then the CAA computational procedure can
be considered as an automaton routine: 1) perform evaluation, 2)
learn the consequence, and 3) generate a new action. .

Having explained that, we can now describe the CAA procedure in a
standard sequential algorithmic fashion, as shown in Figure 5.7. ™

begin: choose values x(0), W(0) h
choose functions s(t), T(t)
algo-

repeat time rithm =

step step ‘
perform action y(t)=afunc(W(t),x(t),s(t))
remember (W,x,y)(t-1)=hold(W,x,y) (t) d i
receive consequence x(t) = envir(x(t-1),y(t-1)) o
evaluate consequence v(t) = vfunc(x(t),W(t-1),T(t))
learn from consequence w(t) = wfunc(W(t-1),x(t-1),y(t-1),v(t)) || a =
until stopcondition

|
Figure 5.7 The CAA consequence learning algorithm

Note that the procedure is a first order, since it remembers only -
one step behind. Analogously, a more complex procedure can be
visualised which is of higher order with respect to the time steps
remembered. But we are here interested only in the first order =
systems.

Note also that the procedure can also be represented in time step -
representation, starting with a new state, instead with a new '
action. The break point is shown in Figure representation on Figure
5.7.

We would like to emphasize that the CAA recognizes the goal as
its internal state, elicted by some situation x. The CAA should know
that it is a goal. In the next section we describe the concept of =
geneticaly stated goal states within the CAA memory.

5.4.3. DEFINING PRIMARY GOALS FROM THE GENETIC ENVIRONMENT

Since the CAA architecture does not receive external primary
reinforcements, the internal primary reinforcements are defined by
means of initial values of the CAE-components in the matrix W. The
initial values are defined as species vectors of the system. The
initial values will affect: 1) column vectors: initial internal (or il
emotional) preference toward some environment states, and 2) row
vectors: being in some state, preference toward some actions
eligible in that state. Figure 5.8 gives an example.

50 -

EHAVIORAL ENVIRONMENTE

k = envir (j,1i)

Figure 5.8. The initial definition of the primary reinforcers
(positive, negative, and neutral subjective preferences
toward the objective environment situations)

Figure 5.8. shows an arbitrary environment, unknown to the CAA,
and an initial set of values for the CAA memory. Note that the
matrix is chosen such that some column vectors have values +1, some
have values -1 and some have zero values. Such a matrix can actualy
be represented as a vector,

[0 1 ss @ 2050 liww =1]

That vector we denote as a genome or a species vector. That vector
is assumed imported from the genetic environment.

Having imported such a vector, as Figure 5.8 shows, the second
situation (which represents the second environment state) is
understood as a desirable situation, whereas the m-th situation is
undesirable one. The desirable situations are usualy defined as goal
situations whereas the undesirable ones should be avoided. From the
Figure 5.8 we also see that because all the SAE values in the column
vectors are equal, the CAA will not initialy have a preference
toward any particular action. However, we can imagine that from the
genetic environment could come an arbitrary genome, which is a
result of a previous learning taken place in some other CAA systems,
and it could cause a more specified initial behavior.

Having specified preference toward the situations, we can make
some of them goal situations, if that state is defined as an

51

terminal, or absorbing state. Once being in that state, an
experimental trial with a CAA system is completed; another trial can
begin from some starting state. In some experiments we can make the
desirable state not to be goal ones, but rather passing states. The
same is with the undesirable states, we can define them as absorbing
or nonabsorbing, passing states. In either way, we would like the
CAA system to behave such that it goes toward the desirable states
and avoids the undesirable ones.

We would like to emphasize once again that the “good” or
"bad" situations in CAA are defined in its internal, subjective
world. This, the primary goals should be chosen such that they
properly reflect the outside world. If not, the CAA will have
artificial psychosis, and see "dragons" in neutral situations; or
worse, it will not see the real "dragon situations” and will
probably not survive in that environment.

5.4.4. THE CAA SECONDARY REINFORCEMENT MECHANISM:
GOAL-SUBGOAL BACKWARD CHAINING

Having defined the primary goals of the CAA agent, we will now
define the mechanism of learning, by which the CAA will develop a
(at least partial) policy how to reach the goal. In construction of
CAA we took advantage of the goal-subgoal chaining process.

Let us discuss the problem in terms of emotional graphs. Consider
the Figure 5.9. It shows two nodes in a graph, the j-th node and
the k-th node. The number of action that can be taken from the j-th
node is n. One of those ections, the i-th action, leads to the k-th
node. The k-th node has its value, val(xk).

—
y
1
x_j olo xk
—_— P——N
yn
val(xj) ¢ val(xk)

Figure 5.9. The goal-subgoal chaining step

Let the CAA agent takes the i-th action in the j-th situation,
and experiences a pleasure, due to the evaluation of the k-th state.
Since now it knowns that the k-th state can be reached from the j-th
state, the j-th state will be treated as a discovered goal state,
actualy a subgoal state toward the k-th state. In such a way, a
backward chaining step has occured. The value of the goal state has
been backpropagated to a preceeding state by some
value-backpropagation function. .

Here the k-th state is the primary reinforcer defined by the
52

system genetics, the j-th state is induced, secondary reinforcement,
defined by conditioning. The concept can be extended to higher order
conditioning. As a result, by doing, the system will learn a plan
how to go from some starting point to a goal point.

Let us consider the whole value backpropagation process in the
CAA architecture. Figure 5.10 shows the process loop, consisting of
action generation, new situation production, subjective consequence
evaluation, and subjective lIlearned moral backpropagation and
learning. Here we mention the concept of moral in a sense of
learning a moral from a told tale, or from a performed action.

time t time (t-1)
ENVIRONMENT
2. receive
new situation
X
X
w NP
........... .
Y151 “im
i start
W. . l 1oo o
ldg P 1. perform
] wnjj Wom action Yy
3. evaluate "ml """" . “backpropagate dp coniext
. : of X,
emotional emotional J
consequence v(xk) —— consequence

Figure 5.10. The CAA state value backpropagation
(goal-subgoal chaining) process

As we can see from the Figure 5.10., the loop starts, let us say,
with the i-th action in context of the j-th situation. That produces
environment reaction, and as consequence, the k-th situation is
received. That consequence is evaluated, and the reinforcing signal
is sent to update the strength of the association between the j-th
situation and the i-th action. If the internal reinforcement was
positive, the system has learned two things: 1) taking i-th action
in the j-th situation is good, since 2) the i-th action taken in
j-th situation leads to the k-th situation which is evaluated as a
desirable situation. In that way the CAA is discovering its goal,
the pleasure which is met in the k-th situation. The same will
happen for the j-th situation, since now it will receive a positive
SAE value, by the process of learning. It is to be noted however,
that the j-th situation will have only one SAE component positive,
while in k-th situation all the SAE components were positive. Now,
being in the Jj-th situation, the CAA agent will have a preference
toward taking the action which will lead toward the goal.

53

5.4.5. THE CAA LEARNING METHOD

Examining the Figure 5.10. we can write the following basic
equations of the CAA architecture

= CAA learning method

state j: y = Afunc(waj} result y = i (5.4)
a

state k: v, = Vf:nc{wbk} (5.5)

state j: Awij = Ufunc(vk) = Ufunc(Vfgnc{wbk}) = ngnc(wbk} (5.6)

state k: y = Afunc(wb (5.7)

}
b k

where a,b = (1,..,1i,..n) and j,k = 1,..,m, and the functions Vfunc,
Afunc, and Wfunc are defined over the sets of components of the
column vectors, while the function Ufunc is defined over the state
values. All those functions are defined over the same matrix W. This
is important feature of the CAA architecture, as we already
ment ioned.

The above equations describe the the CAA learning method. The
method consists of the following steps

CAA learning method
1) state j: perform an action biasing on SAE components; obtain k
2) state k: compute state value using SAE components
3) state j: increment a SAE value using the k-th state value.
4) j = k; goto 1

So, in a sort of forth-and-back computational procedure, the CAA
increments its SAE components and performs learning. Figure 5.11.
shows how the CAA method is viewed in some state space.

As Figure 5.11 shows, the method can be visualised such that
each node of the graph is assigned a state value and each action is
assigned a SAE component, an element of the memory matrix. So, tne
CAA agent being in state J, takes the actin i, enters the state k,
takes its state value, returns it to the previous state, updates
the values in the previous state, and then takes action to from the
k-th state. The whole procedure is in rhythm forth-back-forth. This
rhythm is known in AI, and is used in evaluating game trees (e.g
Samuel 1959). The CAA procedure is distinct with usage of 1ts SAE
componets in all the three steps of the rhythm.

54

4 T3

3

B

W
pk—
|__) F_J ¥ik—
r—| Yk |[Mik
i I R
L"m?*

Afugc{waj} — Y
v, ¢ Vfunc{w k}

k b b
y]
wij ¢ qunc(vk)

Af:nc{wbk} —_— yp

Figure 5.11. The CAA learning method

Let us note that the CAA learning method is given here in generic
terms. Specification of the functions Afunc, Vfunc, Ufunc (and
Wfunc) is dependent of the considered specific task. To ensure
random behavior, we state that Afunc computes a bias for an action,
not the action itself.

The computational method shown on Figure 5.11 is important for
some modern trends in dynamic programming about which we will talk
in the next chapter.

5.4.6. THE HIGHER ORDER SYSTEM: MODULATING ACTIONS AND EMOTIONS

The higher order system is the CAA architecture plays a role of
long range behavioral modulator, in some sense a “"hormonal system"
of the CAA agent. Its internal structure is left undefined. Here wi
will consider how it modulates the action (intention) and
state—evaluqtion (emotion) of the CAA system.

MODULATING ACTIONS. The action selection process as stated above
is given by

y = Afunc(wu.} (5.8)
u J

if the higher system modulation is not present. If it is present, we
have

y = Afunc’{wij , si} (5.9)
i

where s is a real number which we denote as searching strategy
parameter, and Afunc’ is the modified action selection function by

55

introducing the parameter vector s. It is generated according to
some action taking strategy of the higher level system. For example,
if the higher level system decides that the acton-taking strategy
should be a random walk, then the set {s} is generated according to
some uniform distribution. In that case, the SAE components are only
bias, and the behavior will actualy have a statistical character.
The random walk strategy is used when the CAA system performs
exploration in an unknown state space. Even if a policy has been
learned, and SAE components have some values, the higher order
system can introduce a random walk activating sufficiently large
random values of its searching strategy parameters.

MODULATING EMOTIONS. The emotion computation is modulated as

v = Vfunc’{w, ., T, .
i {..i_] _]} (5.10)

where {T} are parameters of some emotional value selecting strategy.
For example, with this parameter the behavior can be modulated to be
more cautious, or more agressive. For example, if there is a danger
ahead, should warning (in form of fear) be generated or not. If
warning is not generated, the CAA will have no concept of risk and
pursue as usual. If warning is generated, than possibly there will
be some more explorations before a state is designed as desirable.

5.5. EXAMPLE OF A CAA ARCHITECTURE

So far we have discribed the generic CAA architecture and its
features. In this section we will give an examplefication of the CAA
architecture. Figure 5.12 shows an example of a CAA architecture. In
this CAA system the functions e, f, g and h are chosen to be sign Z,

mux, Z, and max.
5.5.1. ACTIONS: LEARNED AND MODULATED

The action computaﬁion in this CAA is performed in a neural

way
1 if g, (t) = max {gh(t)}, h=1,..,n
y(£) = ' h i=1,..,n (5.11)
0 otherwise
where
m
gi(t) =j§1wij(t)xj(t)+ si(t) (5.12)

Since we are assuming that the input vectors are orthonormal, and
each component represents a situation from the environment, the

above equation reduces to

for all j=1,..,m if x,=1then y, =sgnmax {w,; +s }, (5.13)
J i i iJ i

where sgn() is a function which gives 1 for nonnegative and O for
negative arguments, and

56

==

5= montecarloi[—.5,+.5] (5.14)
where montecarlo is a random function which gives values which are
uniformly distributed in the defined interval. Having that, the CAA
will perform random walk until the SAE components receive values
which will dominate the behavior. Gradualy, the behavior will shift
from nondeterministic to deterministic one.

i

T e T A

!

e

;
:
%
%
:
%
%
%

I3 O) T

R

T

Liﬂllﬂlillllllﬂlll }

s,

=

BT

ORDER
SYSTEM

R
|_.!

Figure 5.12. Exemplification of the CAA architecture

However, sometimes it is desirable CAA to behave randomly even
after learning, for example to explore some environment. Than the
searching strategy can generate s-componets with values

s. > m;x {whj} (5.18)
Another example is if {s} are chosen such that

57

5;= mix {o0, whj} ' (5.16)

In this case the negative SAE components will not affect the action
selection.

Let us note that in the modern theory the searching strategy is
implemented as a ‘“temperature function" (Keerthi and Ravindan
1995) instead the uniform distribution. For our purposes, the
function montecarlo defined above is more intuitive as a searching
strategy function.

Now we will state important property of the NN-CAA network. If
the learning process starts with SAE-components equal zeroes, and
the s-values are taken from a distribution [-.5,+.5], then during
the learning process at most one SAE-component can obtalin a positive
value.

This is true because of the greedy policy in selecting actions.
Once having value greater then other SAE-components, the CAA will
always follow the learned action. However, that is not always
desirable, especialy in the stochastic environments, where the state
values and/or transition function could change. In such environments
the seraching strategy should be changed, for example in a way
described before, or some other way. That is foreseen in the CAA
design with the definition of the higher order system which can
change the searching strategy.

5.5.2. THE STATE EVALUATION FUNCTION

R

The global evaluation function of the system is its feeling v, in
CAA computed as

v = mux {vk} ‘ (5.17)
k

where mux is the multiplexer function which is defined only over
singleton vectors, which is the case in this CAA. It "pases" the
value of the nonzero component of the input vector. If all
components have values zero, the output is also zero.

The components vk, k =1,..,m in are also computed in a neural
fashion:
n
vk(t) = sign (xk(t)(iizlwik(t—l) + Tk)) (5.18)

where sign(.) is a function which gives 1 for positive, 0 for zero,
and -1 for negative arguments. Here the temporal difference is
important. It emphasizes that the situation represented by Xy will

be evaluated by the vector W which has been computed in the

previous step.

58

T3 T3

3 T3

T3 8

3

3

— 3

3 3 TF T3

3

The above equation can be rewritten as

n
sign (iflwik(t—l) + Tk) if xk(t) =1

vk(t) = (5.19)
0 othervwise

The value of Tk is computed as

Tk(t) = w {wik(t-l)} (5.20)

where w is some warning function, which monitors the appearences of
negative SAE-components in Vi It is actualy a strategy how to deal

with negative SAE-componets in the evaluation of the state.

To explain that, let us rewrite the state value computation
equation as

v, (t) = sign (E; -E; + T,) (5.21)

where E; is the sum of all positive and E; the sum of all negative

SAE-components for the in the evaluation vector for the k-th state.

The term Ek has important interpretation: it is a number of closed

alternatives (number of actions that was learned not to be taken) in
the k-th state.

The warning function is defined as

0 if E; =n
T, = Cy if n> E; > E; (5.22)
0 if E = E;

Let us consider all the alternatives:

If E; = n, that means all the alternatives for taking actions

in the k-th state are closed. So, there is no sense of
going to that state and the state value is

v, = sign (o - E * 0) = -1 (5.23)
Expressing it in terms of the set of SAE-components we
have

vy = sign max {wik} (5.24)

i
If E; < E; that means that in the k-th state there are actions

leading toward a goal state, so the value of the k-th
state is

59

. + -
vy = sign (Ek - Ek + 0) = +1 (5.25)

- +
If Ek = E: then it is the case when the state value is zero

v, = sign (E; -E +0) =0 (5.26)

- +
If n> Ek > Ek then we have cases where there should be decided

when to signal to the previous (e.g. j-th state) that
this (k-th state) has alternative paths leading toward
a dangerous state. This state evaluation sheme
includes warning (caution) threshols Ck’ If Ck=2’

then the j-th state will not receive the value p=-1
before at least two alternatives are closed in the
k-th state. If we do not require warning signals, then

we define Ck = E;. In that case we have a warning-free

state evaluation strategy which is expressesd as

Vg = sign (E; - E; + E;) = sign E; (5.27)

If we define the state evaluation strategy to be a warning-free
one, we have

+
Tk = 0] if s Ek (5.28)
A L
which gives a definition of state evaluation function as
Vi = sign m?x {wik} (5.29)

This state evaluation function gives no backpropagation signal to
the j-th state if there are negative alternatives in the next,
k-th state. As long as the state have at least one nonnegative
alternative the k-th state is considered neutral. It will be
considered negative, only in the case when all the alternatives
in the k-th state lead toward a negative outcome.

In short, the "threshold value" T plays a role of the modulator
of the cautions with which the CAA will evaluate the situations
which are on the way. If the warning is disabled, the CAA will
evaluate acording to a greedy policy. If the warning is included,
the CAA will have to visit a situation several times before it
decide it is a "good" situation and will backpropagate a signal that
from that moment on that situation should be considered to represent

a subgoal state.

60

3

3

3

3

5.5.3. THE LEARNING AND VALUE BACKPROPAGATION FUNCTION

The learning function (learning rule) is defined as

"ij(t) = wij(t-I) + xJ(t—l)yi(t—l)v(t) (5.30)
where v(t) = val(xk) (5.31{
and xk=envir(xj,yi) (5.32)

This function is actualy the value backpropagation function: the
value of the k-th state is affecting the i-th evaluation component
of the j-th state.

Let us note that the learning rule could affect all the states
except the absorbing ones. If a state is initialy valued, but not
absorbing, its value can be modified by this value backpropagation
process. That is a desirable feature in some problems, where we
would like to have a behavior which directs toward a pleasant goal
state but has to to pass through an unpleasant state along the way.
Also, is some problems we would like the CAA agent to go toward an
absorbing goal state, but also to tend to pass through some other,
non absorbing pleasant states.

5.6. SOLVING PROBLEMS WITH THE CAA ARCHITECTURE

This section will illustrate the ability of the
self-reinforcement learning systems to solve some problems. In
particular, the examplefied CAA architecture will be considered. Two
general problems will be considered, delayed reinforcement learning
and learning in loosely defined graphs problem.

5.6.1., LEARNING IN EMOTIONAL GRAPHS:
DELAYED REINFORCEMENT LEARNING PROBLEM:
MAZE RUNNING EXAMPLE

Here we will consider the problem of assignment of credit, stated
by Minsky (1961). The notion of delayed reinforcement is also used
to describe the paradigm. We already talked about this paradigm in
the second chapter when we listed the learning paradigms. The task
of a learning agent is to exhibit a learning behavior if the teacher
(environment) Jjust observes the learners behavior and gives neither
advice nor evaluation for a long period of time. However,
occasionaly an evaluation is given, and the learner should figure
out which action in the past was responsible at most for the
obtained reinforcement at the present time. Contemporary it is a
widely investigated paradigm in external reinforcement learning
systems, and it is interesting to see how a self-reinforcement
learning system will solve such a problem. In this section we will
use the described CAA network and experimentaly prove a solution of
such a problem.

A typical metaphore for a delayed reinforcement learning paradigm
is the maze learning problem, widely investigated in animal learning

61

theory. However, here we will talk in terms of arcade games instead
;f animal mazes. A typical map of such a game is given in Figure
-5.13. '

G T

Gitv
.12)

i]
p o0 d [
i i ©° r d
(e : l &
tur
YOl 2641 L |
9 .
. — e
;o Mm x
Exe J Tore.
. » '
. I A TP
LT 73
&TF‘I "1 i’.“.«i!
. . N T
qﬂt’ﬂl— o e - .. . L 4
—_ ' Agua

Figure 5.13. A typical environment for CAA
(Courtesy of Daryl Lawton, 1981)

Figure 5.13 shows the map of a dungeon “Telengard" of the
computer game "Dungeons and Dragons" (Lawton 1981). This game, which
we played a lot, motivated the task which was stated as a challenge
of the CAA in 1981.

As Figure 5.13 shows, a dungeon is a "grid world". An agent is
entering that world looking for the “ORB" (whatever it 1is). Each
place (node) of the world has adjacent at most four places to which
can move using actions E(ast), W(est), N(orth), S(outh). Some of the
movements are restricted by walls. There are also some teleportation
places: from that place the agent will be transported to a
nonadjacent node, possibly on some other 1level, such that no
knowledge of the vicinity is known. There is no model of the world:
a player must explore the world in order to (at least partialy)
learn a policy for behaving in this world.

Let us note here that the map similar to the map drawn on the
Figure 5.13 has become popular maybe ten years later among the
researchers in reinforcement learning, when reinforcement learning

62

3 4

3

T3

3

T3

3 3

3

-3

was connected to dynamic programming. As it turns out in 1981 we
considered fairly complex task even with respect to the problems
considered in real-time dynamic programming 10 years after. Let us
continue with description of our challenging task.

Along the way the agent encounters bad events and good events. A
bad event could be entering a dragon layer, or stepping on a
bottomless pit. A good event could be finding an armor which will
increase the agents level of strenght. Besides making decisions
vhich way to go, the agent is constantly under decision pressure.
For example, if you find a book should you read it: you never know
whether you strenght will increase or decrease after reading a book.

A simplified model of the environment shown in Figure 5.13 is
given in Figure 5.14. Each room of the dungeon is a state of the
environment.

O OO 0| Y O
.

eee LILILILILILS:

O H | [) | | | . sessesssansseeseesoes LI COIOOCCICICIC):
(VMP) (DGN)

SILILICICIC IR L

(ORB)

e e L HIE N E W R B F (HIE/mimim{m -

(PIT)

| O OO o o

PYTTTRRIT 3| (M {m|m|m|
JLILIL

O 0 o

[0 0 o o e RS

Figure 5.14. A colored grid world environment

Environments of the type shown in Figure 5.14 we call
Dungeons-and Dragons (DND) environments. They are characterized by a
nonderivable value function. If a value of a state is "good" the
adjacent state can have a value "bad". A good state can even be
surrounded by bad states, such that an agent should pass a bad state
in order to enter a good state. In this example, there is a state
denoted VMP where a vampire resides, a state DGN where a dragon
resides, a state PIT which is actualy a bottomless pit, and a state
ORB which is a good, goal state. It is assumed that all the
“event-colored" states are terminal states. For this environment,
which gives evalation only at the event-colored states, the CAA
agent can learn (at least a partial) policy for its behavior. The
task for CAA is to find a path in this graph toward the goal state
avoiding the unpleasant state.

It is convienent to represent the statement of the problem in form
of subjective emotional graph, as in Figure 5.15. This
representation 1is more general since it can easily shown
teleportation movements, which in gridworld representation are not
natural. Also, from the emotional graphs we can immediately
recognize good and bad states.

63

.
.
.
.
.

4
¥

l’_
i
L
E;

o
(-]

!
|

l

)

Figure 5.15. The emotional graph for a DND environment

Now, when we described the problem, let us discuss briefly the
importance of this problem from the standpoint of 1981, when it was
stated.

This is an assigment of credit problem. Stated by Minsky (1961),
that problem has been considered in AI, and solution existed,
examples being Samuel’s checker player program [Samuel 1959].
However, there was no solution of that problem by a neural network.
That was recognized within the Adaptive Networks Group, and was
stated as a challenge. We took that challenge to solve the problem
with the CAA architecture. Indeed the CAA development was influenced
by the graphs as the one shown on Figure 5.15.

Now we will descibe the solution of a delayed reinforcement
learning problem stated as: Find a path in the graph shown in Figure
5.15, where reinforcement is experienced only at the emotionaly
colored states.

Since in this problem we have only three levels of desirability
(desirable, undesirable, and neutral) the CAA genome vector will
have ternary values (1, -1, and O respectively). So, we will start
the CAA with the initial conditions which will assign initial values
to the internal states according to the task stated. Figure 5.16.
gives that assignment.

As Figure 5.16 shows, the assignment of state values is internal,
subjective. The environment and its "real” values are not known to
CAA, neither are known the transitions between states. All it is
assumed is that the states are distinguishable to the agent and
there is enough column vectors to be assigned to the environment
states.

Having number of environment states, we define the number of
columns of the memory matrix. The number of rows are defined by the
maximal number of actions taken from a state in the environment (the
fan-out of a state). In this environment it is 3, and that is
reflected on the chosen CAA architecture.

64

Lea]

EHAVIORAL ENVIRONMENTENEEESS

1 2 3

=

7 8 9 »10

14——15——

Figure 5.16. Internal representation of the preferencies
toward the environment states in the CAA agent

A typical experiment consists of several trials. In each trial
the CAA agent is wandering randomly through the graph until it
reaches a goal place or some other absorbing place. Each trial
starts from the same entry point. After number of trials the agent
is learning how to go from the starting place to the goal place
directly, without wandering around. The agent is learning a plan how
to find the goal place starting from the entering place, avoiding
unpleasant states.

65

It is shown

The upper part shows the initial

and the lower part the final values,
1 0 00 01 0 0 0 O0-1

1 0-0 0 01 0 0 0 O0-1

1 0
-1 0-1 0 0 0O1 0 0 0 0-1

1 0

0 0 00 0O OO

Figure 5.17 shows result of a simulation experiment.
knowledge 0 0 0 0 0 O O

situation1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20

imported 0 0 0O 0O O O O

genome

-t
et
804.
oo
(ol eNo]

[oNeNe]

P00 Jo 1

= o

;OO

- O

Mmoo

(eNeNo]

o
LI

(ol oNo)
o
LI
NOO

eeas O essses O ooe

O~ 0

o o o R L 0 e Qi G mreris @ revees @ vasan © snren @ eerre O rerres ©
3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 18 trials

eeene Qeseres O svssee [ooeceefl] o

Qoeeres Qucenee Ooosace
sse Qovesee O serere O sraves O os

.........

F I T T T O O N I A N A A O A O 2]
.................
.....................

H H b H

From the matrix we can see the chain of states:

Figure 5.17. Result of a learning experiment

Piidiiitig il
©00000000000000
1313848

..........

H
......

............
........
.....

H

$]
.....

The learning process stops when the starting state (state 6)
The learning process can be expressed in terms of number of steps

a table consisting of two parts.
acquired during the learning process.

values of the memory matrix,

computes a positive value of some of its SAE-components. That means
that there exists a chain of increasing positive values toward the

per iteration (per trial), as shown on Figure 5.18.

6-7-12-13-18-19-14~15.

goal state.
number of steps

66

2

1

0
Figure 5.18. A learning curve in terms of number steps per trial

As result of the learning process, the CAA agent has learned a
policy how to behave in this environment, and that policy is written
in its memory matrix. The representation of that policy back to the
initial problem space is shown on Figure 5.19.

| | O | {0 {]
0 1 i2 i3 4 i5
0 I 2 e |
%“g ------------------ @nmmnnnmné :DDDUDDDD¢—=§£EEE%E
i (7 9 s
H > <« -

P g

TR id = :
0y I (ORB) G
E 1;“ 00000000 -z eeeemeeeeee [lrzeszaempgeemsesesases]
016 4 1, 018 19 ‘|‘

. > i «©

5 VR R i

—| 10000001 ||‘|l | | i‘_[10000000 ":ll 10000000000 :

Figure 5.19. The policy learned in the described experiment

From the Figure 5.18 the reader can see that not all the states
are assigned a policy other then random one. For example states 9,
11, 16, and 17 are assigned merely a random policy. The states with
assigned policy have arrows which gradualy elongates (greater SAE
values), representing the level of certainty (actualy expectancy) to
which the action is taken. Some states (3, 5, 13, and 19) have
experienced undesirabile consequence of some actions ity of some
actions, and thay have memorized actions that should not be taken
again (represented with double arrow repelling from a state). The
dots in some states represent the action "stay in place".

The experiment shown above is one of the first CAA experiment in
solving the maze running problem and by them the delayed
reinforcement learning problem. As we said before, the development
of the CAA was done in parallel with the AC architecture. The fact
that the CAA architecture produced the solution faster, is not of
particular importance. Those architecture concerning the maze
running problem should be considered in parallel.

The path found in this experiment is the only one possible and in
that sense optimal. In general a single CAA in one solution cyclys
will not find the shortest path. The optimization takes place in the
supervising unit. It counts the length of "the shortest path
produced so far", and will not allow solutions with longer path to
be exported. In such a way, CAA has offsprings with gradually
improved ability to live in the considered environment.

In short, CAA architecture takes advantage of the genetic
environment to solve the problem of optimality. But, more crucial is
that this neural network was able in 1981 to solve the credit
assignment problem in a self-reinforcement fashion.

67

5.6.2. LEARNING IN LOOSELY DEFINED EMOTIONAL GRAPHS:
THE UNDETERMINISTIC ENVIRONMENT PROBLEM:
POLE BALANCING EXAMPLE
The next problem considered by CAA in 1981 was the problem of
learning to control a cart-pole system. Figure 5.20 shows a computer
animation of that problem.

Figure 5.20. The cart-pole system
(From Bozinovski and Beochanin, 1994)

Figure 5.20 shows a symbol of a computer network which controls
the cart-pole system by a discrete force. A human face animation is
used to represent the desirability of the current state. The
variables of the process (pole angle 6 and agular velocity w, as
well as cart position xand linear velosity v) are mapped into the
eyes, mouth, forehead, and the eyebrows of the human face. The face
smiles when the cart is in the center of the screen and the pole is
in upright position, and it changes its emotional expression
gradually as the state of the process deviates from the desired one.
We use human face emotional expresion to represent a
multidimansional optimization problem.

The problem is to develop a self-learning system which will
balance the pole. The pole-balancing problem is widely well-known.
The are two versions of the problem: In the first version, the
controler’s task is to balance the pole regardless the position of
the cart; in the second version the pole should be balanced keeping
the position of the cart within certain limits, as is shown in

68

3 T4

=3 T3 T3

T3

3

Figure 5.20. The first version will be denoted as context free
pole-balancing problem, and the second version will be denoted as
context-restricted pole baancing problem. Note that 1in both
versions, both the cart and the pole are controlled. The difference
is what is optimized. In praxis, the restricted optimization of 6
w%ll— require movement of the pole in very narrow discourse (e.g. *
6°). If only @ is optimized, the discourse can be much larger (e.g
45°). We choosed the context-free problem.

The reason why the context-free version was chosen is because it
is simply representable as emotional graph. In addition, there is no
loss of generality: the 1idea is to show an example of a
self-learning neural control, and for that task the context-free
version is sufficient. If a problem is represented as emotional
graph, a CAA architecture can be implemented as a tool for solution.
We wanted to explore the problem of applicability of CAA to the pole
balancing control.

5.6.2.1. Representing the problem as emotional graph:
Partitioning the problem space:
Value function approximation

In order to represent the problem as (discrete) emotional graph
the (continuous) control space of the problem should be partitioned
into control regions. The problem was previously considered by
michie and Chambers (1968) who divided the control space in 162
regions. Since we conslidered simpler, context-free 6-optimization,
in our experiments [Bozinovski 1981g, Bozinovski and Anderson 1983]
we divided the control space in 10 regions, using the heuristics
shown in in tabular form on Figure 5.21.

state 1 2 3 4 5 6 7 8 9 10
defined by
e - i =i =1 [%e]i [2e)] [2e]li + | + | + i|6] > @
© P _ 0 + -io i+ crit
action -F i+F { 0 0 0 0 0 i-F i+F giveup

Figure 5.21. Heuristics for definition of the states
for the context-free pole balancing task

The basic or the heuristics used is definition of two angles
denoted as critical angle, ocr'it’ and goal defining angle, e. The
angle € is introduced because the intuitive goal state (6=w=0) is
difficult to achieve, and thus the goal should be defined in a fuzzy
rather then in a crisp fashion. If the angle is within the region
[-e,+¢] we say that the system is in its goal region. If the
controlled angle is ouside the region defined by the critical angle,
the trial is denoted as a failure trial. The measure of performance
of the system can be the percentige of time spent in the goal
region, or the total number of failure steps, in a predefined period

69

of time. Both the angles are defined heuristicaly, depending on the

force used to be used for movmg t.he cart. We experimented with

critical angles between 45° and 90°, and goal defining angles ™
betweem 0°and 5°.

From Figure 5.20 we can see that in some cases the control force =
is not defined in a crisp way; in states 2 and 8 te heuristics say |
which action should not be applied, leaving a set of actions (e.g
-F"{O +F}) to be choosed from. The heuristics actualy defines that

"oposite" action should be undoubthely applied only in two cases, =
when signe # sign w.
The associated, heuristicaly drawn emotional graph which explains !
the control heuristics is given on Figure 5.22.) |
[za)
m
m
m
&
NPT -?f! |

‘;-'ii ; N Pl i, -

Figure 5.22. Emotional graph for context-free pole balancing problem
Figure 5.22 represents the states using different emotions. m

However, it is only for purposes of analysis. For the purpose of
implementation, because we use CAA network, we used only three

values, -1, O, and +1. In some experiments we used only the -1 =
value, assigned to the failure state. Thus, we have an avoidance

learning task, where the CAA network learns to avoid the fallure

state.

It is important to observe on Figure 5.22 that it represents a
loosely defined graph [Bozinovski and Anderson 1883]. Under this
notion we mean a non-deterministic graph, transitions in which are =
not defined in a crisp way. For example, being in a state ‘
(6>0, w>0) and taking action F>0, it 1is not known how the
environment will respond. If there is a probability distribution -
assigned to the possible responses, then the problem is in '
stochastic nature, and we talk of learning 1in stochastic

70 =

T3 4

T3

3

environments. However, in thié case we have stochastic environment
with unknown probabilities.

The non-deterministic nature of the transition is emphasized on
Figure 5.23. It is shown how an action is taken and how that action
can make transition to several states, but in only one at a time. It
uses divergent arrows to represent the non-deterministic
transitions. For example, if the system is in state 9, and the
action +F is taken, the transition cannot be stated with certainty.

F=0

w0 v . \ el 0

w<Q w20

6<0 6>0
lq’ecrit

Figure 5.23. Using divergent arrows to represent a non-deterministic
transitions in a losely defined emotional graph

Analysis of the problem shows that the problem can be represented
even with fewer states. Figure 5.24 shows that the analysis of the
considered inverted pendulum system can be carried out in terms of
functions sign(6) and sign(w) instead of 6 and w. The goal states of
the system can be defined as states satisfying sign(e)sign(w)=0. The
states in which a controler action is required are states satisfying
sign(@)sign(w)>0. It is also to notice that although 6 states are
shown, the problem can be actualy represented with 4 states. Those
are: state 1: sign(0)sign(w)>0, 6<0; state 2: sign(6)sign(w)<0;
state 3: sign(0)sign(w)>0, 6>0, and state 4: Iel)ecrit' For such a

representation the heuristic control policy is straight-forward and
is also shown in Figure 5.24.

71

sign(@)sign(w)=0

Y G=e o S, fon =
action=-F [fi il Sy} action = +F

6>0
w>0

sign(@)sign(w)>0 8<0
w<0

|9|>ecrit

Figure 5.24. Representing the problem with losely defined
graph with four states

Figure 5.24 shows that the goal of the system is relaxed: it is
not to reach the state 3: (6=0,w=0) since it is very difficult; it
is enough to state the goal as state 2: sign(e)#sign(w). The union
of those two region gives the state 2u3: sign(8)sign(w)=0 which is
enougn to develop a tendency of keeping the pole in an upright

position.

5.6.2.2. Dynamics of the cart-pole system
For purpose of simulation, the cart-pole system can be described

by following differential equations (adopted from [Cannon 1967]):

f + ucsignv + m&ozsine - M(mgésin® -pw)/(mlcose)
(5.33)

2(mcos® — 4M/(3cose))

f + ucsignv + mezsinB - (3/4)(mgsin® - pw/l)cosO

(5.34)

M- (3/4)mcosze

72

3 ~— 3 T3

3

g

3

3

where M is the total mass of the system (cart+pole), m is mass of
the pole, g is acceleration due to gravity, ¢ is distance between
pivot and pole’s center of mass, w is angular acceleration of the
pole, v is linear acceleration of the cart, and F is the applied
force generated by the controller. The friction coefficients between
the ~cart and the ground K and pole and pivot, M, in some

simulations can be ommited. However, in our simulations they were
taken into account.

A phase plane, (6-w), for the was drawn to observe the system
dynamics. Figure 5.25 shows such a plane.

7 - ~ s N TR S Y -

I e -
-~
=~
-

N S —_ >

O

~a - -

~ SN
= N
SN
A

- - ”~

}
A A)

NN R A ¥

LY
a

-“0\\\\\\
ww\\\\qx\

I

()

d

A} A}
N N
~ ~
L N N e
~ .

<

[R R R R R
PRI A NN vy

Py
7

T ¢+ 1
ProR e N vy

'\'\\f\\xuo-eu'/z",/.[
K‘\'\'\v\xure//{{,/

AU U S WL N N

Tttt

L N L N e

e T T e e e e— — e S B R (R R R S

TN b e e b e e e e e e T S (R (TS S
T G .4_—«#&/&/«&"?&,&—6—\%6\&&&&&&<“—- -

~»my\a\ﬁ\ﬂ\g\ﬁ‘ahé*a—e—ewéﬂa,%,a,afﬁfeme—%*»\s:
> —— \}“‘3\\-_&\}“%%>__>_—>wé,?ﬂﬂﬁﬁﬁ_—&——}

—~— ™

B J
~> Sa

~» S

£
v v £

-
-

Figure 5.25. A phase plane, (6-w), for pendulum dynamics
(Figure by Anderson, 1981)

Horizontal axis on Figure 5.25 shows 0 and vertical shows w. As
result we obtain the well-known spiral dynamics of the systenm,
described in textbooks of dynamic systems, (e.g. Cannon 1967).

Let us note that the complete dynamics of the cart-pole system
during our experiments with the CAA as pole balancing controller,

was responsibility of Chuck Anderson (Bozinovski 1981g, Bozinovski
and Anderson 1983).

Having performed emotional-graph analysis and dynamics of the
cart-pole balancing problem we can now describe the experimental

setup for self-learning control in non-deterministic envronments
using the CAA controller.

73

5.6.2.3. Parallel programming for pole-balancing learning

The basic setup for our experimental investigation is given on
Figure 5. 26.

GENT

= BEHAVIORAL ENVIRONMENT%

pattern classifier

X xé x| x]

11]

li e e

Figure 5.26. The basic setup for CAA pole balancing

Figure 5.26. shows that we chosed to control the cart-pole system
by three actions: -F, +F, and 0, which corresponds to movements
left, right and stay. Let us note that, to the best of our
knowledge, the learning controlers considered before (Widrow and
Smith, 1964, Michie and Chambers, 1968, and Russel and Rees, 1975)
used only two actions, left and right. The acton "stay" allows the
system not to move if it is not neccessary: for example, if 6>0 but
w<0, than probably the best decision is not to act, since things are
improving anyway. The introduction of the third action greatly
simplifies the representation of the problem, as shown previously,
in Figure 5.24, and we believe gives better experimental setup for
the pole balancing problem.

The interaction between the CAA controler and the pendulum
dynamics was made using the parallel programming technique. Figure
5.27 describes the parallel programming concept implemented in our
experiments.

74

CAA CONTROLLER %% CART-POLE DYNAMICS &= = ——
create mailbox Action, Situation hare mailbox Action, Situation &

initialisation

m= 10

W(m)=(-1)

chose backpropdepth

initialisation

estart: -
B8=0 ; W=wW _; X=X _; V=V
o] o] (o] (o]

ead Action, force
isplay animation(®,w, x, v, force

ompute .
w . ;v °
W=w+wlAt; v=v + v At
0 =0+ wAt; x=x + v At
ole = (0,w)

swrite Situation, pole

read Situation,pole
state = recognize(pole)
evaluate state

if endtrial then restart
update W

compute force

goto loop

A msmnmnmimmnﬂmumnnmuméwrwuummmummmumy}mm&m[‘mmwwmmmmm@)

Figure 5.27. A parallel programming concept used in our
1981 experimental work

As Figure 5.27 shows, we used mailboxes as communication
devices. We succeeded to realize the parallel programming
interaction, on which we talked in the third chapter, where we
conceptualized parallel teacher-learner interaction. The technique
of creating and using mailboxes was shown to us by Bob Heller
(Appendix C).

Figure 5.27 does not need a special comment except for one
parameter, the backpropdepth. This parameter is used to determine
how far from the terminal state the state wvalue will be
backpropagated. This is a crucial parameter which introduces the
solution method for undeterministic, stochastic, environments we
used for solving this task. We will describe the parameter shortly,
after we describe results of our experiments.

75

50 6-

2.4. Some results of our éxperiments

Using the described experimental setup we carried out several

e successfull experiments of self-learning for pole balancing. Figure
5.28 shows result of an experiment.

XDOT ¢~

ACT

| M - Wv |

Figure 5.28. A learning control experiment

with initial conditions (0,w,x,v)=(0,0,0,0)
(Animation program written by Chuck Anderson,
time diagrams program written by Alan Morse)

i

The time diagrams on Figure 5.28 shows one of our early

experiments. Two screens are used, one for pendulum animation (shown

on

the lower section).

of

the upper section) and other for time diagrams display (shown on
All the four componets (X,XDOT, A, ADOT=x,V,6,w)
the cart-pole system are displayed. The actions are displayed at

76

i

3 T3

'3

-3

J——

the bottom of the screen. The Grinell Systems for graphic display
was used. The learning control process is observed on the A and ADOT
trace. The controller has experienced two times left side fall (e=
-98) and 5 times failure at the right side (6 = +90°) before it
learns how to balance the pole. After that, both 6 and w are kept
around their zero values. Initial conditions in this experiment were
all zeroes. -

The experiment shown on Figure 5.28, and in Appendix C were the
first experiments proving that the CAA is able to learn a control
strategy in non-deterministic environments. The actual strategy,
learned by CAA is a bang-bang strategy which can be described as

if sign(@)sign(w)>0 then
if 6>0 then go right
if 6<0 then go left.
otherwise stay.

According to the experiment shown on Figure 5.28, and in the
Appendix C, the CAA learns this strategy rather quickly. However,
the strategy has not been told to the CAA. CAA discovered it by
itself. The penalties received as results of failures, caused
beckpropagation of values which are preventing actions which caused
failure. Once that has been learned, the CAA system is balancing the
pendulum.

In the previous mentioned experiments we used zero initial
conditions on all parameters. It was also interesting to explore
possibility of CAA to balance the pole with other initial
conditions. Particularly, in igitia] condition for 6 is outside the
zero region, for example at 10 . Figure 5.29 shows a result of such
an experiment.

50

oA AN

S v ,»MMM/?WW
NS

. A AANNA A

2 \l N T Y T v

AN AANMA__A e g

2 N N

1050

NI, K. Y
5

| B

A 0 T AT T
wllﬂnﬁmlﬁﬁlmumma\lﬂullll' i |||«||‘|mm:|u|u|m||muumwm ‘I!I!IIilll\l\llhll\lﬂllIh'hllllli‘

100 200 300 400 460

Figure 5.29. A learning-for-pole-balancing experiment with
initial conditions (e6,w,x,v) = (10,0,0,0)

77

Figure 5.29 shows two screens from the mentioned Grinell system,
concatenated together. Each screen shows 500 steps of learning
history of the CAA controller. Two things should be pointed: it
takes 8 times right failure and 2 times left failure to learn the
control strategy. After about 450 trial and error learning, the pole
is balanced around its 6=0, and w=0 values. However, the cart is
traveling to the right, since there is no restriction from the
context of x.

This experiment rises a question of context restrictions. If we
restrict movement of the pole around zero for i12°, (as was done
before by Michie and Chambers (1868), then we can restrict also
x-discourse to be, for example, *0.54m (Michie and Chambers 1968).
But in that case it is very difficult or impossible to start a
successful experiment at e-+10 as we experimented with. As Russel
and Rees (1975) reported, they were able to recover from nonzero
jnitial conditions in the initial discourse if 6 was less than +7°.
So, as we showed, it is possible to learn to control for greater
initial angles, if we chose the unrestricted case of cart movement.

That all shows, that our study of the inverted pendulum learning
control, although considering context-unrestricted case, is highly
relevant for issues around the self-reinforcement learning systems.
Some authors, for example Dean and Wellman (1991) also use the
context-unrestricted case. The point is to show that a CAA system
can learn to control in a stochastic environments with unknown
probabilities, such as pole balancing problem is.

5.6.2.5. The limited value-backpropagation method for solving the
problem of learning in loosely defined emotional graphs

The problem of learning in loosely defined emotional graph which
we considered in our experiments of balancing inverted pendulum can
be stated as learning in stochastic environments problem, which is a
issue in conteporary reinforcement learning theory. Here we will
describe our approach, which produced successfull solutions, as
shown in the preceeding subsection.

Since the loosely defined graph is a graph with non-deterministic
transitions, then some learned action which is good now can be wrong
later, and in turn, there is no point of learning the whole path
from the starting state to the goal state. Instead, the system
should learn partial segments of the path. That is the main idea of
our approach.

In other words, the value backpropoagation process should not go
from some terminal state to a starting state, as we did in well
defined emotional graphs described in the previous section. Instead,
the state value should be backpropagated only few steps back. In our
experiments with the pole balancing we have chosen only one step
back. Figure 5.30 explains the approach:

78

3

3

l start random
l L l
A]° |° I
R (-
| I |
do not nondeterministic connections
backpropagate{ -lo-g ! OJ}
L. I
backpropagate Lrs
L od
[-] | -]
—

Figure 5.30. Selective value backpropagation process as a
solution method in stochastic environments,
used in learning for pole balancing experiments

Figure 5.30 shows a view toward the pole balancing problem. There
is a situations which is recognizable as failure situation. Three
possible actions are to be blaimed for possible failure, from
whichever previous situation they are taken. So, a mechanism should
be found according to which

whenewer a failure occurs,
the CAA is to search for better action.

As long as the CAA is in the game, i.e. is somewhere in the state
space, no learning is needed. The state value will be backpropagated
one situation behind, so the preceeding state should know not to go
in certain direction. But, the state value backpropagation will stop
there. Although some states inside the losely defined graph are
colored "bad", the knowledge about that is not backpropagated, and
the previous states can allow any actions. So, the CAA system will
pass through the desirable and undesirable states but will avoid the
final, terminal state.

The Figure 5.31 shows the learning in the CAA SAE components in
an experimental run, in fact the one shown in Figure 5.29 above,
where we have nonzero initial conditions. As we can see the CAA
starts with genetic knowledge saying that all the SAE components for
the state 10 are -1, meaning that state is undesirable. Consider the
states 1 and 9. The state 1 is defined by (8<0,w<0), and the state 9
is defined by (6>0,w>0). We restrict the state value backpropagation
process to one state back only, and we have the evolution of CAA
knowledge as shown in Figure 5.31.

79

m
o
i
()]
[o o)
N~
(o]
mn
<t
™
N
i
0
(]
-
o
e
0n

Gy
° £
5 P
mm.e
PN =]
o NP
3%
[

E E E 3 E £ £ E £ £ b
— - — -ttt o] e -t — - — — o et —t -t — -
[IS N B I R D R T R A A AR A U N TR NN AN NN N NN (N (NN A R A T Y RN A T A R A T T R A T TR IR
(o Ne o) O - 0O O ot i O - = (] — (N (N NN N NMmAN MmMmAN MmMmAa MmOMN
| 11 N I N I NN N A A D A N R D I A D D D A DO AN DN (S Y AN U Y M N D A M M |
(= NeNe) el ool o N ool (o NeNe] (oo Neo] [oNeNo [eNoNol o NoNe) (o NeoNa eNeNe] e NeNe) (o N el
(o Moo [N e N (ol ool o NN (o NoNwo OO0 [oNeoNe OO0 (oMol (e NeoNe) OO0 [NelNe
o N e oNelNoel [eNeoNe [eNeNe (=l e N o) [NelNe (= Nele) (ol eNe] [N o Ne (oMo No) (= NeNeo] (o NelNo)
[oNeNel [oNoNe] (ool el O 00 loNoNe] OO0 OO0 OO0 000 [eNeNe] [oNoNe] OO0
(o= N (o NoNe) eNeNo] 00 (=N o No [oNoNe] (oMo No [eNeNe o000 [=NeoNe oMo No] [oNeNo]
[=NeNel (ol ool O0O0O0O 000 (oMo Ne (o NeoNal [oNeoNo] (o NoNe] [N e N [= N e Ne [oNeoNel oNoNe]
[NeolNo) [oNoNe) (oNeNel (ol oNe [oNeNe) (e NoNe [N o N o] OO0 [oNoNo] [eNeNo [oNoNo OO0
(& I} () (] [0) () () Q Q Q Q () [)]
~ B0) 0 LT ST} 0 =) %) =) %) 1] (=2]
58 .8 % .8 % ¢ % 3 .3 % _§ &3
o - e J] < fc Jae] fc Jar] z —~ e 3> Xz —~ -] < 3]) - =
(T3 [T] [T [T QX [T [T 3 (TR 3 [Tl Q2 [T = I
gm 2 0 2 0 S 0 2 0 [=J} s 0 g8 0 2 0 2 0 =2 0 .m.u.O
g g g g g g g 8 g g g % g
i o
n (=] bl b~ (@] -t o (o} (3} -t (o]
™ < mn (3] ™ < N ™ W [s¢] [Te]
A
o
-~ (3 ™ < [Te] w ~ [0 o] o o L
— -

Figure 5.31. Experiment in pole balancing: the learning process

80

3 T3

T 3

3

3

As Figure 5.31 shows, the CAA is searching for policy : "do LEFT in
state 1 and do RIGHT in state 8". In mathematical terms, it is
searching for solution in the form

“WErr ;17 max LA

(5.35)

Wercht, 9 = e W, o

where wa j is the SAE component (weight) of the CAA matrix.

And it finds that solution after 10 trials.

From the Figure 5.31 it is clear how the CAA method for learning
in stochastic environment works. Only the SAE components of the
states leading to the terminal states are updated according to the
CAA learning method. In other words, only the vicinity around the
terminal states are learned, all other space is Jjust wandered
randomly. In the pole balancing problem experiments which we carried
out in 1981, it was shown that is enough to learn that the terminal
states should be avoided.

Let us note that the pole balancing solution using the CAA
controller withn the ANW group was done before the AC solution. In
fact, when the experiments described above were performed, the

" development of the code for the AC controler has not been started

yet. Together with Chuck Anderson, under supervision of Andy barto,
we produced the above result. We must admit that we did not know the
theory how it was done. Now it is easy to explain. Then it was only
important that it works, somehow.

In short, the limited value-backpropagation method which we used,
proved successfully for the pole balancing problem. We believe that
is can used also in other problems of learning in stochastic
environments.

5.7. ANOTHER EXAMPLE OF A CAA ARCHITECTURE

In section 5.5. we described in detail an example of our generic
CAA architecture. We used the described architecture in our
experimental work described in the previous, 5.6, section. Now we
will describe another example of the CAA architecture which we
considered but which we did not experimented with in 1981. Figure
5.32 depicts the architecture.

The CAA architecture on Figure 5.32 [Bozinovski 1981b] takes
advantage of computing supremum on each input and output. If the
numbers which CAA deals with are real numbers, or from a totaly
ordered set, then supremum reduces to maximum. So we have CAA
architecture with controlled maximum computation on each input
(situation and teacher 1input) and each output (action and
state-value output). The controling signals cl through c4 decide
whether the maximum selector will multiplex the value of the maximal
components of only its existence in form of binary value 1 and O.

81

The input maximum computers are used to orthonormize input signals.
The action output computes the existence of maximum of sums, and the
emotion output computes value of the maximum of SAE components in a
single column, since input vectors are orthonormized. So the main
difference between the CAA considered before and the one shown on
Figure 5.32 is the state-value computation.

Xy Xa -] %y
Co 'SUPREMUM DETEKIUOR A
U1 FAL .
1 S 1
] S
= —y Wy, e T SO =T -J-::> 2—1—> .:(1_9
U — & —::é:-l g
2 ﬁ _ f—
N
vl I I O I N S = |
= 23 Pl - - P taMH R S 2y =12
ol = | 8
= ,
2 - : : =
Uy | W : : : =
I = su.| £y
w —»‘HNI— NNZ—. « . -—JNN""TE N 3 —i—}
||
& , [
C3—>{' SUPREMUM DETEKTOR 4
Ky K2- KN

Figure 5.32. The greedy-emotion CAA architecture
(Figure from Bozinovski 1981;
Drawing software written by Rich Sutton)

The state-value in this architecture is computed "in greedy
fashion",

= = .o (5.36)
Vi “%X{wak} , a=1,..,n

We will not talk here about this 1981 version (we can name it
greedy-emotion CAA) of the CAA. But, it will be of interest in the
next chapter where we compare our CAA with some later proposed,
dynamic programming motivated learning methods.

82

3 3

T3

3

3 3

3

8

5.8. USING ENTROPY IN MARKOV DECISION PROCESSES

In this section we will discuss the usage of entropy as a measure
of learning, which we have done in our experiments with the CAA
architecture.

In optimization processes it is convenient to use an optimization
function which will have a physical meaning. Such a function makes
the optimization process more intuitively clear. In neural network
resarch, the energy function has become popular with the work on
Hopfield networks (Hopfield 1982) and Boltzman machines (Hinton, et
al. 1984, 1986). However, we do not believe that the learning
process should be explained in terms of energy. In our research we
used the entropy function, which is not widely used in neural
network resarch, but is well known in other areas, as communication
theory [Shannon, 1948, 1951].

We have used the notion of entropy in connection with learning in
state-valued graphs. The concept of entropy is connected with
transition probabilities between the states. If we consider the
state-valued graphs emphasizing transition probabilities, we actualy
consider the Markov Decision Problem (MDP). Let us note that usual
notions in the area are state space, control space, transition
probabilities, transition cost, optimal cost-to-go, optimal policy,
Bellman equation, value iteration, policy iteration, and discount,
among others. It is interesting observation that so far the entropy
seems not to be considered as a concept in MDP [Kemeny and Snell,
1960, White 1993]. In this section we describe how we used entropy
in MDP.

Two cases should be considered in computing entropy in dynamic
programming problems: 1) if transition probabilities are known and
2) if transition probabilities are not known. If transition
probabilities are known, then we have a classical MDP where the
entropy is relatively easy to define. If they are not known, then
the entropy should be computed from the behaviour of the agent. We
will describe the both cases and the methods we used for computing
the entropy of the dynamic programming problems.

5.8.1. COMPUTING ENTROPY WITH KNOWN TRANSITION PROBABILITIES

Figure 5.33 describes a graph with known transition
probabilities. It is a graph from one of our first experiments
with emotional graphs. In this particular graph, only one state is
desirable, and three states are undesirable. All the valued
(emotionaly colored) states are absorbing ones.

The method, which we call the reducing alternatives method is
based on the intuition that learning of where to go is actualy
reducing the choice of alternatives offered at choice points, i.e.
the graph states. So, to each state we assign an entropy measure,
and the total entropy of the system is the sum of all state
entropies. The entropy of an absorbing state is 0, since there is no
alternatives in that state.

83

Figure 5.33. A Markov Decision Problem Graph

The entropy measure assigned to each state is computed as [Shannon
1948]:

N
H, = -Z? 1d 5.36
i=1
where
Hj is the entropy of the j-th state

l\l‘j is the number of possible actions from the Jj-th state
pij is the probability of taking the i-th action in the Jj-th state
1d(.) = 1og2(.)

The total system entropy is

m

H=Z2H . (5.37)
J=1

84

T3 31 T3

3

~

In the example above the total initial entropy is

H(t=0) = ~(H,(t=0) + Hy(t=0)+ ...+ H, (t=0)) =
= —{[(1/3)1d(1/3)+(2/3)1d(2/3)1+ [0] + ...+ [0]} = (5.38)
"= 17.45 bits. .

Now, let a CAA agent enter the graph at the starting state 7,
which has initial entropy

H7(t=0) = -3[(1/3)1d(1/3)] = 1.59 bits (5.39)

and let it choose the action which will lead it to the state 8 which
it realizes is undesirable. Due to its learning ability, the CAA
agent will reduce the number of alternatives from state 7: it will
have two instead of three. Let the two alternatives be equiprobable.
That means that in the next iteration the entropy of state 7 will be

H7(t=1) = -2[(1/2)1d(1/2)] = 1 bit (5.40)
and because of that the total system entropy will be
H(t=1) = 17.45 - .58 = 16.87 bits. (5.41)

Due to a learned fact about taking action, the entropy has
lowered. Each iteration the entropy will be lower and lower, having
its minimum when the CAA agent has learned a path to some goal
state. The entropy is usualy not zero, since usualy neither all the
states are visited nor all the actions per state are tried. If the
entropy is zero, it means that a total action taking policy, over
all the states, is established.

Note that the transition probabilities are changing during the
teaching process, with respect to the CAA agent involved in
exploration learning. In each run the CAA agent is facing a new MDP
with different transition probabilities. The intropy endeed measures
the stochasticity of the agent’s policy in an MDP.

5.8.2. COMPUTING ENTROPY WITH UNKNOWN TRANSITION PROBABILITIES

A more intersting case for the CAA and other learning agents in
MDP environments is when the transition probabilities are not known.
It includes situations when we have nondeterministic environments,
like the pole balancing problem; that also includes stochastic
environments, when the environment responds with a new situation in
a probabilistic manner.

If the transition probabilities are unkknown, we use a method of
computing the entropy from the behavior strings, as computing the
entropy from strings of some language [Shannon 1951]}. The strings
are computed during the experiments with CAA agent, solving the
real-time state-valued graph traversing. Here we will describe an
our experiment where behavioral strings are obtained and the entropy
is computed.

85

Figure 5.34 shows a graph used in the experiment. The valued
nodes are represented by uppercase letters and the neutral with
lowercase. The same idea is used as in our work with teaching
languages, as we talked about in the third chapter.

- a ——d
— .
—— _—
— —
_ e
L Ll
~——
e
Tg ' K
] o .o 0.0
) iy

Figure 5.34. An experiment with CAA in a graph traversing problem
with unknown transition probabilities

The table 5.1. shows a series of learning trials in a CAA
learning experiment.

Table 5.1. Behavioral strings obtained in a CAA learning experiment
in the graph shown in Figure 5.34

trial behavioral sequence

adadcececfcecehecfgfcecfgK-
ababadadcfgfcfcfcehecececfcehececehiJ+
abcececehecehecfgfcehececehlJ+
abadcfgfgfcfceHlJ+
adadabadcfgfgfcEHIJ+

abCEHIJ+

adadaBCEHIJ+

. ABCEHIJ+

ABCEHIJ+

0. ABCEHIJ+

HBOXNOORLONE

Having these strings various measures can be used for observing
the learning process. A convienent measure is the first order Markov
chain entropy

mm
HM = =X p(x,)p(x, /x,)1d(p(x /x.) (5.42)
Jk J k'J k' "J
86

™3 T3 T3

o

3

-

where p(xJ) is the probability of appearence of the j-th state and
p(xk/x J) is the the conditional probability of appearence of the k-th
state after the i-th state in the behavioral string.

FTigure 5.35 shows the points of the entropy curve obtained for
the experiment shown on the Table 5.1.

HM
80 0eres Gueeres Oucenasererse G oerses Oosoens Qsseses Qunecse Ososas O senase Ourasns Qvevoo O sosscn O oaroe O uoeies O sseons O snsvne @ oreesn Qoonene O
O vereee Qorvare O roceee O sesoee O eooves O sesoes O osose Oo weesse Oesenee O veenee O scases O socees O sovoee Qocance Qoseses Ooveone Qooasse o ceenee @
TS50 eseese 0 . ..

.

@

o

-]

,.0.

o
R R EE
OOOOOOOOO
iiiiid
°°9°99999°?
IEEEE RN

- - SO U R - Y T e S
©nrrrrs O veveos @ verros @ ensene © vreres O sesree @ resrre O ressss Qsavses @ srrrme @ sssses O srssee O avvres G sessas O om
4500w 0. - Qe Drm Ot Qvtr @ oree Qe Qo Qe Qurees Qreeer 0o O
@i ©urrrrs ©eerres O oeress @ veres © svrses O serses O seeres Orsves Qovacoe Qsesses O soos O s Ovores @

o B0 0eerees Ournene Orrenee O cernco Ooosuos Qveors Qevense O assnse O rasews @ omoom Oenoe Ostvss Oussses Oosnree O ovses Qanecne O
eeeen @ ovanse Qsseese O ossos O sosees O sevece O vovere O essore Qsorrse Qssrses Qroncse O ceveve O osseea O

vere © sssess @ eoreee O seesee O sscsss O sseses Qosooms Qosease Qeveves O oreces Qosases O voncos Ooosoee O
veme Qesssee O nsoses O sessse O orssee O oovave O cosvss Qasasse O cocoes O vessse Qooence Oovnone Qosacee O

eee O esncos Qasears Qoveres Qosvese O ascane O oonses O © eeeses Qocoses Qevsere O oevrae O ronees O acosss O onnoes Qrovane
cere Qrocers Q sasces O emveae Ooveses O oscans Oocasoe Qosvnee Oooanne O ceconeffffercacs Oneases Ooesane O

eeee @ vecres Q esssen O secose O rvsses Qasosce Qovnavs O rroars O sone -

ease @ eesves O oevors O ovanes Qonvons Gasoses Geerese O e Qerrene O
ve Qecases Qovonoe Ooaenss Ooasore Qoosers G oonvee Qsoecee Ooovoon o...... Oereser Qrseres Qovorse JRoves
e @ oeeess O ssanes O oavers Q oensen O oesora Qosvoss O ovease Qoossce Ouseres Oosnoes Qooonen o v—ean o cesses Qoonses Qonecon

.
P- Y S SRY: FUISIY SUINIY SHENILY: JUSIIRY . PSRy Jusny . SRSy . Jasssny . PEREY . DESSSRY. PR - PRY - LAY Ry A St]
05 [Y. o evors O osesee @ osases Osoceee Qoonves O oveere o......o......o....- Qsssces Ooseoes Oosvoce O ccsnee O voeves O uososs Osoccss Osoecse Ooveres O
verses @ acaree Qeevnse Qeennes O oesree Qoorose O voevee O omsons @ sancre O recose O soese Qoosose Ovovone Oossese Qoncace Qoorves Qoresce O
Qessann o...... O reeves O ososss Qaseoa o...... - JEORCU- JURIAY- JRE RNy X Y- PR EERT-PRRE RERLRES |

1 2 3 4 5 6 7 8 9 10 trials

Figure 5.35. An entropy curve as a learning curve

Let us note that the table 5.1. gives motivation for other
definition of learning curves. For example the table 5.1. can be
viewed as a (horizontaly shown) histogram curve. Such a curve
converges toward a number given by the length of the learned path.
Also, the ratio of the lowercase letters and uppercase letters can
be a learning curve. However, a learning curve is terms of entropy
is convenient for its broad sense interpretation, as describing a
process which organizes itself. The smaller the entropy, the more
organization is in the system. If the system is undergoing the
process of behavioral self-organization then the entropy is a
measure of progress of that process.

Let us also mention that the entropy (as well as energy) is an
optimization measure, rather then a solution measure. It does not
say by itself whether a solution of a problem is found: it just says
that the process is converging to some behavior. We should know from
some other assumptions that if the process converges, then it
converges to a desired (expected) behavior. So, we have to have
assumptions or knowledge about the convergence issues of learning
processes when we use entropy as a measure of learning. The issue
of convergence will be discussed later.

87

5.9. CAA AS A NEURO-GENETIC AGENT:
SOME ISSUES ON THE GENETIC ENVIRONMENT

The genetic environment is an important concept in this project
and_a salient feature of the CAA architecture. Here we will discuss
four issues concerning the genetic environment: 1) having different
species due to the different species vectors 2) the export of the
behavioral environment model to the genetic environment, 3)
optimization processes in the CAA using the genetic environment
concept, and 4) distinction from the genetic algorithms.

5.9.1. SPECIES VECTORS AND SUBJECTIVE GRAPHS

Since the CAA system does not receive external primary
reinforcements, the internal primary reinforcements are defined by
means of initial values of the SAE-components in the matrix W. The
initial values are defined as species vectors [Bozinovski 82b] of
the system. The initial values will affect: 1) column vectors:
initial internal (or emotional) preference toward some environment
states, and 2) row vectors: being in some state state, preference
toward some actions eligible in that state. Figure 5.36 gives an
example.

EHAVIORAL ENVIRONMENT [A e RN e

k = envir (j,1i)

Figure 5.36. The initial definition of the
primary reinforcing (goal) states

Figure 5.36 shows a case where initial values are chosen such
that the second situation (which represents the second environment
state) is denoted as desirable situation, whereas the m-th situation
is undesirable. The desirable situation is a goal situation whereas

88

T8

3

the undesirable one should be avoided. From the Figure 5.36 we also
see that only the columns are affected, so there is no preference
action. However, we can imagine that from the genetic
environment could come an arbitrary genome, which is a result of a
previous learning taken place in some other CAA systems.

toward some

fn our experiments we used species vectors only of the type shown
in Figure 5.36: all the column vectors having equal SAE components
within themselves. Thus a goal states in the environment are defined

S1 internal represen-
and behavior

tation

'a)

steps

in a

trial
60 4

50

D

30

20

10

objective graph

52 internal represen-
tation and
behavior

Different behaviour in the same environment

o §1
+ 82
o
Al
+f bt L 1 g e LUt -
¥ 04 A A

j kX/ .

1234567383901234567380970°

1

trials

2

Figure 5.37. Having different species in the same environment.
a) objective environment b) the same environment represented in the
and the solution found, c) the same environment
represented in the species S2 and the solution found d) the learning

species Sl1,

curves

89

with all the components being 1, and the states which should be
avoided with all the SAE components with values -1. No preference
toward the initial actions are given; the actions are initialy
randomly chosen. :

To ilustrate a usage of the concept of species vector, let us
describe an experiment. Figure 5.37 gives the illustration. -

Figure 5.37 shows an objective graph (a) and two subjective
representations of the same graph due to the species vectors
imported in the two CAA systems, S1 and S2. It is a typical dynamic
programming problem stated for the CAA "species".

Searching for a solution, the species will exhibit different
behavior in the same environment. The species S1 is learning to go
toward a goal state avoiding the unpleasant states. The species S2
in addition of avoiding the unpleasant states will optimize toward
acquiring maximum pleasure: It will learn to pass through a
nonabsorbing desirable state along the way toward a desirable
absorbing state. ’

The point is that both the CAA architectures are the same; the
only difference is the genetic knowledge imported from the genetic
environment which makes a difference in the behavioral environment.

5.9.2. A TWO-CHROMOSOME GENOME CAA:
BUILDING A MODEL OF THE BEHAVIORAL ENVIRONMENT

Within the framework of genetics, it is natural to suppose that
the exporting genome can contain knowledge other then the
state-action pairs, as is provided by the species vector W(0). We
can assume that a CAA system can be extended to develop some other
knowledge to export in the genetic environment. For example, an
extended CAA system can build a model of the environment, i.e. the
mapping agent-action--environment-reaction.

Figﬁre 5.38 gives a procedure of an extended CAA system, which wve

denote CAT (Crossbar Adaptive Tensor) system. The procedure uses the
wait/post primitives of parallel programming.

90

m

-3

3 T3

T4

4

procedure CAT
repeat
begin
import chromosome vector s(0), if given.
import chromosome vector w(0), (must be given)
chose x(0)
repeat
begin
compute action: y(t) = action(w(t),x(t))
post y(t)
remember previous step: (w,x,y)(t-1) = (w,x,y)(t)
next time step: t=t+1
receive consequence: wait x(t)
let i=indmax y(t-1), J=indmax x(t-1), k = indmax x(t)
build environment model Sij(t)= k

evaluate emotion: v(t) = statevalue(x(t),w(t-1))
learn consequence wij(t)=wij(t—1)+xj(t-1)yi(t—l)v(t)

until endcondition
export genome w(t), s(t)
end

forever

Procedure environment

repeat
recelve agent action: wait y(t)
compute next situation: x(t) = envir(x(t-1),y(t))
post x(t)

forever

Figure 5.37. The CAT computational procedure

The CAT maintains two matrices: 1) for learning its behavioral
policy and 2) for learning model of the environment. Both the
matrices are exported as chromosomes. The CAT system does not take
advantage of the environment model. It is Jjust a transformer of
knowledge to some other system which will receive that model from

the exported chromosome.

5.9.3. CAA ARCHITECTURE AS AN OPTIMIZATION ARCHITECTURE

Connection to the genetic environment enables the CAA to perform
optimization over the set of learned policies in the behavioral

environment. The basic procedure is the following

—= CAA optimization procedure
r_' define a measure of goodness, J(.).
choose initial value of goodnes, G.
do forever:
produce new behavioral policy, m, using CAA learning method.
measure the goodness, J(wu).
if J(w) no_worse_then G then store G ¢« J(w) and export m.

91

The CAA optimization procedure described above is generic; it
performs search over the set of possible solutions learned by the
CAA learning method. It produces solutions to a problem and measures
its goodness in one variable, G. The solutions are generated
forever, but are exported to the genetic environmet only if the
generated solution is better or equal to the previous best. So at
any time, the genetic environment has the best offspring the CAA was
able to produce. Since the process is forever, and the CAA learning
method has no restriction in finding any solution, it will eventualy
export the best possible solution, and will continue to do so
thereafter.

For example, if the CAA architecture is used to find the shortest
path in a graph, then the measure of goodness is the length of. a
path, and the operation no_worse_then becomes the operation
no_greater_then (or "s"),

As a variant, insted of using selection criterion
"no_worse_then", CAA can use criterion "better_then". In that case,
the best solution will be prodiced in one copy only, and the CAA
will stop producing solutions. On the basis of that a criterion can
be established so the CAA is removed from the behavioral
environment. As we can see the whole CAA concept has its issues in
the artificial life research, and the CAA can be viewed as an
artificial life agent.

The measure of goodness in CAA is defined in the supervising
unit. Is a part of the exporting strategy of the CAA architecture.
However, we can admit that not always the measure of goodness is
defined. Or even if it is defined, it is not applied for some
reason. Does it make sense to talk about optimization even in that
case? It seems it does, and we can imagine two processes of
optimization inherent to CAA.

1) Offsprings selected by the CAA. If the measure of goodness
(optimization criterion) is known, (and is applied), then the
optimization process gradualy converges toward optimal solution
among the possible solutions of the problem; the offsprings of the
CAA are always the best solution found up to the considered moment.
The CAA knows when the solution found is worse then the previous
one.

2) Offsprings selected by the environment. If the optimization
criterion is not known, (or the CAA is not applying it) then the
optimal solution is found by means of genetic algorithms: CAA
generates solutions in genetic environment that are used by some
species which test the solutions in the same behavioral environment;
the optimal solution genome vector will produce an optimal behavior
of some offspring in the behavioral environment, and has better
chance to survive then the other offsprings of the solutions
generating CAA.

In short, we would like to stress that the CAA is an inherently

optimization machine, which is a feature due to its connection to
the genetic environment.

92

-3

T3

3 3 73 3

3

3

—3 3

5.9.3.1. Convergence Issues

" Closely related to the issue of optimality is the issue of
convergence of the solution process toward an optimal solution. Here
we will discuss that issue in connection with Dengenos and Dragons
environments, for which CAA was originaly designed.

Our discussion on this issue will be in the form of unformal,
arguing proof, that the CAA can produce an optimal solution in such,
deterministic environment. In the next section we will adress the
issue of finding optimal solution in stochastic environment. Let us
first define all the relevant element in the discussion.

Problem Definition

The Dungeons-and-Dragons environment

The environment is given by a deterministic state-valued graph VG
with n nodes (states). From each node a number transition
(alternatives) can 1lead toward other nodes, the number of
transitions (fan-out) being between O and m. The graph is
arbitrarily connected and arbitrarily directed (some routes can be
directed, some undirected). In VG is defined a set G of absorbing,
goal nodes, with assigned positive values. Also it is defined a set
U of absorbing, undesirable states, with assigned negative values.
One state is chosen as a starting state, S. Also, there is no
regularity for placement of the desirable and undesirable states. It
is assumed that a path exists which connects the starting node with
some goal node, and a path with that property is denoted by P.

The CAA agent

It is understood that the CAA agent is chosen such that it has a
capacity to understand the above described environment. That means,
the CAA has at least n columns, and at least m rows. Also, the input
genome vector is chosen to be a surviving one for the described
environment, i.e. which gives appropriate distribution of the
primary drives with respect to the given environment. That means,
for each goal state, there is a CAA column with all ones, and for
each undesirable state there is a column vector with all components

with values -1. However, the CAA has no knowledge about the graph
connections.

The optimality task

The CAA agent task is to learn to find a path P, and to produce
the shortest path Pmin.

Methods Definition

The SAE state desirability backpropagation method

The state evaluation method is the SAE method. A desirability of
a goal state is backpropagated and stored as desirability of the
action which was taken in the subgoal state in order to reach the
goal state. If the (sub)goal state is the k-th state, and the
previous state was the j-th state, and the action taken was the a-th
action, then the component waj will receive the k-th state

desirability. If desirability of the k-th state is 1, then waj = 1.

93

The backward-chaining solution finding method

The method which CAA is using, is the backward chaining method.
It has two phases: 1) search for a goal state, and 2) when a goal
state is found define a previous state as a subgoal state. The
search 1is performed using some searching strategy, in this
discussion random walk. When, executing a random walk, a goal state
is found, then a subgoal state is defined, and it becomes a new goal
state. A proces of moving from a starting state to a goal state is a
single run (iteration, trial) through the graph, since the found
goal state is absorbing one. The next run starts again from the
starting state, and will end in a goal state. In each run a new
subgoal state is defined. The process finishes when the starting
state becomes a subgoal state. That completes a solution finding
iteration.

The CAA solution optimization method _

The opmizatin method is based on assumption that the criterion of
goodness is known, and it is minimum path length. The solutions
found are tested against the smaller length found so far, and are
selectively generated.

Now when we have described the neccessary notions;\we can state

The CAA convergence theorenmn.

Given a CAA agent, which implements 1) the SAE state desirability
backpropagation method, 2) backward-chaining solution finding
method, and 3) CAA solution optimization method. Given a
Dungeons-and Dragons environment by the V6. The CAA will produce the
path Pmin with probability one.

Proof of the theorem:

The proof will be given as a set of ehxaustive arguments:

1) Has CAA chance of visiting each state during the initial
search?. The CAA has a random walk searching mechanism implemented
as a random number generator with unform distribution. That will
provide an equiprobable choice of actions in a given situation, 1i.e.
from each state every state is reachable equiprobably during the
initial search.

2) Will CAA find a goal state? Since there is a path to a goal
state by assumption, there by argument 1), there is probability p
that a goal will be found. As number of steps in a run approaches
infinity, the probability of finding a goal state approaches unity.

3) How the convergence process is observed? By observation of the
narrowing the search space. In each iteration at least one state is
eliminated from the search space.

4) How an action selection process, from initialy random choice
is transformed to a deterministic one? By SAE state desirability
backpopagation method. If a state is a (sub)goal state, the action

94

ﬁw‘?

l.v_w_»'

3

3

which has connected it to some previous state is valued by the value
backpropagation process. The value that action receives is above the
value that random generator produces. Depending of the value
received, +1 or -1, the action will be determined always to be
chosen, or respectively, never to be chosen again. If the value was
-1,_the action process will still be random, but on smaller set of
possible actions. If the backpropagated value was +1, the action is
later on chosen deterministicaly.

5) Is it possible that several subgoal states are formed from the
same goal state? Yes, it is. CAA can approach a goal state from
different states in different iterations. Each approach will create
a separate subgoal state.

6) By argument 5), after several iterations there will be a
several separate chains of states which will lead from (same or
different) goal states toward different directions in the graph. Is
it possible that a loop can be formed so that a backward chain
toward the starting state is never established?

This is a crucial issue which needs more elaboration.
As the task is described, the only way the CAA not find a path is
to enter to a cyclic path, to an infinite loop. We will show that no

loops can be learned by a CAA system. The illustration of the
problem is given on the Figure 5.38.

l X, already subgoal state

—>|o, 0| W
||
Xy Xy
wah L—— o, o
«—> ‘A} goal state
T “bh
—>]0 _ 0
—| &

X already subgoal state
1

Figure 5.38. Avoiding cycles during the
CAA value backpropagation process

As Figure 5.38 shows, two alternatives can be chosen from the
state h, and if both are activated, a loop will be formed toward the
goal state, in this case the k-th state. But that never happens,
since iIf one of the action is chosen, the others are eliminated.
That is because of the greedy policy in choosing actions, which is
in the definition of the CAA system. The learned alternative will
disregard the other possible backward paths toward the state to
which the learned alternative is assigned. In the Figure 5.38, if
alternative a is chosen, then b is disregarded, and the possible
loop through the I-th state is disabled.

7) When a learning epoch is completed? When the starting state
becomes a (sub)goal state. That means that a path with values
(subgoal) states is established toward a goal state. Then the memory
of the system containing behavioral policy stored in the SAE

95

components is prepared for exporting to the genetic environment.

8) How we know that the optimal solution will eventualy be
produced? Whenever a learning epoch is completed, the obtained path
is checked in its length and compared with the shortest length
obtained up to that epoch. While the new learning epoch always
starts, the solution is generated only if it is now worse that the
previous one. Since solutions are continously generated, and since
are generated randomly, then as time approaches infinity the procees
will generate all the possible solutions. Among all the possible
solutions, the best solution is contained with probability one.
Since CAA will recognize and store the shortest path length, it will
produce the optimal solution with probability one. Once exporting an
optimal solution, all the solutions exported thereafter will be
optimal solutions only.

That exhausts all the relevant issues and proves the convergence
theorem. We believe that this nonstandard arguing proof will be
of interest to the reader interested in issues around the optimal
policy finding in valued graph. The process described proves how CAA
can perform, in real time, by doing, search for an optimal solution
using only one memory structure, the matrix of SAE components.

5.9.4. DISTINCTION FROM THE GENETIC ALGORITHMS

The communication between a CAA system and both the environments
it is connected to, can be depicted as shown in Figure 5.38.

GENETIC
ENVIRONMENT

N
R\\\\ AN z/////
genomic AN \\\u behavioral
communication \\\\ communication
IIIIIE!HIIIIIII

Figure 5.38. The CAA agent processing and comunicating with
a genetic and a behavioral environement

As Figure 5.38 shows the CAA can be viewed as an information
converter between the genetic and behavioral environment.

Let us note that Figure 5.38 can also be viewed as a classical
setup in research in genetic algorithms. The difference which we
would like to stress is that CAA uses the idea of genetic algorithms
in reverse direction. Instead of performing stochastic genetic
operations as mutation and crossover, and export a new species in
the behavioral environment, the CAA applies the learning operators
and exports the obtained offspring chromosome back in the genetic
environment. So, the CAA architecture effectively demonstrates the

96

3 3 '3

4

idea (e.g. Hinton and Nowlan, 1987) of speeding up an evolution
process due to learning.

5.9.5. SELF-REINFORCEMENT UTILIZING THE GENETIC ENVIRONMENT

_ht the end of this chapter we would like to emphasize that the
genetic environment enabled the CAA to be viewed as a
self-reinforcement learning system.

So far, the learning system research has been maily concerned
with the behavioral environment. The notion of self-reinforcement
was considered as marginal, assuming that one can always view as the
reinforcing mechanism to be either part of the agent or of the
environment. That is not a case with the CAA. The CAA architecture
has reinforcing mechanism included in its memory structure. The
reinforcing mechanism of the CAA is based on the SAE components, and
they cannot be considered as a part of the behavioral environment.
As we see, they are unseparable part of the CAA agent as a
self-reinforcement learning system.

This report is indeed an attempt to provide a theoretical
framework for the self-reinforcement learning agents which we
believe will be of interest in the reinforcement learning theory and
in exploring the notion of self-learning in general.

97

© 3

CHAPTER 6
I

RELEVANCE OF THE CAA TO THE CONTEMPORARY ISSUES OF
THE REINFORCEMENT LEARNING THEORY

Here we will discuss some issues about the relevance of the work
on our Crossbar Adaptive Array architecture to the contemporary
reinforcement learning theory. Special attention will be given to
the relation with the Q-learning, a contemporary widely used method
in delayed reinforcement lerning. We will argue that it is actually
the CAA method, Jjust rediscovered 8 years later.

This chapter is result of our research on the contemporary issues
in reinforcement learning and relevance of the CAA system in that
respect. Although we tried to be impartial, we are aware of the
fact that it is still a personal evaluation of one’s own system
design, and it 1is neccessarily subjective. We believe that an
impartial reader will benefit from this analysis, and will be able
to judge its objectivity.

6.1. AFTER 1982...

Our work on CAA took place mostly in 1981. Part of the work on
entropy and pole balancing continued after that. The reports on CAA
work was made through the internal reports given in the Appendix of
this text. Two short reports were published, one on the CAA method
solving the maze learning task and the other on learning in loosely
defined environments and solving the pole balancing task. Both the

tasks were stated by the ANW group and all the reports were given to
the members of the ANW Group.

Since then, several influent research report appeared. Firstly,
the paper of Barto, Sutton and Anderson (1983) on Actor Critic
Architecture and the solution of the pole balancing task using the
Michie and Chambers (1968) control space function approximaton.
Other very important report 1is the Sutton (1988) report on
temporal-difference learning method. Finaly, and most important for

g8

our research, appeared the research report of Watkins (1989) as his
PhD Thesis. The two former mentioned reports describe methods which
are remarkably different that the CAA method. Even the AC
architecture which was in process of development in 1981 parallel to
CAA architecture, is remarkably different.

Watkins (1989) proposed the wellknown Q-learning method which
confirmed the CAA method proposed eight years earlier. His method
works also with one memory structure and uses the SAE components as
principal computing concepts. In short, it is interesting to explore
the apparent similarity between the two methods. In the next section
we will give our observation about the relation between the two
methods. In short our conclusion is:

6.2. Q-LEARNING IS A CAA LEARNING METHOD

In his Ph.D Thesis Watkins (1989) proposed a method denoted as
Q-learning method. The importance of that method for the
reinforcement learning and dynamic programming is comparable to the
importance of the Backpropagation algorithm [Rumelhart, McClelland,
and the PDP group, 1986] for the neural multilayered supervised
learning. Both the events have managed to turn the attention to a
great number of researchers for the mentioned areas.

Even not published, the method was immediately recognized as
important solution method for the delayed reinforcement learning
problem (Barto, Sutton, Watkins, 1980; Sutton 1990). The work is
influenced by the Dynamic Programming and the Temporal Difference
framework. Alhough there was a work suggesting relation between
dynamic programming and reinforcement learning earlier, (e.g Werbos
1977) Watkins did it in more explicit and evident way.

This section will examine the Q-learning and its relation to the
CAA architecture. We will also present a taxonomy of various
Q-learning algorithms in contemporary dynamic programming
reinforcement learning theory, as a result of our research.

6.2.1. The problem: Credit-assigment

Let us first describe the problem which motivated the proposition
of the Q-learning method as a solution.

Given an environment which responds with a reinforcing reaction
only occasionaly, and not after every action an agent takes in the
environment. Construct a learning agent which will learn a policy in
such an environment.

This problem is known as (temporal) credit-assigmnet (Minsky
1961). An action the agent takes in the step t, will be evaluated
(reinforced) by the environment several steps (and actions) later.
In the meantime, the agent is faced to make decisions for other
actions in several stages, until a reinforcement is (eventually or
finaly) evident.

This is the same motivational problem which produced the CAA
architecture.

99

J—

4

6.2.2. The approach

As [Watkins 89] emphasises (p.44), "Dynamic programming is a
method of solving the credit-assignment problem in multi-stage
decision processes. ...The basic principle of dynamic programming is
to solve the credit-assignment problem by constructing an evaluation
function." -

This 1is the same approach as CAA aproach: we introduced
state-evaluation function with no knowledge of dynamic programming.
We also assigned interpetation of the evaluation function as
emotional entity, desirability being in a state.

Dynamic Programming (DP) [Bellman 57] is actualy a theory which
is concerned with graphs (state space in AI terminology), nodes of
which are assigned a value (usualy a real number), known as value
(V-value) of the state represented by the node. V-values The concern
is 1) to find state-action pairs (so-called policy) over the (part
or the whole) graph 2) which will create a path from a starting
state (or each state) to some goal state, which will optimize some
variable known as return. The return is a function of state values
visited along the way and rewards obtained at each step along the
way. The graphs considered are usualy representation of the Markov
Decision Problem (MDP), where each transition between states is
given a probability value; they are usualy loosely defined, i.e.
they can have manu different arcs between the same nodes. As
difference to other MDP methods, DP method works backwards, in
searching for solution.

When we took the challenge of solving the credit-assignment
problem in 1981, we took a metaphore for representation of the
problem: The computer game "Dungenos and Dragons", and the grid
world of from its dungeons, example being the one shown on Figure
5.33. We constructed an emotional graph giving values to the states.
We also assigned probabilities to transitions, as shown in Figure
5.33. And we constructed an agent (CAA) for that, classical discrete
dynamic programming graph. Also, we solved the problem using the
goal-subgoal approach, i.e. working backwards. In other considered
problem, the pole balancing, we considered loosely defined graphs
and working backwards we solved that problem too. So we worked od DP
and MDP, although without knowing that.

In MDP, it is usual that in addition to transition probabilities,
actions are assigned an immediate reward values. We did not take
into account the immediate reward. We did it to emphasize that the
CAA system does not need it: it is an external-reinforcement-free
system, and can learn without the external reward, and rely only on
the rewards received from the state values. However, in .our
philosophy, we do accept immediate cost, which 1is computed
internaly. And in our model we assumed zero internal cost per action.

6.2.3. Q-values

The problem is also how to represent the state-value function in
the agent. (Watkins 89) introduced the notion of Q-values for
representation of the state-values.

The Q-value is a value of a function Q(x,a) where x is the

100

current state and a is an action assignet to that state. It is a
memory value. For each state x there are [A(x)| stored Q-values,
A(x) being a set of all admissible actions from state x.

In short, Q-values are the SAE components of the CAA matrix. To
compare the notation we just write

wax= Q(x,2)
In words, the Q-values are, exactly, the CAA SAE components.

The notation Q(x,a) is widely used. If we want to represent the CAA
associative matrix in Q-notation it would be as in Figure 6.1.

ENYIRONMENT

a

a

Q(Xl,al) Q(xj’al) Q(xm.al) o =

— Q(xl,ai) Q(xj,ai) Q(xm,aiJ ->a.1———->§

Q(Xl.an) Q(Xj.an) Q[xm.an) —)an———-:-g
V(xl] V(xj] V(xm)

state value backpropagation

v(x)

Figure 6.1. The Crossbar Adaptive Array in Q-notation

This representation is often called Q-table by the researchers
dealing with Q-learning.

Further in the text we will use the Q-notation and our W-notation
interchangeably, as synonyms. The W-notation is more appropriate for
the nature of the CAA architecture as a neural network architecture,
since W associates to classical notation for incrementable weights.
Other authors [e.g. Dean and Wellman 1991] also use the W-notation,
but in W(x,a) form. Also, as analog to Q-values we will sometimes
use the term W-values instead of SAE components.

6.2.4. Q-learning: A special case of the CAA learning method
Introducing Q-values Watkins (1989) proposed a method how they

can be updated and backpropagated. In short, he used a CAA
learning method.

101

P

o

Let us recall that the CAA learning method is given by the
following procedure.

CAA learning method
1) state j: perform an action biasing on SAE components; obtain k
2)_state k: compute state value using SAE components

3) state j: increment active SAE value using the k-th state value -
4) j = k; goto 1

This forth-back-forth procedure performed over the SAE components
is the CAA learning and value-backpropagating method (Bozinovski
1981, 1982). If we ommit the forth step of the procedure and
concentrate only on the functions computed, we can write the
following symboloc form the CAA method:

—= CAA learning method
state j: y = Afunc{waj} result y = i
aeA(j)
state k: v, = Vfunc{w, , }
k' bea(x) Pk
state j: Aw, . = Ufunc(v,) = Wfunc{w, }
ij K™ beack) bk
where a,b = (1,..,1,..n) and j,k = 1,..,m, and the functions Vfunce,

Afunc, and Wfunc are defined over the sets of components of the
column vectors, while the function Ufunc is defined over the state
values. All those functions are defined over the same matrix W. To
ensure random behavior, we state that Afunc computes a bias for an
action, not the action itself.

In what follows we will review several versions of the CAA
learning method. First we will compare Watkins’ (1988) version which
we denote as Q-CAA version, and our (1981) version which we denote
as NN-CAA version, emphasizing that it is a neural network version.
After that we wil, give a taxonomy of some other versions of the CAA
learning method.

Watkins (1989) wused the following specifications for the
above mentioned functions

——= Q-CAA version (Watkins 1989)

state J: y = argmax(w j} result y = i
aeA(Jj)

state k: vk

max {w,,}
bea(k) PK

state J: Wij = (I—a)wij + a(rij + 7vk)

102

where « is a tunable parameter, denoted as convergence rate. In our
theory it is a forgetting parameter (see section 2.5), which is
usualy used in the learning rules where memory decay is used. It is
important for learning in stochastic environments. The parameter ¥y
is so called discount factor, and is a parameter introduced in
dynamic programming. The rij is 1imediate reward, the external

reinforcement, standard feature of the external reinforcement
learning systems.

The NN-CAA version is defined as

—— NN-CAA version (Bozinovski 1981)

state j: y = argmax{w_.} + o{w_.} : result y =1
acA(j) al
state k: v, = neur {w_,}
k beA(k) bk
state j: wij = wij + Vi

where

}+ T {w

pi!?

neur {w,,} = sign(sum {w
bed(k) PK beA(k) P beA(k)

is the neural computation function, with threshold T as a function
of the current set of weights. Function T{.} modulates the
state-value backpropagation process. It is important for
solving problems in stochastic environments and also in
DND environments, where it serves as a warning function. The
function o¢{.} modulates the action generation process. It enables
the NN-CAA system to make exploration steps, regardless the value of
the W-values. In more general cases, function sign(.) can be some
other activation function, for example the sigmoidal one.

We can meke a comparison between the two CAA algorithms
observing each step of computaion, i.a. how they compute the
action, how they compute state value, and how they update the
memory components.

The action computation process is the same for both algorithms.
The Q-CAA algorithm does not use the function o{.} explicitely, but
it uses it implicitely. In NN-CAA it is result of the subsumption
architecture. In both cases, that function enables the agent to
behave randomly until it learns how to behave purposively. Explicit
introduction of the function ¢{.} in the NN-CAA algorithm enables a
more general exploration strategy then just a random walk.

The state-value computation in the Q-CAA uses greedy strategy and
NN-CAA uses neural strategy to compute the state value from the
W-values. The greedy computation in the Q-CAA algorithm has no
parameters, as difference to the NN-CAA. The neural computation

103

=

3

1"“‘—§

strategy requires the threshold as parameter function, and is task
dependent. The neural computation can generate a greedy policy, as
we showed in the previous chapter, and which we actualy used in our
experiments. It also takes care of situation in Dungeons—-and-Dragons
environments, or in some "walking near the edge”" environments, where
a warning should exist if a “"dangerous" state is ahead. This
function considers the problem of decision under risk, not
considered in Q-CAA version of the CAA method.

The memory update function of the NN-CAA vesion is a reduced case
of the more general Q-CAA version. The NN-CAA version does not use
the forgetting factor «. The factor a is the tunable parameter of
the Q-CAA algorithm, as is the threshold function T{.} for the
NN-CAA algorithm. The parameter 7 is an additional parameter of the
Q-CAA algorithm, which is used as constant. What is an important
conceptual difference is the external reward r. The CAA architecture
does not receive external rewards. However, it can compute internal
costs. So, for the CAA architecture the reward function r is the
internal cost for taking an action. Since in NN-CAA version we do
not assume internal cost per action, we have r=0.

After this brief comparison we can see that the Q-CAA version has
a tunable parameter in the memory update function and NN-CAA has
such a parameter in the state evaluation function. For both
parameters there is no defined procedure how they change: they are
both task dependent.

6.2.5. A taxonomy of CAA-method based learning algorithms

In the conteporary reinforcement learning research under the
notion of Q-learning method there is general feeling [e.g Lin 1993]
that:

The idea of Q-learning is to construct an evaluation function,
, Q(state, action) — utility
which will be used for evaluation of some utility, for each pair
(state,action) given that the agent is in that state and executes
that action.

In fact, the Q-learning method as proposed by Watkins, was also
assumed as a family of Q-learning methods [Watkins 89, p.97]. There
has been noted by other authors [e.g. Barto, Bradtke, Singh 1995]
that there are a number of Q-learning algorithms. So far there has
not been an attempt for presenting a taxonomy.

Here we will present such a taxonomy. We will emphasize that it
is a taxonomy of CAA learning methods, in which Q-CAA is a special
case. As axes of the taxonomy, we will consider the three generic
function of the CAA learning method, Afunc{.}, Ufunc(.), and
Wfunc(.} for action computation, state-value computation and memory
update computation, respectively.

A taxonomy tree for computing the action is given on Figure 6.2.

104

CAA-LEARNING_METHOD

—Afunc(. }

——| extremum|————| argmax(.) |—— Bozinovski 81, -
Watkins 89, Sutton 80

——argmin(.) — Moore 94

Barto, Bradtke, Singh 95,

——| Other ————— selected|— Rumery,Nirajan 1994

action
based

L——| policy |— Bradtke,Barto,Ydstie 94
based

Figure 6.2. A taxonomy tree for various choice of Afunc{.} function

Besides saying that the most frequently used function is the
maximum function, at this point we will not go into details of the
algorithms corresponding this issue.

For the Vfunc(.) function, we see the following taxonomy tree
CAA-LEARNING_METHOD
—Vfunc(.)

| extremum seeking|——|max(.)|— Bozinovski 81
Watkins 89, Sutton SO

\—|min(.) — Barto, Bradtke, Singh, 95
Moore 94

——| policy based |——|Bradtke, Barto, Ydstie, 94

——| neural computing}——|Bozinovski 81

——|risk-considering|——| warning |— Bozinovski 1981

| minimax |— Heger 1994

Figure 6.3. A taxonomy tree for various choice of Vfunc(.) function
Most frequently used function is the maximum function,

v, = max {w,,}
k beA(k) bk

The minimum function is used usualy in contingency with the
argmin{.} function for action selection.

105

e

- Td

There are algorithms which do not use the extremal value. Example

is the policy-based algorithm of Bradtke, Barto and Ydstie (1994).
They use

- Yk T wbolicy(k),k

where policy(.) is some designated policy, which may or may not be
the policy that is actually followed during learning.

Some algorithms consider the risk of taking the next action.
Besides the NN-CAA which uses warning concept, the issue of decision
under risk is considered in the -learning algorithm proposed by
Heger (1994). Heger considers the problem of the risk that the total
cost of the actions will exceed some value. Instead of using

extremal functions he uses a minimax algorithm for computing
Q-values.

For the Wfunc(.) function, we see the following taxonomy
CAA-LEARNING_METHOD

—Wfunc(.)

with external rewardf———— Watkins 89, Sutton S0
reinforcement

cost |—— Barto,Bradtke,Singh, 95
Moore 94

‘ no external r = O|— Bozinovski 1981
reinforcement Gambardella, Dorigo, 1995

Figure 6.4. A taxonomy tree for various choice of gfunc(.) function

The model for a Wfunc(.) function is the original Watkins’ (1989)
function

waj — (l-a)waj + a(raj + 7vk)
which we already discussed. Here we should add that considered as a
reward, the value of r should be maximized, and that is why the
functions Afunc{.} and Vfunc{.} are maximum functions. This types of
CAA-learning algorithms we denote and maximum-and-reward algorithms.

In other types of algorithms, the immediate reinforcement is
considered as a cost. A usual formulation is [e.g. Moore 1994]

LA J — Caj + Vi
where Ve = min /S and caj is the cost for taking action a in j.
beA(k)

In those algorithms the Afunc(.) is the argmin(.) function. Those
CAA-learning algorithms are minimum-and-cost algorithms. We would

106

like to remark that the distinction between the two types of
algorithms, as we see it, is important. Both the type of algorithms
are viewing the reinforcement and the state-value to be of same
desirability.

The NN-CAA algorithms are reinforcement-free algorithms. The
wfunc(.) is computed as -

waj e—-waj t v
This is the simplest form of among the algorithms considered so
far. The simplicity 1is gained by wusing the genetic defined
knowledge, as we discussed in previous chapters. Recently, other
authors have implemented reinforcement-free algorithms. Gambardella
and Dorigo (1995) in their Ant-Q algorithms have implemented the
rule

waj <—(1-a)waj + oy Vk .
However, they have implemented it only partially. Although the above
equation is explicitely written in their algorithm, at some point of
their algorithm they also use the external reinforcement r.

The above taxonomy is not exhaustive. It is useful Jjust to point
out that there are differencies how researchers use different
functions for examplefication of Afunc, Vfunc and Wfunc, proposing
versions of what is meant by Q-learning. What is not changing in all
versions, is the essence of the method. An that is 1) it consists of
three functions Afunc, Vfunc and Wfunc, 2) the order of their
computation is (Afunc, Vfunc, Wfunc) or some permutation, and 3)
they operate over the table of W-values (or more popular, Q-values).

That method was proposed in 1981, as the CAA learning method.

6.3. PRODUCING OPTIMAL SOLUTION IN STOCHASTIC ENVIRONMENT

Since proposal of the CAA method in 1981, and its explanation in
1989, many issues have been explored and become established
concerning learning using the CAA methods. However, there are issues
which are of active research. One of them is the convergence toward
optimal solution of the CAA learning methods in the stochastic
environments. :

In 1981 when we dealt with the pole balancing problem, which can
be considered as an MDP with unknown probabilities, we were not
aware of the general importance of the problem of finding an optimal
policy in a stohastic environment. We will discuss this problem from
the contemporary state of the art viewpoint.

Our discussion will begin with considering two representation of

the CAA learning method: path acting, and point acting
representation

107

S |

—= CAA learning method, path acting
1) state J: perform an action biasing on SAE components; obtain k
2) state k: compute state value using SAE components

3) state j: increment active SAE value using the k-th state value
4) j=k; goto 1

r==CAA learning method, point acting
1) state j: perform an action biasing on SAE components; obtain k
2) state k: compute state value using SAE components

3) state j: increment active SAE value using the k-th state value
4) choose Jj; goto 1

As we can see the difference between the two representations is
only in the step 4. In point acting representation, the CAA learning
method is applied at possible arbitrary state in the state space. In

path acting, the method is always appllied on the state along the
trajectory.

To the best of our knowledge, the approach taken so far for
giving a convergence proof of finding an optimal policy in
stochastic environment is wusing the point acting version (e.g.
Watkins 1989).

The result of such an attempt is the wellknown conditioned
convergence of the Q-learning method stated that "the Q-learning
will converge with probability one toward optimal policy providing
that each states are visited infinitely many times".

To achieve that convergence, it is required that the procedure
exists of how the tunable parameter « should be tuned along the way.
Such a procedure seems to be a problem, and is not part of the Q-CAA
version proposed by Watkins. Because of that, despite several
convergence proof of the researchers 'in the area, there is a feeling
that "Q-learning cannot find stochastic stationary policies, because
it is designed for finding stationary deterministic policies in
MDPs" (Kimura, Yamamura, Kobayashi 1985). As main reason, the
mentioned work states, is that "policy and the exploration strategy
are threated separately in Q-learning".

In this report we will not go into that issue further. What we
will present next is our solution to the problem using the path
acting approach in stochastic environments, instead of point acting
approach.

In the next frame we give our at-subgoal-go-back CAA algorithm
for finding a shortest path in a stochastic environment.

108

AA at-subgoal-go-back algorithm
repeat
forget the previously learned path.
define starting state
repeat
from the starting state
find a goal state moving randomly; -
produce a subgoal state using CAA learning method;
mark the produced subgoal state as a goal state;
until starting state becomes a goal state.

export the solution if beter then the previous one.
forever

The main difference between this and the original (1981)
algorithm is that in the original one new iteration started always
when a goal state is reached. Here new iteration starts if a subgoal
state is reached. To the best of our knowledge, this modification of
the algorithm was not proposed before. That is probably because the
difference seems unimportant, and in fact it 1is conceptualy
unimportant for deterministic environments. (It is important
computationaly, since it will spare some computational effort). But,
for stochastic environment it is conceptualy important and in fact
we claim is a solution of the problem of learning on-route in
stochastic environments. However, the efficiency is not claimed, and

it should be tested with other methods for on-route learning in
stochastic environments.

As we noted in our experiments with pole balancing, a control
should be somehow defined over the state~value backpropagation
process. The backpropagation should be made (for example only one
step behind as we did in pole balancing), only at the goal states.
Extending that principle, here CAA backpropagates only the newly
defined goal state, actualy only at the newly found subgoal state.
After that, the CAA agent can start new iteration. In some variants,
it can even continue to explore the environment, but no more
learning is alowed for that iteration. That prevents obscuring the
previously learned segment toward the goal.

As a result, the CAA will find a possible probabilistic path
toward the goal. The rest of the algorithm is the inherent CAA
optimization procedure. Since the measure of goodness is defined,
the CAA exporting procedure will optimize over all the possible

paths generated in the process, and will find the best one with
probability one.

Again, we should emphasize that this procedure works only if the

measure of goodness is well defined. Consider the following example,
on Figure 6.5.

109

3

a[1
start 119099{ ;
1%
- olol
J S -

Figure 6.5. Example for policy chosing in a stochastic environment

As Figure B6.5. shows, the shortest possible path to the goal
state can be achieved only by chosing the action b at the starting
state. The optimization procedure defined above, as a solution will
produce the action b, since it seeks a shortest path that can
possibly be produced in a set of possible paths. But a question is
is it good in this environment? This illustrates that the measure of
goodness should be defined properly if we want to obtain an optimal
solution in some desired sense.

As closing observation to this discussion let us note that this
CAA procedure does not use any parameter tuning. Also, it is exactly
defined when learning should stop; The issue of
exploration/exploitation is not of interest in this optimization
procedure. That demonstrates the power of the CAA architecture and
the three environment concept.

We shold also note that the proposed optimization procedure is
general, and not specific in connection to the genetic environment.
For example, a system with two memory structures, can replace the
concept of genetic environment. Consider CAT system with two memory
tables of SAE values, one for learning an arbitrary solution, and
the other for keeping the so far best found solution. This system
will also produce the optimal policy in a stochastic.

6.4. A SUMMARY OF THE OBSERVED RELEVANCE

At the and of this chapter we sumarize some issues around the CAA
architecture which are interesting from today’s perspective. The
relevance is viewed 1) as an early, 1981 neural architecture, and 2)
as a state-of-the~art architecture.
6.4.1. CAA as an 1981 neural architecture

1. In 1981 the CAA architecture was the first architecture which

introduced a learning method, contemporary known as a Q-learning
method. Figure 6.6 shows the method used in CAA architecture

110

W
— 1k
¥ a_act{waJ} N ////?

. R R —_ W
v(J) > wa‘j >|V(k) \ bk
wnk)

“éj — waj + f(Vk)’ where Vk = g{wbk}, b=1,..,n
Figure 6.6. The CAA learning method

To the best of our knowledge, there was no architecture before,
using this forth-and-back procedure over the state-action components
(today known as Q-values). The procedure was used in DP but not over
state-action components. Also, state-action components were used
before in DP, but not in a learning process.

This method was rediscovered, and explained in DP framework by
Watkins (1983). A specific Watkins’ (1989) algorithm is different
then the specific NN-CAA learning algorithm, and we do not clame
that NN-CAA is the same algorithm as Q-learning algorithm, nor it is
the same to other later proposed CAA-method-based algorithms. The
specificity is expressed in functions f(.), g{.}, and act{.}. What
we do clame is that the procedure on Figure 6.6. was first time
discovered in 1981 and used in CAA architecture.

2. Using that learning method, in 1981, CAA architecture solved
the maze running problem, a problem in the class of credit
assignment problem stated by Minsky (1961). To the best of our
knowledge, it is a first solution of such a problem using a neural
network. Minsky (1954) worked on that but is is not clear whether a
solution was found, at list is not clear from Minski (1954) and is
not given in Minsky (1861); in Minsky (1961) only the problem is
stated as a challenging one. Before our 1981 neural network
solution, there were several solutions in AI, examples being Samuel
(1959) and Mickie and Chambers (1968). Parallel to CAA, the AC
architecture also gave a neural solution of that problem.

3. Using the learning method described in 1, in 1981 the CAA
architecture solved the pole-balancing problem. The solution was
applied on the context-unrestricted task, imposing control over pole
angle and not over cart position. The problem of state-value
function approximation was solved using 10 regions. In addition, the
problem of action function approximation was solved using 3 actions,
which is remarkable improvement over similar solutions using 2
actions. The classical approach (Michie and Chambers 1968) used 162
state-value approaximation regions and 2 actions. The number 162 is
due to the complexity of the task considered, taking into accont
also the cart position. But 3 actions (left, right, and do~-nothing)
approach is improvement over the classical (left,right) approach,
and greatly simplifies the task. It is interesting that all the
known solutions (Widrow and Smith 1964, Mischie and Chambers 1968,
and Russel and Rees 1975) before the the CAA 1981 solution, used the
two-action methods.

The pole balancing problem is in a class of nederministic
environments problem, where taking an action gives only a
probability which situation well be received next. In this problem

111

3

even the probabilities are not known. The method of segments of the
path backward-learning was introduced for solution of this problems,
as difference from the method of whole path backward learning, used

in maze learning problems, which is in the class of deterministic
environment problems.

4. Genetic environment was introduced as an important part of
the CAA architecture. Primary reinforcers are defined as drives
comming as innate knowledge, on which an intelligent behavior is
developed using secondary reinforcement principle. That connected
reinforcement learning (RL) research to the genetic environment
based reserach areas, as Genetic Algorithms and Artificial Life.

5. The relevance of the CAA can be seen also in observing some
facts about conceptual expressions and representation methods used.
Some of the points are

- The concept of searching strategy is introduced in CAA for
what is later known as exploration strategy. The concept is based on
the idea proposed by Barto, Sutton and Brouwer (1981) where as
neural search mechanism the Gaussian noise was used. The 1981 CAA
used the random walk strategy. Contemporary, the concept of
searching strategy is widely used, but not the concept of noise.

- The algorithmic expression of the learning procedure is
used in CAA report (1982b), not only the equations of learning.
In contemporary research reports in reinforcemnt learning this
representational technique is widely used, which was not the case in
RL before 1982.

-~ The human face state-value representation was introduced
in RL. Today this is widely used representational concept in RL and
DP.

- Parallel programming was for the first time in RL and DPused
during the CAA experiments. Pole balancing task was carried out that
way.

- The entropy concept was used as representational parameter
for learning.

The importance of these facts is not clear, and may be
neglected. However, the importance will become more clear in some
time later, in positive or negative sense.

6.4.2. CAA as a state-of-the-art neural architecture

6. CAA is a neuro-genetic architecture. It takes advantage of the
genetic environment in a way complementary to the Genetic Algorithms
approach.

14. The CAA 1is inherently otimization architecture. Taking
advantage of genetic environment concept, it performs continuing
optimization over the solution 1learned in the behavioral
environment.

15. CAA is a stochastic environment optimizer system. Taking
advantage of its at-subgoal-go-back algorithm, it 1is able to
produce optimal solutions (policies) in the stochastic
environments, working on-route.

16. CAA is a self-reinforcement neural network. It does not need
the external reinforcement to learn. From DP viewpoint, it only uses

112

the state-value, not the immediate reward, in its learning rule. CAA
has internal mechanism how to extract a state-value from a state,
and using the concept of desirability, to learn from consequence. In
solving the problem of self-reinforcement, the genetical environment
concept is used.

As conclusion we can say that, viewing from this perspective, the
1981 CAA neural architecture had implemented some far-reaching
issues, some of them confirmed by the Watkins’ (1989) work. Some of
them are explored in this report. However, the CAA architecture is
unknown in the community, and this 1is an attempt toward
understanding the relevance of a work done in 1981 within the
Adaptive Networks Group.

113

CHAPTER 7

CLOSING DISCUSSION

At the end of this report we will give a short discussion about
general issues relevant to this report.

7.1. Unified Theory of Learning Agents

In this report we discussed various learning tasks that can be
solved by generic reinforcement learning agents which we named as
NG agents. The report contains three parts describing the most

important variants of the situation sensitive reinforcement learning
agents.

In the first part we discussed our work on learning agents that
besides the reinforcement (as performance evaluation from the
teacher), receive an advice (from the teacher) what to do.

In the second part we briefly mentioned classical reinforcement
learning systems, the systems that only receive the performance
evaluation in a form of scalar signal from the environment. They do
not receive advice what to do; rather should discover themselves
what to to. But they do receive an external reinforcement in
addition to the "neutral" situation signals, as contrast to the
agents we consider in the third part.

The third part is the crucial in this report. Here we described a
learning agent, based on our Crossbar Adaptive Array architecture,
which is capable of learning even without external reinforcement.
Instead, it has internally defined drives which serve as primary
reinforcers. It receives those drives in a hereditary fashion. It
receives a genome information with those drives, and exports a
genome with some changes in it due to learning. The assumption about

114

exporting a learned information in a genetic fashion is convenient
in this theory. The principle of self-reinforcement is indeed based
on the connection between genetic and behavioral environment.

All the three parts are results of the Adaptive Networks Group
produced in the period in 1980-1981 during our first work with the
group. However, the structural theory of reinforcement learnihg
system, has been further developed in this text. It is a framework
for consideration of all the three areas described in the first
parts of this report, and also others described in the first
chapter.

All the three parts are components of our structural theory of
reinforcement learning systems. What is a theory? We consider it to
be some kind of explanation of some existing facts. In a sense, it a
“curve fitting" between some fact points, such that some other fact
points that will appear in the future could be predicted.

This theory covers the existence of the self-learning systems and
it provides a framework for their analysis. There can exist theories
which ignore the existence of self-reinforcement learning systems.
They will tend to make different "curve fitting".

Besides covering self-reinforcement-only learning systems, this
theory also' covers wide range of different kinds of learning
paradigms and learning tasks. In a sense it is an extension of some
other similar theories, for example [Barto 1991]. Besides describing
various types of learning paradigms, this theory goes a step
further. It proposes a learning agent that can be used in different
paradigms, in fact in all the paradigms described in the first
chapter. In a sense it gives a unified theory of learning agants.

7.2. CAA Architecture

This report, besides presenting a new theory of reinforcement
learning systems, has a historical component. What 1is a
history? It is also a theory, also a “"curve fitting", dealing with
dated data. If we have data points, and some regression analysis for
which we have favorable interpretation, and if there is a data point
which does not fit in that explanation, we have to either ignore the
point, or change the regression analysis to fit all the data points.
The CAA is a data point in the history of the credit assigmnment
problem and delayed reinforcement learning. It introduced a learning
method which later was rediscovered, interpreted in terms of dynamic

programming and become a widely used delayed reinforcement learning
method.

7.3. Q-learning as a CAA learning

The work on CAA was done in 1981 and forgotten. Papers published
[Bozinovski 1982, Bozinovski and Anderson 1983], showing
state-valued (emotional) graphs and presenting the CAA agent as a
solution for delayed reinforcement learning problems in such an
environments were forgotten. It took the work of Cristopher Watkins
(1989) to focus the attention to the "grid world problems" and
state-valued graphs among the machine learning community. There was
no such big interest before 1990.

115

This report is partly provoked by the work of Watkins (1989).
Obviously, our reports on CAA [Bozinovski 1981, 1982] were not shown
to him. Also we did not know about his work until recently. Wihout
his work, the CAA would have remained as some neural architecture
solving the credit assignment problem in state-valued graphs, which
is_maybe not worthy mentioning, because if it solved the problem it
is not easy to see how. Especialy if for solution of that problem
somebody needs two memory structures [e.g. Barto, Sutton, Anderson
1983, Sutton 1984] and CAA has only one. Watkins showed that for a
solution of that problem one memory structure which will be used
both for value iteration and policy iteration is sufficient, and
confirmed the CAA approach. Even more, he @gave a deep,
dynamic-programming-framework backed-up explanation of that memory
structure. Eight years before, not being aware of the dynamic
programming work, we constructed the CAA architecture by imagination

over emotional graphs and knowledge of adaptive array neural
networks.

However, we argue that what we constructed as a learning method,
is indeed rediscovered in Watkins’ work. Having in mind emotional
graphs and weights assigned to their arcs, as well as memory matrix
where column-wise the state-values are computed, we developed a
forth-and-back learning method over the SAE components. The SAE
components can have different interpretations. In 1981, we
interpreted them in terms of neural networks (state-action
assoclativity weights) and in terms of state evaluation (emotions
evaluation components). Eight years later, Watkins (1989)
interpreted them in terms of dynamic programming. We do not know
whether they were used as learning and state-evaluating variables
before 1981, but if they were, they could have probably some other
intrepretation. In essence they are the memory values used for 1)
action computation, 2) state-value computation and 3) learning. To
the best of our knowledge that was for the first time introduced in
the CAA algorithm. We argue that this is indeed what is contemporary
meant as being a Q-learning method.

There are various versions of the Q-learning method. What is
common to all the methods is actualy the CAA learning method. The
basic CAA learning method functions, the action function, the state
evaluation function, and the memory update function can be found
defined differently. What is constant is the CAA method: 1) compute
action in state j, 2) compute state value in next state k, 3) update
memory in state j; and 4) all that using only one memory structure,
the SAE values.

7.4. CAA as a neuro-genetic agent

As a result of the project on neural and genetic agents, this
reports explores the usefullness of the CAA architecture being
connected to the genetic environment. The utility observed so far is
two-fold: 1) the genetic environment enabled the CAA to be designed
as a self-reinforcement learnig system 2) the genetic environment
enable the CAA to be an inherent optimizing architecture. The
concept also opens some issues toward the artificial life research,
as is the issue of controlled offspring production.

116

7.5. Adaptive Networks Groub

The CAA architecture discussed in this report is a ANW
architecture. The major influence was received from Andrew Barto and
Rich Sutton. Without their statement of the problems worthy to work
on, the CAA would have never been constructed. With Chuck Anderson
we solved the pole balancing task, and had pleasure to experinece
parallel programming. Nico Spinelli was always in progress with our
vwork and offered valuable discussions and suggestions. With Michael
Arbib we had conversations and advice for our work in various areas,
especlaly for the concept of entropy and surprise. And in presence
of Harry Klopf we took a challenge to solve the assignment of credit
problem, which we did and sent a report on that to him first.

Also, this report could have never be written in this form, if it
wasn't for Andy Barto to challenge relevant issues not addressed
and/or not threated well in the previous versions. The classes
taught by him, and the meetings of the ANW Group, all of that has
reflexion in this report. As 15 years before, the ANW Group provided

an inspirative atmosphere for carrying out a research work, part of
which is this report.

117

-3

3

CONCLUDING REMARKS

LU L0000 000000000000000C000000ag

In this first report of the project “Adaptive Parallel
Distributed Processing: Neural and Genetic Agents" we examined and
evaluated our previous work with respect to the modern trends in
science, and also explored some issues on neuro—-genetic agents.

This is rather lenghtly report, written from March to November
1995. It has actualy two parts. It introduces a theory of learning
systems as a state-of-the-art work, and also deals with some
important work done in the past within the Adaptive Networks Group

which are relevant for the history of the reinforcement learning
systems research.

It is our belief that this report will shed new light on
reinforcement learning agents research, and also on relation between
neural and genetic research. This report has shown that the period
of 1980-1981 was succesful for the Adaptive Networks Group in
solving the delayed reinforcement learning problem and introducing a
method whose importance was not recognized immediately, but whose

importance was confirmed by the eight years later proposed
Q-learning method.

The solution of self-reinforcement learning paradigm is yet to be
evaluated, as well as the unified theory of learning agents proposed
in this report. We believe that those issues will also become
relevent in the reinforcement learning theory.

118

3

— 3 3

APPENDICES

In the following appendices we give some reports of the relevant
events which happened in the development of the CAA architecture.

In particular, we give

Appendix A: The first written report about the CAA, sent to Harry
Klopf, November 25, 1981

Appendix B: The announcement of the COINS Seminar on December 2,
1981 where the first time the CAA was talked about

Appendix C: The ANW Memo about the first successfull experiments
in pole balancing task, given at the ANW meeting on December 10,
1981

Appendix D: The first published report about CAA, in the book of
abstracts of the Sixth European meeting on Cybernetics and Systems
reserach, Vienna, April 13-16, 1982

Appendix E:The list of the early reports written by the ANW group,
from 1981 till 1983

119

—3 T3 3 B I | B E | B
APPENDIX A
]

Amherst, 11/25/81

A. Harry Klopf
Avionics Laboratory
Air Force Wright—Aeronautical Lasboratories

(Attn: AAAT)
Wright-Patterson Air Force Base

Ohio 45433

Dear Harrty.

Enclosed please find a short report I prepaired for you

on work on the problem you stated at the latest meeting

my
of the ANW group with you. I think) have solved that, and
I will be happy to show you a veal time simulation if you

are comming in Amherst in December.

I will be here £ill Decemher 28, If you are not

comming till that time I will appreciate if you give me some

feedback on this work.

Sincerely,

Stevo Bozinovski

Computer Science Dept.
University of Massachusetts
MA,

Amherst, 01003

CROSSBAR ADAPTIVE ARRAY

A SELF-LEARNING SYSTEM USING SECONDARY REINFORCEMENT

by

Stevo Bozinovski

Introduction

Here is presented a learning system, called Crossbar

Adaptive Array, (CAA) which usinb some “genetically build
sense of pleasure”, shows the shift of the behaviour from
totaly random to totaly organized and purposfull éne. The

information it receives from its environment is

only ¢the

present situvation; the environment does

not supply the

system with any evaluation of how "good" was its behavior.

The princip on which the self-organization of CAA is based

is the secondary reinforcement.

The Crossbar Adaptive Array

Figure 1 shows the system called Crossbar Adaptive
Array.
Figure 1
The input sitvation is received through the m possible

senzor pathuways ﬁ + J=l...,m which can be active one at a
time. That means that the pattern recognition process is

not concern of +this system:

it is assumed solved in some

g F E £ E & E
xw xm 8u xB
Y e
: " (+ . |2, >
() Lo
[T/ . — A
IW\\ L«\ maximum
8 >
vy c»~\ m.u\ V\M.»a —> iy o >
, P ; \ \A \ ﬂu] selector
A& \c_.ha L > > g
AT T,)
P3 ga
.
in the experiments
m=20, n=3
) Fig. 1.

) Page 2

system.

preproccesing So, this system distinguishes between

m different input situations.

There are n possible output

actions y;. i=l,...n, each represented by one

. |
The interconections between given situation and

output

pathuway.

selected action are described by the nxm weight matrix. The

initial values of the matrix are specified, by some

"genetical” program. The system has internal “pleasure”

senzors ﬂk.s

any of the

J=l,..,m which measure the pleasure felt when

input situation appears. If the sum produced by

a column of the memory matrix is positive, the system is

assumed to register pleasure, and if it is negative — pain.

The evalvation unit produces the ternary signal +1

indicating the presence of the pleasure, O in the stimulus

is neutral and -1 if the pain is felt. Producing the signal

in the intersection of the situation «x-

v
the performed action y, which has lead to the sitvation

v, the weight EQ.
and

Ae:mnr has produced the pleasure or the pain, is wupdated.

Formaly, the learning rule of the system is defined by

jqﬁﬂv = EQA¢I~v+n.cmadluv.v.a¢luv.ﬁaﬁw

where ¢ is some constant. The reinforcement function

(1)
r(t)
is defined as

m

n
r(t) = SUM sign(SUM wigl(t=1). x3(t)+Ty)
J=1 i=1

2)

where Ty is some predefined fixed threshold and sign(p) is a

function which gives +1 if the p>0, gives O if p=0, and

Note £(t) mmwmm values from the set

gives -1 if p<oO. that

{-1,0,132.

+ +
v}
m
-
-t

61 o1
- L]
- ce 8
+ £ec L
+ SL 4
+ 61 S
+ Ly 14
+ £ €
= 4 c
=) 1

- uted
+ aunseard

punog ST 31x3 ue auogaq

sdags jo aaqunu uorjedast

‘atgey burmoyroy ayy uo umoys st azew s1yj

y6nouyy wyo 2y3 buruune jo juawraadxa ay3 3o 3ynsaa ay)
e 3uanbry

‘Ai3ataeA jo uoseads w0y Aem—auo 8q 03 pawnsse aae

SU0T3J5uued awog -ured ayz yzm S434y30 TP 3nq aunseard ayj

4Y3IMm pajerdosse sty YoTym 4o auo syndyano unoy pue 3ndur. asuo

SBY azew ang -roquhis 1earydesb ayy se sasey uewny ays buisn

3ey3 ssaadxa apn ‘sh3r11qPUBSTp 30 BNTBA, B X3348A \ydea o3

paubrsse sey 4314m ydedb e se aaay asnpoajzur am ysrym ,ydeeb

9311, e fig passaudxa sy aiew 3YyL- ‘2 94anbry uo wumoys sI

S3udwrdadxa ay3 ur padsaprsuos 3ABRYy am sazew ayz jo aug

BJUOUTIa0XSd UOT]E(NUTS

‘1eob ay3 o3 fiygaaarp buroh
ur unoraAeyagq 3r3sTutrwiajap Arejzoy 3rqryxa ues pue ‘azew ayj

30 I3pow feusazur e PITNG ued wajzshs ayy suns yo asuanbdbas

burjzeadau e ur

‘teobgns sy feob ayy saysreau 3T Yorym wouay

aderd ayz runa gxau aysy ug ‘abparmouy ur—3yrng hresrgauab e
3snf jou rauayy ST @duaruaadxa ayjy o3 m:v.mwk&:aﬂm abpagmouy
v abey

E_ .

243 * .1eob, ay3 Jo uorzou e sy duayy haowaw syy ut moN

‘azew jeyy ybnoaysz unu 3xau awos uy aderd jey3 Jo0 AJTUTIOTA

8y3 azrubolzas T[rIm pue aderd jey; saaquawad wazshs aysg

uayy ¢3193 st auanseard ayq pue ¢asjueyd fq punoy st Buryjawos

31 ‘teocb (ersads ou yzrm 31 ybnouays fhtwopued Buruunya sY

pue suajua wajgshs YorTym ur FZEW € awnsse sn 337 ‘buruceat

Jo fiboyoyohsd pue s>rjauzaqfic ur warqoad bBurbuayteyd

9Yy3 jo auo ‘buruaeay oazew Jo warqoad ay3 JIPISUCD ITIM

am yy) ayy Ghq paAyos aq ued yarym yse3 afdwis ayz sy

woarqodd MCMCFQMA dzIew Jedisselod a8y

*3U0 JT3STUTWIAZAP 3Ja0W 03

j7em wopuer WOJY JOTARYAq S3T S3STIYS Yy) ‘ssadzoud bBuyuaeag

03 3np 3eyy burbueyy ‘anieA awes ayy aaey we-cy=lf ¢

Ftm T1e 1 usATf 403 :yrem wopuedu 3Py} 33943° 03 3OU UISOYD

shemie st abpatmouy grIng firresrjauab ayy -ssaszoad Buruaeat

243 gjo bGururfaq ayjz 3o yrem wopuer swaojsdd wazshs ayg <hem

® 4ans ur [§°0‘S'0-IN UOGTINQGTIISTP WIoFTUN 3Yyj wWOLG Laguau

wopued e 3q 03 IS 335 am pue wazshs e yshs ou ST ILAY]

paudaaob

a5ed 4no uyr rudAamoy -wazshs paAar waybry awos hgq

htqrssod +‘Abajeuags Buryosueas awos go J4ajawesed e Sy IS Idaym
1=

(t) (3)15 + ()Fx"(3)f M WNS = (3) 16
w

adaym

(€) O=th asya y=th uays T4y [T 403 A6CE6 4T

arnd

buryew uo1ISTIap ay3 03 Gurpuorde uajyey aue suorjoe ayy

£ abey

B E_ . E.

Page 5

12 78 +
13 12 “+
14 17 +
15 8 +
16 12 +
17 8 +
i8 g +

After 17 iterations the system is not changing the

behaviour. It runs through the maze reaching its goal in 8
steps, which is the shortest path possible. The further
learning, if it occurs, is not observable; CAA is

exhibiting totaly deterministic behavior.

c sion

A learning system is presented which can mxswrww
purposive and goal-seeking behaviour Teceiving no
information from the environment other <the encountered
situation. The concept of geneticaly ccmuﬂ sense of
pleasure and pain is used instead of the concept of payoft
function received from <the environment. The problems of
secondary reinforcement and assignment of credit are

succesfuly solved by this learning system.

3

P~

APPENDIX B
L]

| COMPUTER AND INFORMATION SCIRNCE
WIVERSITY OF MASSACHUSETIS, AMRERSY

CCINS SEMIMAR

Stevo Bozinovekl

Computer Science Departoent
Univexsity of Massachuaetts

Wedresday, Dacesber Z, 1981
' 3:45 p.n.
A Gradunate Reseszvceh Centex, Rocs AIDH

Coffee and cookiee et 3:15 p.m.
Greduzte RecesarchCenter, Poom 8305

ABSYRACT
ADAPTIVE ARRAYS

Adaptive arraye as discributed memory syetems capable of learning and
gelf-organization are considered.

The problem of optimal pattern rscognition trainfng is comeidered in
copnection with the livear sdaptive arrays. Chanilenging task: rwecognitieca
of the computey terminal syzbols. 5 new represeatation technique ie indroduced
which naturally includes the notions of tramafer of tralaing and iaterpatteru
giwilarity. Some issues conceraing goal secking nature of the process gre

dizcussed.

A-czossbar adapiive array is proposed as 2 ayeten capable of sglf-lcarnivg.
Challenging tassk: "Dungzons and Drego *, Some isasues concersing preblem
solving and planniang axe discussed. Supporting erperimental evidencs ie
provided. .

Possible mechanisws Anvolved iu the self-organizatior. of the neural
adeptive arrays sre hypothesized. pDendritic bundles a8 a poaaible structures
ars considered. On that basis a hypothetical model called icothrechold
adaptive netvork will de presented.

3

The announcement of the first talk about the CAA

2

3

f——§ r‘*g

—a "3

APPENDIX C

I
f -
I . -
¢ Memo on the Author: St ; S
¢ Inverted pendulum control program v e gnoyski

Date: December 10, 1981

CC&CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

. € Problem: Inverted pendulum adaptive control
‘c Al?hough considered several times before, the statement of c
c this problem which has leaded to the development of the c
€ software system described bellow was made by Chuck Anderson; c
c

Statement: Construct an adaptive network which will be able to learn c
how to control the balancing of an inverted pendulum k-

Possible solution: Crossbar Adaptive Array (CAA) as controller.

Basic principles of CAA are genetical knowledge assumed and
secondary reinforcement mechanism.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCtCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Program CONTROL
This is the main program of the programming system
It simulates CAA controler of an inverted pendulum
The input is the angle and angular velocity
The output is ternary action (-1,0,1)

(can be interpreted as ‘move left“, ‘do nothing’ and ‘move right’)

theta | ! /
i —-—2> CAA | —————=> left //
' i
omega ! controller | =—=== > stay e
— ! : . i
: ! ————=> right = -—-——————
o (8]

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
€CCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCECCCCCECCCcCccCcCcecEccceccecccccece
c

c Organization of the softvare system .

c Two software machines are interacting via mailboxes, running

c simulatneously on two terminals.

[4 The ENVIRONMENT simulates the dynamics of the invertgd pendulum;
c The CAA simulates the behavior of the Crossbar Adaptive Array.

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
3
c
c
c
[
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
t Mailbox z

R > ISITUATION |
i ! H ! : c
. : et ; c
| - ¢
| { H ! f :
{ENVIRONMENT § E CAA ; <
; ! ’ t c
a X , :
. , e : c
H { Mailbox | H :
————————— { ACTION | c
M c
. c
nﬂ The progrémming system representing ENVIRDNM@NT was created ::d z
" vunned by Chuck Anderseon. The mailbox communication between e <
two programming systems was established by Bob Heller. cecce

cccccceccecceccccccceccececcccececccccccececececceccccccccccccceccecccececccccccecccc

%

XDOT

A

ADOT

nN

-t

1. 2 0%
18-60 50-30 30

1518

2 10%4 10ss
1-15%

An experiment of balancing inverted pendulum
using CAA controller

(Computer graphics display courtesy of Chuck Anderson) -

100 260 368 4008

&)

After four unsuccessful runs, in which the pendulum has f

down two times on the left and two times on the right sidfz”en
the controller had learned to perform the appropriate actions
in the particular situations, and is balancing the pendulum..

X and XDOT are the positions and the velocit i
X _the p y of the
They are not significantly changing during this exper?gggifr‘

A and ADOT are the angle and the angular velocity o

= — Iy > 2 t

It can @e_noted their increasing due to inapropr%at: cggtgg?dglum.
the begining of the learning process. After learning, they are
kept in the vicinity of their zero values. e

Z is not relevant variable for this experiments. ¢

ACT 1s the action taken: left(-1),.right(1), or stay sti1{o0). -

—y ~—® '°® ~® ® 8§ ~® ' . s "R B @8 "B —T®W T B R 7B

'; - 87

A S3LP-LEARNING SYSTEM USING SECONDARY RZINFORCEMENT

Stevo BoZinovski
Cybernetics Depariment, £lectrical Engineering Paculty
Univeraity of Skopje, Skopje, xugoslavia

.. .] N
It is presented a learning system called Peedback coupled Crossbar
Adaptive Array, which uaing no teacher of any kind 1is capable 9£
exhibditing a purpoéive and goal-seeking behavior iz rather ‘complex
environment. The main assumption is some genetical memory which
“{n addition of storing the internal model of the environment
is a part of the internal reinforcement mechanism: The .Anter-
pretation of a "pleasure" and "pain® within the system develops
a notion of goal during the learning process. The mechanism of ,
reaching that goal is based on secondary reinforcement: some
desireable state becomes a reinforcer for the preceeding state.

s n;*;;«gw ;

Y AR B AL

§ 5 SRR e
ARSI

B A Lt e Ny
~Wﬁ€*if°~~ i
R SR R Iy

;?ﬁﬁk

b

¢
5

Sted

b s

STy
SEE

*;
>

Pigure 1l shows the Crossbar Adaptivé Array (CAA). The input situ~
ation is received through m sensor pathways, which are assumed

to be active one at a time. The associative matrix W= [lw, /I
i=l,..,n , J=1,..,m contains the weight valnea.of the association
between i-th action and j=th situation. At the begining of the
learning process it is assumed that each column vector v!"of o
the matrix W has either all zeroes, or all ones, or minus ones.
Encountering situation, say x,,” then if W=l the system feels
"pleasure"”, if wﬁj--; the system feels “"pain", and if wuj'o the
system feel neutral stimulus.,

5,
o

The CAA produces only one action at a time prokiding the computation

n
81(1?) ,._Jzﬂlwij(t)xj(t) + si(t) for all é -

.

and then .
if g;>g,. for all kA5 then y4=1 else y,;=0
where 8, is a random number from a uniform distribution U(-0.5,0.5).

Now let us consider an example, Let "szl and all other columm
vectors of the matrix ¥ are zeroes, Let all. the threshold values

Tj are zeroes toq. Performing random walk, the CAA will?eventually
reach the situation X, Assume that those situation is reached

from the situation x’ performing action ¥y The following is conm-
puted in CAA:

.

@ XIGN3ddy

- 87

© x(8) = stgmEugg(t-1xg() = 3

2ad .<::; ...<;$u5+1$§$|5uu??5 = <5$LTH

Thus, only the weight w,gq {s inoremented and association between
the situation x4 and actlon yy i{g established. In addition, the
column vector twu is no longer zero. Next time x4 occurs, the
system will feel pleasure being in the situation Xyo and the
previous gituation-action pair will be remembered. The secondary
reinforcement mnouwuwma takes place.

The bebaviour of the CAA is examined facing it with the generali-
zation of the classical maze Homﬁuwuw problem, which we call .
1ife graph. It iz a graph t:»ow;wmou.boao is assigned a degree
of diserability being there. Pigure 2 shows such a graph Havuownsaam.
d%.awm.aoowuwnwo"ou human faces. This partioular environment
has 20 nodes, and the CAA 1iving in it has m=20, and n=3 since
number of the alternatives from each node is maximum three.)
There is one input and four outputs, only one of which is desireabdble.
‘-One run of the CAA through the life graph consists of entering
the 1ife graph at the input and leaving it at any outpus. During
the learning wnoonmu.ooun»uepum of num.ber of runs, CAA will
chose a path through the life graph which leada to the output
which gives sense of pleasure, Tavle I shows the results of one
6f the number of the experiments. .
run 1 2 3 45 6 7 8 91011 12 13 14 15 16 17 18
steps 9 4211719 75 23 22 719 32 781217 812 8 8
Hmmcu..«ll+++++ll++++++++.+
After 17 iterations (runs) the CAA exhibits deterministic behaviour,
1t £inds the ‘desireable exit .in 8 steps.(The sign "-" in the “able
above shows that the exit was not associated with pleasure).

The ‘OAA showé that a self-learning system, i.e. the system

which receives no information from the environment besides the

encountered sitiation (no teacher of any kxind) can be effectively
designed basing on two main assumptions: 1) some genetically

xnowledge 2) some kind of secondary reinforcement. This work

also emphasizes.the importance of the gecondary reinforcement

in the theory of self oumwa*awéwon. .

- e et = %

E k i i E " [E
nh L
/ /
&.s.uv v) S ! r
(, e
\ | \« Z \ \I\ ﬁw _.
J \ l\ \. . maximum
z By >
vi2 o1 fm)=—* & i
\« A \ \VJ.\ __.a selector ..N»
. .
\\t_\ % : 8
9& ng " Ya
yd H .ﬁ:
Fig. 1.

TR

3

3 T3

B e

3

-

3

ArPPENDIX E
E—

EARLY PAPERS BY THE ADAPTIVE NETWORKS GrourP, 1981-1983

1. A.g. Barto and R.S. Sutton. Landmark learning: An illustration of
associative search. Biological Cybernetics, 42: 1-8, 1981

2. A.G. Barto, R.S. Sutton and P.S. Brouwer. Associative Search

Network: A reinforcement learning associative memory. Biological
Cybernetics 40: 201-211, 1981

3. S. Bozinovski. Teaching space: A representation concept for
adaptive pattern classification. COINS Technical Report 81-28,
Unlversity of Massachusetts, 1981

4. R.S. Sutton and A.G. Barto. An adaptive network that constructs
and uses an internal model of its environment. Cognition and Brain
Theory, 4: 217-246, 1981

5. R.S. Sutton and A.G. Barto. Toward a modern theory of adaptive

networks: Expectation and prediction. Psychological Review 88:
135-171

6. C.W. Anderson: Feature generation and selection by a layered
network of reinforcement learning elements: Some initial
experiments. COINS Technical Report 82-12, University of
Massachusetts, 1982

7. A.G. Barto, C.W. Anderson and R.S. Sutton. Synthesis of nonlinear
control surfaces by a layered associative search network. Biological
Cybernetics 43: 175-185, 1982

8. A.G. Barto, and R.S. Sutton. Simulation of anticipatory responses
in classical conditioning by a neuronlike adaptive element.
Behavioral Brain Research 4: 221-235, 1982

9. S. Bozinovski. A self-learning system using secondary
reinforcement. In R. Trappl (Ed.) Cybernetics and Systems Research:
397-402, North-Holland Publishing Company, 1982

10. A.G. Barto and R.S. Sutton. Neural problem solving. COINS
Technical Report 83-03, University of massachusetts, 1983

11. S. Bozinovski and C. Anderson. Associative memory as controller
of an unstable system: Simulation of a learning control. Proceedings
on the IEEE Mediteranean Electrotechnical Conference, C(C5.11.,
Athens, May 1983

12. A.G. Barto, R.S. Sutton and C.W. Anderson. Neuronlike elements
that can solve difficult learning control problems. IEEE
Transactions on Systems, Man and Cybernetics 13: 835-846, 1983

i
{

-3

T3

3 8

-3

3 1

REFERENCES

Amari S-I. "A mathematical approach to neural systems" In J.Metzler
(Ed.) Systems Neuroscience, pp. 67-117, Academic Press, 1977

Arbib M.A., Lieblich I. “"Motivational learning of spatial behavior®"
In J.Metzler (Ed.) Systems Neuroscience, pp. 221-239, Academic
Press, 1977

Baird L., Klopf H. "A hierarchical network of provably optimal
learning control systems: Extensions of the Associative Control
Process (ACP) Network" Adaptive Behavior 1, 1993

Barto A., Sutton R., Brouwer P. “Associative Search Network: A
reinforcement lerning associative memory" Biological Cybernetics 40:
201-211, 1981a

Barto A., Sutton R. "Landmark learning: An illustration of
associative search® Biological Cybernetics 42: 1-8, 1981b

Barto A., Sutton R. “Goal seeking components for adaptive
intelligence:An initial assessment" Air Force Wright Aeronautical
Laboratories, Avionics Laboratory Technical Report AFWAL-TR-81-1070,
Wright-Patterson AFB, Ohio, 198lc

Barto A., Sutton R., Anderson C. "Neuronlike elements that can solve
difficult learning control problems" IEEE Trans. Systems, Man, and
Cybernetics 13: 834-846, 1983

Barto A., Sutton R., Watkins C. "Learning and sequential decision
making" In M.Gabriel, J. Moore (Eds.) Learning and Computational
Neuroscience: Foundations of Adaptive Networks” MIT Press, pp.
539-602, 1980

Barto A. "Some learning tasks from a control perspective" In L.Nadel
& D. Stein (Eds.) Lectures in Complex Systems, Addison-Wesley, 1991

129

Barto A. "Reinforcement leafning and adaptive critic methods" In
White D. & Sofge D. (Eds.) Handbook of Intelligent Control, Van
Nostrand Reinhold, 1992

Barto A., Bradtke S., Singh S., "Learning to act using real-time
dynamic programming", Artificial Intelligence 72: 81-138, 1995a
Barto A. "Reinforcement learning and dynamic programming" Proc IFAC
Man-Machine Systems Conference, 1995b

Barto A., Sutton S. "Reinforcement Learning", Lecture Notes 791N,
University of Massachusetts, Amherst, 1995 ‘

Bower G., Hilgard E. Theories of Learning, Prentice-Hall, 1981

Bozinovska L., Kovacev V., Nikodijevic 0., Lazarevska M., Bozinovski
S. “Learning experiments in computer controlled double-T maze" In
M.Bajic (Ed.) Neuron, Brain, and Behaviour pp. 31-34, Pergamon
Press, 1988

Bozinovski S. "Percetrons: Training for pattern classification" (In
Croatian) Report for Student Research Contest, University of Zagreb,
1972a

Bozinovski S., Mesaric V. "Neural simulation of the conditioned
reflexes” (In Croatian) Student research report, Electrical
Engineering Department, University of Zagreb, 1972b

Bozinovski S. "Electrinic neural models" (In Croatian) Undergraduate
Thesis, Electrical Engineering Department, University of Zagreb,
1972c

Bozinovski S. "Perceptrons and possibility of simulation of the
teaching process" (In Croatian) Masters Thesis, University of
Zagreb, Electrical Engineering Department, 1974

Bozinovski S., Fulgosi A. "The influence of pattern similarity ond
the transfer of training upon the perceptron training" (In Croatian)
Proc Symp Informatika, Bled, 1976

Bozinovski S., Bozinovska L. "Statistical properties of genetic
languages and their role as evolutionary parameters" (In Macedonian)
Proc. Symp. Informatica, 3.124, Bled, 1977a

Bozinovski S. ‘“Normal training strategy in the process of
pair-association learning in the case teacher: human -
learner: machine” (In Croatian) Proc Conf ETAN, Banja Luka, 1977b

Bozinovski S. "Learning experiments with non biological systems" (In
Macedonian) Proc Conf ETAN, Zadar, 1978

Bozinovski S. "A step toward the theory of instructing systems"
Unpublished report, COINS, UMass, Amherst, 1981a

Bozinovski S. "The influence of pattern similarity upon the adaptive

pattern classification teaching processes" (In Croatian) PhD Thesis,
sent to University of Zagreb, Amherst, 1981b

130

4

—4

Bozinovski S. "Teaching space: A representation concept for adaptive
pattern classification" COINS Technical Report, 81-28, University of
Massachusetts at Amherst, 1981c

Bozinovski S. "A model of adaptive detection of the surprising
information" Unpublished report, COINS, UMass, 1981d

Bozinov§ki S., Chumbley J., "A measure of similarity based on
T-matching functions", Unpublished report, COINS and Psychology
Department, UMass, Amherst, 1981e

Bozinovski S. “A measure of similarity derived from the
physiology of a pattern recognition system acting in a fuzzy
world" Unpublished report, COINS, UMASS, Amherst, 1981f

Bozinovski S. "Inverted pendulum learning control” AMW Memo,
December 10, Computer Science Department, University of
Massachusetts, Amherst, 1981g

Bozinovski S. "A self-learning system using secondary reinforcement”
Published Abstracts of the Sixth European Meeting on Cybernetics and
Systems, Vienna, April 1982a

Bozinovski S. "A self-learning system using secondary reinforcement"
In R. Trappl (Ed.) Cybernetics and Systems, North Holland, 1982b

Bozinovski S., Anderson C. "Associative memory as a controler of an
unstable system: Simulation of a learning control" Proc. IEEE
Mediteranean Electrotechnical Conference, C5.11, Athens, May 1983

Bozinovski S. "Adaptation and training: A viewpoint" Automatika 26:
137-144, Zagreb, 1985a

Bozinovski S., Cundeva K. "Linguistic properties of the training
languages" Automatica 26: 152-158, 1985b

Bozinovski S., Spasovski K. "Control of dynamic system using
controller which can learn to control" (In Macedonian) Unpublished
Technical Report, Electrical Engineering Faculty, University of
Skopje, 1985

Bozinovski S. "Implementation of multi-agent cooperation in
programming for robot control" In P. Gabko, P. Kopacek, M. Voicu
(Eds.) Proc. Workshop on Computer Scinece Topics for Control
Engineering Education, Vienna, 1993

Bozinovski S. "Parallel programming for mobile robot control: Agent
based approach” Proc. Conf. Distributed Computing Systems, IEEE
Computer Society Press, pp 222-228, 1994

Bozinovski S., Beochanin D. "Pole balancing using neural network
optimized by genetic algorithms" (In Macedonian) Technical Report,
Laboratory for Intelligent Machines and Bioinformation Systems,
LIMBIS 3, 1994, Electrical Engineering Department, University of
SkopJje, 1994

Bozinovski S. The Artificial Intelligence, (In Macedonian), Gocmar,
1994

131

Bozinovski S. "Experiments with CAA agent: Using entropy in the
Markov Decision Model” ANW Memo, March 8, 1995

Bradtke S., Barto A., Ydstie E. "A reinforcement learning method for
direct adaptive linear quadratic control” Proc Eight Yale Wbrkshop
on Adaptive and Learning Systems, pp. 85-80, 1994

Bush R., Mosteller F. Stochastic Models of Learning, John Wiley,
1955

Cannon R. Dynamics of Physical Systems, McGraw Hill, 1967
Dean T., Wellman M., Planning and Control, Morgan Kaufmann, 1991

Denardo E. "Contraction mappings in the theory tinderlying dynanmic
programming" SIAM Review 9(2): 165-177, 1967

Dietrich T., Flann N. "Explanation-based learning and reinforcement
learning: An unified view" Unpublished report, 1995

Duda.R., Hart P., Pattern Recognition and Scene Analysis, Willey
Interscience, 1973

Eastwood E. “Controlltheory and the engineer" Proceedings IEE, 115,
No 1, January 1968

Gambardella L., Dorigo M. "Ant-Q: A reinforcement learning approach
to the traveling salesman problem" Proc XII Intl Conference on
Machine Learning, Tahoe City, pp. 252-260, 1995

Grossberg S. "Some nonlinear networks capable of learning a spatial
pattern of arbitrary complexity" Proceedings of the National Academy
of Sciences 59, 368-372, 1968

Grossberg S. "Competitive learning: From interactive activation to
adaptive resonance" Cognitive Science 11: 23-63, 1987

Heger M. "Consideration of risk in reinforcemet learning", Machine
Learning: Proceedings of the 11th International Conference, pp.
105-111. Morgan Kaufmann Publishers, Inc. San Francisco, CA, 1994

Hinton G.E., Sejnowski T.J., Ackley D. Boltzman Machines: Constraint
Satisfaction Networks that Learn. Tech. Tep. CMU CS 84, 111,
Carnegie-Mellon University, Pittsburg, 1984

Hinton G.E., SeJjnovski T.J. "Learning and relearning in Boltzman
machines" in Rumelhart D. and McClelland J. Parallel Distributed
Processing, MIT Press, 1986

Hinton G., Nowlan S. "How Learning can guide evolution" Complex
Systems 1, 1987

Holland J. Adaptation in Natural and Artificial Systems, The
University of Michigan Press, 1975

Hopfield J.J. “Neural networks and physical systems with emergent
collective properties" Proc. Nat. Acad. Sci. USA, 79: 2554-8, 1982

132

Kaelbeing L. Learning in Embedded Systems, MIT Press, 1993

Keerthi S., Ravindan B. "A tutorial survey of reinforcement

learning" Sadhana (Proceedings of the Indian Academy of Sciences)
19:_851-889, 1994

Kemeny J., Snell L. Finite Markov Chains, Van Nostrand, 1960

Kilmer W.L., McCulloch W.S., Blum J. "A model of the vertebrate
central command system" International Journal of Man-Machine Studies
1: 279-309, 1969

Kilmer W. “Trainable recurrent nets of neural modules for computing
concensus" Proc. Seventh Yale Workshop on Adaptive and Learning
Systems, Yale University, 1992

Klopf H. "Brain functioning and adaptive systems" Air Force
Technical Report, AFCRL 72-0164, 1972

Klopf H., Morgan J., Weaver S. "A hierarchical network of control
systems that learn: Modeling nervous system function during
classical and instrumental conditioning" Adaptive Behavior 1, 1993

Kimura H., Yamamura M., Kobayashi S. "Reinforcement learning by
stochastic hillclimbing on discounted reward” Proc XII Intl Conf on
Machine Learning, pp. 295-303, Tachoe City, 1995

Kohonen T. "An adaptive associative memory principle" IEEE Trans. on
Computers c-23: 444-445, 1974

Lawton D. Personal communication, 1881

Lin L-J. "Self-improving reactive agents based on reinforcement
learning, planning, and teaching" Machine Learning 8, 1992

Lin L-J. "Scaling up reinforcement learning for robot control" Proc
Tenth Int Conf on Machine Learning, Amherst, pp. 182-185, 1993

Littman M., Cassandra A., Kaelbling L. "Learning policies for
partially observable environments: Scalling up" Proc XII Int’1 Conf
on Machine Learning, pp. 362-370, 1995

McCulloch W. and Pitts W. "A logical calculus of the ideas immanent
in nervous activity" Bulletin of Mathematical Biophysics 5: 115-133,
1944

McClelland J.L., Rumelhart D.E. Explorations in Parallel Distributed
Processing, MIT Press, Cambridge, 1988

Michie D., Chambers R. "BOXES: An experiment in adaptive control” In
E.Dale, D. Michie (Eds.) Edinburgh: Oliver and Boyd, 137-152, 1968

Minsky M. Steps toward artificial intelligence, Proceedings of the
IRE, pp. 8-30, 1961

133

Minsky M.L. Theory of neural-analog reinforcement systems and its
application to the brain-model problem. Ph. D. Dissertation,
Princeton University, 1954

Minsky M., Papert S. Perceptrons MIT Press, 1969
Moore A., Atkeson C. "Prioritized sweeping:reinforcement learning
with less data and less time", Machine Learning, 1993

Moore A. "Variable resolution reinforcement learning" Proc Eight
Yale Workshop on Adaptive and Learning Systems, pp. 102-107, 1994

Morgan J., Patterson E., Klopf H. "Drive-reinforcement learning: a
self-supervised model for adaptive control” Network 1, 1990

Najdovski B., Bozinovski S. "Self-learning control of inverted
pendulum using neural network" (In Macedonian) Proc Conf ETAI, pp.
588-596, 1989

Newel A., Shaw J., Simon H. "A variety of intelligent learning in a
general problem-solver' In M. Yovits, S. Cameron (Eds.)
Self-Organizing Systems, Pergamon Press, pp. 153-183, New York, 1960

Pavlov I.P. Conditioned reflexes, Oxford University Press, 1927
Rescorla R.A., Wagner A.R. "A theory of Pavlovian conditioning:

Variations of the effectiveness of reinforcement and
non-reinforcement” In Blake A. & Procasy C. (Eds.) Classical

Conditioning II: Current Research and Theory. Appleton Century

Croffts, 1972

Rosenblatt F. "The perceptron: a probabilistic model for information
storage and organization in the brain" Psychological Review 65:
386-408, 1958

Rosenblatt F. Principles of Neurodynamics, Spartan Book, 1962

Rumery G., Niranjan M. "On-line Q-learning using connectionist
systems" Technical Report CUED/F-INFENG/TR 166, Cambridge University
Engineering Department, 1994

Russel D., Rees S. "System control - a case study of a statistical

learning automaton" In Progress in Cybernetics and Systems Research,
Hemisphere Publishing Corporation, 1975

Russel S., Wefard E. "Principles of metareasoning" Artificial
Intelligence 49, 1991

Samuel A. “Some studies in machine learning using the game of
checkers” IBM Journal of Research and Development, 1959

Selfridge O. "Pandemonium - A paradigm of learning" HMSO Symposium
on Thought Processes, 1959

Shannon C.E. "A mathematical theory of communication" Bell Systems
technical Journal 27: 379-423, 1948

134

L

Shannon C.E. “Prediction and entropy of printed English" Bell
System Technical Journal, 1951

Simpson P. Artificial Neural Systems. Pergamon Press, 1990

Singh S. “Learning to solve Markovian decision processes" CMPSCI

Technical Report 93-77, Computer Science Department, University of
Massachusetts, Amherst, 1993

Slagle J. Artificial Intelligence: The Heuristic Programming
Approach, McGraw-Hill, 1971

Spinelli N. "OCCAM, A computer model for a content addressible
memory in the central nervous system” In K. Pribram, D. Broadbent
(eds.) Biology of Memory, pp. 293-306, 1970

Strain E.R. "Establishment of an avoidance gradient under latent

learning conditions" Journal of Experimental Psychology 46: 391-399,
1953

Sutton R. "Temporal credit assignment in reinforcement learning"
Ph.D. Thesis, University of Massachusetts, Amherst, MA, 1984

Sutton R. ‘“Learning to predict by the methods of temporal
differences" Machine Learning 3: 9-44, 1988

Sutton R. "Integrated architectures for learning, planning, and
reacting based on approximate dynamic programming" In Porter
and Mason (Eds.) Machine Learning: Proceedings of the Seventh
International Conference, pp. 216-224, Morgan Kaufmann, 1990

Sutton R., Barto A., Wiliams R. "Reinforcement learning is direct
adaptive optimal control" Proceedings of the American Control
Conference, Boston, pp. 2143-2146, 1991

Schwartz A. "A reinforcement learning method for maximizing
undiscounted rewards" Proc. Tenth Int Conf on Machine Learning,
Amherst, pp. 298-302, 1993

Tash J., Russel S. "Control strategies for a stochastic planner"
Proc. Sixth National Conference on Artificial Intelligence, Seatle,
1987

Tatman J., Shachtar R. “Dynamic programming and influence diagrams"
IEEE Trans. Systems, Man, and Cybernetics, 20, 1990

Uttley A., Information Transmittion in Nervous Systems, Academic
Press, 1979

Watkins C. "Learning from delayed rewards", Ph. D. Thesis, Cambridge
University, Cambridge, England, 1989

Watkins C., Dayan P. "Q-learning" Machine Learning 8, 279-292, 1992
White D.S. Markov Decision Processes, John Willey and Sons, 1993

Whitehead S., Lin L-J. "Reinforcement 1learning of non-Markov
decision processes" Artificial Intelligence 73: 271-306, 1995

135

Widrow B., Hoff G. “Adaptive switching circuits” Stanford Technical
Report 1553-1-1968

Widrow B., Smith F. "Patern-recognizing control systems" In J. Tou
and_ R. Wilcox (Eds.) Computer and Information Sciences, Spartan
Books, 1864 -

Witten I. "An adaptive optimal controler for discrete-time Markov
environments" Information and Control 34: 286-295, 1977

Zilberstein S. ‘“"Operational rationality through compilation of
anytime algorithms" AI Magazine, 79-80, Summer 1995

Zilberstein S., Russel S. "Optimal composition of real-time systems"
Artificial Intelligence, 1995

136

B

	1.pdf
	2

