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Abstract

In this paper we study Generalized Processor Sharing (GPS) scheduling with Markov Modulated Fluid
Sources (MMFSs). We focus on a GPS system serving two classes of customers. By using a combination of
the bounding approach and the approximation approach to performance analysis and by taking advantage of
the specific structure of MMFSs, we are able to derive lower bound and upper bound approximation on queue
length distributions for each class of the GPS system. Numerical investigation shows that the lower bound
and the upper bound approximation are very tight. Hence our work greatly improves the earlier results on
GPS scheduling in [YaSi94, ZTK95] which are obtained for a more general stochastic model. Applications
of our performance bounds for GPS scheduling to call admission control and bandwidth sharing are also
illustrated, and comparison with FIFO and strict priority in different scenarios is made and discussed. We
show that the flexibility provided by GPS does not provide much better performance than FIFO and priority
when the classes only have loss requirements. However, this flexibility provides better performance when
the classes exhibit delay as well as loss requirements.

Keywords: Bandwidth Sharing, Call Admission Control, Generalized Processor Sharing, Markov Modulated
Fluid Model, Performance Bound and Approximation, Quality-of-Service Guarantees, Scheduling.

1 Introduction

Future broadband ISDNs are expected to provide a variety of services to users, integrating currently separate
telephone, cable and data networks. Due to the different traffic characteristics and Quality-of-Service (QoS)
requirements of network traffic, coexistence of voice, video, and data in the same network poses new issues
in packet scheduling, call admission control, and bandwidth sharing. For example, data traffic is generally
considered to be very bursty, much less sensitive to delay, but loss intolerant. On the other hand, real-time
traffic such as voice and video is delay-sensitive but can tolerate some loss. Among real-time traffic, voice is
usually less bursty and has a smaller bit rate, whereas video is generally burstier and has a higher bandwidth
requirement. This diversity of traffic characteristics and QoS requirements indicates that different classes of
traffic should be treated separately according to their respective QoS requirements instead of as a monolith.
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Packet scheduling and call admission control are important means for achieving this separation and while at
the same time allowing bandwidth sharing among different classes. The simultaneous needs of isolation and
bandwidth sharing among classes has been identified in many recent papers (see, e.g. [CSZ92]). Isolation
among classes is important to ensure that misbehavior of traffic in one class will not affect other classes.
Bandwidth sharing can be used to exploit the statistical multiplexing gain made possible by such an integrated
service network.

One of the most promising packet scheduling disciplines proposed in recent years is the Generalized Pro-
cessor Sharing (GPS) [PG93a, Parekh92] (also known as Weighted Fair Queueing [DKS89]). One important
feature of GPS is its ability to provide isolation among different classes while, at the same time, allowing band-
width sharing among classes. Moreover, the bandwidth sharing mechanism of GPS is explicitly controllable.
Because of these features, GPS has been recommended in [CSZ92, SCZ93] as a scheduling discipline to support
different service classes.

The performance of GPS has been studied in a variety of setting [PG93a, PG93b, Parekh92, YaSi94, ZTK95].
Most of these approaches take the so-called bounding approach [Kur93] where performance bounds on the
interested metrics such as loss or delay are derived, usually based on some very general source models,
e.g. Cruz’s Linear Bounded Arrival Process (LBAP) traffic model [Cruz91a] in a deterministic setting, or
Yaron and Sidi’s Exponentially Bounded Burstiness (E.B.B.) process model [YaSi93] in a stochastic setting.
Although results derived from the above approaches are applicable to many different arrival processes such
as the commonly used Markov Modulated Poisson Processes (MMPPs) and Markov Modulated Fluid Sources
(MMFSs), they usually lead to quite loose bounds.

In this paper, we study GPS scheduling with Markov Modulated Fluid Sources. Due to the complexity of the
GPS bandwidth sharing mechanism, the study of the general multiple-queue case is extremely difficult. In this
paper we principally focus on GPS scheduling with only two service classes, each of which has its own buffer.
We call such a system a two-queue GPS system. We combine the bounding approach of [ZTK95] with the
approximation approach using spectral analysis techniques developed in [AMS82, EM91, EM92, EM95]. More
precisely, we exploit the idea of decomposition first employed in [ZTK95]. However, by taking advantage of
the specific structure of MMFSs, we are able to derive lower and upper bound systems that better approximate
the original GPS system. The decomposition approach leads to the study of single-queue statistical multiplexing
systems with modulated service processes. Lower and upper bounds on the queue-length distribution for each
queue of the GPS system are easily obtained for this systems. Comparison with simulation shows that our
lower and upper bound approximations are generally very close to the simulated values. Refined effective
bandwidth approximations based on these bounds can be also easily derived. Application of these bounds
for GPS scheduling in the context of call admission control and bandwidth sharing is also illustrated, and
comparison with FIFO (First-In First-Out) and strict priority in different scenarios is made and discussed.

FIFO is the simplest way to provide bandwidth sharing among sessions/classes. There have been a
large volume of literature on the subject, in particular, the recent development of the theory of effective
bandwidth approach to call admission control for a single-queue statistical multiplexing system with a single
QoS requirement (see, e.g., [GAN91, GH91, Kel91, EM92, KWC93, Whi93, Chang94, GWh94]). The theory
of effective bandwidth provides a simple and elegant way to perform call admission control based on asymptotic
approximations.

Strict priority scheduling of Markov Modulated Fluid Sources has been studied in [EM95]. In particular, a
two-priority system is thoroughly investigated, where each priority class has its own buffer. The high priority
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class with explicit QoS guarantee is for real-time traffic, where low class provides engineered best-effort service
to traffic with less stringent performance requirement such as data transport. Approximations to both queue
length distributions are obtained; moreover, a refined effective bandwidth approximation called the Chernoff-
Dominant Eigenvalue approximation is used for call admission control purpose. Here we remark that strict
priority can be regarded as a special case of GPS scheduling. Hence our work can be considered as an extension
of the work in [EM95].

Call admission control and related issues under GPS scheduling have also been investigated. In [JDSZ95],
based on the results of [PG93a, PG93b, Parekh92], a heuristic call admission control algorithm using traffic
measurement is proposed for the so-called predictive service class [CSZ92]. In [ZLKT95] call admission
control schemes for multiple service classes with statistical QoS guarantees using GPS scheduling are designed
for various network service models. Asymptotic study of GPS system using large deviation principle has also
been carried out [dVK94, Zha95a, Zha95b].

The rest of the paper is organized as follows. In Section 2, we define GPS scheduling formally and discuss
related work on GPS and statistical multiplexing system with MMFSs. In Section 3, we describe the two-
queue GPS system model. In Section 4, we derive lower and upper bound approximation for the two-queue
GPS system based on study of a statistical multiplexing system with modulated service process. Numerical
investigations are presented to show the tightness of the bounds. In Section 5, applications of the bounds to
call admission control and bandwidth sharing are illustrated. In Section 6 we consider the multiple-queue GPS
system and derive lower and upper bound approximation, using a generalization of the procedures presented
for the two-queue GPS system. Finally, the paper is concluded in Section 7.

2 Preliminaries and Related Work

2.1 Generalized Processor Sharing

Generalized Process Sharing (GPS) is a work-conserving scheduling discipline that can be regarded as the
limiting form of a weighted round robin policy, where traffic from sessions is treated as an infinitely divisible
fluid (hence there is no notion of “packet” in this traffic model [PG93a, Pare92]). Assume we have sessions
sharing a GPS server with rate . Associated with the sessions is a set of parameters (called the GPS
assignment) which determines the minimum sharing of bandwidth of each session. Each session is guaranteed
a minimum service rate of . More generally, if the set of sessions with queued data at time is

, the session receives service at rate at time .
In [PG93a, PG93b, Parekh92], Parekh and Gallager presented a thorough examination of the GPS scheduling

under a deterministic setting where the source traffic of each session is characterized as a Linear Bounded Arrival
Process (LBAP) [Cruz91a]. A LBAP has two parameters, rate and maximum burst size such that the amount
of source traffic arriving over any time interval of length is bounded above by . Given that the traffic
of each session conforms to a LBAP (as would be the case when a session is regulated by a leaky bucket
mechanism) and that the total arrival rate of all the sessions is smaller than the service rate, it was shown that
the backlog and delay of each session are bounded from above both for a single GPS server in isolation and a
broad class of GPS networks with arbitrary topology.

In [YaSi94, ZTK95], the GPS scheduling was studied when the traffic generated by sources is modeled by
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an Exponentially Bounded Burstiness (E.B.B.) process [YaSi93]. We say an (cumulative) arrival process, ,
is a -E.B.B. process, if for any and such that and for any ,

(1)

where denotes the amount of traffic arriving during . Here is called the long term upper rate
of the arrival process, the prefactor, and the decay rate. Under the E.B.B. model, performance bounds
analogous to those of the deterministic model are obtained in [ZTK95]. Given that the appropriate stability
conditions are satisfied, upper bounds on the backlog and delay tail distributions for each session sharing a
single GPS server are obtained in a form similar to (1) and the departure process of each is shown to be an
E.B.B process as well (the latter was also proved in [YaSi94]) and a broad class of GPS networks with arbitrary
topology is shown to be stable (see also [YaSi94]).

The aforementioned results, both deterministic and statistical, are derived via an important concept intro-
duced by Parekh and Gallager: the notion of feasible ordering. Given the rates (either the rate of an LBAP or
an upper rate of an E.B.B. process), , an ordering of the sessions, , is a feasible ordering
with respect to and if for ,

(2)

Such a feasible ordering always exists as long as . In [ZTK95], the notion of feasible partition
is introduced which generalizes the notion of feasible ordering. The feasible partition is a partition of the
sessions, , , where each , , is defined recursively
as follows:

if (3)

and for , if , then is defined such that

if (4)

A GPS assignment is an RPPS GPS assignment if and , i.e., for ,
. In particular, if , then assuming that , hence the name Rate

Proportional Processor Sharing
As we will see later, the difficulty in analyzing the GPS system in a stochastic setting lies in that the service

rate each session receives depends both on the arrival rate and queue length of all sessions. To circumvent this
difficulty, [ZTK95] takes a decomposition approach to derive upper bounds on the session backlog and delay
tail distributions; an -queue GPS system is decomposed in a way that the sessions are decoupled, and thus
they can be analyzed separately as independent G/ D/ 1/ queues.

Since the E.B.B. source model used in [ZTK95] is generic, the upper bounds obtained are expected to be
rather loose due, in particular, to the value of the prefactor of the bounding exponentially decaying function.
This is mostly due to the fact that fine-grained structure in the arrival processes are ignored by the E.B.B. model
and, therefore, the dynamics of the system are not well captured.
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2.2 Statistical Multiplexing System with Constant Service Process

In this section we briefly review the analysis of a single-queue statistical multiplexing system with Markov
modulated fluid sources (MMFS) and a constant service process. We assume the capacity of the buffer is
infinite and the rate of the service process is a constant . Thus we have a MMFS/ D/ 1/ queueing system.
Suppose we have independent Markov modulated fluid sources labelled where source
is characterized by the pair with being the generator of the Markov chain and being
the rate vector. Let be the state space of source and diag . When source is in state

it generates fluid at the constant rate . The stationary probability vector for source is , where
and ( denotes the inner product of vectors, and is a unity vector of proper

dimension). The average input rate for source is ; finally, let denote source peak rate,
.

The aggregate source is also a Markov modulated fluid source with state space

and is characterized by the pair , where is the -fold Kronecker sum

(5)

and is given by the diagonal of the aggregate rate matrix

(6)

Clearly, the peak rate of the aggregate source is and the average input rate is given
by . In order to have a stable system, we assume that .

Let the random variables and represent the stationary input state and the queue length, and define the
stationary distribution vector as follows:

Then the system can be described by the following Kolmogorov differential equation

(7)

where ( is the identity matrix and diag is the system rate matrix) is the drift matrix.
The stationary queue length tail distribution has the following spectral

representation

Re
(8)

where is the solution of the generalized eigenvalue problem .
It is known [AMS82] that there exists one real eigenvalue, , called the dominant eigenvalue, that satisfies

Re
Re (9)
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From (8), it follows that
(10)

Hence the dominant eigenvalue determines the asymptotic behavior of the queue length distribution.
The generalized eigenvalue problem can be reformulated as a parameterized eigenvalue

problem of the “essentially non-negative matrix” [EM92]. Let denote the maximum real
eigenvalue of this matrix. Then it can be shown that in (10) is the unique solution of the equation
for . is called the effective bandwidth of the aggregate source (described by and [EM92])
and (10) the effective bandwidth approximation to the queue length tail distribution , since it captures
the minimum service rate required to achieve an asymptotic queue length decay rate of . Moreover, is
additive: let be the effective bandwidth of source , i.e., the maximum real eigenvalue of the matrix

, then .
We now turn our attention to the output process characterization. Although the aggregation of Markov

modulated fluid sources is still a Markov modulated fluid source, the output process from the single-queue
multiplexing system is in general no longer so. A method to approximate the output process by a Markov
modulated fluid source is proposed in [EM95], based on the techniques developed in [EM91]. Observe that
when the system is in a busy period, the instantaneous rate of the output process is , the rate of the service
process. On the other hand, when the system is not in a busy period, the instantaneous rate of the output process
is the same as the input rate of the aggregate source. The crucial idea is to represent the system busy state by a
single state and to approximate the busy period by an exponential random variable.

Let denote the set of underload states of the aggregate source, i.e., , and let
denote the busy state. The output process is approximately characterized by a Markov modulated fluid source

on the state space , where the generator matrix and the rate vector are given as
follows:

and (11)

The matrix is a submatrix of specifying the transition probability among the underload states. The
vector denotes the transition rates from the underload states to the busy period state and the row vector

the transition rates from to the underload states. Here is the mean busy period. The bulk of the output
process characterization lies in computing , and , the details of which are left in Appendix B.

An important property of the above approximate characterization of the output process is that all of the
stationary moments of the actual output process are identical to those of the process .

2.3 Statistical Multiplexing System with Priority

In [EM95] a statistical multiplexing system with strict priority service is considered where each priority class
has its own buffer and all priority classes share a channel of capacity . Sources that belong to the same priority
class are serviced according to FCFS. All sources are modeled by Markov modulated fluid source and are
assumed to be independent of each other.

Let the aggregate sources for the high and low priority classes be modeled by the pairs and
on state space and , respectively. The queue length distribution of the high priority class
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can be obtained by treating the two-priority multiplexing system as a single-queue multiplexing system with a
channel capacity , oblivious of the low priority class traffic. This analysis can be done as outlined in § 2.2.
Let be the effective bandwidth function of the high priority source, then the asymptotic decay rate of its
queue length distribution is the solution to the equation

The analysis of the low priority class traffic proceeds by first approximately characterizing the output
process of the high priority class traffic by a Markov modulated fluid sources, then considering a single-queue
multiplexing system with a service rate modulated by this output process and the low priority class source as
the arrival process. The asymptotic decay rate of the low priority queue length distribution is then determined
by the solution to the equation

(12)

where is the effective bandwidth functions of the high priority output process and that of the
low priority source. In [EM95], it is proposed that the low priority queue length tail distribution,

, be approximated by the following expression

(13)

where is the solution to (12) and is the refined Chernoff large deviation approximation to the loss prob-
ability of the corresponding bufferless multiplexing system. (13) is called the Chernoff-Dominant Eigenvalue
(CDE) approximation in [EM95] which provides a much better approximation to than the usual effective
bandwidth approximation (10) by adding an prefactor. We will call an approximation formula in the form of
(13) the refined effective bandwidth approximation (REB) (see, e.g, [CLW93, LNT94]).

3 Model

In this paper we focus on the two-queue GPS system (Figure 1). For , the session source is modeled
as a Markov-modulated fluid process with an irreducible generator on state space ,
and a rate vector .

Let be the GPS assignment for the two sessions. Without loss of generality, we assume that
. Hence each session is guaranteed a minimum service rate . For , let denote

the average input rate of session source. As a necessary stability condition, we require that .
For , let denote the rate of the session arrival process at time , and for

any , define , the (cumulative) arrival process for session . Similarly, let
denote the service/departure rate of session at time , and define to be the session
departure process. The session backlog at time denoted as , is given by

(14)

The delay experienced by a session traffic arriving at time is denoted as . If the traffic from a session is
serviced by the FCFS scheduling discipline (as we assume in this paper), then is the time that the session
backlog at time , , gets cleared. Finally, we assume that the system is empty before time zero.
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Session 1

Session 2 c
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2

Figure 1: A two-queue GPS system.

The dynamics of the GPS systems can be described by the following sample path equations:

if
if

if
if (15)

and

if (16)

if (17)

We note that from the definition of GPS, if both queues are not empty at time , then ,
. If one of the sessions has an empty queue at time , then the other session will receive the

residual service from this session in addition to its guaranteed service rate. Therefore, (16) and (17) have the
following equivalent formulation:

if (18)

if (19)

where and is the indicator function.

4 Analysis

The difficulty in analyzing a GPS system lies in the fact that the service rate each session receives depends
on the arrival rate and queue length of both sessions. As a consequence, an exact analysis of the joint queue
length distribution of the two-queue GPS system involves a set of differential partial equations with coupled
boundary conditions, the solution of which is very difficult to acquire, while the exact delay analysis is even
more difficult.

In this section, we study the two-queue GPS systems with Markov-Modulated Fluid Sources by combining
the bounding approach in [ZTK95] and the spectral analysis approximation approach used in [EM92, EM95].
As in [ZTK95], we decompose the two-queue GPS system into two independent queueing system. By taking

8



advantage of the specific structure of the arrival processes and the system, we are able to derive sample-path
upper and lower bounds on the backlog process and sample-path upper bound on the delay experienced by each
session. Using the approach in [EM92, EM95], these sample-path relations can be converted to upper and lower
bounds on the queue length distributions and to an upper bound on the delay distributions of the GPS system.

The rest of the section is organized as follows. In § 4.1, we study a single-queue statistical multiplexing
system with a modulated service process using the techniques of [EM92, SE91, EM95], which lays the foundation
for the lower and upper bound procedures proposed in § 4.2 and § 4.3. In § 4.2, we derive the lower bounds
(which are the simpler of the two to derive), and in § 4.3 we describe the procedure for obtaining the upper
bounds, the proofs of the proposed bounds are relegated to Appendix A. In § 4.4, further refinement and the
refined effective bandwidth approximation is discussed. The numerical results obtained from these approaches
are compared to simulation results in § 4.5.

4.1 Statistical Multiplexing System with Modulated Service Process

In this section we study a single-queue statistical multiplexing system with a modulated service process. The
capacity of the buffer is assumed to be infinite. The aggregate arrival process is a Markovian modulated
fluid source characterized by the pair on state space . The service process is modulated by
another Markovian modulated fluid source characterized by the pair on state space , which is
independent of the arrival process. When the arrival process is in state , it generates fluid at constant
rate , while when the modulating service process is in state , the queue is served at the rate

, where is the maximum service rate (hence ). We note that this multiplexing
system with modulated service process is very similar to the producer-consumer system studied in [Mit88].

Denote the overall system state space by

and by the queue length of the system at time , then satisfies the following sample path equation:

if , (20)

where is a pair of random variables representing the states of the arrival process and the
modulating service process at time .

Equivalently, we can rewrite (20) as follows

if . (21)

From the above two expressions, it follows that, as far as the buffer content is concerned, the term can
be considered either as a portion of capacity removed from the its maximum value , or as an additional arrival
rate (although the waiting time is different in the two cases) [SE91]. Therefore, the system is equivalent to a
statistical multiplexing system with constant service rate , the input of which is provided by the superposition
of the Markov modulated fluid sources and . Thus, the analysis of the queue length
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distribution resembles the one we have described in § 2.2. Therefore, the stationary tail queue length distribution,
has the following spectral representation

Re
(22)

where are the system eigenvalues.
The asymptotic decay rate of the tail queue length distribution is determined by the dominant eigenvalue of

the system, , which is the unique solution to the equation

(23)

where is the effective bandwidth function of the Markov modulated fluid source , .
The output process characterization of a single-queue multiplexing system with modulated service process

can be carried out in a similar spirit as in § 2.2 (but which is somewhat more complicated). To approximate the
output process by a Markov modulated fluid source, we still model the system busy state by a single state and
assume the system busy period to be exponentially distributed.

Let be the Markov modulated fluid source that approximately characterizes the output process
of the system, the state space of which is , where is the busy state, and the set of the
underload input states, i.e.

The generator matrix has the similar form given in (11). However, the rate vector has the form
where is the average service rate when the system is in a busy period. This is because unlike in

a constant service rate single-queue multiplexing system where the output rate is exactly , the channel service
rate, when the system is in a busy period, in this case the output rate depends on the state of the modulated
service process. Therefore, we associate with the single busy period. The vectors , , the average busy period

in and the average service rate can be computed exactly, the details of which are left to Appendix B.
The above approximate characterization of the output process match all the stationary moments of the actual
output process during the empty periods. Moreover, the average rate coincides with the one of the actual output
process.

4.2 Lower Bound for the Two-Queue GPS System

In this section, we describe the procedure for obtaining the lower bound on the queue length distribution for
each session.

We decompose the two-queue GPS system into two independent one-queue systems as depicted in Figure 2
where is the arrival rate to the th one-queue system at time , the service rate at time , and
the backlog of the queue at time , . We want to choose such that for all .

Considering (18), if we assume that queue 2 is always empty, which amounts to ignoring the impact of the
queue length of session 2 on the service rate of session 1, then queue 1 is effectively decoupled from queue 2.
Hence, by choosing , where , we have an
independent one-queue system for session 1 with a modulated service process described by .
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Figure 2: The decomposed lower bound system.

Similarly, by choosing , where , we have
a one-queue system for session 2 with a modulated service process described by .

The dynamics of the queue evolution of the two independent one-queue systems can be described as follows:

if (24)

if (25)

By comparing (18) and (19) with the above two equations, it is not too hard to see that the following is true,
the proof of which is relegated to Appendix A.

Lemma 1 For , and for any , the following holds

(26)

It is interesting to observe that the two independent one-queue systems depicted in Figure 2 are equivalent to
the two independent GPS systems in Figure 3, where one of the sessions (the session whose queue content is
ignored) has no buffer, while the other has an infinite capacity buffer as usual. Lemma 1 is also evident by
considering this lossy GPS system.

Using the spectral analysis technique outlined in § 4.1, the stationary distributions of can be derived.
For , the input process for session is characterized by the pair and the modulating processes
by the pair . According to the expressions for service rate, the service modulating processes are
related to the input processes as follows

(27)

(28)
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Figure 3: Equivalent lower bound system.

where , .
Given the stationary distribution of , from lemma 1, we have that

(29)

where is the stationary distribution of .

4.3 Upper Bound Approximation for the Two-Queue GPS System

In this section, we describe the procedure for obtaining the upper bound to the queue length and delay distribution
for each session. For the sake of clarity, all of the proofs have been placed in Appendix A.2.

For ease of exposition, we consider each of the following two possible regimes separately:

1. and ;

2. and , or and .

We refer to these as the unbiased and biased regimes, respectively. In the biased regime, without loss of
generality, we assume that and . In the biased regime, the queue length of session 2 will not
decrease on average until the session queue is empty. In this case, session 2 receives the residual service rate
from session 1. The strict priority case considered in [EM95] is an example of the biased regime with
and .

We describe the procedure for obtaining an upper bound for the unbiased regime first and, without loss of
generality, we focus on session 2. The session 1 upper bound is obtained by reversing the roles of session 1 and
session 2 below.
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Figure 4: The Session 2 upper bound system.

In order to compute an upper bound on session 2 queue length we need to provide session 2 worse service
than in the original system. Intuitively, we provide session 2 with worse service rate by making session 2 more
likely to “encounter” session 1; by this, we mean to make session 1 more likely to be active when session 2 is
busy. As we shall see, this can be done by “smoothing” session 1 through a queue served at rate , the session 1
guaranteed rate, and replacing session 1 arrival process with this “smoother” process as illustrated in Figure 4.
This results in the following two step procedure for computing an upper bound on session 2 queue length.

In the first step, we have a one-queue multiplexing system with a constant service process of rate serving
session 1. Let denote the departure rate of this multiplexing system at time . We have the following
result relating to the departure rate of session 1; see Appendix A for the proof.

Lemma 2 Let be a busy period of session in the two-queue GPS system. Then, for any

(30)

In the second step, we feed the departure process specified by back to the two-queue GPS system as the
new session 1 arrival process (Figure 4). Since , this new GPS system is equivalent to a
one-queue multiplexing system with a modulated service process characterized by (Figure 5).
Let and denote the queue length of this multiplexing system at time , and the delay experienced
by the traffic arriving at time , respectively. Then it can be shown that

Lemma 3 For any , the following holds
(31)

and
(32)

Therefore, the distribution of provides an upper bound on that of , the queue length distribution of
session 2. Similarly, the distribution of provides an upper bound on that of , the delay distribution
of session 2. As before, we focus only on the stationary distributions only. Let , , and be the
stationary versions of , , and . Then from Lemma 3, we have

(33)
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Figure 5: The decomposed Session 2 upper bound system.

and
(34)

where the last inequality in (34) follows since is the session 2 guaranteed (i.e. minimum) backlog clearing
rate. The distribution of is computed using the spectral analysis technique outlined in § 4.1. Finally, we can
also compute the following upper bound on the average delay by means of Little’s theorem:

(35)

where denotes expectation.
Unfortunely, however, we cannot explicitly compute the distributions above when, as in our case, the

sessions are modeled as MMFSs. Indeed, because the output process from a single queue serving MMFSs is
no longer Markovian, in the first step we can only compute an approximate characterization of the departure
process specified by . We adopt the technique developed in [EM95] as described in Appendix B.1. The
departure process is approximated by a Markov modulated Fluid Source. The crucial idea is to represent the
system busy state by a single state and to approximate the busy period by an exponential random variable. An
important property of the above approximate characterization of the output process is that all of the stationary
moments of the actual output process are preserved. As a consequence, in the second step we have only
an approximate characterization of the modulating process; therefore, the distribution we compute must be
regarded as an approximation to the upper bound distribution.

We now consider the biased regime. Recall that we have assumed that and .
Under this assumption, the upper bound approximation to the session 2 queue length and delay processes,

and , can be obtained by using exactly the same two-step procedure outlined above for the unbiased
regime. However, the upper bound approximation to the session 1 queue length and delay processes,
and can be obtained in just one step by considering a one-queue multiplexing system with a service
process of constant rate . This is because as , the session 2 queue is very unlikely to
be empty whenever session 1 is busy. This, in turn, implies that session 1 is most likely to receive only its
minimum guaranteed service to clear its backlog. Hence its queue length and delay process should be well
approximated by that of the one-queue multiplexing system with a service process of constant rate .

The procedure for obtaining the upper bound approximation for the biased regime results in the decom-
position of the two-queue GPS system into two independent one-queue multiplexing systems as depicted in
Figure 6. We remark that in the case that , the procedure for the biased regime reduces to the
strict priority case considered in [EM95].

14



Q (t)2

~

~

c-

r (t)

1

2

r (t)
Q (t)

1

1

s’(t)

g1(a)

(b)

s (t)=1

2s (t)=~

~

Figure 6: The decomposed upper bound system (biased regime).

4.4 Effective Bandwidth Approximation

The lower and upper bound procedures proposed in the previous two sections assume a complete analysis of the
decomposed bounding system. As the dimension of the system grows, this becomes increasingly expensive in
terms of computational cost, especially when performed on-line. To remedy the situation, as in [EM95], we use
the refined effective bandwidth approximation (REB). Namely, we approximate the queue length of a session
by the following formula:

(36)

where is the dominant eigenvalue of the system matrix in question and is an appropriate prefactor.
As when , the approximation simply yields , thus approximates the probability that

the buffer is not empty. In [EM95], is computed using the refined Chernoff large deviation approximation,
which provides an upper bound on the stationary probability that the input rate exceeds the channel rate
in a bufferless system. Here, we calculate by simply computing the stationary probability that the input
rate exceeds the channel capacity. This approximation underestimates the actual value of , as

.

4.5 Numerical Investigation

In this section we present several numerical examples to compare the proposed analytical bounds with simulation
results.

For , we assume session is modeled by a superposition of on-off fluid sources each characterized
by the triple . When the source is in the on state it generates fluid at a constant rate ; when it is in
the off state, it generates no traffic. The rate at which the source changes from the off-state to the on-state is

, the rate from the on-state into the off state is . Session has peak rate and average rate .
In the following examples, we adopt the convention used in [AMS82], namely, the unit of time corresponds to
the average on period of each source and the unit of data to the amount of data generated during the average on
period. The channel capacity is always assumed to be . We first investigate how well the analytical
bounds perform under different GPS assignments. The sources parameters for both sessions are listed in Table
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Session 1 10 0.4 1 1
Session 2 10 0.4 1 1

Table 1: System parameters for Example 1.
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Figure 7: Bounds on queue length distributions for .

1. The average input rate for both session is , and the utilization factor of the channel is
.

The analytical and simulation results for the following GPS assignments, ,
and are shown in Figures 7, 8 and 9, respectively; in Table 2 are reported the corresponding average
queue length values. Moreover, the upper bound on the average delay are listed in Table 3. We note that the
first two assignments yield two unbiased GPS systems, while the last one yields a biased system.

From the figures, we see that both lower and upper bounds are quite tight in all the cases and the simulation
values always lie between the upper bounds and the lower bounds. In particular, for small values of , they
almost coincide with the simulations. As increases from 0.5 to 0.8, we obtain increasingly tighter upper
and lower bounds. The reason for this behavior is explained in the next paragraph when we compare the
sessions’ mean busy and empty period (here empty period refers to an interval of time during which the queue
is empty). The bounds computed using the refined effective bandwidth (REB) approximation underestimate
the loss probability in the small buffer region, but are generally looser when the buffer size is large.

To further compare the analytical bounds with the simulation results, we look at the mean busy and empty
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Lower Upper Simul. Lower Upper Simul. Lower Upper Simul.

Session 1 3.9e-3 5e-3 4.6e-3 2.6e-4 4.6e-4 2.8e-4 2.4e-5 3.1e-5 2.6e-5
Session 2 3.9e-3 5e-3 4.6e-3 8.5e-3 9e-3 8.9e-3 9e-3 9.1e-3 9.1e-3

Table 2: Average queue length.

Session 1 1.75e-3 1.61e-4 1.08e-5
Session 2 1.75e-3 3.15e-3 3.18e-3

Table 3: Upper Bounds on the average delay.

periods from the analytical lower and upper bound systems and compare them with the simulated GPS systems.
The results are listed in Table 4. We see that both the analytical computed mean busy and empty periods are
very close to the simulation values. In particular, we see that the lower bound system slightly underestimates the
mean busy period while the upper bound system slightly overestimate it. For the mean empty period, exactly the
opposite occurs. We observe that in all cases the queue for each session is empty for an overwhelming fraction
of time (the probability that , , i.e., session is busy, lies only in the range ).
These small values of busy periods are not unexpected considering the bursty sources and extreme low loss
probability with the given buffer size. From the description of the lower bound and upper bound systems in the
previous sections, one can see that, when a session is in an empty period, its service rate is captured exactly,
while when it is in a busy period, its service rate is either overestimated (in the case of the lower bound system)
or underestimated (in the case of the upper bound system). As increases and decreases, session 1 is
more likely to be idle while session 2 is more likely to be busy. Hence the approximation of session 2 service
rate during a busy period becomes more accurate. Moreover, as the service rate for session 1 becomes large,
session 1 is less dependent on the behavior of session 2. Therefore, the analytical bounds tend to be more
accurate compared with the simulation bounds.

We now investigate how the busy period affects the quality of the bounds by reducing the mean off period of
session 1 sources, increasing from 0.4 to 1, while leaving the other parameters unchanged, thus effectively
increasing the system utilization. We fix the GPS assignment at . The average input rate
for session 1 is 5 and the system utilization has increased to . The results are plotted in Figure 10.
In this case, the mean busy period of session 1 is comparable to the mean empty period (Table 5), and as a
result, the probability that the queue is not empty is now much higher ( ). The figure shows
that the analytical bounds are still reasonably close to the simulation results, albeit looser than in the previous
examples.
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Lower Upper Simul. Lower Upper Simul. Lower Upper Simul.

Session 1 busy 0.40 0.44 0.43 0.34 0.40 0.36 0.30 0.32 0.31
empty 25.6 24.3 25.5 206 156 203 1528 1346 1510

Session 2 busy 0.40 0.44 0.43 0.43 0.43 0.43 0.43 0.43 0.43
empty 25.6 24.3 25.5 15.9 15.9 15.9 15.6 15.6 15.6

Table 4: Mean busy and empty periods.
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Figure 10: Bounds on queue length distributions for Example 2 ( ).

Lower Bound Upper Bound Simulation
Session 1 busy 0.68 0.74 0.73

empty 2.41 2.39 2.41
Session 2 busy 0.58 0.81 0.67

empty 8.89 7.82 0.89

Table 5: Mean busy and empty periods of Example 2.
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Figure 11: Iterative scheme for the lower bound.

4.6 A Further Refinement

The procedures presented in § 4.2 and § 4.3 for computing lower and upper bounds on session queue length
distributions can be iterated to obtain more accurate results. Observe that the bounding procedures are based
on tightly approximating the service rate each session receives; in a two-queue GPS system, as indicated by
(15),(16) and (17), this simply amounts to approximate the departure process of the other session. Thus, we
may expect that better results can be obtained by simply iterating the lower/upper bound procedures to obtain a
better approximation of the output processes.

Consider the lower bounding system in Figure 2. Intuitively, we expect that feeding the output processes
back as the arrival processes, would result in a better approximation of the service process each session receives.
As a consequence, tighter lower bounds on session queue length distribution and a more accurate output process
characterization could be obtained. This process can be repeated again to further improve the bounds. The
resulting iterative process is schematically represented in Figure 11. The same idea can be applied for obtaining
tighter upper bound approximation on the session queue length distribution. By iterating each step of the upper
bound procedure, we get the iterative scheme depicted in Figure 12.

Even tough we were not able to establish that we improve the tightness of the analytical results by iterating
the bounding procedures, our numerical investigation have confirmed that we do so.

Let us consider the following example. For , we assume session is modeled by a superposition
of on-off fluid sources each characterized by the triple as in §4.5. The sources parameters for
both sessions are listed in Table 6. The channel capacity is assumed to be and the GPS assignment is

.
The analytical results and simulation results are shown in Figure 13. By carrying out one more iteration,

we see from the Figure that we obtain for both sessions improved (tighter) lower bound distributions; on the
contrary, no noticeable improvement is obtained for the upper bound distributions. Moreover, no considerable
improvements is obtained by carrying out further iterations. Our experience with numerical investigation
indicates that it is a general property of the iterative scheme to converges very fast (only few steps in all
our numerical experiments). We speculate that the fast convergence is mostly due to the good approximation
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Figure 12: Iterative scheme for the upper bound.

Session 1 5 0.4 1 2
Session 2 5 1 1 2

Table 6: System parameters.
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resulted from the first iteration of the proposed lower and upper procedures.

5 Applications

In this section we investigate the issues that arise when performing call admission control and bandwidth
allocation under GPS scheduling. By means of several examples, we study the impact of GPS scheduling on
the admissible region, which is defined as the set of number of sources that can be admitted into the system
without violating any QoS requirement, and we discuss the relative merits of GPS with respect to strict priority
and FIFO scheduling.

5.1 Loss Probability as the Sole QoS Requirement

Consider two classes of network traffic sharing a channel of capacity , each class having a desired loss
probability bound , , as its QoS requirement. For example, one class can be real-time traffic, the
other data traffic; or both classes can be real-time traffic. We are interested in comparing the admissible regions
associated with the three scheduling policies, GPS, strict priority and FIFO.

For simplicity, we model sources of both classes as homogeneous on-off sources characterized by a triple
, the meaning of which is exactly the same as in § 4.5. The parameters for the sources are listed in

Table 7. The channel capacity is . As in § 4.5, the unit of time corresponds to the average on period of
each source and the unit of data to the amount of data generated during the average on period. From the table,
we see that class 1 sources are burstier than class 2 sources but that class 1 average arrival rate is smaller than
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Class
1 0.4 1 1 0.28 2
2 0.5 0.5 1 0.5 1

Table 7: System and on-off fluid source parameters for both classes
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Figure 14: Admissible regions under GPS and strict priority.

that of class 2.
For GPS and strict priority scheduling, each class is assumed to have its own buffer of size . We use the

stationary tail distribution in an infinite buffer system as a slightly conservative estimation of
buffer loss probability for each class. Therefore, the loss QoS requirement can be represented as the constraint

. For FIFO scheduling, the two classes share a buffer of size . However, under
FIFO, the loss QoS requirement corresponds to the more stringent classes requirement, namely, the constraint
is that , where is the stationary aggregate queue length process. As a first
example, we assume that and are different. Values of and for each class are listed also in Table 7.
The admissible regions under the three scheduling policies are shown in Figure 14 and Figure 15 where the

admissible regions under GPS are computed via the upper bound approximation procedure. From Figure 14,
we see that under the GPS scheduling, the bigger is, the larger the admissible region is, which is expected as
class 2 traffic has more stringent QoS requirement than class 1 traffic. Thus the strict priority policy which gives
priority to class 2 (corresponding to a GPS assignment ) yields the largest admissible region,
whereas reversing the priorities (corresponding to a GPS assignment ) yields the smallest. The
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Figure 15: Admissible regions under FIFO and strict priority.

admissible region under FIFO lies between the two strict priority cases (Figure 15).
In this example where the loss requirement of the two classes are considerably different, FIFO is not really

appropriate, as the buffer loss requirement is determined by the more stringent one of the two, resulting in
a smaller admissible region than the strict priority scheduling with class 2 as the high priority class. GPS
scheduling with explicit bandwidth sharing (i.e., and ) does not provide any benefit over the
strict priority scheduling either.

Now we consider the same two classes but with equal loss probability requirements, say, .
The admissible regions under FIFO and strict priority are shown in Figure 16. Clearly, by taking advantage of
the shared buffer, FIFO produce the largest admissible region. Hence, in this case where the loss requirements
of two classes are the same, FIFO gives the best performance.

The above examples indicate that, in the case that we have only two classes and the buffer loss probability
is the sole QoS requirement, either strict priority or FIFO outperforms GPS scheduling with explicit bandwidth
sharing. These observations should not be surprising.

We have performed many additional numerical investigations and found that the above observations gen-
erally hold. These results are also supported by the the recent study in [SdV95]. In [SdV95], by studying the
large buffer asymptotic regime of a two-queue GPS system, it is shown that whenever the QoS requirements of
the two classes are sufficiently apart, the class with the most stringent requirement should be treated as an high
priority class in order to achieve the maximal admissible region.
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Figure 16: Admissible regions under GPS and FIFO.

5.2 Loss Probability with Maximum Delay Constraint as QoS Requirement

In this section, we investigate how the three scheduling policies perform when we add a delay constraint as an
additional QoS requirement. Obviously delay is an important performance metric that should not be ignored
when one or both of the classes are real-time. We consider two examples: in the first, we assume both classes
have delay constraints; in the second, we assume that only class 1 has a delay constraint.

In the first example, we consider two classes of real-time traffic sharing a channel of capacity . For
each class, in addition, to a loss probability requirement there is a maximum delay bound on the real-time
traffic such that when it is not lost at the buffer, it must be serviced within time units. In the case of
GPS scheduling, (where is the time required to clear class buffer at the guaranteed rate

) guarantees that any real-time traffic that is not lost will not experience a delay more than . Thus, the
maximum delay constraint can be translated into a lower bound on the minimum guaranteed service
rate, or equivalently, .

For illustration purposes, we assume that the source parameters for the two classes of real-time traffic and
their loss requirements are the same as listed in Table 7, and add maximum delay constraints for
class 1 and for class 2. As a result, we have and . This effectively
eliminates strict priority scheduling as a valid choice of scheduling policy. We now determine the best choice
of in this range that gives the largest admissible region under the given QoS constraints.

The admissible regions computed via the upper bound method are shown in Figure 17 with three different
GPS assignments , and . Clearly,

yields the largest admissible region, which is expected as class 2 traffic has more stringent
QoS requirement than class 1 traffic. In Figure 18 the admissible regions using FIFO scheduling with buffer
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Figure 17: Admissible regions under GPS.
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Figure 18: Admissible region under FIFO.
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Class
1 0.4 1 1 0.28 2
2 0.1 1 1 0.09 5

Table 8: System and on-off fluid source parameters for both classes .

size and are shown together with the admissible region obtained under the GPS assignment
. Under FIFO scheduling, the loss probability of the buffer is , the more

stringent loss requirement of the two classes. In the first case of FIFO scheduling, the buffer size is
chosen so that the most stringent delay constraint is always satisfied by the traffic that is not lost.
In the second case of FIFO scheduling, the buffer is the sum of two class buffers and under GPS
scheduling. In this case, the maximum delay constraint of class 2 may be violated but that of class 1 is always
satisfied.

From the figure, we see that the admissible region is larger under the GPS scheduling with the given GPS
assignment when the number of class 2 sources is less than 6 and smaller otherwise. This is because with the
larger buffer size, under FIFO more class 2 sources can be admitted when there are very few class 1 sources.

In the second example, we consider two classes of sources with different traffic characteristics and QOS
requirements sharing a channel of capacity . Class 1 sources represent real-time traffic such video or voice and
class 2 sources represent non-real-time data traffic. While real-time traffic is considered to be delay-sensitive but
loss-tolerant, data traffic is delay-insensitive but loss-intolerant, as data loss requires expensive retransmission.
Hence the loss requirement of the data traffic is assumed to be much smaller then that for the real-time traffic,
i.e. . We also assume that there is maximum delay bound on the real-time traffic that is not lost.
Given class 1 buffer size and we have the constraint on the minimum guaranteed service rate
for class 1 traffic. In the case of GPS scheduling, this means that , while is not bounded.
The parameters for the sources together with the buffer sizes and loss requirements for each class are listed in
Table 8. The channel capacity is . From the table, we see that class 1 real-time sources are less bursty
than class 2 data sources which has a relatively long off period. Also, the buffer size of the class 2 data traffic
is considerably larger than that of class 1 real-time traffic, which is reasonable considering the delay constraint
of the traffic.

We assume a maximum delay , which imposes a minimum guaranteed bandwidth of . In
other words, . We consider the following GPS assignments: ,
and and examine how different choice of affects the number of sources in each class
that can be supported without violating the targeted loss requirements, i.e., the admissible region. Note that the
GPS assignment corresponds to strict priority scheduling where class 1 real-time traffic has
priority over class 2 data traffic. For GPS assignment , (0.8,0.2) and (0.6,0.4), the admissible
regions computed via the upper bound approximation procedure are shown in Figure 19.

From the figure, we see that decreasing from 1 to effectively enlarges the admissible region while
still satisfying the QoS requirement of each class.

For example, given the presence of 12 class 1 sources in the system, under the strict priority (i.e.,
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Figure 19: Admissible region via upper bounds.

), only additional class 2 sources can be admitted without violating its targeted loss QoS requirement,
while in the case of GPS scheduling with GPS assignment , 10 additional class 2 sources
can be admitted, an almost double-fold increase in utilization of class 2 traffic. We remark that this increase of
system utilization is gained at the expense of a possible longer delay seen by the class 1 traffic. But this delay
is always kept within the specified maximum delay by the minimum bandwidth guarantee for class 1 sources.
It is interesting to note that if we remove this maximum delay constraint, the policy that gives class 2 data
traffic priority over class 1 real-time traffic produces the largest admissible region (i.e., ). This
should come as no surprise as, from Table 8, we see that class 2 sources are burstier, have lower average rate
and demand a more stringent loss QoS requirement.

In this example, FIFO scheduling is not really appropriate. With a single shared buffer for traffic of both
classes, the size of the buffer will be constrained by the maximum delay constraint of the real-time traffic, while
the buffer loss probability is determined by the class with most stringent loss requirement, i.e, class 2 data traffic
in this case. As a result, we have a much smaller admissible region as shown in Figure 20.

This examples indicate that GPS scheduling provides flexibility in providing explicit bandwidth sharing,
which is absent in strict priority and FIFO scheduling, when QoS guarantees include both loss and delay
constraints.

6 The Multiple-queue GPS System

In the previous sections, we have focused on the two-queue GPS system. In this section we turn our attention to
the general Multiple-queue GPS System case, where sessions, each of which has its own buffer, are serviced
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Figure 20: Admissible region under FIFO.

by a GPS server (Figure 21).
For , the session source is modeled as a Markov-modulated fluid process with an irreducible

generator on state space , and a rate vector . Let
, be the GPS assignment for the sessions. Without loss of generality, we assume that .

For , let denote the average input rate of session . As a necessary stability condition, we require
that . For , let denote the rate of session at time and, for
any , define , to be the cumulative arrival process for session . Similarly, let
denote the service/departure rate of session at time , and to be the session departure
process. The session backlog at time is denoted as and the delay experienced by a session traffic
arriving at time is denoted as . We assume the system be empty before time zero.

Due to the complexity of the GPS bandwidth sharing mechanism, the analysis of the multiple-queue case is
much more difficult than the two-queue case. Observe that in a two-queue GPS system the unused portion of
bandwidth by one session is completely available to the other session. In the general case, on the other hand,
the unused bandwidth by one session is shared by all the busy sessions. For example, assume that at time a
session, say session is not busy, and let denote the set of backlogged sessions at time . If , then
the extra-bandwidth it obtains from session at time is

(37)

From (37), it is clear that this share of bandwidth is a function of time, as changes dynamically with
. This complicated dynamic coupling between sessions is extremely difficult to capture, thus making the

multiple-queue GPS system much harder to analyze.
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In the rest of the section, we derive lower and upper bound approximations for the multiple queue GPS
system, using generalizations of the procedures presented for the two-queue GPS System. However, in light of
the above observation, the bounds are expected to be looser as the number of sessions increases.

6.1 Lower Bound for the Mulitple-queue GPS System

In this section, we describe the procedure for obtaining the lower bound on the queue length distribution for
each session.

We decompose a multiple -queue GPS system into independent one-queue systems where is the
arrival rate to the th one-queue system at time , the service rate at time , and the backlog of the
queue at time , . We want to choose such that for all . For ,
as already observed in §4.2, we can easily obtain such a system by considering a system, where only session
has a buffer and all remaining sessions are bufferless (see Figure 22 for the lossy system for session ). This
lossy system can be reduced to an equivalent one-queue system serving session with a suitable service process

characterized by the pair as follows (see Figure 23 for the session 1 lower bound system). The
state space is

the transition rate matrix is

and the rate vector is

where , is the service rate available to session in the lossy
system when session is in state , .

The value of , , can be easily expressed by using the notion of partial feasible partition
[ZLKT95], an extension of the notions of partial feasible ordering and feasible partition. Let .
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A partial feasible partition, , of with respect to is defined recursively as
follows: for ,

(38)

and
(39)

where and for .
Suppose is such that but . Clearly, . The term “partial”

feasible partition is used because the containment can be strict.
For each state , it is easy to verify that the value of the service

rate is
(40)

where is the partial feasible partition with respect to

(41)

and is such that but .
Intuitively, the partial feasible partition with respect to (41) describes the behavior of the session lossy

system in state . Consider session , in state . If , the
minimum guaranteed service rate ensures that session suffers no loss when in state , independently of
the other sessions behavior. Instead, if , but , , even if session suffers no loss
because there is sufficient bandwidth, not used by sessions in , that is available to
session . On the other hand, if session the available bandwidth to session , , will not be sufficient
to prevent session from suffering loss. By using the value of as session rate in (41), we ensure that
and, as a consequence, we obtain the session available rate by (40).

Using the spectral analysis technique outlined in § 4.1, the stationary distributions of can be derived.
Given the stationary distribution of , it is easy to show that (the same arguments used for the two-queue case

31



~

r (t)
Q (t)

1

1

1
~s (t)=c-r (t)1

~

Figure 23: The lower bound system for session 1.

still apply)
(42)

where is the stationary distribution of . To this purpose we need to characterize the modulating process
, such that ; the characterization can be directly derived from (43), the detail of which are

omitted.

6.2 Upper Bound Approximation for the Multiple-queue GPS System

In this section, we describe the procedure for obtaining the lower bound on the queue length distribution for
each session. The proofs are relegated in Appendix A.3

As in the two-queue case we consider the two following possible regimes separately:

1. For , .

2. There exists at least one such that .

Both regimes can be regarded as a generalization of the regimes we have considered for the two-queue GPS
system; as before, we will call the first regime unbiased and the second biased. These two different regimes
can be related to the notion of feasible partition introduced in [ZTK95] (see §2). If we consider the feasible
partition , , for , we observe that the unbiased regime
corresponds to the class of RPPS GPS assignments, where , while the biased regime encompasses
all the other possible GPS assignments, i.e., , . Note that, by definition, the
session guaranteed rate exceeds the average arrival rate only if ; if session belong to class , ,
its queue length will not decrease on the average unless all session belonging to are
idle.

We describe the procedure for obtaining upper bound approximation for the unbiased regime first. The
procedure consists of two steps. In the first step, we characterize the departure process of each session while
assuming the other sessions are always busy. It is clear that, if we assume all the other sessions as busy, session ,

, enjoys a service rate of exactly , whenever its queue is not empty. Equivalently, we
have a one-queue multiplexing system with a constant service rate . Let denote the departure rate of
this multiplexing system at time . Since is no longer Markovian, we can only compute an approximate
characterization; as before, we use the technique of [EM95] as described in Appendix B.1. The departure
process is approximated by a Markov Modulated Fluid Source and rate vector .
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In the second step, for session , , we consider one-queue multiplexing system with modulated
service modulated process (Figure 24) characterized by

(43)

The expression above comprises two terms: the first term is the guaranteed bandwidth session receives; as
shown in Appendix A.3, the second term represents a lower bound on the amount of extra service rate session
receives at time . Let and denote the queue length of this multiplexing system at time , and the
delay experienced by the traffic arriving at time , respectively. Then, it can be shown that

Lemma 4 For any , the following holds
(44)

and
(45)

Therefore, the distribution of provides an upper bound on that of , the queue length distribution of
session of the multiple-queue GPS system. Similarly, the distribution of provides an upper bound on
that of , the delay distribution of session i. As before, we look at the stationary distributions only. Let

, , and be the stationary versions of the distributions of , , and . Then from
Lemma 4, we have

(46)

and
(47)

where the last inequality in (47) follows since is the session guaranteed (i.e. minimum) backlog clearing
rate. The distribution of is computed using the spectral analysis technique outlined in § 4.1. To this purpose
we need to characterize the modulating process , such that ; the characterization can be
directly derived from (43), the detail of which are omitted.

Now we consider the biased regime. It is important to observe that for the biased regime, it is not possible
to adopt the same approach of the unbiased regime. It is easy to verify, indeed, that an expression like (43) for
session service rate in the decomposed system, while still providing a lower bound on session service rate,
does not always ensure the stability of the decomposed system. The difficulty we encountered in defining a
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suitable service rate for deriving an upper bound approximation for the biased regime has prevented us from
finding a satisfactory solution for the analysis of a general multiple-queue GPS system; this will be the attention
of further investigation.

In the biased case, however, it is still possible to derive an upper bound approximation for session in class
(i.e., sessions the guaranteed rate of which exceeds the average arrival rate). The procedure is readily obtained
from the unbiased case by considering only sessions in . The intuition is that sessions are most likely to
access only their guaranteed service rate plus only the minimum portion of service from idle sessions, since
it is very unlikely the sessions not in are idle (unless all the session in are also idle).

7 Conclusion

In this paper, we study GPS scheduling with Markov Modulated Fluid Sources. For simplicity, we focus
on a two-queue GPS system with two classes. We combined the bounding approach of [ZTK95] with the
approximation approach based on spectral analysis techniques developed in [AMS82, EM91, EM92, EM95].
By employing the key idea of decomposition [ZTK95] and by taking advantage of the specific structure of
MMFSs, we are able to derive lower and upper bound systems that produce very tight approximation to the
original GPS system, as shown by numerical examples. Application of these bounds for GPS scheduling in the
context of call admission control and bandwidth sharing is also illustrated, and comparison with FIFO and strict
priority in different scenarios is made and discussed. We show that GPS scheduling can provide flexibility in
bandwidth allocation and sharing which is absent in strict priority and FIFO scheduling, while still satisfying
the QoS requirement of each class. By providing a minimum guaranteed service rate to each class, delay
constraints can be taken into consideration simultaneously with loss probability requirements. By removing
the delay constraint used in our examples, our experience shows that strict priority is generally the best choice
in providing loss probability guarantees when the loss probability requirements for the two classes are very
different; whereas FIFO performs the best when the two classes have very similar loss probability requirements.
These observations should not be surprising.

The analysis can be extended to a multiple-queue GPS system with more than two classes, although the
interaction among different classes are much harder to capture as also evidenced by the large deviation study
in [Zha95b]. An other interesting direction for future research is the characterization of output processes of
GPS system, this will be useful when we study a network of GPS servers. Besides the simplistic bound on
delay using minimum guaranteed service rate, more elaborate bounds on the delay distribution that accounts
for the dynamics of Markov-Modulated Fluid Sources is also desirable, and will be the attention of further
investigation.
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A Proof of the Bounds

In this Appendix we prove, by analyzing the sample path behavior of the sessions, that the described systems
allow us to compute lower and upper bounds of the session backlogs. In this section, let and denote the
sample paths (or realizations) of the random arrival process and ; denotes the amount
of session traffic during the time interval on this sample path. We assume that is a right continuous
function with left limit, therefore for any . Similarly, let and denote the corresponding
sample paths of the corresponding random process and , .

A.1 Proof of the Lower Bound (Two-queue GPS System)

For , let denote session queue length at time in the decomposed system (Figure 2); moreover,
let denote the amount of service received by session during the time interval and ,
the service rate at time . We show that, for , session backlog at any time is bounded from
below by the session backlog in the decomposed system. Let us first show the following
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Lemma 5 For , and any the following holds

(48)

Proof: We have the following two cases:

1. Session input rate exceeds its guaranteed service rate ( ). In this case whereas the
service rate , session receives in the GPS system, exceeds if the other session is not busy at time
.

2. Session 1 input rate is less than or equal to the guaranteed capacity ( ). In this case ,
while the service rate , session receives in the GPS server, exceeds the input rate if session is busy
at time .

We now prove

Lemma 6 For , let a time interval contained in a session busy period in the decomposed
system. Then,

(49)

Proof: Without loss of generality, we provide the proof for session 2. To obtain the proof for session 1, we
simply reverse the role of session 1 and session 2 below.

Since is in a session 2 busy period, the amount of service session 2 receives during the time interval
in the decomposed system is

(50)

By using lemma 5 and by observing that for any time interval
we have

This lemma states that, for , in the decomposed system, the amount of service session receives
during any time interval, contained in a session busy period, bounds from above the amount of service received
in the GPS system during the same time interval. We can now provide the proof for lemma 1 which we state
again
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Lemma 1 For , and for any , the following holds

(51)

Proof: If session is not busy at time in the decomposed system, then and (51) holds. If session
is busy at time , let denote the beginning of the session busy period that contains . Since is in a

session busy period we have
(52)

From lemma 6, and using (14) we have

A.2 Proof of the Upper Bound (Two-queue GPS System)

We first consider the unbiased case. Without loss of generality, we provide the proof for session 2. Let
and denote session 2 queue length at time and the delay experienced by session 2 traffic that arrives at
time in the decomposed system, respectively (Figure 5b); moreover, let , denote the service rate at time
and the amount of service received by session 2 during the time interval . Finally, let denote
session 1 queue length in the queue served at fixed rate , the delay experienced by session 1 traffic,

session 1 departure rate from such a queue and the amount of service received during the time
interval .

We show that session 2 backlog at any time and the delay , experienced by session 2 traffic
that arrives at time , are bounded form above from above by the session 2 backlog and delay in
the decomposed system, respectively.

We first state the following result the proof of which can be found in [ZTK95].

Lemma 7 At any time t
(53)

and
(54)

Now we provide the proof of lemma 2 we state again below

Lemma 2 Let be a busy period of session in the two-queue GPS system. Then, for any

(55)
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Proof: If at time session 1 is busy then ; moreover, by lemma 7, if at time session 1 is busy in
the GPS system it is busy too if it is served at fixed rate ; thus, . On the contrary, if at time

session 1 is not busy, then the service rate equals the input rate, , whereas can exceed
the input rate if session 1 is busy when it receives service at the fixed rate .

We can now prove

Lemma 8 Let a time interval contained in a session 2 busy period in the GPS system. Then,

(56)

Proof: Since is in a session 2 busy period the amount of service session 2 receives during the time
interval is

(57)

By using lemma 2 and by observing that for any time interval we
have

This lemma states that, if session 2 is busy in the GPS system, the amount of service it receives during
any time interval, contained in the busy period, bounds from above the amount of service received in the
decomposed system during the same time interval. We can now provide the proof for lemma 3, we state again
below

Lemma 3 For any , the following holds
(58)

and
(59)

Proof: If session 2 is not busy at time , then and (58) holds. If session 2 is busy at time , let
denote the beginning of the session 2 busy period that contains . Since is in a session 2 busy period we
have

(60)

From lemma 8, and using (14) we have

From lemma 8 and (58), (59) immediately follows.
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This completes the proof of the bounds in the unbiased case.
For the biased case, assume, without loss of generality, that and and consider the

decomposed system in Figure 6. Clearly, the proof we have provided for the unbiased system applies for
session 2 as well. The proof of the bound for session 1 is provided by lemma 7.

A.3 Proof of the Upper Bound (Multiple-queue GPS System)

For , let and denote session queue length and delay at time in the decomposed
system (Figure 24), respectively; moreover, let denote the amount of service received by session
during the time interval and , , the service rate at time . Let denote the backlog of
session at time in a single queue system served at a fixed rate , the delay experienced by

session traffic in such a system, and the session departure rate from such a queue. Finally, let
denote the amount of service received during the time interval .

We show that, for , session backlog at any time is bounded from below by the session
backlog in the decomposed system, and that session delay at any time is bounded from below
by the session delay in the decomposed system.

We first state the following

Lemma 9 For , let denote the session service rate at time in the GPS System. For any ,
the following holds

(61)

Proof: Observe that session service rate satisfies the following inequality

(62)

In (62), the first term in the RHS is the guaranteed session service rate; the second term accounts for the unused
portion of service rate of the other sessions that session can access. Clearly, for ,
represents a lower bound on the amount of the unused portion of service rate of session that is available to
session at time . From Lemma 7, we have

Inequality (61) follows from (62) and the observation that, for ,
.
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This lemma states that, for , the amount of service session receives in the GPS system at any
time , , bounds from above the amount of service received in the decomposed system at time .

The following result (analogous to Lemma 8) follows immediately.

Lemma 10 Let a time interval contained in a session busy period in the GPS system. Then,

(63)

The proof for Lemma 4, we state again below, follows from Lemma 10 by using the same argument used
in the proof of Lemma 3, and thus omitted.

Lemma 4 For any , the following holds
(64)

and
(65)

B Output Process Characterization

B.1 Statistical Multiplexing System with Constant Service Process

Here we provide the procedure for obtaining an approximate characterization of the departure process from a
statistical multiplexing system with a constant service process we reviewed in section 2.2.

The output process is approximated by a Markov modulated fluid source defined by the pair
as follows. The state space is

(66)

where denotes the busy period state. The generator matrix and the rate vector are

(67)

(68)

The submatrix corresponds to the underload states. The column vector denotes the
transition rates from the underload states to the busy period state ; its elements are defined as follows,

(69)
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The row vector denotes the transition rates from the busy period state; its elements are defined
as follows

(70)

where , defines the stationary probability vector that the source state is at the onset of the empty
period and is then mean busy period. The expression for is [EM91]

(71)

where is a normalization constant, and is the stationary probability vector that the
queue is empty with session 1 in state . Finally, the expression is [EM91]

(72)

B.2 Statistical Multiplexing System with Modulated Service Process

In this appendix we present the procedure for obtaining an approximate characterization of the departure process
from a statistical multiplexing system with a modulated service process we discussed in section 4.1.

The main objective of our construction is to derive an approximate characterization of the output process
in a way that the state space size is of the order of the input process size. We achieve this goal by lumping
the busy period into one state, and by aggregating the system underload states corresponding to the same input
state into one state.

Note that in a statistical multiplexing system with a modulated service process, when the system is in a busy
period, the output process departure rate depends on the state of the modulating service process; to simplify,
we associate the average output rate during the busy period, we denote , with the single busy period state.
On the other hand, the departure rates associated with the aggregate underload states are directly given by
the corresponding input rates. The distributions of the sojourn time in the various states are approximated by
exponential distributions, the mean of which are exactly computed. Moreover, we compute the exact transition
rates between states.

Observe that the resulting approximate characterization of the output process has the same conditional
stationary rate distribution of the actual output process whenever the system is in the empty period. However,
when the system is in the busy period only the average rate is preserved.

Let denote the overall system generator matrix and and
(where is a unit vector of proper dimension) the overall system input and modulating service rate vector,
respectively. Moreover, let and denote the stationary probability and distribution vector, respectively.
Finally, let and denote the set of underload
and overload overall states.

We proceed in two steps in order to obtain the approximate output process characterization. In the first step,
we derive an approximate characterization of the output process, the state space of which consists of the overall
underload system states and the busy state. The construction is carried out in a way similar to the procedure
presented in Appendix B.1. In the second step we aggregate the underload states corresponding to the same
input state. This yields an approximate characterization with a state space size of the same order of the input
process space size.
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In the first step, the approximate characterization has a state space , where
is the busy state and a stationary probability vector . The transition matrix has the following structure:

and (73)

The matrix is a submatrix of specifying the transition probability among the underload states. The
vector denotes the transition rates from the underload states to the busy period state and the row vector
vice versa. is the mean busy period. These quantities can be computed as shown in Appendix B.1. is the
average service rate during the busy period given by

(74)

We need to characterize the embedded discrete time Markov chain defined at the transition points of this
output process characterization. Let denote its one-step transition probability matrix and

the stationary probability vector. The following hold (see, e.g., [Kei79]):

(75)

and
(76)

where is the Kronecker’s delta function and , , is the transition rate out of state
and .

In the second step, we aggregate the underload states corresponding to the same input state into one state.
The resulting approximate characterization has state space , where denotes
the set of the underload input state, defined as follows

(77)

For , the diagonal entry of is equal to , where is the average residence time in the input
state conditioned on the event that the system is in an empty period. For the busy state , the diagonal entry is

. The off-diagonal entries are of the form , , where gives the probability of entering
state upon a transition from state . To complete the characterization we need to specify, for each state, the
average residence time and the transition probabilities. For , let denote the set of the overall system
underload states that contain , i.e.

and let .
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From [How71], we have
(78)

where the submatrix corresponds to the states in , and is the stationary probability
vector just after a transition into . By simple probabilistic arguments, it is easy to show that

(79)

Similarly, the transition probabilities have the following expressions

(80)

The rate vector is , where and is the average service rate during the
busy period. The vector is defined as follows

(81)

This complete the characterization.
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