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Abstract

As computer networks increase in size, heterogeneity, complexity and pervasiveness,
effective management of such networks simultaneously becomes more important and
more difficult. This paper explores in detail one aspect of network management, fault
identification. Fault identification is the process whereby the existence and nature of
network faults are ascertained. Characteristics of the fault identification problem are
explored and existing approaches are surveyed. Interestingly, much of the work in this
area makes use of techniques from Artificial Intelligence, especially expert systems.
Features of the fault identification problem that make it is amenable to Al approaches
and resistant to more traditional algorithmic solutions are examined. Finally, a new
approach to fault identification is proposed that employs an algorithm for finding de-
pendencies among values in multiple streams of data over time. The new approach is
compared to existing approaches, and it advantages and disadvantages are weighed.



1 Introduction

As businesses and individuals have become increasingly reliant on computer networks, the
complexity of those networks has grown along a number of dimensions. The phenomenal
growth of the Internet in recent years provides a clear example of the extent to which the
use of computer networks is becoming ubiquitous [1]. In July of 1993, there were 1.8 million
hosts on the Internet. That number rose to 3.2 million in July of 1994, and climbed to 6.6
million in July of 1995. It is estimated that 70,000 networks comprise the Internet, and that
there are between 20 and 40 million users worldwide. As the demands that users place on
networks become more complex and varied, so do the networks themselves. Heterogeneity
is the rule rather than the exception. Data from a variety of applications may travel under
the control of different protocols through numerous physical devices and transmission media.
Large numbers of software and hardware vendors sell network components that have varying
capabilities and operating characteristics. Network configurations and demand for network
resources are highly dynamic. There is general consensus that this trend toward increasing
complexity will continue rather than abate.

As computer networks grow in complexity and pervasiveness, effective management of
those networks simultaneously becomes more important and more difficult. Users of network
aware applications are not concerned with the welter of complexity that lies on the other side
of their ethernet card, they simply expect their application, and thus the network, to provide
service at a given level of quality. For example, a specialist at a large hospital may use a
remote X-ray application to consult on cases where such expertise is not available locally.
Regardless of the state of the network, the specialist expects X-ray images to arrive quickly,
securely, and without errors. Likewise, corporations expect mission critical applications to
perform their functions in spite of problems in the network, whatever their location and
nature. Unfortunately, maintaining smooth operation of modern, complex networks is a
difficult task. The amount of information that can be gathered about the state of a network
for the purpose of making management decision is staggering. Different components (both
software and hardware) from different manufacturers can fail for different reasons, and the
manifestations of such failures can be diverse both topologically and evidentially. In addition,
as larger volumes of data move more and more rapidly over high bandwidth media under
the control of high speed protocols, the rapidity with which management decisions are made
becomes crucial.

The network management rubric encompasses a large number of tasks, and various stan-
dards bodies are attempting to bring order and organization to those tasks. The International
Standards Organization (ISO) has divided network management tasks into six categories as
part of their Open Systems Interconnection (OSI) model: configuration management, fault
management, performance management, security management, accounting management and
directory management. One of the goals of categorizing network management tasks is to fa-
cilitate modularization in the design and implementation of network management tools. As
we will see, network management tasks often do not fall neatly into just one of the six cate-
gories. For example, the only manifestation of a network fault may be degraded performance.
In addition to clearly defining the network management problem, various ISO and Internet
standards have been proposed for solutions to certain aspects of the problem. For exam-
ple, the Simple Network Management Protocol (SNMP) is an Internet standard protocol for



communication between managing and managed entities. The analogous ISO standard is
the Common Management Information Protocol (CMIP). There are also Internet and OSI
standards for the structure and content of information about managed entities (i.e. the state
of the network).

In this paper we are concerned with one aspect of fault management, fault identifica-
tion. Our goal is to clearly define the fault identification problem, explore issues related
to that problem, and review existing approaches that have been discussed in the network
management literature. The fault management task can be characterized as detecting when
network behavior deviates from normal and formulating a corrective course of action. Fault
management can be decomposed into three subtasks: fault identification, fault diagnosis,
and fault remediation. The fault identification subtask involves detecting that a problematic
deviation from normal behavior has occurred and identifying its nature. Fault diagnosis
involves determining the root cause of an identified problem, and fault remediation is the
formulation of a course of action that will repair the problem. All three stages of fault
management involve reasoning and decision making based on information about current and
past states of the network. We will see that two dimensions along which approaches to fault
management (and fault identification) vary are the nature of the information used to make
those decisions and the degree to which decision making is automated.

Interestingly, much of the work in this area makes use of techniques from Artificial Intel-
ligence (Al), especially expert systems and, increasingly, machine learning. The complexity
of computer networks and the time critical nature of management decisions make network
management a domain that is difficult for humans. Expert systems have achieved perfor-
mance equivalent to that of human experts in a number of domains, including certain aspects
of network management [3]. However, the dynamic nature of computer networks often makes
the knowledge contained in expert systems brittle. That is, such knowledge quickly becomes
out of date and ineffective as network topology, composition and usage change over time.
Therefore, knowledge acquisition from human experts, a notoriously difficult task, often
becomes a bottleneck. Machine learning techniques are gaining favor in the network man-
agement community as one way around the knowledge acquisition bottleneck by automating
the acquisition of knowledge about dynamically changing network environments [10].

After defining the fault identification problem and reviewing existing approaches, we
present a new approach based on a machine learning algorithm, called Multi-Stream Depen-
dency Detection (MSDD), that learns dependencies among values in multiple streams of data
over time [26]. MSDD accepts as input a history of vectors of categorical values that describe
the state of the network as it changes over time. From that history, MSDD produces a set of
probabilistic rules that describe how various features of network state are predictive of future
states of the network. In particular, if the state vector contains information about faults that
have occurred in the past, MSDD can learn rules that probabilistically relate current network
state to future faults. Such rules facilitate proactive network management, alerting network
managers to the possibility of trouble in the future. In addition, the rules learned by MSDD
constitute knowledge about the dynamics of the network. MSDD can be run periodically
as the dynamics of the network change, automatically acquiring up-to-date knowledge and
thereby avoiding brittleness.

The remainder of this paper is organized as follows. In Section 2 we define the fault
identification problem somewhat more formally and examine some of the issues that one



must consider when formulating solutions to that problem. Section 3 contains a discussion
of several industry standards that are important and relevant to network management in
general and fault identification in particular. Those standards are the foundation upon which
most solutions to network management are built, so a thorough understanding of their scope
and function is important for the review in Section 4 of approaches to fault identification
that have appeared in the network management literature. Our review of existing approaches
is followed in Section 5 by a proposal for a new approach to fault identification based on
the MSDD algorithm. Our approach automates the acquisition of knowledge that enables
proactive fault identification. Finally, we summarize and conclude in Section 6.

2 The Fault Identification Problem

We have previously defined fault identification as the process whereby the existence and
nature of network faults are ascertained. A fault is simply a malfunction in some component
of the network, either hardware or software. For example, a parity error in a router’s internal
memory that causes it to crash, or a software bug in some portion of a protocol stack that
causes anomalous behavior. At an abstract level, fault identification can be thought of as a
function, Z, with inputs and outputs. The input to our function is a description of network
state, S, and the output is a set of hypotheses, H, concerning the existence and nature of
network faults. The state S is meant to convey, in some sense, the health of the network.
The hypothesis set ‘H may be empty, indicating that no faults are believed to be present
in the network. Alternatively, H may contain n > 1 hypotheses concerning the existence
of n distinct faults. Each hypothesis may specify the indications in S of the corresponding
fault and may contain some amount of diagnostic information. That is, identification and
diagnosis are rarely totally decoupled. Fault identification, therefore, is a process or function
that maps from network states to fault hypotheses: Z(S) = H.

Our characterization of the fault identification problem points to at least two dimensions
along which approaches to the problem vary. First, different approaches to fault identification
define S differently. At the lowest level, information about the state of individual network
components (e.g. routers, bridges, ethernet segments, token ring cards) can be recorded over
time. Examples of that type of information include queue lengths, buffer usage, throughput,
and retransmission rates. This type of data, often called sensor data, serves as the lowest
level input to three of the six OSI network management categories: fault management,
performance management and accounting management. The amount of sensor data available
in large networks can be as high as 20 — 30 gigabytes per day [12]. Clearly, some amount
of abstraction and/or summarization of such vast quantities of raw data is desirable. One
common approach is to maintain summary statistics for sensor data, such as means or
cumulative values, rather than time series [33]. Another is to establish thresholds on the
values of state variables for individual components, and to restrict S to contain information
about violations of those thresholds [6, 19]. Threshold violations are often called events or
alarms. To facilitate human reasoning about network state, sensor data is often presented
graphically, at a very high level of abstraction. For example, links may be represented as
pipes of varying diameter to indicate the amount of traffic they carry [4].

The second dimension along which approaches to fault identification often vary is the



degree to which the computation of 7 is automated. At one extreme, human users are solely
responsible for ascertaining the existence of faults. Tools may be available to examine state
information at different levels of detail, but no tools exist to automate reasoning about the
presence of faults. At the other extreme, state information is fed directly to an automated
process that emits H with no human intervention. Most existing approaches are mixed
initiative, lying somewhere on the spectrum between the extremes (although the level of
automation is typically very low).

As networks become more complex and management decisions become more time critical,
there is pressure to move toward more compact, abstract representations of S for human
consumption and to higher levels of automation. That is, humans can process only a tiny
fraction of the raw data that is potentially available, and they can do so at speeds that may
not be sufficient for today’s high capacity networks. When gigabits of data per second flow
through a network, every second that the network operates at suboptimal levels can be very
costly. That same pressure is also causing the move toward increasing use of Al techniques.
Automated reasoners have the potential to deal with more information more rapidly than
human reasoners, thereby alleviated some of the burden on human network managers and
improving the overall quality of network operations.

Why is fault identification a difficult task? Consider a simple example in which a link in
an internetwork fails. That one failure can have effects that ripple throughout the internet-
work: applications may time out on requests that traverse the link; errors may be reported
as new connections to hosts on the link fail to be established; as routing tables get automat-
ically updated and network traffic shifts away from the failed link, other links may become
overloaded and begin to report performance degradations. The result is that a wide variety
of errors from geographically dispersed locations may suddenly flood the network managers
console. The manager is left with the difficult task of determining if the problem is tem-
porary or persistent, if multiple problems are occurring simultaneously or if one problem is
having widespread effects, and exactly where in the vast internetwork the problem exists.
That task is made still more complex by the fact that different faults may have very similar
manifestations. Suppose a host, rather than a link, had failed in our example above. We
would still expect to see applications timing out and new connections failing to be estab-
lished. However, those errors would be restricted to the one host rather than all hosts on the
link. The result is that two very different problems may have remarkably similar symptoms.

The distributed nature of computer networks also contributes to the difficulty of fault
identification. Due to nondeterministic message delays, the times at which the effects of
faults are felt in various parts of the network are highly variable. Therefore, secondary and
tertiary effects of a fault may depend on the order in which its primary effects manifest them-
selves. Likewise, reports of the effects of a fault may arrive at the manager’s station in an
almost arbitrary order, irrespective of the order imposed by time of occurrence and causal-
ity. Although such reports could be timestamped, that would require clock synchronization
throughout the network. Finally, a network experiencing a fault may be under stress, leading
to packet loss and potentially loss of information relevant to identifying the nature of the
fault. The end result is that identical faults can have vastly different manifestations, making
the reverse mapping from manifestations to faults very hard to compute.



3 Network Management Standards

In the interest of obtaining truly integrated (vendor-independent, interoperable) network
management, various organizations have attempted to standardize aspects of the network
management problem. In particular, much attention has been focused on the structure,
content, and manipulation of network state information. If the syntax and semantics of
sensor data obtained from each network device were dependent on the manufacturer of
that device, synthesizing a coherent, accurate view of the overall health of the network
would be a horribly complex task. Rather, various standards specify the structure and
content of management information that must be maintained for specific network devices in
a vendor independent manner. Coupled with standards for accessing and manipulating that
information, vendors and researchers can focus on the more important problem of how to
make management decisions based on (standardized) state information.

There are basically two models of network management, each with its own set of stan-
dards, that are vying for market dominance. The Internet model is a minimalist approach,
both in terms of functionality and the requirements that it places on network components,
that is targeted at management of TCP/IP based internetworks (e.g. the Internet). The
OSI model is more powerful and general than the Internet model, for which it sacrifices
simplicity. The Internet model’s minimalism has made it attractive to those interested in
actually implementing network management software, and it has therefore achieved market
dominance. The Internet and OSI camps are strongly divided, though, on the question of
whether the Internet model can be extended to non-TCP/IP environments. That is, is the
Internet model the basis for a solution to the general network management problem, or is a
move to a more OSI-like model inevitable?

Most research in network management (including fault management and fault identifica-
tion) assumes one of the models described above. Therefore, a thorough understanding of
both models is important background for the review of previous work in fault identification
that follows this section.

3.1 The Internet Model

The Internet model divides network components into two classes: network management
stations (NMSs) and network elements. Network management stations are hosts running
management applications that monitor and control network elements. Network elements are
devices of any sort that can be managed, such as hosts, routers, bridges, ethernet cards,
etc. The software residing in network elements that processes and responds to management
commands from network management stations is called an agent. One goal of this archi-
tecture is to minimize overhead at the network elements. If network management is to be
ubiquitous, then all network devices must be manageable. However, if supporting network
management functionality severely hinders the performance of routers, bridges, modems and
other devices, then manufacturers may not choose to implement that functionality. There-
fore, the functionality and computation required at the agents is strictly limited. Rather,
it is assumed that specific hosts throughout the network (the NMSs) will be dedicated to
performing sophisticated network management functions, and the bulk of the computational
burden should be placed there.



The Internet approach views managed objects as collections of scalar variables residing
in a virtual store, and models all management functions as setting and getting the values
of those variables. Objects are defined according to the Internet standard Structure of
Management Information [30] which specifies rules for naming objects, a syntax for describing
the structure of objects, and rules for encoding objects for the purpose of communicating
them. In particular, objects are described with a subset of Abstract Syntax Notation 1
(ASN.1) [27] and are encoded with the Basic Encoding Rules (BER) [28].

The actual collection of objects that can be managed and the operations that can be
performed on those objects is called the Management Information Base (MIB). The first
Internet standard MIB [29] defined 111 manageable objects for the Internet protocol suite.
Vendors and researchers were free to extend this core set of objects within the rules of the
SMI standard via an “experimental” subtree of objects and a similar “enterprises” subtree.
The current Internet standard MIB, MIB-II [21], contains 170 manageable objects.

To make the ideas contained in the previous paragraphs more concrete, consider the
following object defined for the Internet standard MIB-II that indicates the amount of time
in hundredths of a second since the network management portion of the system was last
reset:

sysUpTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
::= { system 3 }

The syntax of the definition above (not to be confused with the SYNTAX portion of the
definition itself) exercises a subset of ASN.1 as specified by the SMI. In addition, the SMI
requires that each object have a name (sysUpTime) and a syntax. In this case, the syntax
for the object indicates that it comprises a single scalar value of type TimeTicks. That
value can only be read by the NMS, as indicated by the ACCESS field, and it must be
supported by all MIB-II implementations, as indicated by the STATUS field. The SMI also
designates the use of the BER to encode the contents of this and all other objects into bit
streams for transmission. The specification of the above object and 169 others constitute
the contents of the Internet standard MIB-II.

Network management stations and network elements communicate via the Internet stan-
dard Simple Network Management Protocol (SNMP) [2]. SNMP operates on top of the User
Datagram Protocol (UDP), a connectionless protocol that does not guarantee datagram de-
livery. Network management services are often most crucial during times of network stress,
and the designers of SNMP felt that the use of connection oriented protocols (e.g. TCP/IP)
might add to network stress or simply be infeasible in such situations. In keeping with the
model of network management as the getting and setting of variables, SNMP supports four
basic operations: Set, Get, GetNext and Trap. The Set and Get operations allow an
NMS to modify and obtain the value of a MIB variable at a network element. For example,
the NMS could instruct an agent to perform a specific management operation by setting
the value of a particular variable. GetNext allows an NMS to iteratively traverse MIB
variables. Note that the Set, Get and GetNext operations implement a request/response



protocol, with the managing entity driving the entire process. The Trap operation, however,
allows the agent to report events, such as threshold violations, asynchronously to the NMS.

3.2 The OSI Model

In the OSI model, managers and agents use a reliable transport to communicate over associ-
ations between application layer processes. Note that this requires all network components
involved in management, managers and agents, to support all seven layers of the protocol
stack. The management protocol is the OSI standard Common Management Information
Protocol (CMIP) [13] which is supported by the OSI standard Common Management In-
formation Service (CMIS) [14]. Just as agents in the Internet model control MIBs, so do
agents in the OSI model. However, the structure of the OSI MIB is object oriented, and is
therefore very different from the Internet model of objects as collections of scalar variables.
OSI managed objects are defined by their attributes, behaviors, operations and notifications.
Attributes are data maintained by the object, such as sensor data. Operations are actions
that can be taken on the object, and behaviors specify changes that take place within the
object in response to operations. Notifications are sent asynchronously by the object to
report events.

The operations provided by CMIS are the following: M-GET, M-CANCEL-GET, M-
SET, M-ACTION, M-CREATE, M-DELETE and M-EVENT-REPORT. M-GET
and M-SET allow the manager to obtain and change the value of an object’s attribute. M-
CANCEL-GET cancels a previously issued M-GET. M-ACTION allows the manager
to take object specific actions from a set that has been agreed upon by the manager and
the agent. M-CREATE and M-DELETE allow the manager to request that the agent
create and delete instances of managed objects. M-EVENT-REPORT allows the agent

to report events to the manager asynchronously.

3.3 Discussion

It is important to understand the scope of these standards. They simply provide a vendor-
independent mechanism for specifying and manipulating the contents of management infor-
mation bases. That is, they provide vendor-independent access to network state information.
Therefore, researches and vendors who design network management tools within either the
Internet or OSI frameworks can expect their tools to interoperate with other tools and devices
that operate within that same framework.

However, there are a host of important and difficult questions that these standards were
not designed to address. What state information is most relevant to the task of fault identi-
fication? How does one decide based on state information whether a fault exists, how many
faults exist, where a fault has occurred, and whether the problem is temporary or persistent?
What level of summarization and abstraction of the raw sensor data available in MIBs is
most appropriate? Should management decisions be made locally with local information by
specific components of the network, or should they be made globally with global information
at the network level? In the sections that follow, we turn our attention to some existing
answers to those questions.



4 Current Approaches to Fault Identification

In this section we survey some current approaches to the fault identification problem. The
majority of fault management systems in use today involve very little automated reasoning.
Typically, network managers have access to application software that allows them to browse
network state at varying levels of detail, and they must rely on their own domain knowledge
to ascertain the existence and nature of faults. Therefore, our survey begins in Section 4.1
by looking at common approaches and issues related to network monitoring, the collection
and presentation of information about network state. As the need for automated network
management grows more pressing, the amount of research in that area increases, but few
techniques have gained widespread acceptance. The most common approach to automating
part of the fault identification problem, called event correlation, is discussed in Section 4.2.
That is followed by a broad survey of a number of additional approaches to automating
knowledge acquisition and reasoning for the purpose of fault identification and management
in Section 4.3. While many of the approaches described in that section show promise, few
have been shown to scale well (expert systems being a notable exception) and have therefore
not been widely implemented.

4.1 Network Monitoring

Network monitoring is the process of gathering information about the state of a network,
synthesizing it into a coherent view of the network’s health, and presenting that view to a
human network manager in an intuitive and understandable manner. Unfortunately, mon-
itoring of computer networks is often a difficult task. Monitored devices may be widely
distributed geographically and may be connected by communication links of varying capac-
ity. The result is that events from those devices may arrive at management stations in
arbitrary order, irrespective of orderings imposed by time and causality. Identical faults
occurring on subsequent days may generate very different sequences of events. In addition,
networks under stress, where event monitoring and network management are most impor-
tant, may lose packets and thus lose valuable information about relevant events. Finally,
the sheer volume of information that is available to be monitored in large networks leads to
problems in processing it quickly enough and presenting it effectively.

Network monitoring can be divided into two types: time-driven monitoring and event-
driven monitoring. The former involves periodically obtaining snapshots of network state,
e.g. by polling for the values of MIB variables. The former involves asynchronous receipt
of notifications about “interesting” events. Of the two approaches, event-driven monitoring
i1s by far the most common. Given a good definition of what makes events interesting,
event-driven monitoring substantially reduces the amount of network state information that
must be considered. Events can be generated by managed objects themselves, or they can
be generated by external processes that monitor the status of objects (perhaps through
time-driven monitoring) for interesting changes.

Events for individual objects or groups of objects are gathered into traces that describe
system behavior over time, and those traces are often stored for later analysis. Management
of large volumes of event traces can itself be a difficult problem, and schemes for treating
logging services as managed objects have been proposed [19]. Monitoring systems typically



provide facilities to combine traces, called trace merging, to give the network manager dif-
ferent views of the system. For example, traces generated by individual objects may be
combined to give a more global view of the behavior of a group of objects. In addition, a
single trace can be decomposed into several smaller traces to focus on particular aspects of
the trace, such as events with a given priority or from a given source.

For event traces and other types of network state information to be of use to humans in
making management decisions, that information must be accessible through a user interface.
One common interface is a simple textual display with appropriate formatting (e.g. inden-
tation and highlighting) of state information [17]. Increasingly, textual displays are being
replaced by graphical displays. In particular, animation is becoming common. The display
contains graphical images such as dials, histograms, pie charts and meters that convey a
snapshot of the network’s state. As state changes occur and the display is updated, rotating
dials and sliding meters provide an intuitive sense for the way in which system state evolves
over time. Examples of systems that use animation include SMART and VISIMON [22],
Radar [20] and the Test and Measurement Processor (TMP) [11]. More sophisticated func-
tions that are finding their way into products for network managers include browsing through
information at different levels of abstraction [11, 18], interactive playback of historical state
information [22, 20|, and exploration of network state in virtual reality environments [4].

4.2 Event Correlation

Event correlation is the interpretation of multiple events as a unit. Although event-driven
monitoring is commonly preferred to time-driven monitoring because of the inherent reduc-
tion in information, large networks may still generate thousands of events each day. Event
correlation techniques attempt to identify patterns or trends in network alarms so that mul-
tiple manifestations of a single fault can be treated as a unit. Such groupings of events can be
used as patterns of activity that are constantly being matched against the current state of the
network. If any patterns matches, then the fault associated with that pattern is identified as
being present. Event correlation is particularly useful for faults that do not directly trigger
events, but are only indirectly identifiable by the problems they cause in other portions of
the network. In addition to its direct application to fault identification in the form of a rule
base, event correlation is also commonly used to reduce the amount of information presented
to network managers. If sets of events commonly co-occur (perhaps by way of being causally
related), then correlating those events and reporting a “meta-event” significantly reduces
the level of detail of the information presented without significantly impacting its content.
Many network management systems in use today include event correlation components.
IMPACT is a management platform devoted to correlational tasks as part of the GTE
Telecommunications Services NetAlert system [15]. IMPACT includes a graphical user inter-
face that allows domain experts to define correlation rules. The left-hand-sides of correlation
rules are boolean functions of network state (events). When a left-hand-side matches the
current network state (evaluates to true) the action in the rule’s right-hand-side is taken.
Actions can either assert or clear correlations. Correlation assertions are meta-events that
can in turn be matched in the left-hand-sides of other rules. The event correlation system
describe in [16] automates certain aspects of the problem by exploring hypotheses about the
relationships between events to form correlations and to infer causality. In particular, events



are hypothesized to be related if the objects generating the events are adjacent in the protocol
stack, if they are at endpoints of a connection, or if they are part of separate connections that
share some intermediate resources (e.g. a router or gateway). These hypotheses drive the
collection of more detailed information from relevant portions of the network. Once events
are determined to be related, heuristic reasoning about causality relationships is performed
based on the type, severity, origin and level in the protocol stack of the events. Finally,
more sophisticated and theoretically sound approaches to reasoning about the presence of
faults based on multiple sources of uncertain evidence (events from multiple points in the
network) are beginning to be explored. In [5], the authors use a Bayesian inference model
in combination with a probabilistic belief updating algorithm to perform fault identification
and diagnosis in Linear Lightwave Networks.

4.3 Automating Fault Identification

The technology most commonly used to add significant levels of automation to network man-
agement platforms is the rule-based expert system. Expert systems employ generic reasoning
engines to operate on rule bases that embody domain specific expert knowledge. They have
enjoyed considerable success in at least three areas of network management: maintenance,
provisioning and administration [3]. Maintenance and administration include facets of fault
management such as monitoring, troubleshooting, diagnosis, traffic management and fault
remediation. The most common application of expert systems is in the realm of monitoring
and diagnosis, with more than a dozen deployed systems. The Automated Cable Expertise
(ACE) system is used by several of the regional Bell operating companies to identify faults
in local loop plants. GTE’s Central Office Maintenance Printout Analysis and Suggestion
System (COMPASS) is used to identify faults in the telephone exchanges they manufacture.
AT&T’s Network Management Expert System (NEMESYS) provides real-time monitoring
and control of network traffic patterns.

Although expert systems are a common component of network management software,
the problems of brittleness and the knowledge acquisition bottleneck that were discussed in
previous sections still limit their utility. Expert systems perform well within the confines of
their knowledge base, but tend to fail horribly in new and different circumstance. In addi-
tion, rapid changes in technology and the configurations of individual networks ensure that
knowledge bases typically have limited lifetimes, bringing the knowledge acquisition prob-
lem to the fore. Increasingly, researchers are turning to techniques from the field of machine
learning to develop adaptive systems that acquire the knowledge they need automatically.

Two topics within machine learning appear to be garnering the most interest from the
network management community: neural networks and top-down induction of decision tree.
As outlined in Section 4.2, many approaches to proactive network management and informa-
tion reduction involve correlating network events. The goal is to find patterns of activity that
are indicative or predictive of network faults. Neural networks are simply function approx-
imators that can be trained to identify such patterns in their input. Applications reported
in the network management literature include prediction of trunk occupancy in telephone
networks [8], computation of a single scalar value based on network state that indicates the
overall “health” of the network [7], and detection and prediction of chronic transmission
faults in AT&T’s digital communications network [31]. Decision trees are a different type
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of function approximator that can learn mappings from network states to categorical values
(typically thought of as class labels). For example, one could have a human expert label
network state vectors according to the presence or absence of particular types of faults, and
use a decision tree algorithm to learn the mapping used by the expert. Systems reported
in the literature include Function-Based Induction (FBI) [10], which learns decision trees
from examples as described above and converts those trees into rule sets, and ITRULE [9],
an information theoretic learning algorithm that was used to acquire expert knowledge from
trouble ticket and alarm databases for inclusion into a rule-based expert system.

Machine learning approaches to acquiring knowledge for network management have met
with mixed success. All machine learning techniques rely to a large extent on the quality
of their inputs. Therefore, when training examples are presented that include all of the
features used by human experts in making their judgements, performance tends to be good.
However, when complete and informative feature sets are difficult to obtain a priori (perhaps
because human experts are incapable of recognizing all of the information they use in making
judgements), performance may be poor. For example, in [8] the authors used past values of
trunk occupancy to predict future values, with little success.

5 A New Approach to Fault Identification

In this section we propose a new approach to fault identification based on the idea of network
steering. In previous work with transportation networks we found that network operation
can achieve higher levels of stability when pathologies are predicted and avoided rather than
detected and repaired [24]. Much as drivers on busy roads monitor for potentially dangerous
situations and steer their cars to avoid them, network managers should look for indications
of problems that may appear on the horizon and “steer” the state of the network away from
such eventualities. Network steering distributes the network manager’s work over time, so
more resources are available to attend to unpredictable faults when they arise.

5.1 Proactive Fault Identification

Network management can be either a reactive process, set in motion by one or more indicators
of an existing problem, or a predictive process, initiated by indicators of the potential for
problems in the near future. Consider trap messages generated by agents in response to state
changes in managed objects. Traps may be the result of completely unpredictable events,
such as the loss of an underground line to a backhoe, a hardware failure in a router, or a
software error in a user’s application. When a trap message arrives at the manager’s console,
it is indicative of an existing problem and the only choice is to react; the fault is isolated,
the problem diagnosed, and a corrective course of action is formulated.

However, some types of faults within a network are predictable with varying degrees of
accuracy. Consider a trap message generated in response to some feature of a managed
object’s state exceeding a threshold, such as the number of packets dropped by a router
due to a lack of buffer space. It may be that the values of that feature as they change over
time are correlated with other features of the same object’s state or with features of the
state of other objects in the network. If one could find such correlations and use them to
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predict future states of managed objects, then it would be possible to intervene before the
threshold is exceeded, and avoid the pathological state that would generate a trap. Note that
predicted and existing faults are handled in much the same way. The isolation, diagnosis, and
remediation phases following prediction or detection of a fault are the same, and the same
mechanisms can be used in both cases. The advantage afforded by a predictive component is
that problems are solved before they reach significant levels, thereby keeping the operation
and performance of the network more stable.

Our approach to proactive fault identification will employ a statistical learning algorithm,
called Multi-Stream Dependency Detection (MSDD), that finds dependencies between values
in multiple streams of data over time. Dependencies are unusual co-occurrences of values.
MSDD accepts as input a history of vectors of categorical values that describe the state of
the network as it changes over time. State vectors can be obtained by polling for data
contained in MIBs. From that history, MSDD produces a set of probabilistic rules that
describe how various features of network state are predictive of future states of the network.
In particular, MSDD learns rules that relate the state at time ¢ to the state at time ¢ + k,
where k is called the lag of the rule and is an input parameter to the algorithm. For the
purpose of fault identification, if the state vector contains information about faults that
have occurred in the past, MSDD can learn rules that probabilistically relate current network
state to future faults. Such rules facilitate proactive network management, alerting network
managers to the possibility of trouble in the future. Our approach is faithful to the Internet
model of network management in that it places no additional burden on network elements.
The MSDD algorithm runs solely at the network management stations, finding dependencies
between features of managed objects within the NMS’s purview.

At all levels, network management is a knowledge-intensive task. Identifying indicators
of pathological states, diagnosing the causes of faults, and formulating corrective plans all re-
quire detailed knowledge of both the domain and the problematic network. If that knowledge
must be obtained from human experts, knowledge acquisition quickly becomes a bottleneck.
The dynamic nature of computer networks only exacerbates the problem. Network topol-
ogy, usage patterns, and individual software/hardware components change over time, often
rendering knowledge gained in one environment or situation incorrect or irrelevant when
applied elsewhere. By automating the process of gathering knowledge about how the state
of a network changes over time, MSDD makes it possible to easily acquire knowledge tailored
to specific sites, and even to update (re-acquire) such specific knowledge as the dynamics of
a site change over longer time scales.

To see how the MSDD algorithm might be used to find dependencies in a computer net-
work, consider a simple LAN environment with three hosts supporting user applications
and a single router, all of them running the Internet protocols. Agents running within this
network will maintain MIBs for each of the managed objects — the individual hosts, the
router, specific applications, etc. The MIBs for the hosts, which are all running TCP/IP,
will contain variables such as tcpAttemptFails and tcpCurrEstab, the number of failed con-
nection attempts and the number of currently established connections respectively. The
network management station for the network will periodically poll the individual agents for
the contents of their local MIBs, building up time series (streams) for the individual MIB
variables. For example, the value of the tcpAttemptFails variable retrieved from host A at
regular intervals will form one stream, as will the values of that variable obtained from the
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other hosts on the LAN. Likewise, three different streams for the tcpCurrEstab values will
be obtained over time, one for each of the hosts. In addition to polled values, notifications
of events, such as failures or traps generated due to threshold violations, will be placed into
yet another stream, the event stream. The contents of these streams give a very detailed
picture of how the hosts and other network components (e.g. the router) have changed over
time. It is these streams that serve as input to the MSDD algorithm. MSDD’s job is to find
structure in the streams, to find statistically significant dependencies between states of the
network over time.

The MSDD algorithm will run periodically (e.g. every night) at the network management
station, generating rules that capture structure in the most recent set of streams. Those rules
that are discovered off-line will later be used for on-line control of the network. For example,
suppose host A often has many bursty applications running concurrently that access a remote
server, and that host B usually supports a few applications that require consistently high
bandwidth. Then MSDD might find the following rule:

(host-A-tcpCurrEstab high), (host-B-tcpOutSegs high) ->
(router-ipInDiscards threshold)

That is, large numbers of open connections on host A coupled with high bandwidth traf-
fic from host B often leads to unacceptably high rates of packet loss in the router (e.g.
due to insufficient buffer space). Values in the host-A-tcpCurrEstab time series would
be obtained by polling the agent responsible for host A, whereas information about the
router-ipInDiscards stream would come from trap messages generated when the estab-
lished threshold is exceeded. Suppose the preceding rule exists in the current rule base
for our LAN, and that it was generated with a lag of 10. As the network management
station polls to get current stream values, if it sees (host-A-tcpCurrEstab high) and
(host-B-tcpOutSegs high) then it can conclude that a trap indicating that the ipInDiscards
threshold at the router has been exceeded will follow within 10 time steps. At that point,
the network’s normal recovery mechanisms can be used to suggest some course of action to
avoid the trap. For example, the network management station could send a source quench
message to host B, telling it to slow down the rate at which it sends packets onto the LAN.

5.2 The MSDD Algorithm

In this section we describe the MSDD algorithm is detail.

A dependency is an unexpectedly frequent or infrequent co-occurrence of events over time.
The MSDD algorithm provides a very general and efficient framework for finding dependencies
among values in multiple streams of categorical data [26]. MSDD is general in that it performs
a simple best-first search over the space of possible dependencies, and can be adapted for
specific domains by supplying domain-specific evaluation functions.

MSDD assumes a set of m streams, S, such that the i** stream, s;, takes values from the
set of tokens 7y. A multitoken is an m-tuple that specifies for each stream either a specific
value or an assertion that the value is irrelevant. To denote the latter, we use the special
wildcard token *, and we define the set 7,* = 7y U {*}. A multitoken is any element of
the set created by taking the cross product of all of the 7;*; that is, multitokens are drawn
from the set 73 x ... x Tf. Consider a two-stream example for which 7o = T¢ = {4, B}.
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Adding wildcards, 7 = T2 = {A, B, *}. The space of multitokens for this example
({a, B, *} x {&, B, *})is enumerated below:

(A 4), (AB), (&%)
(B 4), (B B), (B %)
(x 4), (* B), (x %)

The state of the streams, z(t), is given by the values of the tokens in all streams at a
given time. Therefore, (t) is a multitoken drawn from the set T, % ... x Ty. We denote
a history of vectors obtained from the streams at fixed intervals from time t; to time ¢,
as H = {§(LV)|Uoo < LI < LI€}. MSDD explores the space of dependencies between pairs of
multitokens drawn from the set 7} x ... X 7;1* (Recall that multitokens specify for each

stream either a value or the wildcard token.) Dependencies are denoted prec LY succ, and
are evaluated with respect to H by counting how frequently an occurrence of the precursor
multitoken prec is followed k time steps later by an occurrence of the successor multitoken
succ. k 1s called the lag of the dependency, and can be any constant positive value. Consider
the three-stream history shown below:

Stream 1: ADACABABDBAB
Stream 2: CBCDCBCABDCB
Stream 3: BADABDCACBDA

The dependency (A C *) A (* * A) is strong. Of the five times that we see the precursor
(A in Stream 1 and C in Stream 2) we see the successor (4 in Stream 3) four times at a lag
of one. Also, we never see the successor unless we see the precursor one time step earlier.

Note that when counting occurrences of a multitoken, the wildcard matches all other
tokens; for example, both (D B A) and (C D A) are occurrences of (* * A), but (C D D) is
not. A multitoken composed entirely of wildcards matches all other multitokens. There are
12 multitokens in the streams above, and 12 occurrences of (* * *).

MSDD performs a general-to-specific best-first search over the space of possible depen-
dencies. Each node in the search tree contains a precursor multitoken and a successor mul-
titoken. The root of the tree is a precursor/successor pair composed solely of wildcards. For
the three-stream example given above, the root of the tree would be (x * *) = (* * *).
The children of a node are specializations of that node, generated by instantiating wildcards
with tokens. Each node contains all of the non-wildcard tokens that appear in its parent
and exactly one fewer wildcard than its parent. Thus, each node at depth d has exactly d
non-wildcard tokens distributed over the node’s precursor and successor. For example, both
(A * x) = (* *x x) and (* * *) = (* D x) are children of the root node. In contrast,
both (* * B) = (* C *) and (* * *) = (* A A) are children of nodes at depth one.

The space of two-item dependencies is clearly exponential. The number of possible mul-
titokens is given by |7 x ... x Tf| = H?:m |7;*|. If each stream contains k distinct tokens
(including *) and there are m streams, then the number of possible multitokens is £™, and
the number of possible dependencies is k>™. Given the size of the search space, MSDD requires
domain knowledge to guide the search and to allow efficient pruning. Both goals are accom-
plished by expanding the children of a node systematically to ensure that no dependency is
explored more than once. Specifically, the children of a node are generated by instantiating

14



only those streams to the right of the right-most non-wildcarded stream in that node. Figure
1 shows the expansions for nodes that might be generated, given two streams taking their
values from the set {A, B}.

(k %) => (x %) : (A %) => (x %) (B *) —-> (* *)
(x 4) -> (* *x) (% B) -> (% %)
(* %) => (4 %) (% %) -> (B *)
(x *x) => (x A) (% *x) -> (x B)

(x A) > (x %) : (x A) > (A %) (x 4) > (B *)
(x ) > (* A) (x &) > (* B)

(B*) > (A*) : (B=*)->(AA4) (B =*) -> (AB)

Figure 1: Three illustrative node expansions from a tree in which two streams take their
values from the set {4, B}. For each expansion, the parent node is shown to the left of the
colon and its children are listed to the right. Note that only wildcarded streams to the right
of the rightmost non-wildcarded stream are instantiated.

In addition to ensuring that each dependency is explored at most once, this method facil-
itates reasoning about when to prune. For example, all descendants of the node (* A *) =
(B * *) will have wildcards in streams one and three in the precursor, an A in stream two
in the precursor, and a B in stream one in the successor. The reason is that these features
are not to the right of the rightmost non-wildcard, and as such cannot be instantiated with
new values. If some aspect of the domain makes one or more of these features undesirable,
then the tree can be safely pruned at that node.

Formal statements of both the MSDD algorithm and its node expansion routine are given
in Algorithms 5.1 and 5.2. The majority of the work performed by MSDD lies in evaluating f
for each expanded node. Typically, f will count co-occurrences of the node’s precursor and
successor, requiring a complete pass over H. Assuming that H contains [ vectors of size m,
the computational complexity of MSDD is O(m * [ x maznodes).

5.3 Discussion

Our approach to learning rules for the purpose of fault identification with the MSDD algorithm
has several advantages. First, MSDD rules allow proactive network management because they
probabilistically relate current network state to faults that may be arbitrarily far into the
future. By varying the lag at which rules are generated, network managers can obtain
rules that look for near-, medium-, and long-term problems. Second, MSDD automates
the acquisition of knowledge for proactive network management by learning rules from state
histories of the network that is to be managed. Those rules can be re-learned as the dynamics
of the network evolve over time, or different sets of rules can be learned for different operating
conditions (e.g. one set for weekdays between 8:30am and 9:30am, and another set for the
weekend). When knowledge acquisition is automated and fast, it becomes possible to obtain
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Algorithm 5.1 MSDD

MsDD(H, {, $18\1[1/)
1. ezpanded = 0

2. nodes = ROOT-NODE()
3. while NOT-EMPTY(nodes) and ezpanded < maznodes do

a. remove from nodes the node n that maximizes f(H,\)
b. EXPAND(n), adding its children to nodes
c. increment ezpanded by the number of children generated in (b)

Algorithm 5.2 EXPAND

EXPAND(n)
1. for 7z from m downto 1 do

a. if n.precursor[i] # ‘*’ then

return children

b. for t € 7y do
i. child = COPY-NODE(n)
ii. child.precursor[i] =t
iii. push child onto children

2. repeat (1) for the successor of n
3. return children

and experiment with knowledge customized for a variety of situations. In addition, MSDD
rules are in a form that facilitates their inclusion into automated reasoning systems, such as
rule-based expert systems. Third, because MSDD can learn rules that relate network states
to future states, not just future faults or events, it becomes possible to automatically acquire
a model of how network state can be expected to change over time. Such knowledge can
be used for purposes other than fault identification. For example, rules learned by MSDD
could serve as the initial model of a simulation of the network, which in turn could become
a component of a more complete management system [32]. Finally, our approach is faithful
to the Internet model in that we place all of the computational burden at the network
management stations, and the state vectors required to drive the algorithm can be obtained
via periodic polling (or through single requests from a MIB such as RMON [33]).

Our approach is similar to some of the event correlation techniques described in Section
4.2. MSDD attempts to find portions of the state of the network that are correlated in
the sense that they are predictive of or may be predicted by other portions of network
state. Our approach differs from most current approaches to event correlation in that we
consider state information obtained via time-driven monitoring rather than just event driven
monitoring. (The work described in [16] considers more detailed state information, but only
after particular events are hypothesized to be correlated.) The former information allows
reasoning about the nature of existing problems as manifested by various events; the latter
information allows reasoning about the nature of problems that are likely to appear in the
future and their expected manifestations. Our approach is perhaps most similar to work
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that applies inductive techniques (e.g. decision trees) to learn various types of rules from
network data. Inductive methods can be applied just as we apply MSDD to learn predictive
rules. However, the rules learned by MSDD are fundamentally more expressive than those
learned by all of the inductive learning algorithms reported in the literature. Specifically,
MSDD was designed to learn rules with conjunctive right-hand-sides as well as conjunctive
left-hand-sides. Therefore, MSDD can be used to learn much more complex and informative
models from network data.

There are several open issues that need to be resolved before we will know if our approach
will be useful in the large, complex networks that are common today. Most of those issues
relate to the question of scale. While we gain expressiveness and power by considering more
than just events in network state, we open the door to the flood of information that event-
driven monitoring was designed to ward off. Previous work with the MSDD algorithm has
shown that it does an excellent job of finding relevant features for specific problems [23, 25],
but it is unclear whether the algorithm will be computationally feasible with extremely large
state descriptors.

6 Conclusions

In this paper we have explored fault identification, one aspect of the general network manage-
ment problem, in great detail. We began by defining the fault identification task, examining
ways in which approaches to that task commonly vary, and looking at characteristics of
the problem domain and the problem itself that make fault identification difficult. We re-
viewed both Internet and OSI standards that are relevant to fault identification in that they
specify the structure, content and methods for manipulation of network state information
in a vendor-independent manner. Although those standards are an important step toward
integrated network management, they leave unanswered questions related to how network
state information should be used for the purposes of making network management decisions.
Therefore, a substantial portion of the paper was devoted to looking at current approaches to
fault identification, including work in network monitoring, event correlation, and automation
of knowledge acquisition and reasoning for the purpose of fault identification. Finally, we
presented a new approach to fault identification and proactive network management based
on the MSDD algorithm for learning dependencies among values in multiple streams of data.
Advantages of our proposed approach include the ability to predict faults rather than simply
react to them once they occur, automated acquisition of the relevant knowledge, automated
acquisition of a model of the way network states evolve over time, and faithfulness to the
Internet model of network management (currently the most widely accepted model).

The factors that make network management a difficult problem today will only make
it a more difficult problem for the foreseeable future. The complexity of modern networks
will increase along with the number of users, services, quality-of-service requirements and
devices that are supported. In addition, as network bandwidth increases and geographically
distant locations come to rely increasingly on network communications, the bandwidthxdelay
product grows as well. The result is that management decisions become increasingly time
critical due to the volume of data that traverses network links and the speed with which
network state information becomes out of date. Although integrated network management
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is beginning to enjoy success in the marketplace, the challenges that lie ahead will ensure
that this is an active area of research and development for quite some time.
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