TD Models: Modeling the World

at a Mixture of Time Scales

Richard S. Sutton
University of Massachusetts
rich@cs.umass.edu

Abstract

Temporal-difference (TD) learning can be used not just to predict
rewards, as is commonly done in reinforcement learning, but also to
predict states, i.e., to learn a model of the world’s dynamics. We
present theory and algorithms for intermixing TD models of the world
at different levels of temporal abstraction within a single structure.
Such multi-scale TD models can be used in model-based reinforcement-
learning architectures and dynamic programming methods in place of
conventional Markov models. This enables planning at higher and var-
ied levels of abstraction, and, as such, may prove useful in formulat-
ing methods for hierarchical or multi-level planning and reinforcement
learning. In this paper we treat only the prediction problem—that of
learning a model and value function for the case of fixed agent behav-
ior. Within this context, we establish the theoretical foundations of
multi-scale models and derive TD algorithms for learning them. Two
small computational experiments are presented to test and illustrate
the theory. This work is an extension and generalization of the work
of Singh (1992), Dayan (1993), and Sutton & Pinette (1985).

1 Multi-Scale Planning and Modeling

Model-based reinforcement learning offers a potentially elegant solution to
the problem of integrating planning into a real-time learning and decision-
making agent (Sutton, 1990; Barto et al., 1995; Peng & Williams, 1993,
Moore & Atkeson, 1994; Dean et al., in prep). However, most current
reinforcement-learning systems assume a single, fixed time step: actions take



one step to complete, and their immediate consequences become available
after one step. This makes it difficult to learn and plan at different time
scales. For example, commuting to work involves planning at a high level
about which route to drive (or whether to take the train) and at a low level
about how to steer, when to brake, etc. Planning is necessary at both levels
in order to optimize precise low-level movements without becoming lost in
a sea of detail when making decisions at a high level. Moreover, these levels
cannot be kept totally distinct and separate. They must interrelate at least
in the sense that the actions and plans at a high levels must be turned into
actual, moment-by-moment decisions at the lowest level.

The need for hierarchical and abstract planning is a fundamental prob-
lem in AI whether or not one uses the reinforcement-learning framework
(e.g., Fikes et al., 1972; Sacerdoti, 1977; Kuipers, 1979; Laird et al., 1986;
Korf, 1985; Minton, 1988; Watkins, 1989; Drescher, 1991; Ring, 1991; Wix-
son, 1991; Schmidhuber, 1991; Tenenberg et al., 1992; Kaelbling, 1993; Lin,
1993; Dayan & Hinton, 1993; Dejong, 1994; Chrisman, 1994; Hansen, 1994;
Dean & Lin, in prep). We do not propose to fully solve it in this pa-
per. Rather, we develop an approach to multiple-time-scale modeling of the
world that may eventually be useful in such a solution. Our approach is
to extend temporal-difference (TD) methods, which are commonly used in
reinforcement learning systems to learn value functions, such that they can
be used to learn world models. When TD methods are used, the predictions
of the models can naturally extend beyond a single time step. As we will
show, they can even make predictions that are not specific to a single time
scale, but intermix many such scales, with no loss of performance when the
models are used. This approach is an extension of the ideas of Singh (1992),
Dayan (1993), and Sutton & Pinette (1985).

Most prior work on multi-scale modeling has focused on state abstrac-
tion: Which sets of states can be treated as a group? What variables can
be ignored? What is a good form of generalization between states? In this
paper we instead focus exclusively on the relatively ignored temporal aspects
of abstraction. In fact, we will assume each state is recognized and treated
as an individual, with no relationship to any other. This is an unrealistic
extreme, of course, but is nevertheless useful in highlighting temporal issues:
Does an abstract action always take the same length of time? Should its
duration be explicitly represented? Is it committed to once, or redecided on
each time step?

Two other limitations of the work reported in this paper should also be
mentioned at the outset. One is that we restrict our attention to prediction



rather than control. We ignore the question of action selection and instead
focus on forming abstract models that predict (at multiple levels of temporal
abstraction) the behavior of an autonomous world. A second simplification
is that the specification of what is to be learned is assumed given. We
will present algorithms for learning abstract multi-scale models, but not for
specifying what should be modeled or at what scale it should be modeled.
Both of these simplifying assumptions are meant to be lifted in immediately
future work.

The rest of this paper is structured roughly as follows. First we introduce
reinforcement learning and the prediction subproblem we focus on here.
Then we present two kinds of multi-step models: n-step models and §-
models. We present theoretical results and derive a TD()A)-style learning
algorithm for #-models. Finally, we describe computational experiments.

2 Reinforcement Learning

Reinforcement learning concerns a learning agent interacting with an enwvi-
ronment at some discrete, lowest-level time scale, t = 0,1,2,3,... At each
time step, ¢, the environment is in some state, s, € {1,2,...,m}. The agent
observes s; and chooses an action, a;, in response to which the environ-
ment changes state to s;;; and emits a reward, r,.;. The agent’s (possibly
stochastic) mapping from states to actions is called its policy, denoted .
The state-transition structure of the environment is described by a set of
probabilities, p,(z, j), giving the probability of transition to state j when in
state ¢ and action a is selected by the agent. The reward structure is sum-
marized by the expected value of the reward, R, (%), given the prior state, ¢,
and action, a.

In general, the states and actions in reinforcement learning can be com-
plex, multi-dimensional, real-valued, and incompletely-known. In this paper
we treat the a particularly simple case described above just for conceptual
clarity. Strictly speaking, our formal results apply only to this case, but
the intent and expectation is that the ideas should carry over to the general
case.

In reinforcement learning, the agent’s objective is to find and follow a
policy that maximizes the reward it receives from the environment. In par-
ticular, it seeks to maximize the expected, cumulative, discounted reward:

30:’1:},

V(i) = Er{z ’)’t"'t+1
t=0



where this expectation is conditional on the agent following a particular
policy, m. The parameter v, 0 < v < 1, is called the discount-rate; it
determines the relative merit of immediate as opposed to delayed reward.
V7™ (1) is called the value of state 7 under policy m. Computing it is the key
step in many planning and learning methods. Ideally, we seek an optimal
policy, one at which V(%) is maximized over all m simultaneously at all 3.

3 The Prediction Problem

In this paper we focus on a subset of the full reinforcement learning prob-
lem, that of estimating the value function V™ for a fixed policy 7. In fact,
we will avoid all notion of actions altogether. Our learning agent will see
only the states and rewards, so, 1, $1,72, 52 . . ., generated by the combined
environment-policy system. This system constitutes a Markov chain. We
denote its state transition probabilities as p(z,j) = E {s;y1=7 | s: =1}, and
the mx m matrix of such probabilities as P. Similarly, let R be the m-vector
of expected rewards for each state. A vector notation for states will also be
useful. Let z; be the m-vector all components of which are 0 except that
corresponding to s;, which is 1. Then we can write

P:Et = E{mt+1 | mt}

and
RTmt == E{'rt+1 | mt},

where all vectors are assumed to be column vectors unless explicitly trans-
posed. We call P and R the 1-step model of the process.

We also represent the value function as an m-vector V such that V7e,
is the value of s;:

V"(st):VTmt = E{Z'ykrt+k+l mt} (1)
k=0

= i'ykRTPkmt

k=0

ie.,
vV = S 4*PTR
k=0

= R+yP'V. (2)



This last equation is a form of the Bellman equation for this prediction
problem. It forms the basis for many of the update rules of dynamic pro-
gramming and reinforcement learning.

4 A Generalized Bellman Equation

The Bellman equation is also key to determining the form of models that
predict over many time steps. We seek multi-step models P and R that can
take the place of yP and R in the Bellman equation (2), that is, that satisfy
a generalized Bellman equation:

V=R+PIV. (3)

Any P and R that satisfy this equation, with lim;_, . P* = 0, are said
to constitute a valid model. Any valid model can be used to update and
improve an approximation V; of V' by lookahead or backup operations, e.g.,

Vigr = R+ PTV,. (4)

As long as the model is valid, this process converges to

[o ¢}

V=Y. PT*"R=V.

k=0

This is the key insight of the present work, that any model satisfying the
generalized Bellman equation is equally valid for the purpose of computing
the value function. It turns out that there are many such models, some of
which correspond to abstract, multi-step models and which may be more
useful than conventional 1-step models. In considering such models, the
generalized Bellman equation acts as a gold standard. It tells us which
temporal details can be safely deleted in forming an abstract model, and
which must be retained.

5 n-Step Models

A simple example of valid, multi-step models are the n-step models. For
example, we can obtain a 2-step model by expanding the original Bellman
equation once, and then rewriting it in the form of the generalized Bellman



equation:

V = R++4P'V
= R—I—'yPTR—I—('yPT)zV
—_———— N——
= R + PTw

This R and P are called a 2-step model because Pz, predicts the discounted
state two steps in the future and Rz, predicts the total discounted reward
over the two steps. In general, for an n-step model:

P™ = (yP)", (5)
ie.,
P(n)mt == E{‘yan_n | mt}
and .
R™ =3 (vP")*R, (6)
k=0
ie.,
T n
R g, :E{rg ) mt},
where r§") = Y% _.7* 'riyx is the n-step truncated return starting from

state ;. The precise form of these equations is determined by the require-
ment that the resulting P(®) and R(®) satisfy the multi-step Bellman equa-
tion (3). We will prove later that they do.

n-step models achieve some of our goals for multi-step models. They
can be used for lookahead to find V just like the base model, while requiring
significantly fewer steps. One step of lookahead (4) with a 10-step model is
exactly equivalent to 10 steps of lookahead with a 1-step model. Moreover,
lookahead with different n-step models are completely compatible. One
could do lookahead with a 10-step model followed by lookahead with a 20-
step model. The end result—convergence to V—is unaffected.

However, n-step models are also limited in important ways, and we have
introduced them here only to give a simple example of what is theoretically
possible. One limitation of n-step models is that they insist on a single,
fixed time interval. Each n-step model has a fixed n. It cannot say that
some result will occur without specifying the exact time step on which it will
occur. A second problem with n-step models is that they may be computa-
tionally difficult to learn, particularly for large n. In the next two section
we gradually generalize n-step models to remove these limitations.



6 Intermixing Time Scales

If we are predicting many steps into the future, then it is impractical and
usually unnecessary to learn precise n-step models. Which of us can predict
events 100 seconds into the future to a precision of one second? Which of us
needs to? It would be preferable, if possible, to make temporally approxi-
mate predictions, e.g., that are weighted averages of n-step predictions. For
example, instead of trying to predict precisely z;,100 We might prefer to pre-
dict a weighted average of states in the neighborhood of &40, perhaps from
Zii90 tO Z4y110. In general, let w, denote the weight given in the weighted
average to the n-step prediction, where >°° w, = 1 (e.g., w, = 5 for
90 < n < 110, w, = 0 otherwise). Then the desired multi-scale model is

P = i w, P and R = i w, R(™). (M)

n=1 n=1

Figure 1a shows the weighting sequence corresponding to an n-step model,
and Figure 1b shows a weighting sequence for a “blurred” n-step model, in
which the states predicted are an average of those occurring approzimately
n steps later. We prove later that any unitary mixture of n-step models is a
valid model. This means that a single matrix can accurately hold a mixture
of models from many different time scales! For example, a single P can make
predictions that are half 10-step predictions and half 20-step predictions.
The predictions of the different time scales are linearly mixed and yet still
they can be used in backup operations without altering convergence to V.
As long as it is done in this way, the time scales of models can be mixed and
lengthened arbitrarily without any degradation of the results of planning.

7 (-Models

One mixture of n-step models that may be of particular interest is that in
which the weighting falls off exponentially with delay (see Figure lc), i.e.,
in which the n-step prediction is given weight

w, = (1 B)8",

for some parameter 8, 0 < 8 < 1, that determines the time constant of
the exponential weighting. The P with this weighting contains the “state-
transition probabilities” of a form of multi-step model that we call a simple
B-model. The (i, 7)-th entry of this matrix gives the expected S-discounted



n-step model

a)
NOW n
b) blurred" n-step mixture
n
C) simple -model mixture

arbitrary mixture
d)

FUTURE STEPS —————»

Figure 1: Four different weighting sequences, w,, of future states to be
predicted: a) an n-step model puts all weight on the nth time step; b)
better is to put weight on and thus average all future time steps near n; c) a
simple B-model puts less and less weight on more and more distant events;
and d) an arbitrary mixture over future steps is still valid. All weightings
must sum to one.



occupancy of state j over the time period following observation of state <.
The “expected reward” vector, R, for a 8-model can be interpreted as the
return received during this time period.

The main topic of this paper are what we call full 3-models. In these, 8
is allowed to vary from state to state. Let 5(¢) denote the 8 for state ¢, and
let 8,, = B(z,) denote the 8 applicable after n steps. A full S-model uses
the weighting

8 11 8-

This weighting sequence does not follow a simple pattern such as in Figure 1b
or 1lc, but can have an arbitrary weighting profile, as in Figure 1d. Moreover,
the weighting profile is not fixed, but is dependent on the sequence of states
observed. For different state sequences, a totally different weighting may
apply. Whatever the sequence, the total weight given to all the states in it
must sum to one. The quantity 1 — 3,
is given to the nth state. If it is zero (i.e., if 8, = 1) then no weight is
given, whereas if it is 1 (8, = 0), then the state is given all the remaining
weight. The product [];_, 8; is a measure of the remaining weight, of how
much weight has not yet been given to preceding states. If they all had 8’s
of 1, then all the weight remains, but if even one of them had a § of 0, then
no weight remains.

More formally, given a set of 8’s, the corresponding 3-model P and R
are defined by

is a measure of how much weight

Pao— B [27 1 g nﬂmt] ®)

=1
and

Teo=E [ZVt_l 1:[/31 rt] ) (9)

for all possible starting states, o (the expected values are all conditional on
zo). Here 8, = B(s:) is the B that applies at time ¢. Let B be the diagonal
matrix with the 3(7) as diagonal entries. Then the P and R of a S-model
can alternatively be specified in matrix-vector form as:

P=+~(I - B)P i('yBP)’“

k=0

i vP" B)

k=0

and



Full 8-models can represent variable mixtures of time scales dependent
on the state trajectory taken. For example, the abstract action “look for
your keys” might end very quickly or might take a long time. It can be
implemented in a g-model by setting # = 1 for states in which one is still
looking, and 8 = 0 for states in which the keys have been found.

Full B-models are a very general form of abstract, multi-scale model for
stochastic worlds. In the rest of this paper we develop learning algorithms for
B-models and illustrate their properties and abilities through computational
examples.

8 Theoretical Results

So far we have described models as consisting of two parts, P and R. For
some purposes it is useful to combine these into one structure, an (m +
1)x(m + 1) matrix:

We call this putting the model in homogeneous coordinates. If the value
vector V is also augmented by adding an initial component whose value is
always 1 (we will continue to refer to the augmented vector simply as V)
then the generalized Bellman equation (3) can be written

V=MV =MV (10)

As before, we consider a model M to be valid if and only if it satisfies (10).
In homogeneous coordinates the following theorems become evident:

THEOREM 1: Closure under composition. For any valid models M; and
M,, the composed model MM, is also valid.

ProoF: (MyM)TV = MIMTV = MIV = V. 0
Note that M has been constructed such that it is valid only if the corre-

sponding P and R are valid. Thus, the composition theorem proves the
validity of the n-step models, (5) and (6).

10



THEOREM 2: Closure under averaging. For any set of valid models {M;}
and corresponding weights {w;} such that >, w; = 1, the weighted model
M =3 w;M; is also valid.

Proor: (3 wiMi)T V=, wMIV=,wV=V>,w=V. O

The averaging theorem proves the validity of the mixture models (7) and
thus of simple G-models.

The generalized Bellman equation (10) is really a requirement on each
column of M, corresponding to all the predictions from a single state. Let ¢
be the j-th column of M. We define ¢ to be a valid j-th column if and only
if V(j) = "V, where V (j) is the j-th component of V. A model M is valid
if and only if all its columns are valid. We can then extend the averaging
theorem to a column by column form:

THEOREM 3: Closure under columnwise averaging. For any set of valid j-
th columns {¢;} and corresponding weights {w;} such that Y, w; = 1, the
weighted vector ¢ = ), w;c; is also a valid j-th column.

PrROOF: (Y, wic))" V =Y, wicfV = 2, wiV(j) = V(§) Tiws = V(j). O

One application of this theorem is as a justification of learning methods. To
update the model for a certain starting state one looks ahead from it using a
model or a sampling of state transitions to obtain an expected distribution
of result states. By the composition theorem this is a valid column (at least
in expected value), and thus averaging it in with the original column for the
starting state (which is what learning rules do) will maintain the validity of
the original column.

11



Unfortunately, even the columnwise averaging theorem does not apply
directly to full 8-models. A separate theorem is needed:

THEOREM 4: Validity of 8-models. Any B-model, R, P, and B, satisfying
(8) and (9), with 0 < 8(¢) < 1, is valid.

PRrooF: For any #-model and initial state vector z:

RT$0+VTP$0

:E[in 1HIB o+ (18 HIB VTmt]

(by (8) and (9))
:Eli'yt 1Hﬂ (rt—l—'yl— Z‘)’ rt+k+1)]:

by applying (1) as the definition of V7z,. Careful inspection of these terms
reveals that they can be grouped by r; and written as

RTzo+ VTP,
o0 t—1 t—1 k—1
= K [Z’Yt_lrt (H B; + 2(1 — B4) H ﬂz)]
t=1 =1 k=1 i=1
= F [ivt_th]

= VTIU().
Since this holds for all z,, it follows that RT + VTP = VT, and thus that
R and P form a valid model. O

Finally, note that models in homogeneous coordinates can be used not
just in backups, as in (10), but also in the forward direction, for multi-step
predictions. For this we augment the state vectors, z;, by adding an initial
component with the value 0. For example, for the n-step homogeneous
model M), we can write

Ty ‘)’"mH_n
(n)

where r; ’ is the n-step truncated return from ;.

12



9 TD()) Learning of 8-models

In principle, #-models and n-step models could be learned in any of a variety
ways. However, temporal-difference (TD) methods offer great advantages
in terms of incremental computation and, potentially, in learning rate if
significant state information is available. In this section we derive a TD(})-
like learning algorithm (Sutton, 1988) for S-models. Our derivation follows
that of TD()) in Watkins (1989) and Jaakkola, Jordan & Singh (1994). The
derivation is very similar for P and R, and the R derivation is closest to
the existing analyses for TD()), so here we present only the derivation for
P (and even that in an abbreviated form).

The main idea is to construct a TD target for our “next state” prediction,
Pz, (given a set of #’s). Based on (8) we can write the ideal prediction,
Yy = Pz, as

o0 k-1
Yy =Pz, = FE [Z 'Yk (1- IBt-I—k) H IBt+i mt+k] =
k=1 i=1

n k-1 n
E [Z 7k (1 - /3t+k) H IBt+i Topr +7" H/Bt+i Pwt+n]
k=1 1=1 1=1

Although we can’t know g, itself, we can take advantage of the observed
sequence, ;, £¢11, ..., Lsin, to form an n-step TD approximation to it. We
do this by replacing each expected state with the observed state, and the
final P with the current estimate P;. This yields an n-step TD target for
the “next state” of a 8-model:

n k-1 n
yt(n) = Z'Yk (1—Bisr) H Biyi®Tere +7"° H/Bt+i Peein.
k=1 i=1 i=1

To form a TD(A)-style method we use as target an exponential combination
of the n-step targets. The exponential combination is parameterized by A,
0 <A <1, and denoted y;:

n=1

Ideally, we would like to use y} as the target in an update rule such as

AP, =« I:yt)\ - Ptmt] m;f:

13



where « is a positive step-size parameter. However, the target, y?, is not
actually available at time ¢ when it is needed. This is where standard tricks
for obtaining an incremental method are used. These are based on the
assumption that the estimate being updated—P; in this case—does not
change greatly from time step to time step (or, equivalently, that the updates
are accumulated offline until the end of a trial). In this case we can define
the TD error

€= (1= B )¥%e41 + V8111 Peiy1 — Prz

and express the overall error term as’

¥r — Pigy = &0 + (YA B + (YA BiBoyr€raa + -

to obtain the learning rule

[o ¢}

k-1
AP, = o, Z(’)’)\)k H Bo_izi_y. (11)
1=0

k=0
A similar analysis for R yields the following update rule for R;:

oo k—1
AR, = aef Z(‘Y)‘)k H Bi_i Ttk
k=0 1

1=0

where
R T T
€ = Tey1 T VB 1Ry Tey1 — Ry 2.

Both of these learning rules can be implemented completely incrementally
by implementing the sums as an accumulating eligibility trace in the usual
way.

10 A Wall-Following Example

An abstract action that might be useful to a mobile robot is that of wall-
following (e.g., Lin, 1993; Mataric, 1990). Wall-following is not a single

'If you wish to verify this step, first show that y can be written as

oo k—1
Z ATy Hﬁt+i [(1 = Beyr)zerr + (1= A)Beyr 7’t91°t+k]
k=1 =1

14



N Exit

@@

Open
Wall Space

®

bHd

Entrance

Figure 2: A Sample Trajectory in the Wall-Following Task. The robot starts
in one of the bottom three states, then works its way up one row at a time
following the policy given in Table 1. The trial terminates if the robot runs
into the wall, wanders off into the “open space”, or successfully reaches the
exit. The task is to learn a model of the world at the level of these three
ultimate outcomes.

action or sequence of actions, but a complete closed-loop policy for moving
forward while staying close to a wall on one side. Such an abstract action
might be useful in navigating about an office environment.

Figure 2 shows a gridworld version of wall-following. The robot starts
at one of the three grid cells at the bottom and travels up, one row per time
step. The robot’s wall-following policy tries to keep the robot in the center
column, neither too close to the wall, which risks a collision, nor too far
from it. If the robot strays too far, into the “open space” three or more cells
from the wall, then it loses sensory contact with the wall and wall-following
terminates. A third way for wall-following to terminate is for the robot to
reach the region labeled “exit”, as shown in the sample trajectory in Figure
2. In detail, the robot’s stochastic wall-following policy is given in Table 1.

We do not seek to change the robot’s wall-following policy, only to learn
a predictive model for it that abstracts away the low-level details and just
predicts the likely outcomes of wall-following. (A full control treatment
would presumably involve comparing these predictions with those for other
abstract actions.) We applied the S-model learning equation (11). Each
wall-following attempt was treated as a separate trial, with traces set to
zero at the beginning of each trial. Each of the 24 grid cells was treated
as a distinct state, plus three more states for the three outcomes: colliding,

15



Table 1: Built-in Policy of Wall-Following Robot. The upper-left outcome
is a collision and the lower-right outcome is a loss of contact.

Probability of Movement

Distance || Forward | Directly | Forward
from wall || & Left | Forward | & Right

1 1/6 1/3 1/2
2 1/4 1/2 1/4
3 1/2 1/3 1/6

losing-contact, and exiting. So that learning would be only about these
outcomes, their 8 were set to 0 whereas the § of all the other states were 1.
The discount parameter was v = 0.9.

Inspection of the learned prediction matrix P, after 5000 trials with
o = 0.01 revealed that the predictions of all grid-cell states were indeed
0. The predictions of the outcome states were as shown in Figure 3a. For
comparison, Figure 3b shows the ideal predictions for this v and f’s, as
given by (7). The similarity of these two shows that the learning algorithm
is working as intended, providing a rudimentary check on its derivation.

The results in Figure 3c are the easiest to interpret. These are the learned
predictions for the case of v = 1 (possible here because this is a trial-based
task). These predictions can be directly interpreted as the probability of
the three possible outcomes given that the robot is in each cell. From all
cells, exiting is predicted to be the most likely outcome, ranging from a
100% probability for the last center cell to about 50% for an early off-
center cell. For example, the lower-left-most cell has a 48% probability
of exiting, a 38% probability of colliding, and a 14% probability of losing
contact. The algorithm has successfully learned a high-level model of the
ultimate consequences of the wall-following abstract action. In this task, all
rewards were zero, so in fact there is no particular optimal behavior (and
the learned reward model is all zeros). But if certain of the outcomes did
become desirable or undesirable, then this multi-scale model might be very
useful for quickly computing the effect on received reward of taking or not
taking the wall-following action.

16



b b tHi

a) Learned b) Correct c) Learned
Predictions Predictions Predictions
(y=0.9) (y=0.9) (y=1.0)

Figure 3: Predictions of a 8-Model in the Wall-Following task. Inside each
state, the three bars indicate the predictions of running into the wall, reach-
ing the exit, and wandering into the open space, respectively.

11 A Hidden-State Example

Although we have not emphasized it in this paper, multi-scale models are
also useful in overcoming the problems of hidden state (e.g., see Sutton &
Pinette, 1985). Figure 4 shows one example. States 6 and 7 are confounded,
both appearing to the learning agent as State 6.

Any system that learned a 1-step model of this world would be unable
to do any useful planning about the difference between States 2 and 3. It
would model both as always leading to State 6. A simple 8-model, on the
other hand, learns something more. The multi-scale model learned by a
simple B-model applied in a simulation of the world in Figure 4 was:

.04 .10 .10 .47 47 .21
24 .02 .02 .11 .11 .05
23 .02 02 .1 .10 .05
.05 .21 .01 .02 .02 .25
.05 .00 .21 .02 .02 .22
21 47 .47 .10 .10 .04

735000 -

where 8 = 0.5, v = 0.9, and @ = .01. The second and third columns
represent the predictions from States 2 and 3. Note that the prediction

17



Figure 4: World with Hidden State. States 6 and 7 are ambiguous. The two
outcomes from State 1 each occur with 50% probability.

from State 2 is larger at the fourth component whereas the prediction from
State 3 is larger at the fifth component. The #-model learned that, in a
long-term sense, State 2 is followed more often by State 4, whereas State 3
is followed more often by State 5. Thus even a simple 3-model is able to
learn a model that would be useful in making rapid changes in policy if, for
example, the rewards out of States 4 and 5 changed.

If the apparent State 6 could be recognized as ambiguous and given a g
of 0 (in a full S-model), then in fact a perfect multi-scale model could be
learned for this problem.

12 Adding Actions (Future Work)

Before closing, let us speculate on how this work could be extended beyond
the pure prediction problem to a full reinforcement-learning problem, in-
cluding actions. A natural approach is to have a great many g-models, each
corresponding to a different policy. Thus we would have one set of predic-
tions about what would happen if we choose to drive to work, another for
if we choose to take the train, or to stay home. Even for the same policy,
we could have many different models with different sets of 3’s, e.g., one to
predict how long it would take to drive, another to predict the stressful-
ness of the journey, another the probability of an accident, etc. If seems

18



appropriate to think of each such 8-model as an abstract action.

Much of the substance in this paper has been driven by the Bellman
equation for the prediction problem (2). As actions are added and we con-
sider a control problem, it is natural to consider the full Bellman equation,
including the maximization over actions. In matrix-vector form it might
look something like this:

* Tyr*
V' =maxR, + P,V (12)

where V* is the optimal value function, and A is the set of all actions,
both primitive and abstract. For the primitive actions, R, and P, would be
simply the 1-step expected rewards and next-state probabilities (times %)
for each action. The abstract actions could be an arbitrary set of G-models,
each with an R,, P,, and B,. It is not hard to show that including any set
of valid B-models in this equation does not change the value at which the
maximum is achieved.

V* can then be estimated by appropriate backup processes. Starting
from any initial state, any of the 8-models could be applied, in any order
and mixture, to predict the consequences of abstract actions or sequences of
abstract actions. The resultant distribution of outcomes could then be used
to update the value function for the initial state, or to update the predictions
of the B-models for the initial state. Actual outcomes, or actual outcomes
combined with #-model predictions, could also be used in these updates.

There is great flexibility here and it is not clear exactly how the choices
should best be made. The computation of V* could be dramatically sped
up if the abstract actions were well chosen and selectively applied. On the
other hand it could also be slowed down if they were poorly chosen and
applied. Classical issues of “macro utility” arise here, though the goals and
tradeoffs may be somewhat different. In this context a useful S-model might
be defined as one that often obtains the maximum in (12). This could be
used to distinguish good B-models from bad, or even to direct the alteration
of the B’s or policies of individual B-models so as to make them more likely
to be good. In other words, it might lead to a basis for sculpting and creating

good B-models.

19



13 Conclusions

We have introduced an approach to multi-level modeling and planning with
several attractive features. The framework applies to a broad class of stochas-
tic environments (specified as Markov decision processes) and to arbitrary,
closed-loop, stochastic policies. Although predictions are made over differ-
ent time scales, there is no need to separate them into distinct levels. The
mathematical framework we have developed here means that each high-level
model has a clear, definite semantics. Among other benefits, this leads di-
rectly to the learning algorithms we have presented.

The abstract models we have introduced are based on how they will
be used, that is, on backups and the Bellman equation. Any abstraction
collapses and loses some detail, some of the information that would be rep-
resented in the finest possible level of modeling. The trick is in knowing
what detail to omit. Knowing that the model is to be used in backups based
on the Bellman equation provides critical information about what can be
safely omitted without degrading the ultimate result.

Much more work is needed before this can be considered a full approach
to multi-scale planning. Nevertheless, the ideas presented here already add
significant new dimensions of flexibility to planning and learning methods for
Markov decision processes, while retaining their mathematical foundations.
Our multi-scale methods are explicitly designed to learn models of the world
that behave like Markov processes—that have observable state and that obey
a Bellman equation. Ultimately, this goal may be key to creating models of
the world that are useful for learning and planning.

Perhaps most important of all, this work provides a clear semantics for
multi-time-scale models that permits their reliable learning and use. This
provides a firmer foundation for addressing the questions of model creation
and the modeling of abstract actions.

A cknowledgments

The author gratefully acknowledges the substantial assistance and encour-
agement he has received from Satinder Singh, Peter Dayan, Andy Barto,
Chris Watkins, and Lonnie Chrisman in developing the ideas presented in
this paper. This research was supported in part by the National Science
Foundation through grant ECS-9511805.

20



References

Barto, A.G., Bradtke, S.J., Singh, S.P. (1995) “Learning to act using real-
time dynamic programming,” Artificial Intelligence.

Chrisman, L. (1994) “Reasoning about probabilistic actions at multiple lev-
els of granularity,” AAAI Spring Symposium: Decision-Theoretic
Planning, Stanford University.

Dayan, P. (1993) “Improving generalization for temporal difference learning:
The successor representation,” Neural Computation 5, 613-624.

Dayan, P., Hinton, G.E. (1993) “Feudal reinforcement learning”. In C.L.
Giles, S.J. Hanson, J.D. Cowan, Editors, Advances in Neural Infor-
mation Processing Systems, 5, 271-278. San Mateo, CA: Morgan
Kaufmann.

Dean, T., Kaelbling, L.P., Kirman, J., Nicholson, A. (in preparation) “Plan-
ning under time constraints in stochastic domains.”

Dean, T., Lin, S.-H. (in preparation) “Decomposition techniques for plan-
ning in stochastic domains.”

Drescher, G.L. (1991) Made Up Minds: A Constructivist Approach to Arti-
ficial Intelligence. MIT Press.

Fikes, R.E., Hart, P.E., Nilsson, N.J. (1972) “Learning and executing gen-
eralized robot plans,” Artificial Intelligence 3, 251-288.

Hansen, E. (1994) “Cost-effective sensing during plan execution,
AAAI-94, 1029-1035.

Kuipers, B.J. (1979) “Commonsense Knowledge of Space: Learning from
Experience,” Proc. IJCAI-79, 499-501.

Kaelbling, L.P. (1993) “Hierarchical learning in stochastic domains: Prelim-
inary results,” Proc. of the Tenth Int. Conf. on Machine Learning,
167-173, Morgan Kaufmann.

Korf, R.E. (1985) Learning to Solve Problems by Searching for Macro-
Operators. Boston: Pitman Publishers.

Laird, J.E., Rosenbloom, P.S., Newell, A. (1986) “Chunking in SOAR: The
anatomy of a general learning mechanism,” Machine Learning 1, 11—
46.

Lin, L.-J. (1993) Reinforcement Learning for Robots Using Neural Networks.
PhD thesis, Carnegie Mellon University. Technical Report CMU-CS-
93-103.

” Proc.

21



Mataric, M.J. (1990) A Model for Distributed Mobile Robot Environment
Learning and Navigation. MIT Masters thesis, Electrical Engineer-
ing and Computer Science.

Minton, S. (1988) Learning Search Control Knowledge: An Explanation-
based Approach. Kluwer Academic.

Moore, A.W., Atkeson, C.G. (1993) “Prioritized sweeping: Reinforcement
learning with less data and less real time,” Machine Learning 13,
103-130.

Peng, J., Williams, R.J. (1993) “Efficient learning and planning within the
Dyna framework,” Adaptive Behavior 1, 437-454.

Ring, M. (1991) “Incremental development of complex behaviors through
automatic construction of sensory-motor hierarchies,” Proceedings
of the Eighth International Conference on Machine Learning, 343-
347, Morgan Kaufmann.

Sacerdoti, E.D. (1977) A Structure for Plans and Behavior. New York:
Elsevier.

Schmidhuber, J. (1991) “Neural Sequence Chunkers.” Technische Universi-
tat Munchen TR FKI-148-91.

Singh, S.P. (1992) “Reinforcement learning with a hierarchy of abstract
models,” Proceedings of the Tenth National Conference on Artificial
Intelligence, 202-207. MIT/AAAI Press.

Singh, S.P. (1992) “Scaling reinforcement learning by learning variable tem-
poral resolution models,” Proceedings of the Ninth International Con-
ference on Machine Learning, 406-415, Morgan Kaufmann.

Sutton, R.S. (1988) “Learning to predict by the methods of temporal differ-
ences,” Machine Learning 3, 9-44.

Sutton, R. S. (1990) “Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming,” Proceed-
ings of the Seventh International Conference on Machine Learning,
216-224.

Sutton, R.S., Pinette, B. (1985) “The learning of world models by connec-
tionist networks,” Proc. of the Seventh Annual Conf. of the Cognitive
Science Society, 54-64.

Tenenberg, J. Karlsson, J., & Whitehead, S. (1992) “Learning via task de-

composition,” Proc. Second Int. Conf. on the Simulation of Adap-
tive Behavior. MIT Press.

22



Thrun, T., Schwartz, A. (1995) “Finding Structure in Reinforcement Learn-
ing,” in Advances in Neural Information Processing Systems, 7. San
Mateo: Morgan Kaufmann.

Watkins, C.J.C.H. (1989) Learning with Delayed Rewards. PhD thesis,
Cambridge University.

Wixson, L.E. (1991) “Scaling reinforcement learning techniques via modu-
larity,” Proc. Eighth Int. Conf. on Machine Learning, 368-372, Mor-
gan Kaufmann.

23



