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Abstract

The recent success of multicast applications such as Internet teleconferencing illustrates
the tremendous potential of applications built upon wide-area multicast communication ser-
vices. A critical issue for such multicast applications and the higher layer protocols that sup-
port them is the manner in which packet losses occur within the multicast network. In this
paper we present and analyze packet loss data collected via experiments run on 14 multicast-
capable hosts at 11 geographically distinct locations in Europe and the US and connected via
the MBone. In this work we experimentally and quantitatively examine the spatial and tempo-
ral correlation in packet loss among participants in a multicast session. Our results show that
there is a significant spatial correlation in loss among the multicast sites. We also find a fairly
significant amount of of burst loss (consecutive losses) at a site. We also use these empirical
measurements to derive a Markov chain characterization of temporal loss correlation.

!This work was supported in part by the National Science Foundation under grant NCR-911618



1 Introduction

The recent success of multicast applications such as Internet teleconferencing tools [6, 12] for
audio [22, 10, 4], video [9, 3], and whiteboard [11], and distributed interactive simulation illus-
trates the tremendous potential of applications built upon wide-area multicast communication
services. A critical issue for such multicast applications and the higher layer protocols that
support them is the manner in which packet losses occur within the multicast network.

In this paper we present and analyze packet loss data collected via experiments run on 14
multicast-capable hosts at 11 geographically distinct locations in Europe and the US. These
hosts are connected via the Multicast Backbone (MBone) network [6, 15]. The primary goal of
this work is to examine the spatial and temporal correlation in packet loss among participants
in a multicast session. (Informally, by “spatially” correlated loss, we mean the loss, i.e., lack
of reception, of the same packet at many sites; by “temporally” correlated loss, we mean the
loss of consecutive packets at a given receiver.) We also use these empirical measurements to
derive a Markov chain characterization of temporal loss correlation. Our results show that:

e There is a significant correlation in loss among the multicast sites. For example, in one
two-hour period, we find that almost 70% of transmitted packets were not received by
one or more sites, and that nearly 30% of the packets transmitted were lost at two or
more sites. This implies that over all multicast participants, a packet will frequently not
be received at one, two, or more sites.

e There is a significant amount of burst loss (consecutive losses) at each site. For example,
in this same two hour trace, we find that the length of the longest number of consecutive
packet losses is more than 100 packets at each of the sites, and that the average number
of consecutive losses varies from approximately 2 to 8 among the sites.

e Using “entropy” as a measure of the uncertainty in predicting whether the next packet
will be lost at a receiver, given that the history of the last n packets is known, we find
that an eight-state Markov chain (i.e., a value of n = 3) is appropriate for modeling the
temporal correlation in loss.

The underlying packet loss process is of tremendous importance to error control protocols.
This is particularly so with multicast communication, since many of the proposed error control
protocols cited below recover from packet loss by having receivers interact with other receivers
rather than with the data source itself. Thus, the spatial correlation of loss is of particular im-
portance. Although there has been a considerable amount of research on multicast error control
protocols [1, 2,4, 5, 12, 18, 19, 20, 23, 24], these works have either not examined or considered
the underlying loss process, or have assumed that packet losses are both spatially and tempo-
rally independent; the two exceptions are [1, 4]. The work by Bhagwat er al. [1] describes



a recursive analytic method for computing the probability that a packet is not received at one
or more receivers given a specific multicast tree and known, independent loss probabilities on
each link. The work by Bolot ef al. is the work most closely related to our present work. In
that work, packet loss measurements are presented from a 10,000-packet trace between MBone
sites in France and England. With respect to temporally-correlated loss, they find that “losses
appear to be isolated” — a result somewhat different from ours; they do not address the issue of
spatially correlated losses.

The remainder of this paper is structured as follows. In the following section we describe
the measurement tools we constructed and the experiments conducted. In section 3, we exam-
ine the spatial correlation of loss in the packet traces. In section 4, we examine the temporal
correlation in loss at two specific sites. We also describe data analyses which indicate that a
eight-state Markov chain is suitable for characterizing the temporal correlation in packet loss.
Section 5 concludes this paper.

2 Experimental Background

Our experiments consisted of simultaneously monitoring and recording the received multicast
packet transmissions of the “World Radio Network™ at 14 hosts at 11 different Mbone sites. Ta-
ble 1 lists the receiving hosts and their geographical locations, IP addresses, operating systems
and machine types. At three of these sites (those in California, Massachusetts, and Germany),
there was an additional multicast capable host (not shown in Table 1). However, unless other-
wise noted, the measurements we report involve only the 11 hosts shown in Table 1.

The “World Radio Network” is an application run by the Internet Multicasting Service
from Washington DC. It transmits multicast packets over the MBone at 80ms intervals, each
of which contains approximately 5Kbits worth of audio data within a vat [10] audio packet.
These vat audio packets, in turn, are sent as UDP datagrams which are then encapsulated in
[P multicast packets. By listening to the WRN multicast address at each of the 11 sites, it is
possible to determine which packets arrive and which are lost. (Note that while these packets
contain audio data, our results are not tied to this specific application. We ignore the actual
contents of these packets, essentially considering them as periodic test packets that are sent
into the multicast network).

Ateach of the 11 receivers in Table 1, a process was run that listened to the WRN multicast
address and recorded and timestamped the vat headers of the arriving WRN packets. The
packet header contained a sequence number which uniquely identified each multicast packet
sent by the WRN. These data collection daemons were remotely controlled by commands sent
from a central control program to start, stop, and otherwise control the data collection daemons.
Once the data was collected, the control program instructed the daemons to send the trace files



Workstation Name | Location IP Address Operating System | Machine Type
alps Georgia 130.207.8.16 SunOS 4.1.3 sun4m
anhur Sweden 192.16.123.94 | SunOS 4.1.3 sun4m
cedar Texas 128.83.141.15 | SunOS 5.3 sun4m
collage California 192.100.58.17 | SunOS 4.1.3 sundc
erlang Massachusetts | 128.119.40.203 | SunOS 4.1.2 sundc
float Virginia 128.143.71.21 | SunOS 5.3 sun4m
law California 128.32.33.106 | IRIX IP20
tove Maryland 128.8.128.42 SunOS 4.1.3 sun4m
ursa Germany 192.35.149.160 | SunOS 4.1.3 sun4m
willow Arizona 192.12.69.86 SunOS 4.1.1 sundc
zen Missouri 128.252.169.30 | SunOS 4.1.3 sun4m

Table 1: The eleven receiving hosts

via ftp to our centralized site. The traces described in this paper were collected at two times on
July 13, 1995. The first trace is for a 2-hour period starting from 13:45 EDT, corresponding to
a total of 90,000 packets. The second trace began at 22:55 PM of the same day and lasted for
one hour (45,000 packets). We will subsequently refer to these traces as the “day” and “night”
traces respectively. These times were chosen roughly to correspond to times when one might
expect the MBone to be rather busy and rather unused. These traces, as well as others that we
have obtained, can be obtained from our ftp site ftp://gaia.cs.umass.edu/pub/yajnik.

While the spatial and temporal correlation of loss can be measured and characterized with-
out knowing the specific MBone topology connecting the 11 multicast sites in our experiments,
we will find this information useful when interpreting the spatial correlation of the loss mea-
surements. To understand this topology, it should first be noted that the MBone itself is a virtual
network built on top of the Internet. The nodes in the MBone are multicast-capable routers log-
ically connected to each other via IP routes known as “tunnels.” Thus, a logical point-to-point
connection between two multicast routers will typically contains many IP routers.

Figure | provides a logical view of the multicast connectivity among the 11 sites in our
experiments. Each of the eleven hosts are shown, as are selected intermediate MBone routers
between the hosts and the WRN root. Each selected MBone router shown is a nearest com-
mon ancestor of all downstream end hosts on the multicast tree. The multicast tree itself was
constructed by joining together the multicast paths from each of the end hosts to WRN. These
multicast paths were determined using the multicast ping program with the record-route op-
tion (which returns a full path along the MBone from source to destination) and by querying
intermediate multicast routers using the mrinfo program (which returns information about a
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Figure 1: Transmission Tree with Losses

multicast capable router’s connectivity to other multicast capable routers). We ran the ping
and mrinfo programs before and after gathering data, and found that the multicast routes had
not changed. The numbers labeling the virtual links in Figure | will be discussed later, in the
following section.

3 Spatial Correlation of Loss

In this section, we examine the spatial correlation in packet loss among the receiving hosts.

Figures 2 and 3 provide histograms of the percentage of packets lost at exactly one of the
receivers, by exactly two receivers and so on, for the day and night traces. The workstation,
collage, was not included in the statistics either trace because of its extraordinarily high loss
rate. The workstation erlang was not used to tuke measurements in the night trace.

A number of interesting observations can be made from the histogram results. First, note
that even excluding collage, 67% of transmitted packets for the day trace and 58% of pack-
ets for the night traces were lost by at least one recciver. This implies that in a sender-initiated
reliable transport protocol (e.g., a protocol in which receiving hosts request a retransmission
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directly from the sender), the sender might need to transmit a packet several times, since the
probability that a transmitted multicast packet is received at all sites (and hence would not
require retransmission) is only .33 and .43 respectively. Second, note that 28% of the pack-
ets in the day trace and 15% percent of packets in the night trace were simultaneously lost at
more than one receiver. By this measure, there is a significant amount of correlation in the loss
process. It is also interesting to note, however, that 80% of the packet losses in the day trace
and 86% of the packets in the night trace were lost at only one or two receivers. This would
indicate that it in the context of receiver-initiated error recovery protocols, a receiver that lost
a packet may be able to recover that packet from another receiver that is closer to it than the
source. Finally, we note that 6% of the packets were simultaneously lost by all ten receivers in
both traces — suggesting that this packet loss occurred close to the WRN source.

For a given packet, examining which receivers received the packet and which did not can
provide a valuable clue as to where in the multicast tree the packet was lost. For example, in
the multicast tree in Figure 1, if a packet is lost at erlang, alps, float and ursa, but
received correctly at willow, it is likely that the packet was dropped between the multicast
routers A and B. (It should be noted, however, that this need not be the case, as the packet
could have been simultaneously and independently lost on all four downstream paths from B,
although we consider this latter scenario to be much less likely.) Using this reasoning, we can
determine the approximate percentage of packets lost on each of the links in Figure 1. The
numbers shown for each link in Figure | indicate the approximate percentage of packets lost
on that link in the day and night traces, respectively.

An interesting observation is that the loss on the “backbone” (i.e., between any two routers)
is generally much smaller than between a router and an end host. This would suggest that loss
is more likely to occur near the “edges” of the multicast network. (We add a caution here,
however, that there may be multiple MBone routers not shown in Figure 1 that connect an end
host to one of the MBone routers shown in the figure). That is, once a packet enters the network
backbone , it is likely to be multicast successfully throughout the backbone and only be lost
at the networks edges. Thus, if a packet loss occurs at the network edge, the receiver losing
the packet may still be able to recover the packet from a “nearby” receiver that had a different
route into the backbone network. For example, if a packet is lost on the path from B to f1oat
in Figure 1, may be able to retrieve the lost packet from alps, erlang, or float since
a loss on the B-to-f1oat path does not imply a loss at the other receivers. In the context of
reliable multicast, this would thus suggest that local recovery from another receiver in times of
loss would often be possible.

The final set of measurements we made regarding the spatial locality of loss was to deter-
mine whether any packets were being dropped at the receiving hosts themselves. To do so, we
monitored the multicast at two different workstations on the same end local area network. We
did this at three sites: collage (in California), erlang (in Massachusetts) and ursa (in
Germany). Surprisingly, the end-host loss was found to be negligible. It was zero at collage



and ursa and 0.001% at erlang.

4 Temporal Correlation of Loss at a Single Receiver

This section describes the distribution of the lengths of these bursts of losses.

Tables 2 and 3 summarize the loss rates experienced by each of the receivers during the day
and during the night. They also show the number of lossy bursts seen by each workstation, the
average length of the bursts and the coefficient of variation of the burst length. The Coefficient
of variation is defined as

_ ) Ol 1
¢ 3 (N
where b is the burst length or the number of consecutive losses and b is the mean burst

length.

In general, the coefficient of variation was seen to be very high ranging from 1.640 at
alps (Georgia) to 11.620 at erlang (Massachusetts), for the day trace. Long bursts of
losses were observed. For example, for the day trace, alps saw long periods of loss upto 122
packets which is effectively 9.76s and anhur (Sweden) saw loss periods upto 2203 packets,
equivalent to 176.24s.

Figures 4 and 5 show the distribution of burst lengths for two receivers, law and zen. It
is clear that, although most of the bursts are of size less than 100, there are occasional long
loss periods. Figures 6 and 7 show the percentage of total loss experienced in the various burst
lengths. In the case of 1aw, a loss period of length 1867 contributed to 22% of the loss.

Figures 8 and 9 show the burst length distributions for the night trace and Figures 10 and
I'l show the corresponding variation in percentage of loss with burst length. The longest bursts
seen in the night trace were not as long as the longest bursts seen by day. However, in the case
of the receiver law, a single burst of 358 consecutive losses contributed to 11% of the total
loss.

The cumulative distribution functions for this data are shown in Figures 12 and 13. These
graphs show, for all burst lengths, b, the number of bursts of length b or smaller, and the
corresponding percentage of overall loss that occurred in bursts length b or smaller. Again it
is apparent that loss periods more than 100 packets long contribute heavily to the total loss,
despite their small numbers.



Workstation Name Loss Rate Number of Average | Coefficient | Length of the
Lossy Bursts | Burst Length | of Variation | Longest Burst
alps (Georgia) 8.27% 2194 3.392 1.640 122
anhur (Sweden) 10.46% 1150 8.186 8.249 2203
cedar (Texas) 8.58% 1337 5.778 8.874 1867
collage (California) 83.01% 510 146.484 9.492 17690
erlang (Massachusetts) 28.76% 2234 11.59 11.620 2993
float (Virginia) 10.48% 2450 3.851 8.840 1665
law (California) 9.42% 1670 5.076 9.123 1867
tove (Maryland) 28.77% 10046 2.578 12.409 2222
ursa (Germany) 31.37% 8480 3.330 6.746 567
willow (Arizona) 11.67% 3957 2.655 1.871 118
zen (Missouri) 13.08% 5423 2.170 4.118 437
Table 2: Burstiness of Loss: day trace
Workstation Name | Loss Rate Number of Average | Coefficient | Length of the
Lossy Bursts | Burst Length | of Variation | Longest Burst
alps (Georgia) 8.24% 1091 3.401 2310 96
anhur (Sweden) 17.75% 618 12.927 4.005 522
cedar (Texas) 6.10% 427 6.424 1.845 96
collage (California) 72.68% 181 180.691 6.093 9011
float (Virginia) 6.60% 567 5.236 2.055 96
law (California) 7.57% 488 6.980 3.047 358
tove (Maryland) 10.96% 1975 2.496 2479 96
ursa (Germany) 41.33% 1797 10.349 4.920 762
willow (Arizona) 10.58% 1640 2.904 2.323 96
zen (Missouri) 9.46% 1637 2.599 2.526 96

Table 3: Burstiness of Loss: night trace
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S A Markov Model

One way to examine the temporal correlation in loss is to look at the packet loss events seen
by a receiver as a series of random variables which take on the value 0 or 1. These indicate the
status of successive packets. If a packet is lost, the value of the corresponding variable is 1 and
if it arrives at the destination then the value is 0. Packets are sent out by the source regularly at
80ms intervals. Thus this can be considered to be a discrete-time, binary-valued time series.

A class of random processes that is rich enough to capture a large variety of temporal
dependencies and yet structured enough to lend itself to some meaningful analysis is the class
of all Markov processes [14] [13]. We shall therefore model the packet loss process at a (fixed)
receiver as finite-state Markov chain, the state of the process being determined by the history,
i.e., the previous values of the process.

Let X;,7 = 1,2,3.. be a stationary and ergodic discrete time Markov process taking val-
ues in the set X = {0, 1}. Such a process is characterized by its order k, and by a conditional
probability matrix P, whose rows may be interpreted as probability mass functions on X ac-
cording to which the next random variable X; is generated when the processes is in a state
TickLickgr .. Limy.

Prob(X; = x| Xioy = xiy, . Xick = @ik) = Pu(®milzizy ooy Tisg) (2)

Letz = (zi, 3, ..., T,) be an observed sequence or a sample path from an Markov source.
The k-th order state transition probabilities of the Markov chain can be estimated (as observed
in sequence z) forall a € X, b € X* as follows.

Let I£(a, b) be the number of times state b is followed by value a in the sample sequence.
li,ki(a.,Q) = ZI{.’I?,; =a.(r,_y. ... xig) = b} 3)
i=1
Let I£(b) be the number of times state b is seen.

HOED ((TANIENEY @
i=1

where I(-) is the indicator function of an assertion detined as

1 if assertion .\ is true
I{A ={ ! 5
{ } () otherwise ()

16



Let ¢%(alb) be an estimate of the probability that x; = a, given that (Tie1y ooy Xicg) = b.
Leth = (—bl, .-, b)) be a given state of the chain. Then ¢f(a|b) estimates the state transition
probability from state § to state (a. by, ..., by— ). The estimates of the state transition probabili-
ties of the k-th order Markov chain are

hlab) ook
oy = { T ) >0 ©
- 0 otherwise

Table 4 shows the estimated state transition probabilities of a 3rd order Markov model
for the trace of receiver, alps. Since it is a 3rd order model, the next value depends on the
3 previous values and there are 8 different states, one state for each of the possible relevant
histories. The table indicates, for each state, the probability of 0 being the next observed value
and the probability of 1 being the next observed value. Also shown is the probability of that
state being visited.

An issue that needs to be resolved, is to determine the appropriate order (equivalently,
the dimensionality of) the Markov Chain. To put it differently, we must estimate how many
previous values of the process influence a current value. The order of the Markov chain is the
number of previous values which influence the next value.

The problem of estimating the order of a Markov chain has been studied in [17] and [8]
etc. We shall state these results, without proof, for the sake of completeness.

Letz = (71,7, ..., 2,) be an observed sequence or a sample path from an unknown k*-th
order Markov source. We will assume that although &* is unknown, we know an upper bound
K on its possible values. Techniques for estimating the order without this assumption are also
known, but we shall argue later that this assumption is justified in our case.

We define the empirical k-th order conditional entropy of z as

H(qy) = = > a5 (®) Y qk(alb)iogq”(alb) @)

beX*k (33
The convention is to set 0 log 0 to be equal to 0.
The notion of entropy is fundamental in prediction problems. In particular, the k-th order
entropy of a sequence is a measure of randomness of the next variable when the previous
values are known. It is zero if the value of the next variable is completely predictable and

is maximized when the next variable is totally random (1.e. has a uniform distribution). It’s
maximum value is log | X|.

Finally, the estimator l::( -) of the Markov order k is defined as

17



k(x) =

where ¢, is a threshold that will be specified later.

I.lisll'o {k | H(‘Ii) - H(q,f") < F“} ®)

1
0<k<h

Thus the estimator I;(-) employs the philosophy that the shortest history that has (almost)
the same predictive power as knowing the entire Ko-past must be the true order of the se-
quence. Any further knowledge of the past does not make the next variable significantly easier
to predict.

Following the analysis in [8], we set

e = (2MF ¢ (-)_logn 9)
3
where > 0. For this choice of ¢,,, it has been shown that for all Markov measures P, of order
k < Ky,

P (k(X) < k) <27P (10)
where D > 0 depends on P;. Also,

P. (IQ(L) > k) <C-n? (1D

If & > 1 it can be shown that &(-) is strongly consistent for all Markov measures of order
k < K. ie.

P, (lim f(X) = k) —1 (12)
=20

In our analysis, we set Ky = 6, 0 = 2 and we have n. = 90, 000 samples for each receiver in

the network.

The order of the model for each receiver was estimated by successively calculating the
parameters of the model for increasing orders. i.e., starting from order 0, the conditional prob-
ability matrix was estimated. Table 5 shows the Oth, Ist and 2nd order Markov models for the
same trace. To decide which order was appropriate, the entropy of the variable was calculated
at each stage.

The parameters of the Markov models of order less than 6 were calculated for all the re-
ceivers. The entropies became almost constant after the 37 order model, in all cases. Machines,
tove and ursa showed a slightly steeper fall in entropy but in even those cases a threshold
of ¢, = 0.016 was sufficient to get an order estimate of 3. Table 6 shows how the entropies
decreased with increasing orders and the estimated order of the source for a threshold of 0.016.

18



State | Probability of Probability | Probability
being in the state | of 0 of |
000 | 0.8721 0.9779 0.0221
00t | 0.0208 0.6112 0.3888
010 | 0.0142 0.8819 0.1181
01t |0.0102 0.2710 0.7290
100 | 0.0208 0.9278 0.0722
101 | 0.0036 0.4198 0.5802
110 | 0.0102 0.8109 0.1891
111 [ 0.0481 0.1539 0.8461

Table 4: 3rd order Markov Model

Thus it can be concluded from the above analysis, a Markov model of order 3 is adequate to
model the data for all receivers.

This result also justifies, in retrospect, our choice of Ky = 6. Had any of the traces
exhibited temporal dependencies of orders greater than 6, then, with very high probability, its
conditional entropy would have continued to decrease beyond £k = 3 and k(-) would have
estimated its order to be the maximum permitted value of K.

Looking at the state transition matrix in Table 4 we observed that the probability of a |
occurring in state 111 is 0.846. This is considerably greater than the probability of observing
a 1 in the single-state Markov chain (0.0827). This means that the likelihood of loss is much
greater if loss has happened in the recent past. Once the system is in lossy state, it does tend
to remain in that state. Additionally, if the lossy state has continued over a couple of time
intervals, the probability of it continuing further increases.

6 Conclusions and Future Work

This paper described the results of experiments on packet loss in the MBone, a multicast net-
work in widespread use. Measurements were taken at 11 distinct geographical locations in
Europe and the US, for 2 hours during the day and | hour during the night.

It was found that almost 70% of the packets were not received by one or more sites. The
“backbone” loss between two main routers was found to be significantly smaller than that near

the “edges” of the multicast network. A negligible number of packets were lost at the receiving
hosts themselves.
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Markov Model of order 0, entropy = 0.285301

State | Probability of Probability | Probability
being in the state | of 0 of
09173 0.0827

Markov Model of order 1, entropy = 0.162640

State | Probability of Probability | Probability
being in the state | of 0 of 1

0 09173 0.9734 0.0266

l 0.0827 0.2948 0.7052

Markov Model of order 2, entropy = 0.150984

State | Probability of Probability | Probability
being in the state | of 0 of 1

00 0.8929 0.9767 0.0233

01 0.0244 0.5830 0.4170

10 0.0244 0.8523 0.1477

11 0.0583 0.1744 0.8256

Table 5: Markov Models of order 0, | and 2

Workstation | 1-st order | 2-nd order | 3-rd order | 6-th order Estimated order
Name entropy entropy entropy entropy | (threshold=0.016)
alps 0.16264 0.15243 0.15098 | 0.14957 |
anhur 0.10579 0.10406 | 0.10365 | 0.10326 1
cedar 0.11549 0.10994 | 0.10928 [ 0.10821 |
collage 0.05875 0.04682 | 0.04521 0.04300 2
erlang 0.19229 0.16685 0.16087 | 0.15550 2
float 0.18194 0.16837 0.16610 | 0.16406 2
law 0.13726 0.12865 0.12780 | 0.12659 1
tove 0.50142 0.45436 | 0.43580 | 0.42512 3
ursa - 0.46624 0.39565 0.37682 | 0.36810 3
willow .0.25206 0.23241 0.23108 | 0.22975 2
zen 0.30919 0.28370 | 0.28032 | 0.27883 2

Table 6: Entropies and the Estimated Order




Looking at the number of consecutive losses seen by a receiver, a large number of single
losses were observed in the traces. Also, a few extremely long bursts (greater than 100 consec-
utive packets) were seen. These long lossy bursts contribute heavily to the total loss, despite
their small numbers (22% in one trace).

The packet loss at a receiver was modeled as a discrete-time, binary-valued Markov chain.
A method of estimating the state transition matrix for Markov chains of a given order was
discussed. Using “entropy” as a measure of uncertainty in predicting whether the next packet
will be lost, given the history of the last n. packets, we found that an eight-state Markov chain
(n = 3) is adequate to model the temporal correlation in loss. The state transition matrix
showed that the probability of a solid block of loss continuing is high (0.8) as compared to the
basic probability of loss occurring anywhere in the trace (0.08).

Further analyses of the collected data would give better insight into the character of MBone
packet loss. In particular, it would be interesting to estimate the burstiness of loss along each
link of the transmission tree making it possible to see how the temporal correlations of loss
vary in different parts of the multicast network. Combining the loss information for all the
receivers, one could construct a vector-valued, discrete-time Markov chain model which would
characterize both the spatial and the temporal correlations of the packet loss.
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