A Kolmogorov-Smirnoff Metric for
Decision Tree Induction

Paul E. Utgoft
Jeffery A. Clouse

Technical Report 96-3
January 10, 1996

Department of Computer Science
University of Massachusetts
Amherst, MA 01003

Telephone: (413) 545-4843
Net: utgoff@cs.umass.edu, clouse@cs.umass.edu



A Kolmogorov-Smirnoff Metric for Decision Tree Induction

Contents
1 Introduction

2 Kolmogorov-Smirnoff Distance

3 A Modified Kolmogorov-Smirnoff Metric
3.1 Discrete Variables . . . . . . .. ..o
3.2 Uneven Class Distributions . . . . . . . ... . ... ... ... ...
3.3 Multiclass Tree Induction . . . . . . . . ... Lo
3.4 Missing Values . . . . . . . oL

4 Empirical Comparison with Gain Ratio
5 Tree Quality

6 Summary



A Kolmogorov-Smirnoff Metric for Decision Tree Induction 1

Abstract

In 1977, Friedman demonstrated that Kolmogorov-Smirnoff distance could be employed effec-
tively as a test selection metric for decision tree induction. We revisit this metric and modify it to
handle multiple classes within a single tree, and to be sensitive to missing data values. Empirical
results for a large sample of learning tasks, comparing this metric to the gain ratio metric, show a
highly significant reduction in tree size and expected number of tests for classification, without a
significant change in classification accuracy.

1 Introduction

Top-down induction of decision trees is driven by greedy selection of a partition of the
training instances that maximizes a heuristic function of that partition. The heuristic func-
tion is often called the test selection metric, but it is also known as the splitting criterion,
the attribute selection metric, and the partition merit function. A good test selection metric
should have a higher value for a better partition, but whether one partition is indeed better
than another is the subject of some debate. Nevertheless, it is generally accepted that a
purer partition is probably better than one that is less pure. For example, a partition for
which each block contains training instances of a single class is desirable because the test
that produces that partition is probably a good predictor for other instances whose labels
are currently unknown.

A variety of test selection metrics have been proposed, including gain and gain ratio
(Quinlan, 1993), gini (Breiman, Friedman, Olshen & Stone, 1984), ORT (Fayyad & Irani,
1992), and distance (de Méntaras, 1991). We revisit and extend a metric proposed by Fried-
man (1977) based on Kolmogorov-Smirnoff distance. The metric is attractive for theoretical
reasons, raising the question of how well it works in practice. We extend the definition of the
metric to handle multiclass problems in a single tree, and we modify the manner in which
missing values are handled during tree construction.

2 Kolmogorov-Smirnoff Distance

The definition of Kolmogorov-Smirnoff distance, hereafter called KS distance, appears in
Friedman (1977), Rounds (1980), and Gordon and Olshen (1978), and is restated here for
convenience. Consider the two-class case, and assume for the moment that we need to find a
single cut-point « that partitions a continuous variable x’s values into a two-block partition.
One block contains those values of x for which # < «, and the other block contains the
remaining values. Assume further that we have available the class-conditional probability
density functions f4(x) and fg(x) for classes A and B respectively. Finally, assume that the
misclassification costs for classes A and B are identical, and that the prior probabilities of
drawing an instance from a particular class are identical. Then a Bayes-optimal cutpoint « is
a value that minimizes the probability that the test (decision rule) will produce an incorrect
classification.

Consider the cumulative distribution functions F(x) and Fg(x) that correspond to fa(x)
and fp(x) respectively. As illustrated in Figure 1, an optimal cutpoint « is one that maxi-
mizes |Fa(a) — Fp(a)|, and this maximum value is the KS distance for that variable. Thus,
when one computes KS distance for a variable, one also locates a Bayes-optimal cutpoint
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Figure 1. Class-Conditional Probability Densities and Cumulatives for Two Classes

for that variable, under the above assumptions. In the same way that one picks an optimal
test given a particular variable, one picks an optimal test across all the variables by picking
the test with the maximum KS distance across all the variables. Under the stated assump-
tions, there is no better split available for a single-test classifier. The variable, and the test
based upon it that produce the maximum KS distance, indicate the best test to place at the
decision node during tree construction.

One does not normally possess analytical versions of the densities f4 and fg, nor of the
cumulatives F)4 and Fg, but they can be approximated by inspecting the training instances
and estimating them from the observed frequencies. Because the calculation of KS distance
involves only the cumulative distributions, we need only consider approximations F, and F.
This can be done in the standard way for a candidate cutpoint, for example as practiced in
C4.5, by counting the number of instances in each class that fall into each of the blocks of the
candidate partition. For example, as shown in Figure 2, one can count the number of cases
of each class in each block, and convert these frequencies to the class-conditional cumulative
distributions for a candidate test, in this case giving a distance of 0.3. For convenience, we
refer to one block of the paritition as L and the other as R.

3 A Modified Kolmogorov-Smirnoff Metric

We have described KS distance as a test selection metric in its simplest form. Now we
modify its definition and application.
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Figure 2. Frequencies converted to Class-Conditional Cumulatives

3.1 Discrete Variables

It is a simple matter to apply the KS distance computation to any discrete binary parti-
tion. One can see that in the continuous case described above, the cumulative distributions
for a proposed test are approximated by counting how many instances from each class fall
into each block of the partition. The continuous case was handled by synthesizing a boolean
variable < a. So, we already know how to handle a binary variable. For any binary test,
one can produce immediately the approximated cumulatives F, and Fj.

For a discrete variable with more than two possible values, one can enumerate the binary
tests, for example those of the form x = v;, and compute the distance for each one. The
test that maximizes the KS distance is the optimal test for that variable under the stated
assumptions. The process is entirely analogous to the continuous case, for which enumeration
of the possible tests was also done.

Hereafter, we no longer distinguish whether a variable is continuous or discrete, nor do we
concern ourselves with the particular method of enumerating the possible tests based on that
variable. Generically, one picks the best single test, across all the variables, by enumerating
the possible tests and selecting the one with the greatest KS distance. That distance is the
KS distance for the partition that would be formed by that test.

3.2 Uneven Class Distributions

Bayes decision theory defines an optimal classification rule in terms of the posterior
class-conditional probabilties. The use of KS distance described above assumes that the
prior probabilities of membership in each class are identical. The class-conditional den-
sity functions have equal area, and this is true for this case even when multiplied by the
prior probabilities, as is done to convert to posterior probabilities. However, when the prior
probabilities are different, so too are the areas of the posterior probability distributions. In
principle, this does not change the definition of KS distance, because one can still use the
same method to compute the distance between the corresponding cumulative distributions
(Gordon & Olshen, 1978). This breaks down however because the densities would be scaled,
which would mean that they were no longer densities, thereby making the cumulatives in-
comparable.

This raises the question of whether to take into account the prior probabilities when
computing KS distance for the purpose of test selection in decision tree induction. Consider
the uneven class distribution shown in Figure 3(a). One can see that the probability of an

instance being in class A is P(A) = 53= and that the probability for class B is P(B) = 5.
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Figure 3. Uneven Class Distribution

Given the large number of instances from class B, one might argue that the test is not
informative because one would want to classify an unlabeled instance as belonging to class
B regardless of the outcome of the test. However, the test is indeed informative. If the result
of the test is outcome L, then P(A|L) is —, whereas if the result of the test is outcome R,

109°

then P(A|R) is g7, which is very much lower. Knowing the result of the test improves our
probability estimate for each of the classes, even though it may not affect choosing one for

the purpose of classification.

We use the approximated class-conditional cumulative distributions to compute KS dis-
tance without making use of the prior probability of each class. Friedman assumes equal prior
probabilities, and accordingly samples evenly from each class. Our approach is nearly the
same, but we ignore the prior probabilities as irrelevant for selecting a test. This is a design
choice based on the goal of partitioning the instances based solely on the result of a test.
Note in Figure 3(b) that the corresponding class-conditional cumulatives for these observed
frequencies indicate that the test itself separates two quite different regions of certainty
regarding the predicted class.

A second reason that we choose not to take the class distribution into account at every
decision node is that the class distribution is an artifact of the partition that was formed by
the test that was selected at the node’s parent and its ancestors. Except at the root node,
the distribution is contrived. One should not repeatedly extract information from the class
distributions.

3.3 Multiclass Tree Induction

How can one extend the KS distance metric to handle more than two classes? One can,
as Friedman suggests, build one tree for each class. An alternative approach is to build a
single tree, and extend the metric to handle multiple classes.

A single optimal cutpoint « can be found by searching for the variable value that produces
the largest distance between two adjacent-valued cumulative distributions, as illustrated in
Figure 4. However, since our goal is to produce a good partition, not a single-stage classifier,
we know that additional recursive partitioning will separate instances further as necessary.
So, for the purpose of picking a single good test, one does not need to distinguish classes
that are predominantly on the same side of the candidate cutpoint. In the figure, one does
not need to distinguish between classes A and B, so one can instead group them into a
superclass, suggesting a form of twoing (Breiman, Friedman, Olshen & Stone, 1984).

To find a good cutpoint for a multiclass split, we do the following. For each candidate
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Figure 4. Class-Conditional Probability Densities and Cumulatives for Three Classes

value of x to be considered as a cutpoint «, sort the class-conditional cumulative probabilties.
Then find the two adjacent cumulative probabilities with the largest difference. Then group
the frequencies for those classes with cumulative probabiliies at least as high as the higher of
these two adjacent probabilities into one superclass, and group the remaining frequencies into
the second superclass. Finally, compute the distance between the two superclass cumulatives
as before in the two-class case. As before, the o that maximizes the difference between the
superclass cumulative distributions is deemed best, and that distance is the KS distance for
that variable. We cannot currently say in what sense, if any, this cutpoint is optimal, but it
is faithful in spirit to the KS distance formulation.

Figure 5 illustrates the process. Part (a) shows the class-conditional cumulatives from
which the grouping of classes is decided. Part (b) shows the corresponding frequencies before
grouping, and part (c¢) shows the frequencies after grouping. Finally, part (d) shows the class-
conditional cumulatives for the superclasses, giving a KS distance of 0.69 for this candidate
partition.

3.4 Missing Values

One needs to allow for the not infrequent case in which the value of a variable is missing
from the training instance. One can simply omit such an instance when estimating proba-
bility from frequency, but then the class-conditional probability estimates become less well
founded. One would rather incorporate this degradation in an explicit manner. To this end,
we include the count of the instance in the denominator, but not the numerator, when es-
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Figure 5. Multi-Class KS Distance
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Figure 6. KS Distance with Missing Values

timating probability from frequency. This amounts to treating a missing value as a distinct
value for the purpose of computing KS distance for the variable.

The process is illustrated in Figure 6. Part (a) shows the frequencies, including those
with missing values. The corresponding cumulatives are shown in part (b). Notice that the
KS distance computed for outcome L is 0.3 yet the KS distance computed for outcome R is
0.2. Without missing values, these distances are always identical, but they can differ when
using this computation that accounts for missing values. We compute the distance for both
blocks and sum the two numbers. The overall effect is that missing values reduce the KS
distance. In the extreme, when the value is missing in every instance, the KS distance is
diminished all the way to zero.

4 Empirical Comparison with Gain Ratio

In order to evaluate the modified Kolmogorov-Smirnoff metric, which we shall call KS2
here, we compared it to the standard gain ratio metric. To control for the influence of
other factors that arise in inducing decision trees, such as pruning method and binary versus
multi-way splits, we employed the ITI algorithm (Utgoff, 1994; Utgoff, 1995) in its batch
mode, varying only the test selection metric. Consequently, the performance differences that
we measured are due solely to the differences in these two metrics.

We selected a sample of 27 tasks from the UCI repository (Murphy & Aha, 1994). For
each task we ran a ten-fold cross validation experiment. For each fold, a tree was built
while using the gain ratio test selection metric, and a tree was built while using the KS2 test
selection metric. In each fold, 90% of the instances were used for training, and the remaining
10% were used for testing. For each of the cross validation runs we measured classification
accuracy on the held-out testing instances, the number of nodes in the induced tree, and
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Table 1. Results of Cross-Validation Runs

Clasification Number Expected Number
Accuracy of Nodes of Tests
Tasks ks2 | gr ks2 gr ks2 | gr
balance-scale 74.28+3.80 76.51+£3.87 310.20+4.13 276.601+7.76 6.2540.10 7.0240.16
breast 94.14+2.28 94.00£3.49 58.40+3.66 73.60+5.50 3.484+0.19 7.1040.34
bupa 67.43+4.51 59.724£8.24 144.80+£3.94 176.00£13.70 5.961+0.07 | 21.58+2.02
chess-551x39 89.29+2.38 92.32+1.89 173.40+15.83 141.20+£12.38 6.86+0.25 9.45+0.45
cleveland 73.55+10.29 71.9449.38 86.20+4.34 102.60+9.23 4.7740.10 8.35+1.08
crx 79.43+3.03 80.28+7.73 155.80+£6.55 184.20+13.93 5.65+0.19 11.1241.27
glass-no-id 66.36+9.63 66.36+12.16 87.60+5.89 86.80+6.21 7.21+0.49 9.21+0.77
hepatitis 81.88+6.88 75.631+9.52 27.80+3.29 38.00+9.39 2.8140.22 5.24+1.24
hypothyroid 98.71+£0.67 98.64£0.63 66.80+£6.56 66.80£7.45 2.761+0.24 4.01+0.38
image 96.60+£1.07 96.91£1.18 129.20+£20.75 135.20£27.14 6.161+1.18 6.884+1.12
ionosphere 85.83+7.79 93.89+3.88 41.40£3.24 45.00£3.27 4.074+0.13 | 10.67£0.50
iris 95.00+£4.93 94.38+5.47 16.6012.46 17.404+2.27 2.531+0.13 2.8940.20
led7 67.62+£11.83 67.62£12.66 98.20+3.68 91.00£3.89 6.214+0.11 5.8140.12
lung-cancer 45.00£25.82 42.50£23.72 20.40+£3.27 21.00£3.77 3.6940.35 4.79+1.35
lympho 78.67+10.33 77.33+10.52 52.40+4.12 60.00+5.60 5.96+0.17 8.08+0.42
mplex-11 100.00+0.00 100.00+£0.00 183.40+43.10 183.40+43.10 6.09+0.33 6.09+0.33
mushroom 100.00+0.00 100.00+£0.00 23.00+0.00 24.80+0.63 2.66+0.04 5.03+0.13
nettalk 83.47+1.09 83.81+1.16 1762.60+42.27 | 1679.60+24.62 23.65+0.62 | 26.72+0.24
pima 71.56+3.94 69.09+3.17 245.60+7.24 303.004+19.55 6.5440.08 17.3543.06
post-op 54.00£10.75 56.00£10.75 70.40+£6.19 70.60+7.71 6.231+0.29 7.7840.42
promoter 71.82+10.00 77.27+£12.31 22.20+2.35 23.60£3.78 3.071+0.16 3.9440.65
soybean 83.91+£3.24 91.45£3.01 114.60+£4.09 134.80£12.35 6.8240.04 8.5140.27
splice 92.94+1.31 91.72£0.90 263.80+7.79 283.2047.33 6.3440.08 7.3240.10
votes 93.64+4.77 93.64£4.39 43.60+4.84 45.20£4.02 2.814+0.12 2.884+0.13
vowel 81.60+3.31 79.204+4.87 295.00+8.43 308.00+16.20 11.1240.42 13.7540.73
waveform 70.65+9.67 64.84+13.21 67.20+5.45 92.20+19.30 5.30+0.28 13.03+3.10
wine 92.22+10.21 94.44+5.24 14.6042.27 14.60+2.27 3.2140.39 3.08+0.40
Table 2. ANOVA results

Measurement ‘ KS2 ‘ Gain Ratio ‘ Significance

Accuracy 81.10% 81.09% not

Number of Nodes | 169.45 173.27 p < 0.01

Expected Tests 5.86 8.80 p < 0.01

the expected number of tests needed to classify an instance. The averages and standard
deviations of these measurements for all 27 tasks appear above in Table 1.

One can observe that neither KS2 nor gain ratio dominate with respect to the accuracy
of the induced trees. For example, both metrics produce similar accuracy measurements for
the BREAST task. Sometimes KS2 produces higher accuracy, such as for the HEPATITIS task,
and sometimes gain ratio produces higher accuracy, such as for the SOYBEAN task.

Regarding the total number of nodes in the induced trees, there is a marked imbalance
toward cases in which KS2 produces smaller trees than gain ratio. Indeed, in only 6 of 27
cases does gain ratio produce a smaller tree.

Similarly, with respect to the expected number of tests in the induced trees, those pro-
duced with the KS2 metric require noticeably fewer than those produced with the gain ratio
metric. In only two cases does a tree produced with the gain ratio metric have fewer expected
tests (LED7 and WINE). The number of expected tests is an important measure because it
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Figure 7. Hepatitis Tree via Gain Ratio (branch left on True)
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provides an indication of the number of tests that one must perform on average to determine
a classification.

Statistical analysis supports these observations. After accumulating the measurements
for each task and metric, we performed a two-way analysis of variance on each of the three
measures of interest. The average accuracy measured for the KS2 metric is 81.10% while
for the gain ratio metric it is 81.09%. According to the ANOVA, one cannot reject the null
hypothesis that these two means are different, which indicates that the difference in accuracy
is not statistically significant. However, the same analysis applied to the remaining two
measures indicates that the differences in the means of each are highly significant (p < 0.01).
One concludes that the trees built with the KS2 metric contain significantly fewer total nodes,
and require significantly fewer tests (on average) to classify an instance. These results are
summarized above in Table 2.
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Figure 8. Hepatitis Tree via KS2 (branch left on True)

5 Tree Quality

To see whether we could discern any difference in the quality of tree produced by the two
different metrics, we selected the two trees built for one of the folds of the hepatitis task.
This selection was based on the desire to look at trees that were small in size. The tree built
when using the gain ratio metric (the GR tree) is shown in Figure 7, and the corresponding
tree built when using the KS2 metric (the KS2 tree) is shown in Figure 8. The GR tree
is larger and deeper than the KS2 tree. These trees were shown to a medical doctor, who
picked the KS2 tree as matching her sense of liver failure diagnosis much better than the GR
tree. For example, the KS2 tree tests principally albumin, bilirubin, and protime, whereas
the GR tree tests minor criteria such as varices, sgot, spiders, and fatigue. Although one
would like to do a more thorough comparison of the trees built by these two metrics, it is
clear from the significantly smaller size and expected number of tests that the kinds of trees
that are built are quite different.

6 Summary

We have revisited Friedman’s approach to using Kolmogorov-Smirnoff distance as a test
selection metric. We modified the metric to handle multiple classes within a single tree, and
to handle missing values in a manner that diminishes the value of the metric as the number
of missing values increases. We noted that the method can be applied directly to discrete
variables, and we argued that the metric should not take into account the class distributions
at a node.

We showed empirically, for a large sample of learning tasks, that the modified metric KS2



A Kolmogorov-Smirnoff Metric for Decision Tree Induction 10

produces trees that are significantly smaller, and require significantly fewer tests to classify
instances, than trees produced with the gain ratio metric. This comes about with no loss in
classification accuracy.
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