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input, N-output butterfly network can be laid out in area (14 0(1))N?, while
no layout of the network can have area smaller than (1 — o(1))N2. These
results improve both the known upper bound and the known lower bound on
the area of butterfly network layouts.

! Compute; Science Department, Technion, Haifa 3200, Israel [aythan@cs.technion.ac.il]

%2 Computer Science Department, University of Rome “La Sapienza”, Via Salaria 113, 00198 Roma,
Italy [calamoQ@dsi.uniromai. it]

3 Computer Science Department, Technion, Haifa 3200, Israel [evenQcs.technion.ac. i1]
Supported by the Fund for the Promotion of Research at the Technion.
Supported by the United States-Israel Binational Science Foundation, Grant no. 94-00266.

4 Computer Science Department, Technion, Haifa 3200, Israel [Litman@cs.technion.ac.il]
Supported by the United States-Israel Binational Science Foundation, Grant no. 94-00266.

5 Computer Science Department, University of Massachusetts, Amherst, MA 01003, USA [rsnbrg@cs.umass.edu]
A portion of this research was done while visiting the Computer Science Department at the Technion.
Supported in part by NSF Grant CCR-92-21785 and in part by the United States-Israel Binational

Science Foundation Grant no. 94-00266.



1 Introduction

1.1 Overview

Layouts of graphs on rectilinear grids are of wide interest in the study of the VLSI layout
problem for integrated circuits [13], as well as in the study of algorithms for drawing
graphs. Further, each such layout is a restricted form of embedding of a graph in the grid,
hence contributes to the study of the mapping problem for parallel architectures [2, 5],
particularly the problem of mapping parallel programs onto mesh-structured parallel
architectures; cf. [12].

The fields of graph embedding and VLSI layout have developed powerful techniques
which produce embeddings and layouts which are quite efficient—often within constant
factors of optimal; cf. [3, 4]. However, even a modest constant factor may render an
asymptotically optimal layout or embedding unacceptably inefficient in practice. This
observation motivates the current paper.

The aim of this paper is to find a grid-layout of the butterfly network [3] whose
deviation from optimality is of lower order than a constant factor. We achieve this goal
by presenting, in Section 2, a layout of the N-input, N-output butterfly network whose
area is (1 4+ o(1))N?, and by proving, in Section 3, that no layout of this network can
have area smaller than (1 — o(1))N2. Thus, our upper and lower bounds coincide, up to
a low-order additive term.

Both the upper- and lower-bound components of our result improve prior bounds for
butterfly network layouts. The previously known lower bound for the layout area of the
N-input, N-output butterfly network was ;N2 [13, 14]. The 1981 upper bound of 2N?
for the same problem [15] was improved only in 1992, to X N? [6].

1.2 The Formal Setup

A. The Graphs of Interest

We define several graphs that are germane to our study. We begin with the two graphs
that are of primary interest, butterfly networks and grids.

Butterfly networks. For each integer n, the n-level butterfly network B, has node-set!

{0,1,...,n} x {0,1}".

1{0,1}" denotes the set of length-n binary strings.



For each 0 < £ < n, the set {¢} x {0,1}" is the £th level of B,. The nodes at level 0 of
B., are called inputs, and those at level n are called outputs.? The string z € {0,1}" is
the position-within-level string (PWL string, for short) of node (¢, z). Each node

(f, ,30,31 e ﬂf—lﬂb@£+l e ﬂn—l)

on level £ (0 < £ < n; each B; € {0,1}) of B, is connected by a level-¢ straight-edge with
node

(€41, BoPr---Be-1BeBes1 -+ * Br-1)

on level £ + 1, and by a level-¢ cross-edge with node

(€41, BoPi- - Be-1BeBes1 - Pnei)

on level £+ 1. When we draw B, level by level, in such a way that, at each level, the
PWL strings are the reversals of the binary representations of the integers 0,1,...,2" —1,
in that order®, we get the familiar drawing of B, shown in Figure 1(a).

(b)
Figure 1: (a) Bs; (b) another view of Bj.
The following folklore lemma will be useful in our layout of B, [7].

Lemma 1.1 For any nonnegative integers j,k the subgraph of B, induced by the nodes
of levels 3,5 +1,...,7 + k is the disjoint sum* of 2"* copies of Bx.

?The terms “input” and “output” derive from the fact that the (n + 1)-level butterfly network is the
data-dependency graph of the 2™-input Fast Fourier Transform algorithm [1].

3We call this the natural ordering of the levels of B,.

“We use the term “sum” here, rather than “union” to emphasize that the constituent graphs share
neither nodes nor edges.



Grids. For integers m and n, the m x n grid (or, mesh) M, , has node-set
{1,2,...,m} x {1,2,...,n}.

The edges of M, » connect nodes (¢, j) and (¢/, ;') just when | — #'| + |j — 5| = 1. The
path induced by the set of nodes {i} x {1,2,...,n} (resp., the set {1,2,...,m} x {j})
is the ith row (resp., the jth column) of M., .. Row 1 is the top side of M, ,; row m is
the bottom side; column 1 is the left side of My, »; column n is the right side. Finally, we
call the product mn the area of grid M,y ,.

Three auxiliary graphs will be used in our study. Two augmented versions of the
butterfly network will be useful in constructing our layout of B, in Section 2.

Augmented butterfly networks. We denote by B;, the network obtained by appending
two new nodes, called output terminals to each output of B,; see Figure 2(a). We denote
by B;, the network obtained by appending two new nodes, called input terminals to each
input of Bj; see Figure 2(b). We refer to the input terminals collectively and to the
output terminals collectively as a terminal group.

Figure 2: (a) Bj; (b) Bj.

The following folklore result, a proof of which can be found in [7], indicates that
the designations “input” and “output” in our definitions of B, and B” are artificial and
are useful only as an aid in visualizing the networks. This fact is crucial in our layout
strategy.

Lemma 1.2 There is an automorphism of B, which maps each level 0 < £ < n of the
networks onto level n — {. There is a similar automorphism of B!, which also maps the
input terminals onto the output terminals and vice versa.

Our lower bound argument in Section 3 uses the following well-known auxiliary graph.

Complete bipartite graphs. The N x N complete bipartite graph Ky n has N input
nodes V() and N output nodes V), its edges connect every input u € V) with every
output v € V(.



B. Graph Embeddings and Grid Layouts

Graph embeddings. An embedding of graph G into graph H (which has at least as
many nodes as G) comprises a one-to-one association a of the nodes of G with nodes of
H, plus a routing p which associates each edge (u,v) of G with a path in H that connects
nodes a(u) and a(v). The congestion of embedding (c, p) is the maximum, over all edges
e of H, of the number of edges of G whose p-routing paths contain edge e.

Grid layouts. We formulate the notion of a grid-layout of a graph G as a special kind of
embedding of G into a grid; there are alternative, equivalent formulations of the notion
which make it a special kind of drawing of G in the plane. Following [13], a layout of an
N-node graph G in a grid My, », where N < mn, is an embedding (e, p) of G into M, ,
whose routing paths collectively satisfy the following conditions.

e Distinct routing paths are edge-disjoint, so that the embedding that embodies a
layout has unit congestion. It follows that at most two routing paths can “cross”
at a node of M, 5, i.e., touch the node without terminating there.

e Routing paths that share an intermediate node of M,,,, must cross at that node;
that is, one path enters the node from the left and leaves toward the right, while
the other path enters the node from the bottom and leaves toward the top. Thus,
we do not allow “knock-knee” routing [9].

e A routing path may touch no image node a(u), except at its endpoints.

We denote by AREA(G) the area of the smallest grid in which G can be laid out.

C. Graph Splicing

Our layout of B, in Section 2 proceeds by finding layouts of subgraphs of B, and “splic-
ing” them together. We now define this intuitive operation formally.

Let us be given a graph G, a graph H, a sequence ¢ = (u,us,...,u;) of distinct
nodes of G, and an equal-size sequence o’ = (vy,vy,...,v;) of distinct nodes of . Say
that G has nodes U U {uy,us, ..., ux} and that H has nodes V U {v;, v, ..., vk}, where
the sets U, V, {u1,us,...,ux} and {v1,vs,...,v;} are pairwise disjoint. The operation
of splicing graphs G and H along sequences o and o' produces the graph F whose nodes
comprise the set

vuvu {(ul)vl)a (u2)’02>7 vy (ukavk)}

and whose edges connect node w; and w; just when:

o {wy,ws} C U (resp., {w1, w2} C V), and w; and w, are adjacent in G (resp., in H);



® w; = (u;,v;), w2 € U, and u; and w; are adjacent in G;
® w; = (u;,v;), wp € V, and v; and w, are adjacent in H;

* w; = (u;,v;), wy = (uj,v;), and either u; and u; are adjacent in G, or v; and v; are
adjacent in H (or both).

Examples of splicing. (a) One can splice one copy of M, along its right side to
another copy of M, along its left side, to produce an instance of My 3,—_1. () One
can produce Bz by appropriately splicing the disjoint sum of two copies of B, with the
disjoint sum of four copies of B;; the former sum produces the first two levels of Bj, the
latter sum produces the last level of Bj, and the two sums combine to produce the third
level of Bs; see Figure 1(a).

Our final example, depicted in Figure 1(b), is so germane to our layout that we
encapsulate it as a lemma (whose proof is left to the reader).

Lemma 1.3 Let the sequence 0 = (uy,us,...,Upn+) list all the output terminals of BL,
in an arbitrary order. Splicing B;, with a copy of itself along sequence o produces Bp,;.

We finally have all the machinery we need to study grid layouts of butterfly networks.

To simplify our exposition, let n henceforth be an arbitrary positive integer, and let
N =2"

2 The Upper Bound on Layout Area

This section is devoted to proving our upper bound on the layout area of B,.

Theorem 2.1 For all positive integers n, there is a grid-layout L, of B, with AREA
(N 4 o(N))?. Hence,
AREA(B,) < (1 +0(1))N%

We prove Theorem 2.1 via a sequence of reductions.



2.1 The First Reduction

We show how to construct the desired layout of B, from four copies of a suitable layout
of BY.

Claim 2.1 One can consiruct a grid-layout Ln,; of Bnys with the area indicated in
Theorem 2.1, from four copies of a grid-layout L of B! that has the following properties.

o L places B;, in a (2N + o(N)) x (2N + o(N)) grid M;

o L, places one terminal group of B! on a vertical side of M and the other terminal
group on a horizontal side of M.

Proof: Assume, with no loss of generality, that the given layout £ places the terminal
groups on the bottom and right sides; see Figure 3(a). Flip £ around its right side to
produce layout L), of B;. Splice layouts £ and L along the pivot line, as depicted in
Figure 3(b). By Lemma 1.3, the resulting layout, call it £}, is a layout of B ;.

" " Y '
ﬁn ‘Cn ‘Cn n+41

() (b) T

!
n+-1

(c)

Figure 3: (a) £7: a layout of B}; (b) £, ,,: a layout of By, ; (c) Lny2: a layout of Byy,.

Next, flip layout . L., around its bottom to produce layout £, of Bj,,. Splice

layouts £;,,, and L], along the pivot line to produce the layout £,2; see Figure 3(c).
By Lemma 1.3, Ln42 is a layout of B,;3. (Note the implicit use of Lemma 1.2 here.)
Clearly, layout L4+ resides in a (4N 4 o(N)) x (4N + o(N)) grid, hence satisfies the
conditions of the Theorem. 1]

We have thus reduced our layout problem to one of producing a layout £, as used
in Claim 2.1.



2.2 The Second Reduction

We now show how to construct the layout £” of Claim 2.1.

Claim 2.2 Say that we can lay any By, out in a (2™ 4 o(2™)) x o(4™) grid, in such a
way that each terminal group of By, resides on one of the length-(2™+1 +0(2™)) (vertical)
sides of the grid. Then one can construct the grid-layout L of B! described in Claim
2.1

Proof: Let the levels of B], be numbered —1,0,...,n,n + 1, where levels (—1) and
(n + 1) are the terminal groups. We create our layout of B” in stages.

First, pick any k € {0,1,...,n — 1}, and construct the graph B from B” by placing
a new node—called a token—on every edge connecting levels k and k + 1 of B (or,
equivalently, by replacing every such edge by a length-2 path). Note that B%) has n + 4
levels, numbered —1,0,1,...,n,n + 1,n + 2, with the tokens residing in level k + 1.
Clearly, any layout of B is also a layout of B.

Next, decompose B) along the token-level into

® Gi1: the induced subgraph of B on levels —1,...,k+ 1
® G2 the induced subgraph of B on levels k+1,...,n + 2.

Easily, one can obtain B% by splicing Gy, and Gk, along the replicated level. Impor-
tantly, by Lemma 1.1, Gi is the disjoint sum of 2"~* copies of B, while Gy, is the
disjoint sum of 2¥+! copies of BY_, _,.

For definiteness, let us now assume that n is odd, and let us consider the graphs BS‘k),
Gk, and Gi2 when k£ = (n — 1)/2. When n is even, we must adjust the details of our
layout and its analysis, but only in ways that affect just low-order terms; details are left
to the reader. In the case at hand, both G, and Gy ; are disjoint sums of 2(**+1)/2 disjoint

copies of B{,_y/5-
Now we are ready to construct the desired layout of B from the claimed layout of
(n-1)/2- To this end, let £ be a layout of B{,_;),; in a (20112 4 5(27/2)) x o(2") grid,
in which the terminal groups reside on opposing vertical sides (of size 2("+1)/2 4 o(27/2)),
We first construct a layout £ of G(n—1)/2.1, by abutting® 2(*+1)/2 copies of £, with

its token level on the left side, along their (long) horizontal sides. Layout £ resides in
a (2N + o(N)) x o(N) grid.

SNote that we are not splicing these grids: abutting two copies of the m x n grid along vertical sides
creates a copy of the m x 2n grid.



£

£ ces >—/

Figure 4: Resplicing £*) and £?.

Next, we rotate layout £*) by 90 degrees to produce £? a layout of G (n-1)/2,2 With
the token level on the top side.

As the next to last step, we place layouts £ and £ in the smallest grid M which
will hold them in the following non-overlapping configuration. We position layout £(*)
flush with the top and right sides of M, and we position layout £ flush with the left
and bottom sides of M; see Figure 4. One verifies easily that a (2N +0o(N)) x (2N +0o(N))
grid is large enough to accommodate this placement of layouts £) and £?.

Finally, we must splice G(,_1)/2,1 and G(n_1)/2,2 along the token level, to recreate
BU»=1/2) " Since all of the nodes to be “merged” have unit degree, we can accomplish
the splicing by routing a specific bijection from nodes on the left side of £!) to nodes on
the top side of £®). Our positioning of layouts £{!) and £ within M has left a large
unpopulated area (as one can see in Figure 4) in which any such bijection can be routed
in a cross-bar fashion.

This completes the layout of B{"=1/2) hence of B, 0

2.3 The Third Reduction

Our final task is to construct the layouts of B demanded in Claim 2.2. We construct
these layouts implicitly, by appealing to a result of Pinter [10] on channel routing.



An (h,l,k) cross-channel routing problem involves an h x I grid (the channel) and a
set of k two-point nets: each net is a pair of gridpoints which reside on opposite vertical
sides of the grid. The problem is to construct k edge-disjoint paths which connect every
net and which can simultaneously be laid out in the grid in the sense of Section 1.2.B.

Such a layout may not be possible if the grid is too small; Pinter guarantees that the
grid need not be too big.

Lemma 2.1 [10] Any (k,l,k) cross-channel routing problem satisfying h > k and | >
%k + 1 can be routed within the given grid.

Lemma 2.1 enables the desired layouts of B, in the following way.

Claim 2.3 One can lay B;, out in an (2"*! + 1) x O(n2") grid, in such a way that each
terminal group of Bl resides on one of the vertical sides.

Proof: We place each of the n+1 internal levels of nodes of B% in a (2"*! 41) x (2" +2)
grid, in the staggered fashion depicted in Figure 5. That is, the nodes of a level are placed
on grid-points of the form (2¢,7 + 1), where i = 1,2,...,2". (We shall see momentarily
that Lemma 2.1 allows us to specify the exact mapping of butterfly nodes to these grid-
points in any arbitrary way.)

——
channel —' T[——‘ channel
. s .
routing — T — routing
I

Figure 5: A layout of B5.

Now, route four edges out of each node to four “terminals,” two on each vertical
side of the grid, as depicted in Figure 5. Align the layouts of the n + 1 internal levels
of B}, horizontally, keeping a space of 3 2"*! + 2 between them, so that we can apply
Lemma 2.1. Easily, this produces the claimed layout of B in a (2"*! + 1) x O(n2") grid.

a

We now have provided all the machinery necessary to create the layout of Theorem 2.1.
The overall layout of B, implicit in our proof is depicted in Figure 6; the inputs and
outputs of the network are on the middle vertical and horizontal lines, respectively; the
shadowed areas contain no butterfly nodes, being dedicated to routing butterfly edges.

D
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Figure 6: The overall layout of B,,.

3 The Lower Bound on Layout Area

This section is devoted to proving our lower bound on the layout area of B,,.

Theorem 3.1 For all positive integers n, any grid-layout of B, has AREA at least (2" —
1)?. Hence,

AREA(B,) > (1 —o(1))N2.
The bounding strategy. We modify the basic lower-bound strategy invented in [13]

via the nonstandard notion of a special-bisection of a graph.

Let G be a graph having a designated set of 2¢ > 0 special nodes. The minimum
special-bisection width of G, denoted M.SBW(G), is the smallest number of edges whose
removal partitions G into two disjoint subgraphs, each containing half of G’s special nodes.

Lemma 3.1 For any graph G,
AREA(G) > (MSBW(G) —1)%.

Proof: We consider an arbitrary layout of G in M, ,,, where, with no loss of generality,
m < n. As in [13], we find that there is a line L that has a single unit-length jog, which
can be positioned on a drawing of M., , in the following way.

11



* L is aligned with the columns of M., , in such a way that the portion of L above
the jog lies to the left of some column ¢ of M,y »; the jog of L lies below some row
of My,.n; the portion of L below the jog either lies outside of M n, or it lies to
the right of column c.

¢ Removing the grid-edges crossed by L yields a special-bisection of G.

By definition, at least MSBW (G) edges of G must cross line L. By construction, at
most m + 1 edges of My, , cross line L. It follows that m > MSBW (G) — 1, whence the
lemma. 0

Our goal now is to show that, when we designate the input and output nodes of 3,
as special, we find that MSBW(B,) > 2". To this end, we employ Kx n as an auxiliary
graph. First, we note that, if we designate all nodes of Ky v as special, we obtain the
following lower bound on MSBW (Ky n).

Lemma 3.2 MSBW(Knn) = $N? when all nodes of Kn,n are special.

Proof: Consider an arbitrary linearization of the nodes of Ky ny. Cut the linearization
in half. Say that this cut places K input nodes on one side of the cut, hence N — K on the
other. Clearly, the output nodes of Ky n are cut in exactly complementary proportions.
Since Ky n has an edge between every input and every output, the K inputs and K
outputs that are separated by the cut give rise to K? edges crossing the cut, while the
N — K inputs and N — K outputs that are separated by the cut give rise to (N — K)?
cut edges. We thus have K% + (N — K)? edges of Ky v crossing the cut. This quantity
is minimized when K = 1N, in which case 1 N? edges cross the cut. 0

Congestion arguments. We employ a technique for bounding unknown MSBW’s
from known ones, which derives from a technique originated in [8] and refined in [11].

The principle underlying congestion arguments is quite simple. Focus on a graph
‘H which has k special nodes, whose M SBW we wish to bound from below. Say that
we have an auxiliary graph G which has & special nodes, whose M SBW we know. Say
further that we have an embedding € of G into ‘H, which maps the special nodes of G onto
the special nodes of H, such that the congestion of ¢ does not exceed C. We claim that
MSBW(H) > (1/C)MSBW(G). This inequality holds because the embedding ¢ allows
us to view the act of partitioning H into two disjoint subgraphs having equinumerous
sets of special nodes as simultaneously partitioning G into two disjoint subgraphs having
the same partition of special nodes. With this view in mind, one can view the act of

12



removing any particular edge e of H as effectively removing all edges of G that are routed
over e by the embedding ¢. If we know that € never routes more than C edges of G over
any edge of H, which is what our upper bound on the congestion of ¢ means, then we
know that cutting an edge of H simultaneously cuts no more than C edges of G. Since we
also know that at least M.SBW (G) edges of G must be cut in order to effect the desired
partition of G, we can infer that at least MSBW(H) > (1/C)MSBW (G) edges of H
must be cut in order to effect the desired partition of 7. This argument yields:

Lemma 3.3 (The Congestion Lemma) ,
Let G and H be graphs having equal numbers of special nodes. If there is an embedding of
G into H which maps special nodes to special nodes and which has congestion < C, then

MSBW(H) > (1/C)MSBW(G).

Our lower bound. We obtain our bound via the congestion technique, by letting
N = 2" and analyzing the “natural” embedding of Ky n (which plays the role of the
guest graph G) into B, (which plays the role of the host graph H).

Lemma 3.4 One can embed Ky into B, with congestion 2*~! = LN, in such a way

that the inputs and outputs of Ky N map, respectively, to the inputs and outputs of B,,.

Proof: Note that B, has the banyan property: each input node u is connected to each
output node v by exactly one path of length n. Consider any embedding € of Ky n into
B, which assigns inputs of Ky n to inputs of B, and outputs of Ky n to outputs of
B.,, and which routes the edges of Ky n “greedily”, via the unique length-n path which
connects the two end-points in B,.

We now analyze the congestion of embedding €. Call a path of B, simple if it does
not visit any level twice. Let e be a level-k edge of B,,. Since B, has the banyan property,
one endpoint of e reaches precisely 2" %! distinct output nodes via simple paths, while
the other endpoint of e reaches precisely 2* distinct input nodes via simple paths. Hence,
edge e lies on precisely 2"~! input-to-output simple paths; i.e., its congestion is precisely
211.-1 . 0

If we now designate all nodes of Ky n as special and the input and output nodes of
B, as special, we infer from Lemmas 3.2, 3.3, and 3.4 a lower bound on the MSBW of
B.,.

Lemma 3.5 MSBW(B,) > 2".

Finally, Lemma 3.5 combines with Lemma 3.1 to yield the desired lower bound,
Theorem 3.1, on the area of grid-layouts of B,. 0
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