A Robotic Assembly Application
on the Spring Real-Time System!

Carlton Bickford, Marie S. Teo, Gary Wallace,
John A. Stankovic, Krithi Ramamritham
Department of Computer Science
University of Massachusetts

Amherst MA 01003-4610

UMass Computer Science Technical Report 96-06
January 1996

Abstract

The Spring real-time system and environment provides methods for program repre-
sentation and corresponding run-time system support that allow programs to meet
the predictability demands of a complex real-time application. The primary objec-
tive of the work described in this paper is to present the experiences gained and the
lessons learned from porting a real-world real-time application to make it predictable
and flexible. The exercise has also provided a test case which helps to answer ques-
tions about the completeness and ease of use of software development tools that have
been developed to provide for flexibility while achieving real-time guarantees. This
test case is derived from an existing real-time application in industry—a robotic work-
cell that is currently in use for the assembly of circuit boards. Lessons learned from
our experience with this reimplementation include: an understanding of the target
hardware is essential to determine the process and resource layout; in creating the
design for the application, the user must know how the use of shared resources and
interprocess communication is going to determine the overall run-time representation;
and within the code the user should pay careful attention to the use of statements
that cause processes to suspend. Although the algorithms and tools used in the
reimplementation were developed in the context of the Spring real-time environment,
we believe that the lessons learned from this experiment will be useful not only to
potential users of Spring, but also to other real-time practitioners at large.

1This work was supported by NSF grant number IRI-9208920

1 Introduction

The Spring real-time system [9] and environment provides methods for program rep-
resentation and corresponding run-time system support that allow programs to meet
the predictability demands of a complex real-time application. The primary objective
of the work described in this paper is to provide a test case which helps to answer
questions about the completeness and ease of use of software development tools that
have been developed to provide for flexibility while achieving real-time guarantees.
Even though the tools in question were developed in the context of the Spring real-
time environment, we believe that the lessons learned from this experiment will be
useful not only to potential users of Spring, but also to other real-time practitioners
at large.

Real-Time application programs must be predictable in several ways; it must be
possible to describe at compile-time, the worst case execution time, the use of shared
resources, and any synchronous interprocess communication. To meet these demands,
the Spring system makes several tools available to the real-time programmer. The
Spring-C language makes a few significant changes to the syntax of ANSI C to ensure
program predictability. The Spring System Description Language (SDL) [5] augments
Spring-C code with a grammar that is used to describe the resource requirements,
timing constraints, and importance levels for each process. The Spring Software
Generation System (SGS) [6] includes a compiler, linker, and loader that will provide
a path from Spring-C and SDL source code to an executable on the target hardware
executing the Spring kernel. The Spring scheduling algorithms provide the necessary
tools to meet the timing requirements of the applications.

The test case is derived from an actual application from industry, much of which
has been ported to the Spring system. The original application is a robotic workcell
that is currently in use for the assembly of circuit boards. While this is clearly of
a smaller scale than the large complex real-time systems of the future that Spring
research i1s geared toward, it has helped stress the capabilities of Spring’s software
development support tools. It makes extensive use of the Spring mechanisms for
shared memory and IPC primitives [3], and thoroughly exercises the use of the SDL
to describe process behavior.

Some key lessons learned from our experience with this reimplementation includes:

e An understanding of the target hardware is essential to determine the process
layout and the resource layout. Separating the specification of such layout
information from program code helps in taming the complexity of software
development. Further, having tools which permit specification of the layout
aids in understandability, debugging, and analysis.

o In creating the design for the application, the user must know how the use
of shared resources and inter process communication is going to determine the
overall run-time representation. To this end, an understanding of the translation

from user-level to execution-level entities is required.

e Within the code the user should pay careful attention to the use of statements
that cause processes to suspend. Otherwise, context switching overheads and
resource blocking can adversely affect system schedulability.

While the above “lessons” are useful for real-time system developers in general, this
work has also helped us understand the value added to the application through its
implementation using Spring concepts and tools:

o Predictability:
The application is now predictable. The executables created by Spring’s trans-
lation tools contain all the information needed to predictably execute the ap-
plication.

o Flexibility:
The application has greater flexibility. Throughout design and coding, and
after, the user is aided by being able to specify timing constraints at many
levels, especially at the level of end-to-end scheduling. Making changes to these
specifications is easy. The application is then able to tolerate updates, changes
in the environment (to some extent changes in the hardware) without much
rewriting of the code.

The rest of the paper is structured as follows: Section 2 describes the original applica-
tion in enough detail to allow contrasts to be made with the Spring implementation,
which is described in section 3. Section 4 offers a user’s evaluation of the Spring
interface to the programmer and section 5 provides some observations and lessons
learned from the entire experience.

2 The Application Using the Original Approach

We describe the application, as it was originally implemented to point out the (at
times unnecessary) constraints imposed by the original development method and to
place the resulting difficulties in perspective.

The assembly of circuit boards typically involves an automated process for placing
components. This is usually done by high speed dedicated equipment, easily capa-
ble of placing 10,000 components per hour. While this equipment can handle most
industry standard component package types, there is often a need for more flexible
equipment. A user programmable robotic workcell is often used to place package
types that are not compatible with the standard process. In this particular case the
robotic workcell is used for large components with heat sinks. The components can-
not be handled by standard equipment, and require precise placement that cannot be
achieved manually.

2.1 Direct Visual Guidance

The dimensions and tolerances of the packages and the circuit board, combined with
assembly quality standards, resulted in a required placement accuracy of £0.001
inches. The Adept One robot from Adept Technology was used for the application.
The robot however, is only capable of +.003 inches positional accuracy. This is
because the robot controller relies on encoder feedback from each joint to position
the end-effector at the desired destination and this results in some positional error.
The solution is an approach that became known as direct visual guidance (DVG).

@ DVG camera 1 > .ﬂ,: U:, DVG camera 1
fiducial EE|

| ==

DVG camera 2 DVG camera2 |11 ®

(a) (b)

Figure 1: Images acquired by DVG cameras

DVG is accomplished by mounting two cameras on the robot end-effector, in
diagonally opposed quadrants. The cameras are used to acquire two different types
of images; the corner leads of the component, and a visual target on the circuit board
known as a fiducial. After the component is picked from it’s feeder the robot will
position it over a light source, and acquires an image from each camera (Figure la).
The corner leads in each field of view allow the position of the component relative to
the robot end-effector to be calculated. This computation need only be done once for
each placement. The component is then carried to the placement location and is held
just above the circuit board footprint on which it will be placed. Each footprint has
two fiducials associated with it. An image from each camera is again acquired (Figure
1b), and the position of the robot end-effector relative to the target location on the
circuit board is calculated. This computation is repeated, coupled with corrective
moves by the robot, until the positional error is acceptable.

2.2 Workcell Configuration

The major components of the robotic workcell consist of the Adept One Robot, the
Adept robot controller, and the vision system on a MicroVAX host. There are also
many other mechanisms required for the assembly process, e.g., parts feeders, a con-
veyor, and a tool change rack. The Adept One robot is a direct-drive, 4 axis robot.
The robot has a kinematic configuration known as SCARA, (selectively compliant as-
sembly robot arm), that is well suited to planar assembly tasks such as circuit board
assembly. Joints 1, 2, and 4 of the Adept One are revolute while joint 3 is prismatic,
it moves the end effector in a direction normal to the workspace plane.

The Adept MC robot controller is equipped with three Motorola 10 MHz 68000
processors, all on the same Intel Multibus backplane. The primary processor is used
for robot and workcell control and the remaining two processors are dedicated to
digital servo control of the robot joints.

The vision system is composed of a Data Translation DT2651 board on the Mi-
croVAX computer. Low-level vision tasks, such as modifying pixel values and select-
ing frame buffers and lookup tables, are performed by functions available through
the IRIS run-time library which is provided by Data Translation along with the DT
hardware. Higher level vision routines, (functions that the robot process will call)
are linked with the IRIS library. The DVG workcell has four cameras. Camera 0 is
mounted on the outer link of the Adept One, and is used for workcell calibration.
Cameras 1 and 2 are the DVG cameras. They are rigidly mounted on a fixture which
mounts to the robot wrist. Camera 3 is mounted within the robot workspace looking
upward, and is not used for the DVG scheme.

2.3 The V+ Control and Programming System

Adept’s operating system is V+ [1], formerly known as VAL-II [8]. VAL, the original
robot programming system, was developed in 1975 by Unimation. V+ is a multitask-
ing operating system as well as a high level interpretive programming language. For
any robotic application, V+ may run two types of user processes. These include one
robot control program, and up to six process control (PC) programs.

The robot control program and any process control programs are referred to as
user tasks 0 though 6, all of which share the primary CPU with V+ system tasks. V4
uses time slicing and a priority scheme to guarantee that critical processes are given
time on the CPU in each 16 ms major cycle. Table 1 shows the default configuration
used for V+ scheduling. The major cycle is divided into four slices which must fall on
2 ms increments. The slices are named for the 2 ms increment on which they begin,
0,5, 6,and 7. A task is assigned to a time slice where it competes for CPU time with
other tasks in the slice.

The trajectory generator is the highest priority task and must run to completion
every 16 ms. The execution time of the trajectory generator depends on two factors;
the type of motion specified (joint-interpolated, straight-line, etc.) [8] and the CPU
type. With the 68000 processor, the trajectory generator task could take from 7 ms
up to 11 ms. If it does not exceed the time slice then user task 0, the robot control
process can execute. This process, due to its priority over other tasks in the slice,
will hold the CPU throughout the rest of slice 0 and slice 5 as well (since no tasks
are scheduled in it), unless a blocking event occurs, in which case V+ looks for the
highest priority unblocked task, first within the slice, and then the previous slice. If
no tasks are ready in either, V4 looks forward through the remaining slices. If still
no tasks are found, the tasks will be reconsidered again beginning at slice 0. If the
trajectory generator task does overflow slice 0, then the task completes in slice 5, and

Table 1: V4 scheduling configuration

Time Slice | Slice Duration | Tasks in Slice (default) Priority

0 10 ms Robot trajectory generator 255
User task 0 (robot control) 20
User task 3 (PC task 3) 15
User task 4 (PC task 4) 10
User task 5 (PC task 5) 10
User task 6 (PC task 6) 10

5 2 ms None

6 2 ms User task 1 (PC task 1) 20
User task 2 (PC task 2) 15

7 2 ms Monitor 254
System device drivers 253

user task 0 from the previous slice would continue execution if ready. Note that user
tasks 4, 5, and 6 in slice 0 all have equal priorities. These tasks would be executed in
a round-robin fashion with the least recently executed task getting the available time
in each major cycle. Finally, note that by placing user task 1 in time slice 6 with the
highest priority in the slice, it is guaranteed to get at least 2 ms out of every 16.

3 The Application Reimplemented in Spring

In this section we describe the details of the robotics application as realized in Spring.
The next section provides an evaluation with respect to the design tools and language
support.

One of the first obstacles to the creation of a robotics test case is the fact that
Spring-C is not a robot programming language. Hence, the necessary motion func-
tions, sensor and actuator integration, and spatial descriptions and transformations
had to be implemented in Spring-C. The experiment then proceeded by mapping the
original application to the Spring system. The basic question is, how can the same
application be described in the Spring system, and how well do the Spring methods
for program description meet the programmers needs. First some basic assumptions
about the application were made:

1. The original application had the vision process running on separate hardware.
This process layout was achieved in the Spring application by imposing the
constraints that robot and vision processes communicate with each other only
through messaging, and that robot processes and vision processes communicate
among themselves only through shared memory. These constraints were made
to mirror the notion that the vision processes are remote services offered to the

robot routines. Figure 2 shows the conceptual distinction among vision (white
ellipses) and robot processes (shaded ellipses). Darkened arrows indicate IPC
and light arrows indicate shared memory access.

-~

assy_data

il

material T locate_fiducial

cell_config

pick_pg

place_index

g_picture
L framebuffers

cal_data @ gray_map camera_data

joint_angles locate_corner vision_seg

il

[
2}
w
|72}
(93
[V}

path_data

]

robot_desc place_pg

2.

e

I

robot_seg

place

locate_fiducial

il

Figure 2: Diagrammatic scheme of the application

The actual DVG workcell has many functions such as workcell calibration and
loading product data files, that have no real-time constraints and would not
be useful to implement in the Spring test case. The processes which are im-
plemented (shown in Figure 2), make up a significant amount of code, and
are of sufficient complexity to provide a non-trivial test case. The data that
would normally be provided by calibration and assembly data is generated in
the robot_init process of the test case. The test case workcell is also simplified
somewhat and retains only the tooling with which the processes in Figure 2
interact. Of the four original cameras, only the two DVG cameras are used.

The original vision routines were responsible for providing the data to determine
the positional error of the robot arm relative to the placement location. Since
we do not have the required vision hardware, we had to disregard the actual

computation involved in the vision system and manipulate just the inputs and
outputs to it. Hence, the vision routines are called but are not given any data
to work on, instead we simulate the required return values. In other words, the
application performs the calls to the vision routines and receives a generated
(as opposed to calculated) return value.

4. The original robot controller uses binary outputs and inputs to control actua-
tors and obtain information from sensors. In our application such signals are
simulated in software.

5. Originally, placement locations for circuit components are obtained through
user input (an input file or CAD/CAM system). However, to remove the need
for I/O operations we just randomly generate a set of placement locations at
runtime or have the user specify it within a header file.

3.1 Shared Memory

Data structures that are shared among processes are known as resources in the Spring
system. Resources are grouped into a shared memory segment that a process must
attach using the shm_attach system call during process initialization. References in
the source code to the resource must then be enclosed in the Spring-C with statement.
A process may access a resource in either ezclusive or shared mode. This provides a
means of implementing critical sections, since the scheduler will enforce the exclusive
access. The scheduler need not be made aware of a shared data structure that is
not used in exclusive mode by any process. However, as noted in [5], it is useful
to describe the data structure as a resource anyway. If at some later point in the
software development exclusive access is needed, all references throughout the code
will already be properly enclosed in with statements.

One of the first steps in developing the application was to decide what data struc-
tures would need to be shared among processes, and then to define a reasonable
grouping of related data structures into resources. Finally, each resource was as-
signed to a shared segment. Figure 2 shows the final shared memory design. Shared
segments are represented by the large white rectangles, and the resources they contain
are shown as the smaller rectangles within them.

3.2 Process Descriptions

The workcell in the original implementation had the vision routines within a single
process which would search through a master list of functions to provide a function
pointer used to execute the requested function. This approach would be inefficient
for us, since the Spring SGS would produce a run-time representation of the original
monolithic process that would include the worst case execution time and resource use
of all functions in the master list. Clearly, a finer granularity at the programming

level is needed to allow the Spring system to produce a more efficient run-time task
representation. This has been accomplished by representing the functions in the
original master list as processes. These are shown in the right half of Figure 2.

/* threshold_init.c */

#include<sys/ipc.h>
extern port_id_t Threshold_port_id;
int proc_init()
int first;
/* create a port, owned by this process, to accept requests
* from the processes locate_board and place
*/
name_t recv_port_name="threshold";
int rv;
rv=ipc_port_create(&recv_port_name,
semantic_type_sync;
queue_policy_earliest_deadline,

overflow_policy_drop_arrival,
&Threshold_port_id);

/* attach shared memory
*/

if(shm_attach("vision_seg",1 ,&first)==0) {
return O;
b

return 1;

Figure 3: threshold_init.c

Spring-C programming convention requires that each process have two entry points
(See Figure 3). One designated proc_init that will be executed only once at process
initialization, and the other designated proc_ezec, that will be executed at each process
episode. The proc_init section is used to perform such system tasks as attaching
shared segments and setting up synchronous communication ports. The proc_ezec
section implements the desired computation.

The SDL source language provides for a process specification which allows the
programmer to describe the behavior of a process, in terms of its resource use, timing
constraints, importance level, and synchronous communication with other processes.
The threshold process specification is shown in Figure 4. The execution specification
portion states that the executable code is contained in the file threshold, the symbol
cam_array, which is contained in the shared segment viston_seg, is referenced, and the
process receives messages on a synchronous communication port named threshold.
The SDL process specification also allows for a description of timing and scheduling
requirements. However, since the threshold process will be contained in a process
group, these requirements will be specified for the entire group rather than at the
individual process level.

/* threshold.c */

SDL{
Process(threshold){
* Exec spec
Code threshold;
Import cam_array;
Sharing vision_seg;

Sync_ports (threshold Receive);

* Timing spec
* Scheduling spec
e

J&

proc_exec() {

Figure 4: threshold.c

Discussion so far has centered around vision processes, but as shown in Figure 2
there are also four robot processes: robot_init, locate_board, pick, and place. These are
not ported directly from the V+ code of the original application. The functionality of
the original workcell has been preserved through the implementation of these Spring
processes, while at the same time a process architecture has been imposed that is
better suited to the generation of a predictable run-time representation. As with the
vision processes, each of the robot processes has an SDL description (not shown due
to space limitations).

3.3 Inter Process Communication

The Spring kernel provides primitives for both synchronous and asynchronous mes-
saging between processes. All interprocess communication in the workcell application
is synchronous. This is because all IPC in the application is among robot and vision
processes that, as a group, implement a computation. Since there are precedence
constraints among the processes in the group, the communication must be synchro-
nized. These process groups will be discussed in more detail later, but as an example
consider the group loc_board_pg in Figure 2.

The three vision processes must be run in the order: threshold, g_picture, lo-
cate_fiducial. Furthermore, the g_picture process may not begin until the locate_board
process has positioned the robot arm such that the camera is positioned over a fidu-
cial. The Spring system enforces these precedence requirements, and also avoids
unpredictable blocking, by decomposing the process group into the run-time task
representation discussed in [4]. A synchronous send or receive call in the source code

i1s a scheduling point, which forces a task boundary in the run-time representation.
This allows the non-preemptable tasks to be scheduled such that when a synchronous
receive is executed, the message will be available.

/* locate_board.c */

/* send a message to the vision system

* to set a binary threshold

*/
requestp=(request_t*)&request_buffer;
requestp->cameras=CAM1;
requestp->lo_threshold=board.threshold;

/* threshold.c */

sync_receive("threshold", Threshold_port_id,
&request_buffer);

requestp=(request_t*)&request_buffer;
threshold=request->lo_threshold;
camera=requestp->cameras;

sync_send("threshold" ,Threshold_port_id, *
&request_buffer);

Figure 5: Synchronously communicating processes

While much of this translation method is hidden to the programmer, it has an
implication that should be considered when applying synchronous IPC. That is, syn-
chronous send and receive calls result in scheduling overhead and precedence con-
straints, since each call forces task boundaries at the entry and exit of the call.
Furthermore, a send call has a communication delay associated with it. Consider
for example the two communicating processes locate_board and threshold, shown in
Figure 5. The sync_send and sync_receive calls in these processes will result in the
task group shown in Figure 6.

locate_board threshold

T1’ | recv entry
T1| send entry
comm ?4
comm| delay T2’ | recv exit

T2 | send exit

Figure 6: Decomposition of synchronously communication processes

T'1 is a task whose ending boundary is the entry point of the sync_send call. T2
is a task whose starting boundary is the exit point of the sync_send call. T'1' and T2’
are similar tasks whose boundaries are defined by the entry and exit points of the
sync_recewve call. The arrows in Figure 6 indicate the precedence constraints that are

10

imposed. There is no precedence constraint on 71, it may be scheduled to execute
before or after T'1. There are however, two precedence constraints on 7'2'. It will not
be scheduled to execute until after both 71’ and T'1 have executed. Furthermore,
the scheduler will insert a gap equal to communication delay after the completion
of T'1, which represents the minimum amount of time that must elapse before T2
may begin. The value for communication delay is provided to the scheduler by the
real-time network service [3].

The application makes substantial use of IPC, as can be seen from the following
example of the synchronous communication that must take place among the processes
in the process group place_pg:

1. The place process makes sync_send calls to set the threshold for each of the two
DVG cameras.

2. For each of the two cameras, the place process makes a sync_send call to

w_picture to acquire a windowed image of the fiducial, and then makes a sync_receive

call to find out which frame buffer the image has been placed in.

3. For each of the two frame buffers, the place process makes a sync_send call to
locate_fiducial and then performs a sync_receive call to acquire the coordinates
of the fiducial center.

3.4 Process Groups

A computation may either be implemented as a single process, or as process group.
Consider the following computations:

e Pick the next component from the feeder.

o Position the component over the light box.

o Take a gray level picture with each DVG camera.

o Perform gray level mapping to improve the quality of each image.
o Use the images to find corners of the component

e Pass the coordinates back to the requesting process.

e Use the corner coordinates to define a component- to-wrist transform.

This entire computation is implemented by the four cooperating processes: pick,
g-picture, gray-map, and locate_corner. Together they form the process group pick_pg.
To the Spring system, the significance of a process group is that all processes in the
group are activated and deactivated at the same time. For the programmer, the
process group is extremely useful since it allows timing constraints and importance

11

levels to be applied to the entire computation. It does not force the programmer to
overconstrain the system by creating artificial deadlines or constraints on individual
parts of a process group, as is true in many systems. This is demonstrated by the
SDL description of the pick process group shown in Figure 7.

/* pick_pg.c */

SDL {
Process_group(pick_pg) {
Code pick_pg;
Process_graph {
Begin: pick, g_picture, gray_map, locate_corner;

* Timing spec

Periodic;

Period 500; * in 10 ms units
* Scheduling spec

Deadline 500;
Deadline_type Hard;
RT_type Ceritical,

Figure 7: pick_pg.c

The Process_graph section indicates that there are no precedence constraints
among the four processes, they may begin execution in any order. The synchronous
communication will ensure that the computation proceeds as designed. The timing
specification indicates that the entire process group is periodic and must run to
completion every 500 time units. The scheduling specification gives a deadline of 500
as well. Thus if the process group requires less than 500 units for worst case execution,
the scheduler may arrange the tasks that make up the group anywhere within the
period. (Provided of course, that precedence constraints and communication delays
among tasks are observed). The real-time type of the process group is specified as
critical, meaning that, once accepted, all instances of this process group will finish on
time, and all needed resources must be reserved.

Each of the three process groups shown in Figure 2, (loc_board_pg, pick_pg, and
place_pg) have similar SDL descriptions. Since the three process groups represent the
primary purpose for which the workcell was designed, it seems reasonable to designate
their type as critical. The on-line guarantee is invoked dynamically when the event
containing the process groups first arrives. Once this set of processes is guaranteed,
they remain guaranteed as long as they remain in the system.

Although the workcell application describes only one robot, it is designed such
that the second robot may be implemented by simply making a duplicate copy of
the entire application. (Of course names of processes and process groups would need
to be modified to ensure unique names.) Referring to Figure 2, the only element
that would not be duplicated is the shared memory segment, assy_seg. This segment

12

would be shared among both robots, to cooperatively assemble the circuit board. To
avoid collisions the robots would alternate in their occupation of the board fixture
and feeder areas. This could be accomplished by partitioning the assembly process
into three major computations (process groups) of roughly equal execution time and
specifying timing and scheduling constraints for each, as shown in table 2.

Table 2: Possible schedule for a two-robot workcell

Elapsed time units 0 500 1000 1500
Process group executed by Robot 1 | loc_board_pg | pick_pg | place_pg | pick_pg
Process group executed by Robot 2 | pick_pg place_pg | pick_pg | place_pg

4 Evaluation

The interface that the Spring system provides to the programmer is evaluated here
at two levels. From a high level, the ability to design an application for Spring is
discussed. Of particular interest are the methods that Spring provides to ensure that
application is predictable, schedulable, and flexible. At a lower level, the Spring-
C programming language is discussed, emphasizing the users’ experience with the
constructs that have been added to ANSI C.

4.1 Application Design

The process group based scheduling support offered by the Spring system is a powerful
and useful method for the programmer to apply timing constraints to a computation
that is composed of many tasks. Each of the three process groups described in the
application is quite complex. Each includes numerous function calls, involving both
robot motion and vision processing. Each is composed of multiple processes that
engage in synchronous communication and share data structures among themselves.
Yet despite the inherent complexity of each process group, there is a need to abstract
each as a computation to which overall constraints may be applied.

Managing complexity is a concern in the development of any large software project
and this condition is only made worse when computations must be real-time as well.
There are several qualities of the Spring programming environment that work well
together to manage this complexity while ensuring that the real-time application is
predictable. These qualities are enumerated below.

1. Some help in managing complexity is provided by the C programming language,
of which Spring-C is an extension. Many features of C which are used through-

13

out the application are not available in V+ or similar robot programming lan-
guages. (’s preprocessor, bit operations, conditional compilation, and type
definition capabilities are all used throughout the application. These helped
to produce code that is much more concise and readable than an equivalent
application in V+.

2. The ability to describe a computation as a process or a process group, and
the ability to nest groups in arbitrarily complex arrangements (i.e., groups of
process groups) is a useful abstraction. When this is combined with the ability
to impose timing constraints on the entire group, it becomes a powerful tool for
real-time applications. The programmer isn’t forced to assign artificial deadlines
to individual parts of the process group, thereby avoiding the imposition of
unnecessary contraints on the system.

3. Creating the detailed SDL descriptions required for shared segments, processes,
and process groups is a price that the developer pays for predictable program
behavior. However, the SDL descriptions proved to be very helpful in the initial
high level design of the application. They provided a formal design specification
of the process architecture and resource use that was referred to repeatedly
throughout development.

4. The synchronization of shared resources and messages among processes could
potentially be an extremely tedious programming task, especially when tight
deadlines are imposed. Fortunately, the with, sync_send, and sync_receive con-
structs in Spring-C effectively hide this detail from the programmer and place
the burden of synchronization on the SGS.

5. The feasibility of meeting the time constraints is analyzed by Spring’s schedul-
ing algorithms, thereby not depending on extensive studies of typical scenarios
to determine that the application as implemented will meet its timing require-
ments.

4.2 The Programming Language

Spring-C is a modification of ANSI C that eliminates any source of unpredictable
behavior in programs. Syntax for loop bounds and recursion depth for recursive
procedures is provided, thereby eliminating any unbounded execution. Furthermore,
all places where process execution is suspended are made visible to the SGS. Processes
in Spring do not suspend, they are decomposed into non-preemptable tasks. Thus,
any statement that would normally cause a process to block is known as a scheduling
point and forms a task boundary. There are three types of statements in Spring-C that
cause scheduling points: with, delay, and the sync_send and sync_receive statements.
The final change to ANSI C is the elimination of the goto statement.

There was no need for any recursive procedures in the application, so the depth
bound was not exercised. Loop bounds of course, were used extensively. It is typically

14

a simple matter to specify a minimum and maximum bound for the loop. The only
shortcoming is that the bounds are probably much too large in most cases, but the
programmer must err on the conservative side. A lower value could be used for an
upper bound, and the Spring system will notify the user if a loop bound violation
occurs.

Moving on to the statements that force scheduling points, the Spring-C delay
statement proved to be essential to the application. There are numerous cases where
a robot process will use a sync_send call to request that a vision process acquire an im-
age. This request cannot be made however, until the robot has positioned the camera
at the appropriate location. The fact that a motion command such as move(pict_loc)
has been executed does not mean that the robot has arrived at the desired location
by the next program statement. V+ provides commands such as BREAK and WAIT
that can be used to synchronize robot motion with other computations. In the Spring
application, delay(int_constant) serves this purpose nicely. The parameter for the de-
lay statement must be supplied by the user and may have to be fine-tuned during
testing. Finally, the sync_send and sync_receive statements have already been the
topic of much discussion, and their use is demonstrated throughout the application.

The above is simply an example of what the programmer is continually reminded
of while developing a real-time application. If programs must exhibit predictable
behavior, then many of the techniques — that can lead to unpredictability — used in
non-real-time programming must be discarded.

5 Observations and Lessons Learned

The experience of designing and implementing this application has taught us a few
lessons that are important for real-time programmers of real-time systems to bear in
mind:

1. In creating the design for the application, the user must know how the use
of shared resources and synchronous communication is going to determine the
overall run-time representation. An understanding of the target hardware is
essential to determine the process layout and the resource layout. An under-
standing of the translation process is also required. The software development
environment should not be a black box between the user and the completed
executable. This is not so much a disadvantage, since a real-time application
and its execution environment should be well-understood.

For instance, in this application, we originally thought that synchronous com-
munication would be the significant factor affecting the resulting run-time rep-
resentation. However, as it turns out, this application is more affected by the
use of shared resources and this was due to the fact that we constrained vision
and robotic processes to communicate among themselves only through shared
resources.

15

2. The user should analyze the resulting task group patterns in order to under-
stand the behavior of the executable at run-time. It should be possible to view
the task group representation in a readable form. At this stage, the user is
provided with information that allows making intelligent changes or optimizing
the application.

For instance, in this application, we analyzed the task groups and discovered
that explicit delays and synchronous communication account for only a small
number of suspension points and that most of the 685 tasks of the compiled
application were due to use of the with statement within the three processes,
locate_board, place, and pick. We decided to review the code to discover if the
huge number of tasks was inherently necessary.

3. Within the code the user should pay careful attention to the use of statements
that cause suspension points. In particular, how resource use is specified is
important since placement of with statements can greatly affect resulting task
group patterns.

Again, in this application, we discovered that there were many sections of code
in which we could move with statements to higher granularities (e.g., one with
surrounding a larger block of code, rather than several within the the same
block) to make the decomposition more efficient. This reduced the total number
of tasks from 685 to 147, a number which is more reflective of the complexity
of the application.

6 Summary and Status

The test case has shown that the SGS, the Spring-C and SDL languages, and elements
of the Spring kernel, all work together to provide an effective application program-
ming interface. We now summarize the value added to the application through its
implementation using Spring concepts and tools.

1. Predictability:
The application is now predictable. The executables contain all the information
needed to predictably execute the application. This information is also acces-
sible to the user at compilation time, through the SGS tools (in future there
might be some automated compiler feedback during the compilation, for now
the user can use spr-objdump).

2. Guarantees:
Looking back on the Spring application described in section 3 it may be noted
that most processes and process groups are designated critical. The online guar-
antee algorithm dynamically creates a feasible schedule for the processes when
the event specifying them first arrives. These critical processes remain guar-
anteed as long as the workcell operates. However, the strength of the Spring

16

system becomes apparent as new non-critical processes are introduced. Suppose
a video display driver is responsible for displaying the current image of the fidu-
cial or component corner on a monitor for the benefit of the workcell operator.
The video display driver would be a non-critical process with a deadline that
would be invoked each time a camera acquired an image. This process and many
others like it could be added to the workcell as needed with no concern for the
critical processes already in place since their execution episodes and required
resources are guaranteed.

3. Flexzbiluty:

The application has greater flexibility. Throughout design and coding, and
after, the user is greatly aided by being able to specify timing constraints at
many levels, especially at the level of end-to-end scheduling. Making changes
to these specifications is easy. For instance, it is easy to change the application
to handle two robots (please see 3.4) or to lengthen the period for locate_board,
pick and place in order to “slow” the robot down. The application is then
able to tolerate updates, changes in the environment (to some extent changes
in the hardware) without much rewriting of the code. Dynamic recombination
of process groups at runtime is also possible, providing the potential for even
greater flexibility.

This has been a very useful exercise in testing the effectiveness of Spring ’s software
generation tools. But, this has by no means been an exhaustive test case. There
are many features of the Spring system that have not been used, but on the other
hand a single application rarely makes use of all services provided by a system. The
workload produced by the application is not particularly challenging. It does however,
establish a core of critical processes, to which non-critical tasks may be added. Also,
SDL provisions for describing fault tolerance and Spring kernel support for fault
tolerance were not utilized.

In order to demonstrate the application, we wrote an animated graphical display
of the robot arm. Instead of an actual robot controller, the joint angles are read
by the animator code which then updates the robot display. The compilation and
linking of the application has been successfully completed, and it is currently being
tested and debugged. The testing done so far has answered affirmatively the questions
raised in the introduction about the completeness and ease of use of the development
tools. The hierarchical nature of Spring processes and process groups has proven to
be a natural fit for this work. Furthermore, the synchronous IPC and shared memory
mechanisms of Spring have met the fundamental requirements of this application
successfully. Kernel testing for this application i1s complete and work on problems
specific to the porting of the robotics and vision code continues.

17

7

Acknowledgments

This paper and the design of the application has benefited from many discussions with
Doug Niehaus. Thanks go to Michael Pasieka for his help with the Spring SGS. Ken
Ward, Michael Kou, and Doug Young created the DVG workcell at Digital Equipment
Corporation in 1991.

References

1]
2]

3]

Adept Technology Inc. V+ Reference Guide (version 8.0). San Jose, CA, 1988.

Craig, J. Introduction to Robotics, Second Edition, Addison Wesley, Reading,
MA, 1989.

Nahum, E., Ramamritham, K. and Stankovic, J. “Real-Time Interprocess Com-
munication in the Spring Kernel,” Spring Project Documentation, University of

Massachusetts, Amherst, MA, May 1992.

Niehaus, D., “Program Representation and Translation for Predictable Real-
Time Systems,” Proceedings of the IEEE Real-Time Systems Symposium, pp53-
63, 1991.

Niehaus, D., Stankovic, J. and Ramamritham, K. “The Spring Description Lan-
guage,” Spring Project Documentation, University of Massachusetts, Amherst,

MA, May 1992.

Niehaus, D., and Kuan, C.H. “Spring Software Generation System,” Spring
Project Documentation, University of Massachusetts, Amherst, MA, June 1990.

Pau, L.F., Computer Vision for Electronics Manufacturing, Plenum Press, New

York, 1990.
Shimano, B., Clifford, G., Spalding, C. and Smith, P. “VAL-II: A Robot Pro-

gramming System Incorporating Real-Time and Supervisory Control,” Proceed-

ings of SME Robots 8, June 1984.

Stankovic, J. and Ramamritham, K. “The Spring Kernel: A New Paradigm for
Real-Time Systems,” IEEE Software, 8(3):62-72, May 1991.

18

