CAISARTS: A Tool for
Real-Time Scheduling Assistance
M. Humphrey and J.A. Stankovic
CMPSCI Technical Report 96-07
January 1996



CAISARTS: A Tool for Real-Time Scheduling

Assistance®

Marty Humphrey and John A. Stankovic
Department of Computer Science
University of Massachusetts, Amherst, MA 01003
Email: HUMPHREY@CS.UMASS.EDU

Abstract

CAISARTS (Conceptual, Analytical, and Implementation Scheduling Advice for Real-
Time Systems) is a rule-based system used by real-time application designers to obtain
expert assistance for all aspects of the design related to scheduling: granularity of tasks,
allocation of tasks, choice and analysis of scheduling paradigm, analysis of overheads of
particular operating systems and scheduling paradigms, and code templates for tasks. The
rule base is partitioned; subsets of the rule base can be selected for firing, thus enabling the
user to ask CAISARTS for advice and analysis relevant for different phases of the design. In
contrast to existing real-time tools, CAISARTS attempts to cover the entire design process
related to scheduling without focusing on, for example, solely schedulability analysis. A
unique feature of CAISARTS is that its rule base is extensible by the user—a graphical
interface is used to add new rules as new real-time results are identified. Challenges in
the design of the initial rule set include how to design and partition the rule base so
that it can be both easily modifiable and readily usable by the user in choosing rules to
fire; how to encode rules that are inherently contradictory; how to encode ambiguous
knowledge; and how to make the rules both comprehensive and precise. The effectiveness
of CAISARTS is shown through its use on a representative distributed real-time system
scenario—CAISART'S generates analysis and advice that is consistent with existing analysis
of this environment. Further capabilities are shown when CAISARTS is applied to this
environment after simplifying assumptions have been removed and end-to-end constraints

are added.

1 Introduction

Real-time systems are very complex. Some of the most critical aspects of such systems are
scheduling and resource allocation. In these areas it is easy to make errors; when they occur it
is sometimes very difficult to detect the causes. Sometimes the errors are logical errors made at
the algorithmic level, other times the errors are due to erroneous methods of including or not

*This work is funded in a joint Industry-University project by Advanced System Technologies, Englewood,
CO, under SBIR Contract No. N60921-93-C-0178.



including system implementation overheads into the analysis, and yet other times the errors
are due to implementation (coding) errors. For example, a designer may use an algorithm to
compute an optimal static real-time schedule for a three-processor multiprocessor. Later, the
designer may decide to add a fourth processor and find that the system now misses deadlines.
This is due to Richard’s anomalies [Graham, 1969] - an algorithmic level misunderstanding.
In Rate Monotonic Analysis [Klein et /., 1993] it is often quite easy to compute schedulability
bounds considering task execution times and periods. However, accurate incorporation of
system level overhead for items such as putting a task to sleep and re-invoking it at the
next period, overheads dealing with waits for resources, etc. may not be properly included
in the analysis. The designer may then think that all deadlines will be met but finds that
unconsidered overhead causes deadlines to be missed. Finally, simple coding errors may crop
into the implementation of even standard scheduling algorithms and associated OS code.

CAISARTS (Conceptual, Analytical, and Implementation Scheduling Advice for Real-
Time Systems) is a tool that aids a real-time system designer in all phases of the design process
related to scheduling. CAISARTS is based on the observation that each of the three phases of
managing tasks and resources in a real-time system—allocation, scheduling, and dispatching—
cannot be dealt with in total isolation since the mechanism used in one phase may greatly
affect the performance of others. CAISARTS contains two parts: an environment modeling
system and an inference engine. The user models the environment by using primitive objects
such as tasks, hardware and shared resources. The rule base of CAISARTS contains real-time
system scheduling knowledge in the form of IF-THEN rules. The rule base is partitioned
hierarchically into rule containers, so that a user may select and use different portions of the rule
base at different points in the design process, thus enabling the user to ask for only the most
pertinent advice. The rule base incorporates rules, rationale, analysis and code templates.

A unique feature of CAISARTS is that the user may add a new rule to the rule container or
create a new rule container as new knowledge is identified—real-time system knowledge is not
solely “compiled” into the tool by the developers of CAISARTS. CAISARTS is also capable
of representing the often-conflicting approaches of the real-time community in the form of
conflicting rules. While contradictory rules are generally a problem for a rule-based system, the
approach in CAISARTS is to fully encode the state of the art in real-time research, even if this
results in contradictory rules. If contradictory rules fire, the user is presented with conflicting
approaches, with the explicit warning to the user that these are conflicting approaches, and the user
has the right to choose the better approach for his/her needs. Another strength of CAISARTS
is its ability to represent real-time system scheduling knowledge in varying forms of precision:
a rule can be written such that it fires only on precise input conditions (which means that
the advice is very specific to the input environment), or can be written to fire on very general
conditions and provide very general, high-level advice. Rules that provide general advice in
a particular area can be used to reflect that the state of the art has not been developed, as is
the case with many real-time system scenarios. The ability to write such rules is important,
because a specific goal of CAISARTS is to capture and describe what precisely is known, and
what precisely is not known, related to scheduling in real-time systems.

The goal of this paper is to show that the approach taken in CAISARTS is well-suited
for encoding real-time system scheduling advice. The discussion of scheduling knowledge
encoded in CAISARTS focuses on general distributed systems and uniprocessor static priority
scheduling, because these rules have been developed to a greater degree than rules in other areas,

2



such as code templates. The intent of this paper is 7ot the presentation of a comprehensive
set of rules that encode knowledge related to scheduling in real-time systems, but rather a
discussion of difficulties and concerns that arose as an initial set of rules were encoded, and a
discussion of CAISARTS as a general framework for providing real-time system advice related
to scheduling. To illustrate the utility of CAISARTS, we describe its application on a standard
real-time benchmark published in the literature [Molini e# 2/, 1990] (see Section 5). Using
this benchmark we demonstrate that CAISARTS provides advice and analysis for many stages
of a design process; the analysis provided by CAISARTS is consistent with published analysis
[Molini ez al, 1990]. In a second part of the validation, the benchmark is extended to produce
a workload that includes distributed end-to-end communication and timing constraints. The
use of CAISARTS in this environment demonstrates its value for distributed real-time systems.

This paper is organized as follows. Section 2 covers tools described in the literature that
are related to the approach and design of CAISARTS. Section 3 contains an overview of
CAISARTS, which includes a description of how the environment is modeled and how the
rules are invoked. Section 4 covers topics related to the design and implementation of the rule
base. Section 5 illustrates the use of the tool on the real-time benchmark. The conclusions of
the paper are in Section 6.

2 Related Work

Various tools exist to aid the real-time system developer. In general, these tools approach a
very specific area of real-time system design. This philosophy contrasts that of CAISARTS,
in which both the breadth and depth are important. CAISARTS compliments many of these
tools, as it is conceivable that any tool designed for a particular subsystem can be incorporated
into CAISARTS—if a tool exists that provides in-depth analysis that is not directly the scope
of CAISARTS or has not been provided by CAISARTS itself, then rules can be added to
CAISARTS that instruct the user to investigate the use of the other tool.

2.1 Scheduler 1-2-3

Important early work with the design and analysis of real-time systems includes Scheduler 1-2-3
[Tokuda and Kotera, 1988]. As part of a real-time toolset for ARTS and later Real-Time Mach,
Scheduler 1-2-3 analyzes the correctness of timing requirements at design time. Scheduler
1-2-3 is a window-based system for describing and analyzing real-time task sets but focuses on
fixed priority scheduling under Rate Monotonic priority assignment. Schedulability analysis is
also provided by simulation techniques.

CAISARTS is different than Scheduler 1-2-3 in many ways. CAISARTS contains a richer
task model, which includes resource requirements, precedence constraints between tasks, end-
to-end requirements, and task semantics (hard vs. soft vs. no deadline, value of tasks). The
focus in CAISARTS is on providing advice at a variety of abstraction levels, whereas Scheduler
1-2-3 is for schedulability analysis. The real-time system knowledge of CAISARTS is extensible
by the user via the rule interface. Also, CAISARTS incorporates multiprocessor and distributed
systems. It should be noted that the simulation capability of Scheduler 1-2-3 is currently more
extensive than CAISARTS. In the future, simulation techniques will be added to CAISARTS.



2.2 PERTS

The originators of PERTS (Prototyping Environment for Real-Time Systems) [Liu ez 2/,
1993] observe that real-time systems are traditionally constructed by first developing the
application software, and then validating the timing constraints by using @4 hoc techniques
and extensive simulation. A goal of PERTS is to provide an extensible library of scheduling
algorithms, resource access control protocols, and communication protocols in the form of
reusable software modules. PERTS includes a rich set of graphics routines that enable the
user to quickly determine the results of schedulability analysis. The PERTS model of the
environment is richer than the one adopted in Scheduler 1-2-3; the environment model in
PERTS includes a complex resource modeling capability.

The goal of PERTS is to provide analysis and reusable software prototypes, but without
specifically attempting to provide advice. PERTS is designed to support the evaluation of
new and competing designs; it is not meant to directly provide advice for choosing among a
set of alternatives. In other words, the manner in which PERTS operates is that advice can
be implicitly generated by PERTS if the user iteratively evaluates different configurations and
options, after which the user selects the best option.

There are notable differences between CAISARTS and PERTS. Fundamentally, the nature
of the tools is different: CAISARTS provides text-based advice on many topics related to the
schedulability (such as how to select a particular implementation approach, how to incorporate
overheads, and what low-level OS primitives should be avoided), while PERTS provides
graphics-based schedulability analysis. CAISARTS can explicitly make the user aware that the
environment and requirements as modeled by the user can be approached according to different
methodologies. This is important in situations where different parties in the real-time system
community advocate different approaches. Options that must be manually selected in PERTS
are often automatically deduced by CAISARTS. An example of this is that the user of PERTS
must first select a particular fixed priority scheduling policy (either Rate Monotonic or Deadline
Monotonic) and a particular synchronization protocol (Priority Ceiling Protocol or Stack-Based
Protocol) in order for PERTS to perform schedulability analysis. In CAISARTS, the selection
of the priority assignment policy is automated, guided by the matching of the environment
as input by the user and well-known optimality conditions of each priority scheme. In other
words, the user of CAISARTS does not need to know the specific optimality conditions of
various algorithms. This concept generalizes to other type of advice as well.

2.3 iRAT

RAT [Int, 1994] is a window-based engineering tool formulated on the analytical techniques
of fixed priority scheduling theory and Rate Monotonic Analysis. ZRAT consists of a schedula-
bility engine, transformation and analysis dialogs, comprehensive diagnostics, and customized
reports. The prime difference is that /RAT provides Rate Monotonic Analysis techniques and
CAISARTS attempts to provide advice in broader areas beyond schedulability.

2.4 Tools for Modeling Real-Time System Architectural Components

Tools have been developed to model various architectural features used in real-time systems.
A representative example of these tools models bus scheduling policies [Kettler e 4/, 1995b).

4



This tool provides a formal methodology for the development of bus scheduling models, which
can be used by bus designers to improve designs that need to account for real-time traffic.
The approach is to specifically account for non-ideal bus behavior that occurs in actual bus
implementations. Applications can also be modeled, which allows the tool to be used to choose
among different, specific bus scheduling policies or tune the bus for improved performance.
Schedulability checks are performed by combining the application model with the bus model.
If the application is not schedulable, the bus model can be changed, certain parameters in the
database can be changed, or the application model can be changed. Similar tools have been
developed for real-time/multimedia operating systems [Kettler ez 2/, 1995a] and networks
[Sathaye, 1993].

The primary difference berween CAISARTS and these tools lies in the scope and overall goal
of CAISARTS. CAISARTS is designed to provide broad, text-based advice concerning alloca-
tion, schedulability and implementation, while these tools provide detailed analysis concerning
a particular architectural component. CAISARTS can advise the user directly of competing
alternatives; the tools discussed in this section can also provide analysis for different approaches,
but only if the user configures the tool, one approach at a time, and invokes schedulability
analysis. Conceprually, CAISARTS can be used in conjunction with these tools.

3 Overview of CAISARTS

CAISARTS is a modular set of functional components that communicate through a common
underlying object management system [Goettge et al, 1995]. The two primary functional
components are the inference engine and the Graphical User Interface (GUI), which provides
access to the objects that describe the environment as well as access to rules and rule sets. This
section first discusses the GUI and the objects accessible by the GUI, and then gives an overview
of the current rule set. This section concludes with a brief discussion of how CAISARTS uses
these rules to generate analysis and advice for the real-time application designer.

Figure 1 shows the main window of CAISARTS. The window is organized into containers,
a container is used to collect objects or other containers. The type of a container is either a rule
container, which includes rules related to a particular topic, an environment container, which
includes objects used to model the environment, or a system approach container, which is used to
record the approach the user has taken (or is investigating) for the real-time application (such as
“fixed priority scheduling with Rate Monotonic priorities). As shown in Figure 1, Knowledge
Base is the highest-level rule container, which contains twelve other rule containers. There are
currently 137 rules defined, representing an average of about 11 rules per container. Rules will
be discussed later in this section. The rest of the window displays environment containers and
system approach containers. Shown in Figure 1 are: Task Group Container, which contains
the tasks to be allocated and scheduled; Schedulable Entity Container, which contains objects
used to implement the tasks; Time Constraint Container, which contains objects used to
specify deadlines for tasks, schedulable entities, or task groups; Hardware, which contains
objects both for the hardware architecture as well as the individual components; and Sched
Algorithm Container, which contains objects that specify the scheduling policies to be used on
the processors as well as the parameters associated with these policies. Not shown in Figure 1,
but accessible by scrolling the window, are POSIX Implementation Approach Container,



Eﬁile Edit Advice Evaluate Debug Help _l

V[ demol.mdl 4]
(2 Knowledge_Base
(0 Gceneral_Distributed_Systems_aAdvice

Undprocessor_Static_Priority Sched Analysis
Determine_Parameters

Select Implementation_approach

ERRRNY [

Generate_Implementation Template

General Azsertions
Situations_with Little_adwvice
General High Level Adwice
General Single_Node_adwvice
General Multiprocessor_advice
Tool_Usage_Advice
End_to_End_Scheduling analysis
(2 TaskGroupContainer

B CcPUL_tasks

D cPU2_tasks

[ cPU3_tasks
SchedulableEntityContainer

TimeConstraintContainer

(YYvYVVVVVVVYVYVY 4
FRTETErarary |

Hardware
Srhedal onri thnCantainer

v vwew
PLEDE

Figure 1: CAISARTS Main Window

which contains objects used to specify how POSIX [Gallmeister, 1995] services are used to
implement the scheduling algorithms; End to End Marker Container, which contains objects
used to logically connect a series of tasks or schedulable entities into a single entity; Shared
Resource Container, which specify properties of individual objects accessible by schedulable
entities or tasks; and Shared Resource User Container, which contains objects that specify
the interactions of a task or schedulable entity with a shared resource; and Communication
Requirement Container, which contains objects that specify a communication between tasks
or schedulable entities.

The approach of the design of the objects that model the environment and the objects that
capture the system approach is to make the objects robust and capable of modeling current
real-time system research. The definitions of some of these objects are shown in Figure 2.

Objects for Dynamic Priority Scheduling Algorithm, Table Driven Scheduling Algorithm,



r N ( 4 ~
Task Schedulable Entity (SE) 1 Communication Requirement
Name e L . Name Name =
Arrival Type (Periodic, Aperiodic, Sporadic) Release Time Communication Type
Preemptable (Yes, No) Deadline Synchronization Type
Has No Real-Time Requirement (Yes, No) Virtual Priority Data Size
ll:):l;g?ine Blocking Delays l[;r;guency
Value Must Precede SE(s) Send%n Task or SE

n - Activates SE(s) ing
Min Interarrival Time Uses Shared Resource(s) Receiving Task or SE
Ave Interarrival Time Allocated to Processor J
&ﬂ:fspi;a‘: Task(s) Must Run Concurrently with SE(s) ( )
Activates Task(s) Must Not Run Concugrenlly with SE(s) Time Constraint
Must Run Concurrently with Task(s) ma:: setﬁta?ssame%::fa? SSEE((SS)) Type (hard, soft)
Must Not Run Concqrremly With Task(s) Min Execution Length Deadl;ne
Must End at Same Time as Task(s) Ave Execution Length l:_)eadluge Tolerance
Moot Sort e T Tkt Vs racuion gt Juerlimt
Implemented by Schedulable Entities Max Exccution Time Importance Temporali
Alll:x:ated to Przcessor aﬁ%ﬁﬁ‘;‘;‘;‘:‘%ﬁ: Apl:l)ies to Task gro SE v
\. J Applies to Task Group
e . J Applies to End to End J
Shared Resource User - . - - N =
Name Processor Fixed Priority Scheduling Algorithm
Uses Shared Resource N Name Task Group
Task or SE Sggew& Implementation o
Percentage Execution Time Used Multiplicity How Priority Assigned Tasks
J U
\_
- .
Shared Resource| | POSIX Fixed Priority Scheduling Approach :“:n:’ End Marker :::;”m Architecture
N Name
Name Threads/Process Starts at Task or SE Nodes
L Size Synchronization Approach Ends at Task or SE

Figure 2: CAISARTS Environment Objects and System Approach Objects

and Dynamic Guarantee Scheduling Algorithm are similar to the Fixed Priority Scheduling
Algorithm and have not been shown because of lack of space. In addition, POSIX Dynamic
Priority Scheduling Approach, POSIX Table Driven Scheduling Approach, and POSIX Dy-
namic Guarantee Approach are similar to POSIX Fixed Priority Scheduling Approach and have
been omitted. Most of the objects in Figure 2 do not require explanation; however, it should be
noted that the conventional notion of task has been separated into two distinct objects: the zask
object captures many of the requirements of work to be performed, while the schedulable entity
object captures work that can be dispatched by the operating system. The representation of task
and schedulable entity as first-class data structures allow the modeling and analysis of complex
multi-part implementations, such as a hardware interrupt and polling schedulable entity. It
also allows the direct representation of a schedulable entity that services many tasks, as would
be the case with a Sporadic Server used for many aperiodic tasks. These data structures reflect
an early emphasis on objects that capture allocation and high-level task properties. A simple
form of objects related more to low-level schedulability concerns—such as the objects for Fixed
Priority Scheduling Algorithm and POSIX Fixed Priority Scheduling Algorithm—is adequate
for the current version of CAISARTS, because references to implementation overheads are
captured implicitly in rules, rather than explicitly as slots in objects. As CAISARTS develops,
these objects will be revised to become more extensive, thus allowing the representation of more
implementation details that affect scheduling.

The CLIPS system [Sof, 1994] provides the language by which to encode expert scheduling
knowledge. A rule in CLIPS is a collection of conditions and the actions to take when the
conditions are met (an IF-THEN rule). An important feature of CAISARTS is that individual



rules can be instantiated or modified by the GUI. Figure 3 shows the interface to an example
rule that performs a schedulability bounds test based on fixed priority scheduling with Rate
Monotonic priority assignment. The Conditions are being modified in this figure; other parts

Edit Debug
Rule: RM_one_utilization_bound_handling_blocking
Rule Secticn Conditiong Yiew Clips Rule

?investigate—flag <- (TryFixedPriorityUniprocSched P>

{NoPrioritiesAssignedToSchedEntitiesOnProc 7P}
{AllTasksImplementedBySingleSchedEntity 7P)

{NoSof tDeadlinefperiodicsOnProcessor 7P)

{or {NoSporadicTasksOnProcessor 7P>
{AllDeadlinesEqualMinInterarrivalTine 7P))

{Al1TasksArePreenptable 7P)

{or {NoPeriodicsOnProcessor P}
{AllDeadlinesEqualPeriods 7P}’

{test {(Liu-and-Layland-Theorem—-enhanced-for-blocking {send 7P
get-SchedEntities—allocated)))

oK Cancel [ Print Rule Header UWhen Fired

Figure 3: Example Rule

of the rule that can be modified include Advice, Comments, PrePrintActions, PostPrintActions,
Rationale, and Source. Currently, rules must be encoded directly in the CLIPS language.

To date, we have developed general rules for uniprocessors and distributed systems. Rules
and analysis for uniprocessors related to Rate Monotonic and sporadic server algorithms have
been developed in greater depth than for other algorithms® primarily because a well developed
theory exists for uniprocessor scheduling for Rate Monotonic. The state of the art in distributed
systems is not very well developed, which means that very little precision can be incorporated
into the associated rules. Instead, rules exist to provide the user with alternative algorithms
and approaches to investigate further. For example, these rules assume that modules have been
designed and that some initial hardware configuration has been chosen. The rules then attempt
to provide options for further investigation for both allocation and distributed scheduling, as
well as itemizing the ways in which these two levels interact. Examples of some of the rules are
shown in Figure 4. Translating and encoding these rules is sometimes difficult; sometimes the
“then” part can be encoded as text-based advice, while other times it can be encoded to trigger

! Allocation/scheduling approaches or algorithms currently described by or reflected in rules to a lesser degree in
CAISARTS include 0-1 integer programming, simulated annealing, time windows, focussed addressing, bidding,
the Spring complex task set allocation algorithm, EDF, Least Laxity, Xu/Parnas, etc.




the firing of other rules (see below, and Section 4).

IF the task set consists of periodics and aperiodics with soft deadlines
THEN consider the sporadic server algorithm

IF there is complete knowledge of deadlines, computation times, precedence
constraints, future release times, and the external workload is well-behaved

THEN consider static scheduling

IF a static distributed real-time system and guarantees are required off-line
THEN  consider simulated annealing, the Spring scheduling heuristic, or a window-based approach

IF Rate Monotonic is chosen
THEN  add context switch overhead equal to 2 plus 2 times the maximum number of preemptions

IF using semaphores
THEN  avoid unbounded priority inversion by using the priority ceiling protocol (PCP)
or a planning-based algorithm

Figure 4: Example Rules in CAISARTS

The main window (Figure 1) is used to ask CAISARTS to generate expert advice. To do
this, the user selects rule sets to be considered for “firing”, and then uses the Advice option
at the top of the window to engage the inference engine of CAISARTS. The user can also
select individual rules by opening a rule set and selecting the appropriate rule (none of the
twelve rule sets in Figure 1 are shown in the “open” state). In Figure 1, General Assertions and
Uniprocessor Static Priority Scheduling Analysis are selected. The manner in which selected
rule sets are used to generate advice is as follows. In CLIPS, rules execute (or fire) based on the
existence of facts. In CAISARTS, facts include both the initial facts, which are the instantiated
environment objects and system approach objects, and assertions made as rules fire, which are
in general conclusions that are derived from the instantiated environment objects and system
approach objects. An example of a simple derived fact is “NoPeriodicsOnProcessor CPU1”.
The sole purpose of the General Assertions rule container is to collect rules that only assert
facts, and do not provide text-based advice for the user. These facts are usually needed for the
rules that provide analysis and/or advice, so General Assertions is almost always selected. The
way a program—the selected rules and the initial facts—executes is by continued application
of the following cycle:

1. The conditions of the selected rules are matched against the current facts; those that have
all of their conditions satisfied are deemed capable of being fired.

2. One of the rules capable of being fired is chosen for firing. The way in which this choice
is made can be complicated and is beyond the scope of this paper.

3. The chosen rule is fired, which means that its actions are executed; performing the
actions in the rule may cause the addition of new facts, the modification or removal of
existing facts, or the printing of text-based advice to a window.

9



This cycle is repeated until there are rules capable of being fired, as defined in step 1. Depending
on the style of the rule, the actual analysis can occur in the conditions part of the rule or the
actions part of the rule.

4 Rule Base

The majority of this section discusses issues that arose as the rule base was designed and im-
plemented. It is important to observe that research into real-time systems is extensive, yet
piecemeal. Analyzable scheduling approaches (a viable approach may be a collection of algo-
rithms) that are comprehensive and integrated are lacking. CAISARTS has been designed to
represent knowledge related to scheduling of real-time systems, accepting that this knowledge is
not uniformly deep. The scope of the rule base is ultimately to handle: preemptable and non-
preemptable tasks, periodic and non-periodic tasks, tasks with multiple levels of importance
(or a value function), groups of tasks with a single deadline, end-to-end timing constraints,
precedence constraints, communication requirements, resource requirements, placement con-
straints, fault tolerance needs, tight and loose deadlines, and normal and overload conditions.
In addition, CAISARTS will address the interfaces between CPU scheduling and resource al-
location, I/O scheduling and CPU scheduling, CPU scheduling and real-time communication
scheduling, and local and distributed scheduling. For now, comprehensive rules do not exist
in the real-time community and will probably not exist for many years. The approach taken in
CAISARTS is to codify real-time systems knowledge in whatever form and precision is known.
As more precise and comprehensive results are obtained, existing rules can either be removed
or modified to increase their precision.

4.1 Types of Rules

To date, the emphasis has been to develop the structure of the rule base, rather than attempting
to make the rule set as comprehensive as possible. Twelve rule sets have been defined, which are
shown in Figure 1 and described in Table 1. The number and breadth of rule sets will expand
in the future.

4.2 Issues in the Design and Coding of Rules

This section describes issues that arose when designing and implementing the rule base.
Vagueness of rules. Real-time system scheduling knowledge is often vague and heuristic in
nature. An example of such a rule is “If tasks communicate a lot, then attempt to cluster them
on the same node.” The problem with this type of rule is encoding this knowledge such that

the rule fires at appropriate times. Either of two approaches can be taken, each with negative
implications:

1. Attempt to quantify “a lot”, which can be quite difficult.

2. Make the conditions under which this rule will fire loose (e.g. any time two tasks
communicate at all), and explicitly leave the judgment of “a lot” up to the user (e.g.

10



Category

| Description

General Assertions

assert internal facts used to fire other
rules (rather than provide textual advice)

General High Level Advice

design methodology advice, such as high-level
requirements and task implementation approaches

General Distributed Systems Advice

includes allocation advice and general
advice related to distributed systems

General Single Node Advice

approaches particular to uniprocessors

General Multiprocessor Advice

approaches particular to multiprocessors

Uniproc. Static Priority Sched. Analysis

includes rate monotonic, deadline monotonic,
and arbitrary priority assignment analysis

End-to-End Scheduling Analysis

includes Distributed Rate Monotonic and
Holistic Scheduling approach

Determine Parameters

advises how to configure certain approaches
after they are selected by the user

Select Implementation Approach

focuses on POSIX; advises appropriateness of
certain POSIX constructs

Generate Implementation Template

provides code templates

Situartions with Little Advice advises that certain knowledge has either not been
implemented yet in CAISARTS or state-of-the-art is lacking
Tool Usage Advice checks consistency of objects input by the user;

advises user of likely human error in data input

Table 1: Existing Rule Set Containers

the advice is roughly “if you, the user, feel that the two tasks communicate a lot, then
place them on the same node, if possible.”) The obvious problem with this approach is
that the purpose of the tool-which is to encode expert real-time system advice related to
scheduling and advise a user at appropriate times of this knowledge—is perhaps defeated
by leaving the user to make expert-level decisions.

There is not an easy solution to this problem. To date, the appropriateness of each approach
has been evaluated on a per-rule basis.

Formofrules. Some expertanalysis can be rather computation-intensive and time consuming.
There is some question how to write these rules: should they perform the analysis “in the
background”, or should they state a step-by-step procedure that the user can take in order to
perform the analysis? If CAISARTS is to perform the analysis in the background, it could
require the temporary instantiation of objects, firing of rules, and then retraction of objects.
This results in slower feedback from CAISARTS to the user—analysis and advice that may
not even be directly required by the user. In general, the user should be given some choice
concerning the amount of analysis performed by the normal rule-firing procedures. We have
chosen to encode computationally-intensive rules as step-by-step procedures that the user can
follow. This greatly improves the efficiency of the firing of the rules.

Inconsistency of rules. There is a difference between inconsistent beliefs among sets of
researchers and inconsistent rules derived from knowledge that is inherently consistent with

11



each other. A strength of CAISARTS is that it can represent inconsistent beliefs between
research communities, and in fact present them to the user, explicitly noting that they are two
differing sets of opinions. However, if inconsistent rules are added (one rule is added without
the knowledge of the other rule), then the user could get advised inconsistently, without either
the system or the user knowing. Both a positive 274 a negative aspect of a rule-base system is
that the rules are relatively independent from each other. Rules can be added freely, but it is
easy to introduce inconsistencies, especially considering the nature of some of the rules (they
can be vague). To date, there has been careful control of this problem, but it is conceivable that
this potential problem could be exacerbated as the tool is released to users.

Level of advice. CAISARTS is intended to provide advice related to scheduling at all stages
of design and implementation of a real-time system. Ideally, CAISARTS should provide only
the most appropriate advice at only the most appropriate time. The problem is that this
ideal amount of advice is related to the “sophistication” of the user—e.g. an designer only
interested in the exact characterization form of deadline monotonic analysis on a particular
node should not be given advice concerning how to allocate tasks. The approach to this
problem in CAISARTS has been partially addressed by enabling the user to select rule sets and
even individual rules, but this does not allow CAISART'S to completely infer the level desired
by the user. Even within a single rule, it is difficult at times to determine when a rule should
fire, and when a rule should not fire. For example, assume that the user has selected a fixed
priority scheduling algorithm and assigned priorities such that all tasks make their deadlines
in the worst-case. If this priority assignment is non-optimal, should the user be informed?
While the current priority assignment is valid for the current task set properties, it may not
be the “best” priority assignment in terms of worst-case response time or resistance to minor
parameter modifications. In this sense, although this advice is not directly required by the user,
providing this advice at this point could facilitate a more robust design.

5 Evaluation/Validation

As part of the validation of the tool, CAISARTS was applied to the Submarine Passive Sonar
scenario described by Molini, Maimon, and Watson [Molini ez 4/, 1990]. This specification
and implementation of a Submarine Passive Sonar application was chosen both because it
adequately describes a real-time environment in some detail, and because it presents a sample
implementation of a real-time distributed system to perform the Submarine Passive Sonar task.
The application is complex: there are three nodes with communication across nodes, and there
are both aperiodic and periodic tasks. In this section, after describing the environment and
application design in more detail, CAISARTS is shown to provide analysis that is consistent with
the analysis contained in [Molini ez 4/, 1990], under the same simplifying assumptions—that
nodes are independent, and the aperiodics are not included in the analysis. To further illustrate
the capabilities of the tool, CAISARTS is shown to extend the schedulability analysis of [Molini
et al., 1990] by performing a schedulability analysis of the sporadic tasks. This also illustrates
implementation advice that is provided by CAISARTS that does not appear in [Molini e 2/,
1990]. Next, three end-to-end constraints across nodes are added and analyzed, illustrating
the ability of CAISARTS to provide advice for a more complex, distributed, real-time system.

12



Again, this represents analysis techniques beyond those in [Molini et al, 1990]. We will
not show the step-by-step trace of how to use CAISARTS on the Submarine Passive Sonar
environment; instead, the presentation that follows summarizes the output of CAISARTS at
various stages of its use on that environment.

5.1 Submarine Passive Sonar Domain

Submarine Passive Sonar is used to detect the presence of objects in the sea based on the sounds
emanating from the objects themselves. Signals received from hydrophones placed in the water
are digitized and processed to form a number of beams. Beams are then processed further to
form detected objects, which are analyzed and then tracked. Detected objects are also used to
steer additional signal processing.

There are eight categories of time-critical functions for Submarine Passive Sonar: signal
conditioning, beamforming, detection, tracking, analysis and classification, stabilization, time
synchronization, and audio. The particular implementation described in [Molini ez 4/, 1990]
consists of a total of 28 tasks. The signal conditioning and the beamforming functions are
performed in custom-built hardware (4 tasks), leaving the remaining functions (24 tasks) to be
executed on standard hardware. Twenty-two of the tasks are periodic, and 2 tasks are aperiodic
with hard deadlines (sporadic tasks). The CPU, period, deadline, and worst-case execution
time for each of the periodic tasks are shown in Table 2.

| Zask CPU _ Period (ms) Deadline (ms) WCET (ms) |
Update Steering 1 100 100 22.01
Estimate Tracks 1 250 250 5.78
Recompute Delays 1 250 250 5.78
Format Display 1 250 250 114.65
Rebuild Bound 1 250 250 2.75
Adjust Clock 1 125 125 2.75
Receive New Fix 1 50 50 1.83
Get Cursor 2 100 100 11.00
Update Cursor For Tracks 2 100 100 9.17
Update Cursor for Detects | 2 100 100 14.67
Display Comparison 2 100 100 4.59
Automatic Comparison 2 250 250 57.32
Estimate Tracks 2 250 250 5.78
Show Det Display 2 100 100 7.34
Show Track Display 2 100 100 4.59
Adjust Clock 2 125 125 2.75
Receive New Fix 2 50 50 1.83
Forward Tracks 3 100 100 4.59
Build Time Message 3 125 125 2.75
Adjust Clock 3 125 125 2.75
Compurte Artitude 3 50 50 9.17
Receive New Fix 3 50 50 1.83

Table 2: Periodic Tasks in Passive Sonar Implementation

13



5.2 Independent Nodes without Sporadic Tasks
The GUI of CAISARTS is used to input the nodes, tasks, and schedulable entities, with the

same allocation as in Table 2. At this point, the aperiodic tasks have not been input into
CAISARTS. Rules for analysis assuming independent nodes are invoked; the analysis rules in
CAISARTS indicate that Static Priority scheduling is appropriate for each of the nodes. The

schedulability of CPUS3 is determined by a bounds test, while exact characterizations are used

for CPU1 and CPU2. A partial listing of the advice for CPU1 and CPU3 is shown below:

ADVICE: Select Static Priority scheduling for Processor CPUl, and
assign priorities according to the Deadline Monotonic policy.

RATIONALE: Every task will be guaranteed to complete before its
deadline:

Task Worst case completion Deadline
time (sec) (sec)
RecomputeDelays 0.032 0.250
FormatDisplay 0.177 0.250
RebuildSound 0.180 0.250
AdjustClockl 0.027 0.125
ReceiveNewFix1l 0.002 0.050
UpdateSteering 0.024 0.100
EstimateTracksl 0.186 0.250

SOURCE: Klein et al. A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for Real-Time
Systems. Kluwer Academic Publishers. Boston, MA. 1993. p.4-27.

See also:

Audsley, Burns, Richardson, and Wellings. Hard Real-Time
Scheduling: The Deadline Monotonic Approach. Proceedings of
the 8th IEEE Workshop on Real-Time Operating Systems and
Software. 1992.

Joseph and Pandya. Finding Response Times in a Real-Time
System. The Computer Journal (British Computing Society),
29(5), Oct 1986, pp. 390-395.

ADVICE: Select Static Priority scheduling for Processor CPU3, and
assign priorities according to the Rate Monotonic policy.
RATIONALE: Every task will be guaranteed to complete before its
deadline. Actual utilization (0.310) plus blocking (0.0) is less
than the theoretical maximum in the worst case for 5 tasks, which
is 0.743.
SOURCE: Klein et al. A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for Real-Time
Systems. Kluwer Academic Publishers. Boston, MA. 1993. p.4-10.
See also:
Liu and Layland. Scheduling Algorithms for Multi-Programming in
a Hard Real-Time Environment. Journal of the ACM, 20(1), Jan
1973, pp.40-61.
Sha, Rajkumar, and Lehoczky. Priority Inheritance Protocols: An
Approach to Real-Time Synchronization. IEEE Trans. on Computers,
39(9), Sept 1990, pp. 1175-1185.

These are the basic results given in [Molini ef 4/, 1990]—that static priority scheduling is
appropriate. In the next part, we extend the analysis in that paper by adding the two sporadic

14



tasks according to the allocation scheme of [Molini et 4/, 1990] and illustrate the analysis of
end-to-end scheduling requirements.

5.3 Analysis and Implementation of Sporadic Tasks

| Task | CPU  Min Interarrival Time (ms)  Deadline (ms) WCET (ms) I
Specific Comparison 1 200 200 9.17
Comparison Request | 2 100 100 4.59

Table 3: Sporadic Tasks in Passive Sonar Implementation

The two sporadic tasks described in Table 3 are instantiated and allocated. CAISARTS is
used to determine the approach taken to implement the sporadic tasks (i.e., the mapping of
task to schedulable entity), so rule sets will be selected and fired after instantiating rine two
tasks, but before specifying the schedulable entities for the two tasks. CAISARTS generates the
following advice concerning how implementation and schedulability interact. Only advice for
Comparison Request is shown; advice for Specific Comparison is similar.

ADVICE: A sporadic task can be implemented in a variety of ways;
the best way depends on the particular semantics of the situation:
-- as a single, hardware-priority interrupt modeled as a single
schedulable entity
-- as a HW interrupt and a software interrupt service routine,
modeled as two separate schedulable entities
-- as a single, polling task, modeled as a single schedulable
entity
-- as a HW interrupt and a Sporadic Server, modeled as two separate
schedulable entities.
There are Pros and Cons for each situation. For more details,
consult page 5-61 of the Handbook of Rate Monotonic Analysis.

ADVICE: To implement ComparisonRequest as a hardware interrupt:
[1] Instantiate a single schedulable entity, and allocate it to
Processor CPU2. Fill in the worst-case execution time of

the entire response.

[2]) Assign 11 as the priority of the new schedulable entity.
This is equivalent, for this schedulable entity set, to a
hardware interrupt.

(3] Make the task (ComparisonRequest) point at the new
schedulable entity through its ‘ImplementedBy’ slot.

[4] Re-invoke the uniprocessor static priority scheduling rules to
determine the schedulability of Processor CPU2 as a whole.

ADVICE: To implement ComparisonRequest with a sporadic server:
[1] Instantiate two schedulable entities, and allocate them to
Processor CPU2.

-- the first schedulable entity is the hardware interrupt.
Assign a worst-case execution time that is the amount
of time needed to service the interrupt.

-- the second schedulable entity is the sporadic server. If
schedulability analysis shows that this is appropriate, then

15



when it comes to coding the sporadic server, the sporadic
server replenishment period will be 100 milliseconds,
and the execution capacity will be the worst-case execution
time of the second schedulable entity, which you also have
to specify.
[2] Make the first schedulable entity point at the second schedulable
schedulable entity through its ‘MustPrecede’ slot.
[3] Make the task (ComparisonRequest) point at the FIRST
schedulable entity through its ‘ImplementedBy’ slot.
(4] Re-invoke the uniprocessor static priority scheduling rules to
the schedulability of Processor CPU2 as a whole.

The Sporadic Server approach is chosen, and reinvoking the schedulability test indicates
that timing constraints will be met (the time needed to service the interrupt is assumed to be
0.5 milliseconds). The results of these tests are not shown because they are very similar to

results shown in the previous section.

We next specify the implementation approach of the nodes. Objects that specify a fixed
priority scheduling approach are instantiated for each node, as well as objects that specify that
a POSIX approach wiﬁ be pursued. We have looked into POSIX to determine the areas related
to scheduling where advice may be developed. In particular, we have a first collection of rules
that address, albeit in a limited manner, tﬁe following areas: semaphores, mutexes, condition
variables, signals, timed locks, timer functions, memory management, and I/O. We have not
yet considered IPC, shared memory objects, and files. Some of that advice that is specific to
POSIX that is generated by CAISARTS is shown below.

ADVICE: The periodic tasks on CPU2 should <NOT> be
be coded with alarm(), pause(), SIGALRM, and sleep().

RATIONALE: Conceptually, these functions are easy to use and
understand. Alarm() sets the period, pause() suspends the process
or thread after a ’‘completion’ in one period and a SIGALRM resumes
the processor thread. Sleep() suspends the process or thread for a
specified interval. However, the implementation of these primitives
does not give any guarantees on the latencies of when processes
will be active again.

ADVICE: One way in which to implement the periodic tasks on CPU2
is to use the following timer functions with absolute intervals:
timer_create(), timer_delete(), timer_settime(), timer_gettime(),
timer_getoverrun()
RATIONALE: you need to create a timer, determine when it will be
‘activated’, and set the reload value for the time. It is recommended
to use the absolute value reload.

ADVICE: Implement the Rate Monotonic scheduling on Processor CPU2
by using the POSIX FIFO.
RATIONALE: Only RR and FIFO are ’‘standard’ for POSIX.

Additional detailed implementation advice is generated when the user specifies, for example,
whether a thread or a process model will be pursued (advice for choosing between the two is
also included in CAISARTS), and which synchronization protocol will be selected. This advice
is not shown here because of lack of space.

A particular strength of the tool is that CAISARTS provides a framework for making
the user aware of the effect of real-world overheads on schedulability. Consideration of OS

16



implementation costs on the schedulability of a task set is complex, but must be performed
before any confidence can be attained in the system. For example, the designer must account
for processing overhead for new events such as clock ticks, messages arriving, activating tasks
at periods, I/O ready signals, interrupts from sensors, etc. In a future version of CAISARTS,
the user will be allowed to directly represent overheads of particular operating systems. Once
the user selects a particular implementation approach and inputs the overheads, CAISARTS
can re-perform schedulability analysis. Detailed specifications of the operating system as well
as details of the implementation approach also allows CAISARTS to generate code templates.
Code generation is not shown here because it is currently under development.

5.4 End-to-end Schedulability
To further validate CAISARTS the set of tasks and semantics of the application of [Molini ez

al., 1990] was extended to include the three end-to-end constraints shown in Figure 5. The

CPUI1 CPU2 CPU3

E ---------------------- 2w msec ------------------ ﬂ
show track display

|< ...................................... 375 mSec Tttt re e >|

adjust clock 1 adjust clock 2 build time message

Figure 5: End to End Constraints

description of the first end-to-end constraint, EstimateTracksEE, is that the task EstimateTracks1
now must send a message to EstimateTracks2 before EstimateTracks2 should execute. In
addition, there is an end-to-end deadline of 500 milliseconds. In order to simplify this
example, the network is modeled as a point-to-point medium. In other words, the worst-case
transmission time can be bounded, and no explicit scheduling of the network is necessary. The

worst-case transmission delay is assumed to be 5 milliseconds. ‘ .
Selecting and invoking rules for end-to-end analysis produces the following advice. Only
the advice pertaining to EstimateTracksEE is shown.

ADVICE: Be aware that the Handbook of RMA includes a section for
end-to-end analysis. In that model, the first task in an end-to-end
response can be thought of as periodic, and every other task in
the end-to-end response can be considered aperiodic. Currently,
CAISARTS does not include rules for that advice. Consult the
Handbook of RMA, p. 6-100.

ADVICE: One way to attempt to guarantee the end-to-end deadline on

17



EstimateTracksEE is to attempt the Holistic Approach. In this
approach, the network delay can be accounted for in the sending
task(s). Because the sum of the periods of the tasks involved in
the end-to-end constraint is less than or equal to the end-to-end
deadline, this approach can be pursued.

SOURCE: Tindell and Clark. Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems. Microprocessing and
Microprogramming, 40(1994), pp. 117-134.

ADVICE: To use the holistic approach to the end-to-end constraint
EstimateTracksEE,

[1] Reduce the deadline of Task EstimateTracksl 5 milliseconds.

[2] Perform a static-priority scheduling analysis on the
system. Pay particular attention to those processors (CPU1l)
that have their task set attributed modified as a result of
the previous steps.

RATIONALE: If the tasks on the processor on which the sending task
is allocated are still schedulable after the deadline of the
sending task is reduced, then the end-to-end timing constraint will
be met.

As can be seen from this advice, the focus of scheduling knowledge for distributed end-to-
end constraints has been the Holistic Approach [Tindell and Clark, 1994] and the Distributed
Rate Monotonic approach [Klein ez 4l., 1993]. In addition, distributed rate monotonic is
only acknowledged as an option for the user to investigate. A future improvement planned
for CAISARTS is to replace this temporary, “placeholder” rule with a set of rules that provide
in'd.f.Pth analysis and advice pertaininsg to distributed rate monotonic.

o continue with the use of CAISARTS on the end-to-end constraints, the Holistic Ap-
proach is taken for all three end-to-end constraints, as described in the advice generated ll))y
CAISARTS. Schedulability tests are re-executed, which show that the Holistic Approach is ap-

propriate for all three end-to-end constraints, because all tasks will complete by their deadlines.
For example, the schedulability analysis produced by CAISART'S for CPU]1 is shown below:

ADVICE: Select Static Priority scheduling for Processor CPUl, and
assign priorities according to the Deadline Monotonic policy.

RATIONALE: Every task will be guaranteed to complete before its
deadline:

Task Worst case completion Deadline
time (sec) (sec)
RecomputeDelays 0.038 0.250
FormatDisplay 0.183 0.250
RebuildSound 0.186 0.250
AdjustClockl 0.027 0.125
ReceiveNewFixl 0.002 0.050
UpdateSteering 0.024 0.100
EstimateTracksl 0.032 0.245

6 Conclusions

As an aid in addressing the complexity of scheduling issues in real-time system design, we
have implemented a multi-level real-time system design assistant that contains rules, advice,

18



explanations, analysis, and code templates. While some real-time scheduling analysis tools
exist, they are typically limited to specific algorithms, to uniprocessors, or are essentially
only simulators. CAISARTS is more comprehensive in that it is a tool that addresses (i)
uniprocessors and distributed systems, (ii) algorithmic, analysis and implementation issues,
and (iii) can provide code templates.

We have demonstrated that real-time scheduling knowledge can be codified at various levels
of detail: the conceptual level, the analysis level, and the implementation level. CAISARTS
is able to provide advice in choosing a good scheduling algorithm, prevent errors due to
subtleties, anomalies, and assumptions, provide partial, or in some simple cases, even complete
analysis, and provide advice and code for implementation. Increased productivity, fewer errors,
and increased understanding of the system via rationale and explanations are the projected
outcomes.

We have completed several experiments of using the tool; an extended example is contained
in this paper for the passive sonar application reported in [Molini ez 4/, 1990]. In these
experiments, the tool’s advice was validated by comparing to that implementation and was able
to provide solutions beyond what was presented in [Molini ez 2/., 1990] both for sporadic tasks
and end-to-end constraints.

However, since the scheduling field is so complex (there is an infinite variety of algorithms
and situations) and much research still needs to be done, for many problems only guidance and
suggestions may be forthcoming rather than complete solutions. Similarly, we cannot hope to
provide advice on all analysis techniques or implementations. Even in a limited domain there
is not necessarily a single best algorithm. As understanding is accumulated, CAISARTS can
continually be refined to address more application situations, algorithms, analysis techniques
and implementations.

The current status of CAISARTS is that it is usable and can be demonstrated. While
the current tool can handle a w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>