Feature Function Learning for
Value Function Approximation

Paul E. Utgoft

Technical Report 96-09
January 20, 1996

Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

Telephone: (413) 545-4843
Net: utgoff@cs.umass.edu, rich@cs.umass.edu

Keywords: value function approximation, automatic feature construction, feature function

Feature Function Learning

Contents
1 Introduction
2 Value Function Approximation

3 Existing Approaches

3.1 Back Propagation e
3.2 Random e e
3.3 Constructive i e e e e e e e
3.4 Evolutionary. e

4 A Specific-To-General Search

41 Agent Environment
4.2 Representing States and Features
4.3 Feature Function Search
44 Empirical Results oo

5 Discussion

St R W W

co 3 & v »

Feature Function Learning 1

Abstract

To represent and learn a value function, one needs a set of features that facilitates the pro-
cess by describing sets of states that share intrinsic properties. We visit existing approaches
to automatic feature construction for value function approximation, and note important
strengths and weakness of each. We offer an alternative approach that addresses some of
these known weaknesses. Finally, we observe that searching for a good set of features is yet
another form of biased search.

1 Introduction

A fundamental paradigm for implementing problem solvers is the form of heuristic search
in which an evaluation function is used to estimate the payoff or cost that will ultimately
be attained from a given state. With a perfect evaluation function, greedy search in the
state space will produce an optimal solution with respect to what the evaluation function is
measuring. To the degree that the evaluation function is imperfect with respect to identifying
an optimal state, lookahead search is required to ensure optimality. When the required
amount of search is prohibitively expensive, one searches less than is otherwise required,
obtaining a good but not necessarily optimal solution. When building a problem solver in
this paradigm, the implementer is faced with the problem of constructing a good evaluation
function. It is well known that the representation of problem states is a critical factor that
affects the ease of constructing an evaluation function and the accuracy it can attain as an
estimator of ultimate payoff.

The study of methods for automatic construction of good evaluation functions receives
much attention in the reinforcement learning community, where the construction task is
known as wvalue function approrimation. A variety of methods are being actively pursued, in-
cluding TD()) learning (Sutton, 1988) and Q-learning (Watkins, 1989). These two methods
have been shown to find optimal value functions under certain conditions, and the processes
modelled in these methods have been shown to be iterative Monte Carlo versions of dynamic
programming (Barto, Bradtke & Singh, 1995). Although we have working methods for ac-
quiring the true optimal values of states, we know much less about how to represent states
and how to construct features in order to obtain good generalization and compactness.

The problem of how to map the primitive state representation to another representation
that facilitates value function approximation is the focus here. This is a fundamental problem
that remains largely unsolved. We visit previous approaches, point out their strengths and
weaknesses, and then offer a new approach that attempts to draw on the strengths while
reducing the weaknesses. The change of representation is accomplished in the usual way by
mapping the state representation to a feature representation. We are concerned with how a
good feature representation can be created automatically. We make a number of assumptions
along the way so that we can concentrate directly on this problem.

2 Value Function Approximation

The goal of value function approximation is to produce a function V that maps each
problem state s; to its correct value with respect to what is being measured. Often such a
V is not attainable but, as is well known, one does not need a perfectly accurate V when its

Feature Function Learning 2

sole use is in a heuristic problem solver as described above. If V' assigns a more desirable
value to a preferrable state, then that V is sufficient for the problem solver to be able to
distinguish which states are better than others, which is all that is needed for identifying
an optimal next state. One can see that there are many versions of V' that cause the same
relative rankings among the states. One can expect to find a V' that is optimal with respect
to state selection long before, and perhaps without, attaining a highly accurate V.

We shall assume that a primitive representation of each state is given, and that this is
the only primitive representation of state that is available. It is up to the problem solver,
hereafter called the agent, to produce the best value function V (s) that it can. We shall also
assume that the agent is repeatedly solving problems, thereby obtaining information about
which state sequences lead to which payoffs. Using temporal difference learning, or some
other value inference method, the agent ascribes values to certain states, thereby providing
points and function value estimates (point estimates) in state space. We assume that the
agent is in an online setting, in which old point estimates are used just once and then
discarded, and new point estimates are produced during future problem solving and value
inferencing.

The primitive state representation s; for state ¢ can be viewed as a collection of mea-
surable values. Typically each primitive component is either a real-value, or a binary value
represented by two distinct real values. We shall refer to the set of primitive state values as
the inputs, and we shall refer to the value of function V for a given set of inputs as the output.
How can we represent a mapping from the inputs to the output value? We exclude the option
of using a fine-grained lookup table because it does not scale well to large state spaces. If
a weight is to be learned for each state, then the possibility of generalization is eliminated
because learning the weight for one state does not help with learning the weight for another.
Furthermore, a large state-space would require a large table. If one uses a lookup table with
some amount of coarseness, i.e. in which more than one state is mapped to a given element
in the table, then it is really just an alternative grid-like scheme for defining features. We
are interested here in identifying features that describe intrinsic properties of set of states.

Instead, one typically maps the inputs to an intermediate representation consisting of
one or more features, and then maps the feature values to the output. We shall refer to the
set of features as the feature function, and shall denote it by F. Thus, the value function
V consists of two levels of mapping, indicated by V(F(s;)). One could introduce additional
levels of mapping, but we shall focus on this basic form. This kind of mapping to features
is quite common. For example, consider the Manhattan-Distance evaluation function for
the 8-puzzle. The primitive state representation consists of the tile locations, the feature
function consists of the eight features in which each feature computes the city-block distance
of its tile in its present location from its goal location, and the value function consists of the
sum of the eight feature values.

We now have the problem of learning two mappings, F(s;) and V(F;), where F; is short-
hand for F(s;). Because we are primarily concerned with the representation problem, we
focus on the problem of finding F(s;) automatically. We shall assume that V is a linear
combination of its inputs, which are now the feature values or feature outputs, and that
the weights of this linear combination are updated by a simple error-correction rule associ-
ated with TD learning. Note that although V is a scalar output, F has multiple unordered

Feature Function Learning 3

1] o

3 142

1+4
1+2+4

2+4

Figure 1: Seven Regions from Three Features: Feature f1 has weight 1, feature f2 has
weight 2, and feature f3 has weight 4.

components.

This leaves us with the problem of finding a good feature function F that facilitates
learning a good V under the stated assumptions. Thus we find ourselves in a space of
feature functions, not knowing ahead of time which may be better than another, giving us a
large search problem to solve.

3 Existing Approaches

Several approaches already exist for finding a feature function F automatically, and we
visit these in order to see their strengths and weaknesses.

3.1 Back Propagation

The most notable method for automatically finding an F, while simultaneously learning
V', is back propagation of error through a feed-forward artificial neural network (Rumelhart
& McClelland, 1986). In a two-layer network, the hidden layer of units corresponds precisely
to the feature function F, and the output unit corresponds to the value function V. Upon
adjusting the weights of the output unit, the error is then apportioned to the hidden units,
and each is updated individually in a similar manner.

Each hidden unit describes a subset of the inputs by placing a hyperplane through the
state space. The unit outputs a high value (near 1.0) for states on one side, and a low
value (near 0.0) for the remaining states. For example, consider an x-y space with three
hidden units (features), as depicted in Figure 1. Each combination of feature values forms a
distinct set of inputs to the output unit, which means in this case that seven different regions
are describable, each having its own output value. In general, for n inputs, the number of
distinet regions increases by a factor of n for each new feature that is added (assuming
non-parallel feature boundaries). Since the value of each region is determined by combining
the weights of the features that are present, one cannot expect the seven different regions to
have unrelated values. Only the values available through feature combination are possible,

Feature Function Learning 4

but the number of distinct values is exponential in the number of features.

The weight adjustment process for the units is driven by gradient information. One
naturally questions whether hill-descending is sufficient for finding a good feature function.
Although back propagation often does well, we know that it has shortcomings. First, it is
not known how to choose a suitable number of hidden units. Second, one must initialize the
hidden unit weights randomly so that there is initially a rich set of features. It is assumed
that training will cause these feature definitions to change to better regions, as guided by
the negative of the gradient of the error, which is not always the case. Finally, one still
must often resort to hand-crafting of features in order to enable learning of V suitable well
(Tesauro, 1992). Though it may be practical at times to accelerate the learning process by
providing good features manually, our goal is to automate this process, so impediments need
to be noted. One must start the process somewhere, and we have assumed that the state
representation is given. If the information needed for defining useful features is present in
the state representation, then we should hope that the feature construction method will find
those useful features.

3.2 Random

An approach that is remarkably simple was shown by Sutton and Whitehead (1993) to
do very well, outperforming back propagation. Their search for F consists of generating it at
random in one step, and then keeping it. In terms of a neural network, they generate a fixed
number of hidden units with random weights, and never let these weights change. Learning
the value function V consists entirely of adjusting the weights of the output unit. With a
large set of hidden units, one can expect that some of them will be useful. Recall that it
is the combination of features that enables the value function to assign so many distinct
values. Sutton and Whitehead report that their random representation approach using 100
features learned a more accurate value function than back propagation nets using 4, 40, and
400 adjustable hidden units. This is additional evidence that back propagation gets stuck
during learning.

3.3 Constructive

Wynne-Jones (1992) presents an approach called node splitting that detects and attempts
to repair an inadequate hidden layer of a feed-forward artificial neural network. His system
detects when the hyperlane of a hidden unit is oscillating, indicating that the unit is being
pushed in conflicting directions in feature space. His method splits such a unit into two,
and initally sets them apart from each other by an explicit alterning of the weights. The
goal is to set the units apart along the most advantageous axis. Although this approach
sometimes works well, Wynne-Jones observes that the units often work back toward each
other instead of diverging. He reports promising results when this technique is applied to a
gaussian mixture model.

Other constructive approaches have been devised, including cascade correlation (Fahlman
& Lebiere, 1990), and dynamic node creation (Ash, 1989). Each addresses the problem that
weight adjustment of a fixed hidden layer is not generally sufficient for finding an adequate
mapping of inputs to desired output.

Feature Function Learning 5

3.4 Evolutionary

An evolutionary approach that draws heavily on domain knowledge is Fawcett’s (1993)
Zenith system. The programmer provides a declarative definition of the problem-solving
domain, consisting of a theory that defines the state space, the move operators, and the goal
that the agent endeavors to achieve. The Zenith system then applies its own transformation
operators that synthesize features from this declarative knowledge. Fawcett maps a logical
term or clause to a numeric value by computing the number of bindings for which the logical
expression can match the state. The main loop consists of generating feature definitions,
letting each one ‘live’ for a period of time while a coefficient is learned for it in a linear
combination, and keeping the good features and discarding the bad. There is considerable
overhead in specifying a complete and correct domain theory. In the game of Othello and in
a telephone switching application, Zenith created and retained features that were previously
known to be good, and it created new useful features that were entirely original to Zenith.

A different evolutionary approach is exemplified by Levinson and Snyder’s (1991) MORPH
system for learning a value function for the game of chess. The feature function is repre-
sented as a set of patterns, each with an associated weight. Each pattern is an abstraction
of a portion of a state, and is represented in a high-level hand-engineered pattern language
based on attacking and guarding relationships among the chess pieces in the pattern. Their
system produces a pattern for the state before a move and the state after a move, using
a form of explanation-based learning to account for the differences. Their weight updating
method is loosely based on temporal difference learning. The authors report disappointing
but intriguing results for their system when learning with GNU-Chess as its opponent.

MORPH and Zenith have in common the idea that the feature function is a collection of
weighted patterns, each of which survives or dies based on its utility to the value function.
Search for the feature function is accomplished by modifying the set of features.

4 A Specific-To-General Search

We present a value approximation method in which V is updated by TD(A), and F is
updated by adding, deleting, or generalizing individual features that collectively constitute F.
To ground the discussion, we explain the method with respect to an implemented prototype
called TQ, which learns a value function for the game of TicTacToe. This domain requires
a non-trivial feature function, but has a relatively small state space.

4.1 Agent Environment

The TQ program repeatedly conducts trials, selecting moves for each player. A trial
consists of playing a single game and receiving a payoff of 1 for a win, 0 for a draw, and
-1 for a loss. Since TQ models two agents, it learns from each agent’s move sequence and
payoff. Although this is not an essential part of the design, one does obtain twice as much
experience per game. A game provides an environment in which an agent must solve a
problem, and the adversary is simply part of the environment. Each agent learns from the
sequence of moves that it makes in its environment. There is no initial knowledge of the
three-in-a-row concept. Instead, the agent simply makes moves, and is told when the game
is over and what the payoff is.

Feature Function Learning 6

| Feature | State || Match |

1 1 True
1 0 True
0 1 False
0 0 True

Figure 2. Truth Table for Match Predicate

Each agent uses a 1-ply search to enumerate the possible successor states and evaluate
each one using the current feature function F and value function V. With probability %,
the agent selects the move that produces the state with the best value according to V.
Otherwise, the agent selects its move at random. This probability was chosen in a way that
causes an average of one random move in every three games played. The value V of a state
is an estimate of the ultimate payoff that will be achieved by following this mostly greedy
move selection policy. One needs a certain amount of exploration in order to ensure that

better alternatives can be noticed.

The value function is updated using linear TD(0.9). This is done for each agent by
maintaining an eligibility trace of the feature values. The trace decays by a factor of 0.9
at each time step. Then, the difference between the 1-ply backed-up value and the value
of the current state is computed. The weight changes that would be made at each step are
accumulated until the trial is over. Then V is updated by adjusting its weights according
to the accumulated changes. Finally, the feature function F is adjusted, as described below.
The cycle then begins anew with a fresh trial.

4.2 Representing States and Features

One needs to choose a representation for the inputs and the features. The method we
describe depends on a bit-vector representation, which we describe for the TicTacToe case.
For each of the nine squares of the board, represent the contents of the square by a 3-bit
value. If the square contains an ‘X’, then the X-bit is 1 and the other two bits are each
0. Similarly, define an O-bit and an empty-bit. For any particular state, exactly one bit in
each group will be set, for a total of nine set bits. This representation of 27 bits has excess
capacity, but the ability to represent combinations is important. More generally, one needs
as many bits per cell as there are possible distinct contents of that cell. For example, in
checkers one would need 32 cells of five bits each.

A feature is also represented as a bit vector of the same length. For matching purposes,
when a bit is set in a feature’s bit vector, it means that the corresponding bit in a state’s
bit vector is permitted to be set. Any state for which all of its set bits are permitted in the
feature’s bit vector matches the feature. Thus a feature’s bit vector describes a set of state
bit vectors that will match it. In this way a feature defines that set of states that it covers.
A feature describes any state that matches it. Figure 2 shows the truth table for the match
predicate.

The bit encoding provides an efficient matching procedure. Notice that a state matches
a feature unless at some bit position(s) the feature’s bit is 0 (not set) and the state’ bit is

Feature Function Learning 7

1 (set). The value of the feature is 1.0 if the state matches it, and 0.0 otherwise. The bit-
vector representation for states and features, and the associated matching predicate, define
an implicit partial ordering over the space of features. A state description is identical to a
most specific but non-empty feature description, and the bit vector in which every bit is set
is the most general feature description. One feature is more specific than or equal to another
if and only if it matches it.

4.3 Feature Function Search

TQ starts with the empty feature function, which means that the value function is defined
solely by its bias weight (the constant term of a linear combination). The value function
is a constant function, whose most accurate single value comes to be approximated as well
as possible through the TD updating that occurs. The program needs to notice when its
feature function is inadequate for learning a sufficiently accurate value function, and it needs
to take action to improve it. The feature function must change, and this is done by changing
the set of features that constitute it. We need to add, delete, and revise individual features
in a way that leads to an adequate feature function.

A new feature is added to F whenever the desired value of a state is non-zero and the
state does not match any feature in F. The corresponding weight in V for the new feature is
initialized to 0. The added feature has its bit vector initialized to the state’s bit vector. We
shall refer to such a feature as a singleton. We also add a new singleton to F whenever it is
not already in F and the difference between the backed-up value of the state (from the 1-ply
lookahead) and the local value of the state (from V') is too large in magnitude. For TQ, this
occurs when the difference has magnitude greater than 0.01. Such a condition indicates that
the features currently present in F are inadequate.

An old feature is deleted from F whenever it becomes useless, which occurs when it is only
seldom matched by a state, or when the magnitude of its associated weight for V is near 0.
In these cases, the feature contributes little to the value of V. For TQ, a feature is considered
to be seldom used if it has not been matched by a state in the previous 500,000 attempts.
Using 1-ply search in the game of TicTacToe, the largest number of match attempts per
game is 9+8+...+1, which is 45 for both players combined. Thus 500,000 match attempts is
on the order of 10,000 games. A weight for a feature that has magnitude less than 0.0001 is
deemed to be too small to be useful.

We have discussed when and where to add a new singleton feature to F, and we have
discussed when to eliminate a feature from F. When one lets TQ run with just these
operations on F, it finds a feature function for which a suitable value function is also learned.
However, the features in F are all singeltons, making F much like a fine-grained lookup table,
which we wish to avoid. The number of features in the feature function is far less than the
size of the state space because many suboptimal states are easily avoided. Nevertheless,
we would still like to have features that cover larger sets of states. This is important for
generalizing beyond the data and for reducing memory requirements.

One would like to generalize a feature whenever a single value for its weight is appropriate
for each of the states that it covers. With weight adjustments occuring during learning of the
value function V, and with features being created, deleted, and generalized, it is not clear

Feature Function Learning 8

how to say when generalizing is a good idea. However, we do know that we do not want to
generalize a relatively new feature whose weight is unlikely to be near its best value, and
we do not want to generalize a feature whose weight continues to change repeatedly by a
large amount. So, one may surmise that it may be productive to generalize a feature whose
weight has been far from 0.0 for a long period of time. For TQ, a weight with a relatively
large magnitude occurs only after a long period of time, so this can serve as a test for this
condition. For TQ, any feature whose associated weight for V has a magnitude greater than
0.4 is generalized. However, a generalized feature is never added when a feature with the
identical bit vector already exists in the feature function.

A potential problem with generalizing a feature with a large weight is that the gener-
alization may be a poor one, introducing instability to its weight, and secondarily to other
features that cover some of the same instances. This can be overcome by generalizing a copy
of the feature, and leaving the original feature in the feature function, similar in spirit to
node splitting discussed above. One then sets the weight of the original feature to half its
value, and initializes the weight of the generalized feature to the same value. In this way,
each state covered by the original feature is now also covered by the generalized feature, and
the total contribution to the value function remains unaltered. However, if the generalized
feature is good, then its weight will grow and the original’s will shrink. If the generalized
feature is bad, then its weight will shrink and the original’s will grow. A feature with a low
magnitude weight will eventually qualify for deletion and be removed. Thus, this mechanism
implements a specific-to-general search of the feature space with pruning of unproductive
paths. Only one of these two features can expected to survive.

A feature is generalized by randomly setting one of its bits that was not already set. Some
choices may be better than others, but this is not known ahead of time. If the choice of bit was
a bad one, then the generalization will eventually be removed. Subsequently a new one may
be generated, again picking an unset bit at random. However, if the choice of bit was a good
one, then the generalization will survive, and its predecessor will eventually be removed. The
generalized feature might eventually become a candidate for further generalization. When a
feature is generalized, and its weight is halved, it no longer immediately meets the criteria
for generalization. The magnitude of its weight needs to grow large enough again in order
for it to become a candidate for generalization again.

4.4 Empirical Results

Figure 3 shows the activity of TQ over a large number of tournaments, where each
tournament consists of 500 trials. One observes that the total number of features in the
feature function grows rapidly to over 3500, and then decreases to a number that fluctuates
in the low 1000s. One also observes that TQ learns a reasonable value function quite early,
but then compresses its representation over time. The peaks in the plot of games-not-tied
correspond to periods in which TQ has a misleading value function for its 1-ply search. It
takes time to improve the feature function and value function so that the mostly greedy
policy performs well. The typical value near zero illustrates that T'Q usually obtains a draw,
which is the expected outcome for optimal play.

It is also informative to examine the features that TQ found. The minimum number of
bits that can be set in a pattern is nine, and the maximum is 27. Inspection of the features

Feature Function Learning 9

3500 -
2800 A
2100 -
\ |
1400 +) features
700 -
‘|Ml||l MI“M”IIIMHM “l HM ”| ““I !I| M “ﬂ“ | l IMI“I II! | III games not tied
0 -]] 1])]
0 1000 2000 3000 4000 5000

Tournament

Figure 3. Features and number-of-games-not-tied vs. tournaments played

shows many different levels of generalization, including the single pattern of all 27 bits. Of
course the single pattern of all 27 bits set covers all states and is therefore functionally
equivalent to the bias weight of the value function V. This duplication is of no consequence.
The 21-bit patterns that correspond to each of the three-in-a-line configurations are all
present. In addition, many 9-bit patterns that correspond to mistakes in early play are also
present. In short, TQ found the range of features that one would hope to see.

5 Discussion

TQ suffers from its need to revisit parts of the state space to promote generalization. The
weight associated with a feature can grow to a large magnitude only by having its weight
adjusted many times. In large state spaces, or with aggressive exploration, this will not
occur because new states will be encountered a large part of the time. This causes features
to be matched rarely, earn a low utility, and be deleted from the feature function. We plan to
explore a general-to-specific approach much like TQ that will specialize where there appears
to be potential for improvement. We have moved to the game of checkers so that we can
experiment with a large state space.

When one sees a set of individuals represented as bit-vectors that are evolving over time,
one is reminded of the work on genetic algorithms (Goldberg, 1989). It may well be such
an approach can work here, but the crossover operator may not make sense in this setting.
For TQ, the generalization operator causes two similar features (one has one additional
bit set that the other does not) to be launched at the same time. If the generalization
is good, the more specific feature will eventually be deleted, and if the generalization is
bad, the more general feature will instead suffer this fate. A crossover operation would

Feature Function Learning 10

produce a feature that may or may not prove useful. Given that the combination of bits is
important collectively, it seems unlikely that a recombination of independently chosen bit
vector segments will produce something useful. An important consideration is that a set of
features has its weights adjusted collectively, and one needs to be somewhat wary of making
huge steps in feature function space (Levinson & Snyder, 1991). Nevertheless, it would be
quite simple to add this to TQ and conduct such an experiment. The search would of course
no longer be specific-to-general in feature space.

Back propagation and other gradient-following methods in non-monotonic spaces can
become trapped at local minima. Although back propagation makes good use of gradient
information, we cannot expect back propagation to find the most useful features that are
possible under the given the state representation and the rest of the learning context. Al-
though back propagation is often described as a sufficient solution to the feature construction
problem, that is a myth. Gradient information is a useful source for guiding the search, but
it is just one such source, and there are well known problems associated with relying on it
alone.

If one looks at how each feature is defined, and how the features are ordered in feature
space, then one sees that a feature function learning method is yet another instance of
biased search. When back propagation adjusts the weights of a hidden unit, it changes
the set of instances that match that feature. The relationship between weight adjustment
and state coverage of the feature affects the search in a fundamental way. The method we
presented for TQ organizes the state space differently. The relationship between bit vector
adjustment and state coverage of the feature also affects the search fundamentally. These
adjustment/coverage relationships are different, and each one represents a bias for searching
feature function space. It is unlikely that one is strictly better than the other in general.

The most distinctive aspect of the approach exemplified in the TQ approach is that
it creates and adds features in those parts of the state space where additional descriptive
resolution is required. This is accomplished in two ways. First, the method detects where
the value function is too inaccurate and adds a most specific feature that modifies the value
function for that particular state. Second, the method copies and generalizes features that
have proved useful by virtue of having obtained a high magnitude weight. This approach
effects a specific-to-general search in feature space that is controlled by a competition between
the generalized feature and its predecessor.

Acknowledgments

This material is based upon work supported by the National 5Science Foundation under
Grant No. IRI-9222766. I thank Rich Sutton for many invaluable discussions and comments.
I also thank Jeffery Clouse and Gunnar Blix for helpful comments.

References

Ash, T. (1989). Dynamic node creation in backpropagation networks. Connection Science,
1, 365-375.

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to act using real-time dynamic
programming. Artificial Intelligence, 72, 81-138.

Feature Function Learning 11

Fahlman, S. E., & Lebiere, C. (1990). The cascade correlation architecture. Advances in
Neural Information Processing Systems, 2, 524-332.

Fawcett, Tom E. (1993). Feature discovery for problem solving systems. Doctoral dissertation,
Department of Computer Science, University of Massachusetts, Amherst, MA.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley.

Levinson, R., & Snyder, R. (1991). Adaptive pattern-oriented chess. Proceedings of the Ninth
National Conference on Artificial Intelligence (pp. 601-606). Anaheim, CA: MIT Press.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing. Cambridge,
MA: MIT Press.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine
Learning, 3, 9-44.

Sutton, Richard S., & Whitehead, Steven D. (1993). Online learning with random repre-
sentations. Machine Learning: Proceedings of the Tenth International Conference (pp.
314-321). Amherst, MA: Morgan Kaufmann.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning, 8,
257-277.

Watkins, C.J.C.H. (1989). Learning with delayed rewards. Doctoral dissertation, Psychology
Department, Cambridge University.

Wynne-Jones, M. (1992). Node splitting: A constructive algorithm for feed-forward neural
networks. Advances in Neural Information Processing Systems (pp. 1072-1079).

