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Abstract

This paper introduces the Introspection Approach, a method by which a learning
agent employing reinforcement learning can decide when to ask a training agent for
instruction. When using our approach, we find that the same number of trainer’s
responses produced significantly faster learners than by having the learner ask for
aid randomly. Guidance received via our approach is more informative than random
guidance. Thus, we can reduce the interaction that the training agent has with the
learning agent without reducing the speed with which the learner develops its policy.
In fact, by being intelligent about when the learner asks for help, we can even increase
the learning speed for the same level of trainer interaction.
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1 Introduction

In learning to perform a multiple-step task (e.g. problem-solving and control tasks),
an automated agent develops a decision policy—a mapping from states to actions—that
specifies for each state which action to perform. Instead of utilizing a set of labeled train-
ing examples, necessary for supervised learning, an agent employing reinforcement learning
methods (Sutton, 1984; Watkins, 1989; Barto, Bradtke & Singh, 1995) adapts based on eval-
uative feedback that indicates how well the agent is performing the task. Unfortunately this
feedback, which is in the form of sparse scalar payoff, is only weakly informative; certainly

not as instructive as supervised training.

In recognition of this deficiency of reinforcement learning, several researchers have re-
cently studied systems in which a training agent is added to the learning scenario (Clouse
& Utgoff, 1992; Lin, 1992; Maclin & Shavlik, 1994; Gordon & Subramanian, 1994; Clouse,
1995). In such systems, rather than relying solely on the simple signals provided, the learning

agent also has access to supervised instruction.

While it is not surprising that a learning agent employing a reinforcement learning method
will be aided by additional information about its task, it is not well understood how the agent
can acquire and use the information. Among the many problems associated with adding a
training agent to the learning scenario, such as the form of the instruction and the manner
in which the learner adapts based on the instruction, we focus on when the trainer offers
instruction. We introduce the Introspection Approach (IA), a method by which the learning
agent determines when it requires aid from the training agent. We show that guidance
received via TA is more informative than random guidance, thus making better use of the

training agent.

2 Learning with a trainer

Consider the training agent’s role in the learning scenario. The unshaded portions of
Figure 1 depict the standard components of reinforcement learning—a task, a learning agent,
and a critic—and the interactions between the components. The shaded portion of the figure
shows how the training agent is incorporated into the learning scenario, observing the task

state and providing instruction to the learning agent.

Several researchers have studied systems based on this model. In Lin’s work (1992, 1993),
the learner receives entire sequences of human problem-solving performance, in which the

learner is led from the start state to the goal. The learner then updates its decision policy
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Figure 1. Trainer augmented reinforcement learning

as if it itself had performed the training sequences. In another system (Clouse & Utgoff,
1992), a human training agent interacts with the learner, occasionally providing actions that
the learner then performs. Maclin and Shavlik (1994) employ IF-THEN rules, compiling the
trainer’s instruction directly into the learner’s policy via knowledge-based neural network
techniques. Similarly, Gordon and Subramanian (1994) rely on IF-THEN rules, which are
converted into operational rules that become part of a population that is refined via genetic
algorithms. Finally, Clouse (1995) employs an automated trainer that is based on heuristic
rules. Although taking different approaches to adding the trainer’s knowledge to the system,

each of these methods exhibits good performance.

Three of the systems described above allow instruction to be provided at the whim of
a human trainer (Clouse & Utgoff, 1992; Lin, 1993; Maclin & Shavlik, 1994). Gordon and
Subramanian (1994) provided the trainer’s domain information before training begins, and
not during the on-line learning. The final system described above (Clouse, 1995) takes a
controlled stochastic approach to providing training information, allowing the training agent
to offer training direction a fixed percentage of the time. None of these systems directly
address the issue of when instruction should be provided, either allowing the trainer to guide
the system in an unprincipled manner, or interacting randomly with the learner. In the next

section , we consider when the trainer should give instruction.

3 An Introspection Approach

In the approach described here, we use the basic model used by three of the above systems:
The automated learner relies on instruction in the form of on-line, trainer-suggested actions
for given situations. Upon receipt of an action from the trainer, the learning agent executes
the action just as if it had chosen the action with its own policy. Thus, the underlying
reinforcement learning algorithm does not need to be modified to handle the trainer’s actions:

the learner performs the action, changing the task state, and then receives evaluative feedback
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and updates its decision policy. The crux of the new approach is the mechanism for deciding
when the learner should ask the trainer for aid. One of our goals is to maximize the impact
of the trainer’s instruction, so that the learner develops its decision policy quickly, with very
little training. In some sense, we are searching for an ideal training strategy: minimize the

trainer’s usage while simultaneously minimizing the training time.

When should the trainer give the learner instruction? To answer this question, we rely
on our informal perception of when human learners require instruction. Certainly, humans
benefit from help when in novel situations. Indeed, humans seek help when they are confused
or otherwise unable to decide upon a course of action, even if they have experienced the
situation in the past. It is difficult, however, to specify exactly when humans are unsure.
Fortunately, this is not the case for an automated learner: One has access to the decision
policy and, in particular, the evaluations on which the decision is based. Our Introspection
Approach takes into consideration the uncertainty of the learning agent based on the values

of the agent’s choices as determined by its current decision policy.

To implement IA, one must develop a test that determines whether the learner is unsure
of its choices. The test should indicate the need for help in novel situations, when all of
the action choices have similar values. One method for doing this is to examine the two
extreme values: if they are close to each other, then the intervening values must also be
close, which means that the learner has not experienced this state often enough to produce
a clear choice. Examining the interval between the extreme values identifies only situations
in which the learner is clearly uncertain. Another form of uncertainty may arise when, say,
the top two choices have similar values. Our approach will not have the learner ask for help

in this situation because it may be the case that the two choices are truly similar.

In the Introspection Approach, if the two extreme values are sufficiently close together,
the test succeeds and the learner asks for aid from the trainer. Sufficiency is here determined
simply by examining the difference between the minimum and maximum values. The test
succeeds when the difference between the extreme values is smaller than a width parameter.
This parameter controls how conservative the learner is. With a small width, the learner is
infrequently uncertain, but with a large width, the learner asks for aid quite frequently. In
the experiments described below, we set this width parameter at different values to analyze

different learners.
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4 Empirical Study

The experiments described below test the Introspection Approach against an approach
in which the learning agent request help randomly (similar to Clouse 1995). In the following
section we lay out the details of the experimental study, describing the problem domain, the
training agents, and the learning algorithm. Finally, the section ends with a description of

the experiments.

4.1 Problem Domain

The problem domain considered is graph-traversal in the form of two-dimensional mazes
(see Figure 2), a class of Markovian decision tasks. The objective of the learner is to traverse
the maze optimally from the top-left cell to the bottom-right cell. In each state, the learner
can choose one of four actions: up, down, left, or right. When performing an action that
is blocked by a wall, the agent does not move. Such actions are penalized simply by the
virtue of the agent’s taking a step and not progressing. The experiments were run with both
deterministic problems, in which each action is performed as specified, and with stochastic
problems, in which each action has a 25% chance of being changed to an action at a right-
angle to itself, half the time resulting in a right turn and the other half, in a left turn. When
the agent reaches the goal cell, it receives a 1.0 unit reward, and is placed back at the start
cell. In our study, we employed a series of five mazes, Whose sizes ranged from a 10 x 10

maze with only 42 states, up to a 80 x 80 maze with 4268 states.

Figure 2. A maze, with 562 states

An advantage of maze problems, which we exploit in the construction of the trainer
and in the definition of the stopping criterion, is that the optimal policy can be found.
Another advantage is that the maze problems are discrete: we can employ simple tables to

store the developing decision policies rather than rely on not well-understood generalization
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mechanisms. Although the issue of generalization is interesting, we avoid these mechanisms
in this study because their use would introduce a confounding factor, clouding the issue of

when the trainer should provide actions.

4.2 Trainers

In the experiments, different trainers instruct the learning agents. The trainers are
automated and can perform the maze problems at varying levels of proficiency. The base-
line trainer performs the task optimally; other trainers are degradations of the optimal. By
adjusting the frequency by which the trainer responds with a suboptimal action, we have a

wide range of problem-solving expertise.

For any given state, the trainers can provide the learner with an action to perform. The
trainer simply examines the current location of the learner in the maze and provides the
action that it considers best. In the case of the optimal trainer, this action is optimal. The
other trainers may provide an optimal action, but they may also provide an action that is

not optimal.

4.3 Learning Algorithm

In all of the experiments, the learner employs the reinforcement learning technique Q-
learning (Watkins, 1989) to develop its policy. The Q-functions for each of the four actions
are stored in separate tables. The Q-value for a particular state and action, Q(s,a), is just

the value in the sth location of the table for action a.

The policy defined by the Q-functions is based on the Q-values and on a random factor
to facilitate exploration. A large portion of the time (95%), the learner performs the action
whose Q-function has the highest value for the current state. During the other 5% of the

time, the learner chooses an action uniformly from among the four.

We modify the Q-learning method only slightly to take into account the trainer’s instruc-
tion. In addition to using its policy to choose an action, the learning agent can also ask the
trainer for instruction. When the trainer receives such a query, it always responds with an

action, which the learner then performs.

The learning parameters are: o = 0.15 (learning rate), and v = 0.99 (discount factor).
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4.4 Experiments

The first set of experiments define the control set, where the learning agent requested
actions from the trainer a fixed percentage of the time. We varied this rate from 0% up
to 100%. In the second set of experiments, the learner decides to ask for instruction based
on the TA. We control the amount of trainer-provided actions indirectly by varying the TA

width parameter.

In both sets of experiments, we performed individual experiments with trainers that
differed in expertise, having them return suboptimal actions from 0% to 50% of the time.

We also varied the size of the mazes, from 44 states up to 4268 states.

Each individual experiment consisted of ten runs, each of which began with the entries in
the Q-function tables set to zeroes. A run ended when the learner could meet the stopping
criterion: while traversing the maze ten times from start to goal, 95% of the learner’s actions
were optimal. Remember that the learner cannot perform 100% optimal actions because it

chooses a random action 5% percent of the time.

Each run consisted of many trials, each of which began with the learner in the start cell
of the maze (top-left corner) and ended when the learner reached the goal cell (bottom-right
corner). The stopping criterion was tested at the end of each trial. If the criterion was met,

the run ended; otherwise, the run continued with the beginning of a new trial.

For each run we recorded two variables: the total number of actions performed by the

learning agent throughout the run, and the total number of trainer responses.

5 Results and Discussion

In this section, we present the results of the experiments, and discuss their implications.
We only present results for the maze 30 x 30 maze; The results for the other mazes, both
stochastic and deterministic, are similar. First, consider Figure 3, which presents the results
for the control experiments, in which the training agent provides actions a fixed percentage
of the time. The trainer’s instruction rate is presented along the dependent axis, and the
average number of actions necessary to achieve the stopping criterion is presented on the
dependent axis. To facilitate comparison with a learning agent that does not have access to
the trainer (0% interaction rate), the dashed line labelled “Q” was extended out from the
axis, with two parallel lines that represent the 95% confidence interval for that value. The
other lines on the graph represent the different levels of trainer expertise, ranging from an

optimal trainer (at 0% error) to a trainer that provides a suboptimal action half of the time.
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As expected, Figure 3 indicates that the trainer’s instruction reduces the amount of
training necessary to achieve the stopping criterion. For all levels of trainer expertise and
response rate, the difference between having a trainer and not having the trainer is significant.
Furthermore, the better trainers speed the learner’s acquisition of the optimal policy more
than the degraded trainers. And, providing more instruction seems, in general, to lead to

quicker convergence.

—~ 450 —
ﬁCIA
o
8 400
—
o 350
& 300 |- == Q
3) 1
S 0 ¢ O =< 000% error
< RN O+ = =0 010% error
g8 20fF
S \ (=== 025% error
= 150 |- ‘“\, ¢ - -4 050% error
q .
100 |~
~ e o
50 ---’__,_,_ _I_I_‘_._,_.——-"'
ot = e m o  m m m m m = =
0 I 1—'& I ! %
0 60 70 80 90 100

Trainer Rate (Percentage)

Figure 3. Fixed Schedule results

Now consider Figure 4, which represents the results of the experiments with the Intro-
spection Approach. The horizontal axis in this graph represents the different widths, ranging
from 0.0 up to 1.6 (which is In5.0), and, as in the previous graph, the vertical axis repre-
sents the average number of actions to reach the stopping criterion. At all levels of trainer
expertise and interval width, the learning agent performed almost identically (that is, the

lines are very close together), and much better than not having instruction from the trainer.

It 1s difficult to compare the two approaches directly based on the results in Figure 3 and
Figure 4 because the dependent axes represent different quantities. To make the comparison
between the two approaches easier, examine Figure 5, which plots the number of trainer
responses versus the number of actions necessary to achieve the stopping criterion for each

of the experiments, given the perfect trainer. The plots look similar for the other 3 trainers.

As depicted in the graph, the same number of trainer responses lead to satisfying the
stopping criterion more quickly with the Introspection Approach. For example, the cluster

of TA points near 5000 trainer responses lead to the learner’s developing an almost optimal
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Figure 4. Introspection Approach results

policy in, on average, 13,600 total actions. With the random approach, approximately the
same number of trainer responses were used to learn the task in anywhere between 110,000
and 40,000 total actions. Not only do the trainer’s actions from IA provide better feedback,

allowing the learner to develop its policy more quickly, there is much less variance.

Figure 5 also shows that the performance of the two methods, IA and random, approach
each other as the number of training examples increases. One would expect that they both
perform similarly when the trainer responds 100% of the time, which is depicted on the

graph by the clusters of points on the far right (near 19,000 trainer responses).

Also note in Figure 5 that, with the IA, more trainer actions are not necessarily better.
Although it is hard to see in the graph, the curve representing TA rises slightly as the
number of trainer responses rises. This seems to indicate that the learner can gain a better
understanding of its environment by being allowed to explore on its own, as well as by
learning from a trainer. Given that the curve is almost flat, indicates that we can minimize
the trainer’s usage with the TA, learning to perform the task in almost the same amount of

time that we would require if we relied solely on the trainer.

6 Summary

This paper introduces the Introspection Approach, a method by which a learning agent

employing reinforcement learning can decide when to ask a training agent for instruction.
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We compared the TA to a random approach of asking and found that the same number
of trainer’s responses produced significantly faster learners using the IA. Thus, guidance
received via A is more informative than random guidance, because the same level of trainer
instruction leads to satisfying the stopping criterion more quickly. Thus, we can reduce the
interaction that the training agent has with the learning agent without reducing the speed
with which the learner develops its policy. In fact, by being intelligent about when the
learner asks for help, we can even increase the learning speed for the same level of trainer

interaction.
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