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Abstract

One of the central issues in the control of articulated limbs is the specifi-
cation of dynamically feasible trajectories. We present a total energy method
which treats the manipulator as a perturbed Hamiltonian system. A harmonic
potential field is employed which precludes the existence of local minima. In
addition, for a dynamically compensated mechanism, the phase space structure
of a manipulator “copies” the critical point structure of the harmonic poten-
tial. This result is used in conjunction with harmonic potentials to generate and
control repetitive motion plans for a manipulator. In addition, control derived
from harmonic potential fields result in bounded-torque controllers and pro-
duces compliant, collision-free kinodynamic behavior. The energy-referenced
control scheme is applied to a bipedal walking gait. We conclude the chapter
with a brief discussion of a recent neurophysiological model that postulates a
role for the basal ganglia as a potential-based motor planning mechanism.

1This work is supported in part by the National Science Foundation under grants CDA-8922572,
IRI-9116297 and IRI-9208920.

?Draft chapter for “Timing of Behavior: Neural, Computational, and Psychological Perspec-
tives”, D. A. Rosenbaum and C. E. Collyer, ed., to be published by MIT press.



CONTENTS

Contents
1 Introduction
2 Harmonic Potential Functions
2.1 Configuration Space . . . .. ... . ittt e e e e
8 Energy-Referenced Control
3.1 Resomance . . . . . .o vttt i e e e e e e e e e e
3.2 Tracking Precision .. ........... ... iineennn..
4 Simulation of the Human Leg
41 Mechanics . . . . . .. . . e e e e e e
42 Dynamics . . . . . . . i e e e e e e e e e e e e e e
4.3 Terminology . . . . . . . . . . e e e e e e
4.4 Energy-Referenced Control . ... ... ........ ... ... .. .....
5 Speculations on a Neural Substrate
6 Summary and Discussion

A Equations of Motion

List of Figures

Conversion of a Cartesian bitmap to a C-space bitmap. . ...........
Configuration space for a 2 degree of freedom, planararm. . . ... ... ...
Energy-reference controller. . . ... ... ... ... ... uue....
Constant-energy orbit. Left: configuration space; Right: Cartesian space.

Geometry of the Simulated Human Leg. . . ... ... ... ..........
Typical angle-angle diagram of a walking gait.. . . . . ... ..........
Monoped constant-energy orbit in configuration space . ............
Comparison of the angle-angle diagram for the human subject and the dy-

namically equivalent leg simulation. . .. ... .................

O 00 ~3ID U i W =

GE-P50 constant-energy orbit. Left: configuration space; Right: energy levels.

8
9
10
12



1 INTRODUCTION 1

1 Introduction

One of the central issues in the control of articulated limbs is the specification of trajectories
from one posture to another that satisfy constraints imposed by the task. The contexts in
which these systems operate vary dramatically. In some cases collisions with objects in
the world must not occur, joint range limits may not be violated, and at times the quality
(kinematic conditioning, actuator load, path smoothness) of the trajectory is critical. This
variety of objectives often motivates optimization techniques that use models of the task
to search for trajectories that meet task specifications. However, these approaches are
typically expensive and rely on the existence of complex models that are both complete
and correct. As result, trajectory search may lead to brittle strategies that fail in ways
that cannot be fully anticipated beforehand, perhaps from seemingly minor deficiencies in
the task model. Even if the plan is acceptable, it must be compiled into a strategy for
driving the actuators so as to track the desired trajectory precisely. The problem is further
complicated when one considers that the constraint satisfaction problem is applied to a
dynamical system that must behave in a manner that is consistent with the forces and
inertias in the limb. This complication is especially important in periodic or orbital motion
control — a very important class of motion control applications in both biological and robot
systems. A theory is required for motion control that incorporates generic constraints, that
is dynamically consistent with the articulated structure, and that suppresses disturbances
during execution.

In contrast to search techniques, potential field methods can be used to formulate "total
energy” methods for planning motion. The use of a constant-energy constraint for control
has been explored for hopping and juggling robots 34, 14, 33]. In general, the approach
presented here converges to approximately constant energy orbits when released from an ini-
tial state with non-zero potential. The “energy reference” concept described here is likewise
an attempt to control the system such that the system’s total energy is conserved. In the
case of hopping or juggling robots, all of the terms involved in computing total energy arise

from natural, possibly external constraints (e.g., spring energy, gravity, contact damping).
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In contrast, the treatment here relies on an artificial potential (in the same sense as in [22]).
The regulation of such orbits can be achieved by using an energy-referenced feedback com-
pensator based on an artificial Hamiltonian function for the system. A reference energy of
0 causes the system to converge to one of the minimum points of the potential and positive
energy references induce orbits in the neighborhood of stable critical points of the potential.

In this chapter, we present a total energy method which treats the manipulator as a
perturbed Hamiltonian system. We employ a harmonic potential field which precludes the
existence of local minima. In addition, for a dynamically compensated mechanism, the
phase space structure of a manipulator “copies” the critical point structure of the harmonic
potential. This result is used in conjunction with harmonic potentials to generate and
control both convergent and repetitive motion plans for a manipulator. Control derived
from harmonic potential fields result in bounded-torque controllers and produces compliant,
collision-free kinodynamic behavior®. As an example of the generation of such cyclic motions,
the energy-referenced control scheme is implemented on a simulated leg executing a walking
gait. We will conclude the chapter with a brief discussion of a recent neurophysiological
model [11, 12] that postulates a role for the basal ganglia as a potential-based motor planning
mechanism. The work described here offers a plausible extension of this biological model
into the realm of continuous and repetitive motion. The ultimate goal of this work is to
incorporate energy and task constraints in a common framework, and to support general

classes of kinodynamic planning and control.

2 Harmonic Potential Functions

Potential fields are often cited in the robotics literature as a means of generating respon-
sive, sensor-based robot path plans [17, 24, 31, 27, 2, 30, 19]. Unfortunately, the usual
formulations of potential fields for path planning do not preclude the spontaneous creation
of minima other than the goal. The robot can fall into these minima and achieve a stable

configuration short of the goal [17, 2, 26, 4, 3].

*Kinodynamic behavior is used in this context to denote motion plans that are both kinematically
correct and dynamically feasible.
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Koditschek [20] introduced the formal notion of an admissible potential function which is
suitable for robot path planning. A series of papers [21, 22, 23] established a framework for
using artificial potentials to plan and control the trajectories of a mechanical system (e.g.
a robot manipulator). Using a total energy formulation, bounded-torque “safe” controllers
can be derived as long as the artificial potential satisfies certain constraints. In [21] it is
shown that the manipulator copies the critical point structure of the artificial potential.

Connolly, et al. [8], and independently Akishita, et al. [1] described the application
of harmonic functions to the path-planning problem. Harmonic functions are solutions to

Laplace’s equation,

¢ 3% ¢
¢ dg3 ~ dq7 T Ogd °

where ¢ is a scalar function of n independent configuration variables, {go,g1,...,qn}. Har-
monic potentials generally satisfy the constraints established by Koditschek, and exhibit

several useful properties which make them well suited to motion control applications[13]:

correctness — harmonic potentials obey the min-maz property and thus exhibit no local

extrema other than goals and obstacles,

completeness — if a path exists, it will be found up to discretization error in the envi-

ronment model,

robustness — control derived from the harmonic potential responds well to imprecise
and/or newly observed constraints, and gradient descent of the harmonic potential

minimizes the probability of encountering a known constraint before achieving the

goal[7], and

responsiveness — the steady state voltage distribution in a resistive array is described
mathematically by Laplace’s equation suggesting the potential for fast analog [29, 38,
36) or massively parallel digital implementations.

In contrast, other techniques [3, 5] require substantial off-line computation which prohibits
the system from reacting well to unexpected changes in the environment. Harmonic po-

tentials can be computed over arbitrary, discretized environments by very fast relaxation
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Figure 1: Conversion of a Cartesian bitmap to a C-space bitmap.

techniques The relaxation times for computing potentials in the examples presented in this
chapter are in the millisecond range. Detailed discussion of numerical relaxation techniques

and examples of robot control applications using this approach can be found in [13].

2.1 Configuration Space

The configuration variables {go,1,...,gn} of an articulated mechanism constitute a nat-
ural representation in which to represent motion plans. In this configuration space, the
manipulator is mapped to a point [25]. The path planning problem is then posed as the
construction of an obstacle-avoiding path from a start point to a goal point in configuration
space.

A bitmap representation of the workspace suffices for computing the desired harmonic
function. Figure 1 illustrates the conversion process: a Cartesian space grid is constructed
which contains information about obstacles and goals. Two bits are used to distinguish
obstacles, goals, and freespace in the configuration space grid. Each configuration coordinate
corresponds to a volume in Cartesian space occupied by the manipulator. If any subset of
the Cartesian bitmap occupied by the manipulator contains obstacle constraints, then the
configuration space bitmap coordinate is marked as an obstacle.

Figure 2 shows the result of this mapping for a simple robot workcell. A rectangular object
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Figure 2: Configuration space for a 2 degree of freedom, planar arm.

is illustrated inside the workspace of a 2-dof planar manipulator. The configuration space
for this problem wraps around at the boundaries. There are multiple goal configurations and
there are inaccessible goal configurations embedded within obstacles. In the most straight-
forward implementation, obstacles are clamped at a potential of 1 while goals are tied to
ground (0). The scalar potential over the remaining freespace can be computed using a

variety of simple algorithms (Jacobi, Gauss-Seidel, Successive Over Relaxation) [9].

3 Energy-Referenced Control

We will consider the class of controllers consisting of a model-based controller whose com-
mand accelerations were obtained from the gradient of an artificial potential. If we assume
there exists a perfect dynamic model of the system, then each degree of freedom in the
system can be linearized and decoupled in a feedforward dynamic compensator. Under
these conditions, we may assume that the system behaves as a unit mass “marble” moving

across the harmonic potential surface. This system has the following artificial Hamiltonian
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Figure 3: Energy-reference controller.
function:
1
H(g,p) = 3lIpll* + 8(q) (1)

where ¢ is an artificial potential, and g and p are configuration and momentum, respectively.

This results in the following phase space trajectory constraints:

g= %% =p (2)
p= —% =-V¢

Note that Equation 1 is essentially the total energy function for the dynamically compen-
sated system. Thus, the reference acceleration is proportional to the negative gradient of
the potential ¢.

In practice, an energy-referenced damper is used to regulate system energy. This can be
used to overcome dissipative forces during orbital motion (H,.s = Ejp), or can be used to
dissipate energy during convergent motion (H,.s = 0). Figure 3 shows the proposed control

system. Ideally, the total energy of the system should remain at a reference energy:

H,e = %(p+ Ap)? + ¢(q) (3)

where g and p are the configuration and momentum, respectively, and Ap is the momentum

change required to satisfy the energy economy.

Ap = [2(Hyes — $(a)))"? - p. (4)
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For a given reference energy, H,.s in Figure 3, this compensator is ¥(¢(g), p) defined as

follows:

$(6():0) = [2(Hresr — (@) - p (5)

when ((Hrep — ¢(g)) > 0)

-p otherwise

In the first case, H,ey > ¢(q), and enough energy is introduced in the form of momentum
to make up for the system energy deficit. In the second case, the system potential, ¢(g), is
already too high with respect to the reference and the kinetic energy compensation behaves
as a damper to dissipate momentum. In the examples presented, kinetic energy is added or
removed only along the current trajectory.

Under these conditions, the reference acceleration of the system is:

q'fej = "'V¢ + Gke 1/J(¢(Q), P) (6)

where G is the derivative gain.

Obstacle potentials can be fixed at a uniform value, @3,, which is the maximum potential
energy in the system. Under an energy-referenced control scheme, the system energy will
never exceed the obstacle potential. If errors in the energy-reference controller are neglected,
then as long as Hyey < @obs, the system can not encounter a configuration space obstacle
with non-zero velocity. In general, level sets of ¢ at ¢ = H,.; will bound the motion of the

system.

3.1 Resonance

The system can be driven to an oscillating or resonating state by setting H,, + to some value
between 0 and @op,. This results in an approximately constant energy trajectory that is
bounded by the corresponding equipotential set of ¢. Figure 4 shows an example of such an
orbit, using a dynamic simulation of a 2-link revolute arm. The potential minimum is seen
as an open square in configuration space (leftmost pane), while the filled squares on the

boundary of the left pane are obstacles at the maximum potential. In this example, H,, y
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Figure 4: Constant-energy orbit. Left: configuration space; Right: Cartesian space.

was set to a value of 0.7. The averaged error in the total energy (over 100 control cycles)
was 0.003.

The balance of kinetic and potential energy maintains the elliptical motion shown in
Figure 4. Since the structure of the phase space is determined entirely by the critical point
structure of the potential, it is possible that this representation can be used to “plan” simple
repetitive motions. When H.,.; is set correctly, the system is trapped within the basin of

attraction of a goal (low-potential) point, and will orbit that point indefinitely.

3.2 Tracking Precision

Just as in classical feedback compensators, the precision and settling time of the system as it
seeks the reference energy are a function of the control gains for proportional and derivative
feedback. To provide a data point regarding the stability and tracking performance in a real
system, the energy-referenced control scheme was implemented on a VME-based architecture
for a GE-P50 robot arm. The shoulder and the elbow were controlled forming a 2-dof planar
arm. The P50 is a relatively massive industrial robot for which only coarse feedforward
dynamic compensators are available. This is a common deficiency in most real systems
(and perhaps biological systems as well), the effect of which is to introduce unmodeled

disturbances. Figure 5 shows an example of an orbit on this system. The left pane depicts
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Figure 5: GE-P50 constant-energy orbit. Left: configuration space; Right: energy levels.

the configuration space of the robot where the cross represents the goal configuration (at a
potential of 0) and the squares represent obstacles (at the maximum potential value of 1).
The right pane shows the different energy levels measured during the orbit. The example is

typical of real systems and illustrates that relatively small tracking errors are possible for

suitable control parameters.

4 Simulation of the Human Leg

Human bipedal locomotion is naturally expressed as an orbital gait pattern and if the thesis
of this chapter is correct, should consist of a synergy between a constraint satisfaction
problem and dynamically feasible motor plans. The constraints in this case, require that
the trajectory does not exceed the kinematic limits of the leg. This section introduces a
simple kinematic and dynamic model of the human leg and generates a periodic gait pattern
using the energy-referenced control scheme. The performance of the controller is compared

to data derived from a human subject.
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Figure 6: Geometry of the Simulated Human Leg.

4.1 Mechanics

A three degree-of-freedom, planar mechanism approximates the leg as illustrated in Figure 6.
The thigh, shank, and foot are included and the motion of the leg is restricted to the sagittal
plane (x-y plane). Each of the three links is characterized by a point mass located at the
center of mass, a rotational moment of inertia, and associated geometry. These parameters
are defined as those of the subject used in the walking trial example found in [39]. The mass
moments of inertia were calculated using the data for the radius of gyration specified in [39).
Note that values for the location of the center of mass are the lengths from the proximal
end of each segment. The values associated with the inertial parameters are summarized in

Table 1.

The simulation also models the passive elasticity in each joint since this is known to play a
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Table 1: Kinematic and Dynamic Parameters of the Human Subject

Link Length | Center of | Mass | Moment of Inertia
(m) | Mass (m) | (kg) (kg * m?)
Thigh (0) 0.36 0.16 5.67 0.079
Shank (1) 0.39 0.17 2.34 0.032
Foot (2) 0.24 0.12 0.82 0.010

significant role in managing the motion of the skeleton. The complex interconnection of limb
segments in a human body involves many muscles, ligaments, tendons, and skin crossing
each joint. A passive joint moment arises from the deformation of all these tissues. Our
technique for including the elastic moments about the hip and the knee in our model was to
use actual measurements of such moments from in vivo human joints [40, 28]. Exponential
functions were then fitted to this experimental data. These functions show the relationship
that the average passive hip and knee moment has to its respective joint angle. Clearly as
a joint nears its respective limit, the passive elastic moment increases greatly. Since the
elastic moment of the hip is also strongly dependent on the angle of the knee, (if you try
to rotate your hip forward, you will see it becomes more difficult as your knee is further
extended) we use one of three different curves for determining elastic moments of the hip

depending on the current knee angle.

4.2 Dynamics

The dynamic model employed by our simulated monoped is given by the following,
T = M(8)6 + C(6,9) + G(6) + E(6). (7)

M (6) is the 3z3 inertia tensor for the manipulator, C(8, §) introduces Coriolis and centrifugal
loads, G(8) represents the gravity loads, and E(6), is a vector which accounts for moments
from the natural elasticity of tissues around the joints of a human leg. Equation 7 transforms
the state of motion, (6,8',9'), into the torque load 7 at each joint in the mechanism. The

Newton-Euler method was used to obtain the dynamic equations of motion. The complete
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Figure 7: Typical angle-angle diagram of a walking gait.

equations of motion are summarized in Appendix A.

4.3 Terminology

The term “gait pattern” is used here to refer to the periodic leg trajectory generated when
people proceed over smooth terrain. More specifically, this paper focuses on walking gaits.
Figure 7 illustrates a common cycle in a walking gait. This diagram is referred to as an
“angle-angle” diagram in the biomechanics literature[15), essentially equivalent to the notion
of the configuration space. The time history of the hip and knee configuration characterize
the gait. Toe-Off (TO) is the point when a given foot leaves the ground at one of the
lesser of the two peaks in knee extension. After TO, the leg is considered to be in the
swing phase until it contacts the ground once again. Swing phase terminates when the
heel makes contact with the ground where the knee angle reaches to about 3 radians, almost
full extension. At this point, called Heel Contact (HC), the leg enters the stance phase
of the cycle where it remains until TO again. The stance phase is the part of the orbit
between HC and TO, seen by the “dip” at the top of the cycle in the angle-angle diagrams.

One walking stride is defined as the time period between successive TOs. The complete
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stride is one orbit in the counter-clockwise direction from TO to TO. The range of motion
of both joints is indicated by the total area covered by the cycle. Knee flexion, where the
angle gets smaller, is indicated by a downward motion in the y direction, and knee extension
is any upward motion on the plot. Just the same, hip rotation forward is to the right and
backward rotation is to the left on the x-axis.

Angle-angle diagrams are helpful in evaluating and comparing gaits. Besides hip and knee
angle-angle diagrams, knee and ankle diagrams are often used. The usefulness of angle-angle

diagrams for therapeutic means is noted by [35].

4.4 Energy-Referenced Control

In the examples included in this section, the boundaries are configured as shown in Figure 8.
The dark regions represent obstacles assigned a potential of 1. These obstacles represent the
Jjoint angle limits of the leg. The grey squares represent goals assigned a potential of 0. The
energy reference, H,.y, is defined to be 0.8. The energy-referenced controller manages the
hip, 6, and the knee, 82, while the ankle is subject to the passive elastic moments exclusively.
Figure 8 shows an example of an orbit generated by the energy-referenced controller driving

the simulated leg. The results presented are derived from 10 full simulated strides.
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Figure 9: Comparison of the angle-angle diagram for the human subject and the dynamically
equivalent leg simulation.

Figure 9 presents a comparison of a walking stride derived from the human subject
reported in [39] and the dynamically equivalent simulator. The two angle-angle diagrams
give the general impression that both share a similar pattern of motion. Both execute a
stable, cyclic motion pattern with the characteristic dip during the stance phase, and both
orbits cover a similar area. However, as the overlay illustrates, the simulated knee is not
extending far enough and is flexing too much. As for the thigh angle, it appears to be
rotated forward slightly for the entire stride — rotating forward excessively before HC and
then not rotating backward quite enough for TO. We will discuss properties of our simulator

that may account for some of these differences in Section 6.
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5 Speculations on a Neural Substrate

The motion planning approach described in preceding sections relies on a harmonic potential
to guide and restrict the movement of a limb. Harmonic (or nearly harmonic) potentials arise
in a variety of physical phenomena, e.g., diffusion, electrostatics, fluid flow, and resistive
networks. It seems natural to ask whether it is physiologically plausible for some neural
process to exploit these phenomena for motor planning.

Some recent speculations on the function of the basal ganglia [16] suggest that these
nuclei are involved in associating sensory cues and environmental context with an appro-
priate action or goal. Basal ganglia involvement in motor planning is strongly suggested
by the symptoms of Parkinson’s (e.g., festination, akinesia) and Huntington’s diseases (e.g.,
chorea). One view of basal ganglia function, then, is that they receive sensory informa-
tion (context) from the cortex, and help select appropriate actions and goals based on that
context.

As an offshoot of the work on harmonic potentials for robotic motion planning, a recent
theory for striatal function [11, 10] suggests that a resistive network (or other diffusion-
like mechanism) can serve as a model for the striatum. An additional motivation for this
suggestion is recent evidence of dye coupling among striatal medium spiny neurons [32, 6],
and evidence of gap junctions in striatal parvalbumin neurons [18]. Such coupling among
striatal neurons may allow the striatum to be thought of as a resistive network. In addition,
because of the uniqueness properties of Laplace’s equation, there is a one-to-one mapping
between a given context (e.g., environment map), and the potential in the resistive network.
This is consistent with the context-recognition view of the striatum described in [16].

As stated, the theory in [11] represents the pure path planning case, that is, motion
is planned as a gradient descent on a harmonic potential. A natural extension to this
theory would bring in the results described in this chapter, thus incorporating the physical
properties of the limb (e.g., mass, joint viscosity) in the motion planning process. One
consequence of this theoretical treatment is an explanation for festination (the “running-

down” seen in Parkinson’s patients): The inability to maintain striatal potentials during
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repetitive motion (e.g. walking or handwriting) results in progressively smaller orbits, until

the motion ceases altogether.

6 Summary and Discussion

In this chapter, we have reviewed the properties of harmonic functions for motion plan-
ning and control. We introduced the configuration space representation and motivated a
procedure for mapping task geometry to accessibility constraints for articulated limbs. On
the basis of the resulting harmonic potential function, we formulated an energy-referenced
controller capable of sustaining periodic, orbital motion and demonstrated such orbital mo-
tion in idealized simulations and in real robot systems. We then introduced a kinematic and
dynamic model of the human leg and applied the energy-referenced control paradigm to this
system. It was demonstrated that this approach can yield qualitatively similar behavior to
that observed in the human walking gait. The results of this exercise lend some credibility
to the notion that repetitive motion plans must solve constraint satisfaction problems in a
manner that is consistent with the underlying dynamics of physical systems. We concluded
the chapter by drawing parallels between the synthetic motion controller and a postulated
role for the basal ganglia in motor control.

Several important issues regarding the energy-referenced control paradigm remain unan-
swered at this time. For instance, the constant energy manifold in a 4-dimensional phase
space is 3 dimensional and is therefore under constrained. There is an opportunity to use
this degree of freedom to advantage when distributing the feedback energy. For example,
currently momentum is added or subtracted from the system along the current trajectory.
It may be possible to address phase space constraints, e.g., maintenance of a particular
phase relationship between joint velocities, or to excite fundamental oscillatory modes of
the device. This may provide a mechanism for strategically shaping the orbit for a task.

The system as described is a perturbed Hamiltonian system, where the feedback law
provides perturbations to p at servo rate. If there is a single minimum within one simply
connected component of the configuration space, then we expect the trajectory to be fairly

stable (although under-constrained). When there is more than one minimum, however, it
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might be expected that stochastic regions would develop near the hyperbolic fixed points in
phase space, arising from saddles in ¢. A more detailed analysis of the perturbation could
yield energy or action-variable limits that would guarantee stability.

Although it is premature to draw any strong conclusions with respect to the proposed
role of the basal ganglia in motor control, we have shown that dynamic oscillators driven
by conservative potentials form a compelling basis for periodic, kinodynamic behavior. The
value of harmonic potentials in robot systems is manifold: from their computational charac-
teristics, collision avoidance properties, robustness with respect to cumulative information,
their ability to incorporate generic constraints, and the absence of local minima. Moreover,
the variety of natural processes captured by Laplace’s equation and the potential to exploit
massive parallelism when computing harmonic potentials offers powerful (albeit circumstan-
tial) evidence that this process could reside in the basal ganglia.

However, the difference between our simulator and a human biped is significant. In
the course of this research several notable, and potentially important deficiencies in the

simulator were identified.

1. Functional constraint specification — In robot control applications, it has always been
prudent to treat joint angle limits as repulsive boundaries and to thus minimige the
probability that a trajectory plan would violate them. However, in the human walking
gait, joint limits are functionally important. During the stance phase, the knee is very
nearly fully extended. This make sense in that during the load carrying phase of the
stride, it is effective energetically to carry that load in the skeleton rather than in
the musculature. This is the effect of posturing the leg near a kinematic singularity
during this phase. It may be advantageous to build this type of heuristic into the
boundary constraints, perhaps by actually posting a goal in configuration space that
tends to extend the knee when the hip is in a vertical configuration, to better express

the walking task.

2. Foot shape and ground reactions — The effect of a periodic external perturbation on

the orbit can be a primary influence on the shape of the kinodynamic orbit. Moreover,
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the shape of this periodic forcing function, a property that depends on the shape of
the foot, is likewise, potentially critical. The simulated leg does not experience these
loads. This fact could account for many of the differences found. Specifically, the
tendency of the orbit to be skewed forward might be due to the lack of a backward

directed friction force during the support phase.

. Non-inertial reference frame — The inertial frame of reference for the dynamic simu-

lator is located at the hip. This permits the hip to torque against the inertial frame.
In a complete model of a biped, momentum must be conserved implying that for
every leg movement, there must be a coordinated movement somewhere else in the
structure. This is the role of contralateral arm swing. This issue affects not only the

torso and arm, but also influences the leg orbit as well.

These issues will be addressed in future versions of this integrated controller.
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A Equations of Motion

The following are the dynamic equations of motion for the three link manipulator.

where:

Mo][0]
Mlo)[)
Mo](2]

M(1][0)
MQn)
M(1)[2)

M(2)[0]
M(2){1]
M(2][2]

m(l]ll] =

m(l][2] =
m(1)[3] =

m(2](1]
m(2](2]
m(2](3]

m[3][1] =
m(3][z) =
m(3](3]

M(6)= | M[i0] MQJ1] M(1)[2)

Mojfo) M[o]l1] M [0][2]]
M2)0) M[2(1] M([2)[2]

m[1)[1] + Jo + L2 ngmo + I3(m1 + ma) + 2(e9 + €10 + e8)
m(1][0]
m[2][0]

m[1][1] + 8 + €9 + €10
= m[l][2] + I + lf,,,lml + l?mz +e7
= m{2]1]

= m[2][1] + e8
= m[2)[2] +e7

I’ + lzm2m3

L+ Upama + L+ Byma + ma + Lo + Bomo + 13 (m1 4+ ma2) +
2(e7 + €8 + 9 + €10)

L+8C ama+ L+, ,my +ma + 2e7 + €8 + €9 + €10

I +2mam; + €7 + 8

L+ Bmama + L+ Bymy + Bma + 2e7 + €8 + €9 + €10
L+ Emama + I + Bpyma + lima + 2e7
L +82,ama +e7

L+ 12, .m; +e7+e8
L+ ama+e?

L +18,ma



A EQUATIONS OF MOTION

where:

Clo]

ch
C(2)

where:

el
e2
e3
e4

I

Clo)
c(6,6) = [ cl1] ]
C[2)

—2e3éoé1 - 284@061 - e39.f - e49.f - 2e1éoé; - Zelélé: - elég - 2e290é1 -

€207 — 2¢20,0, — 2¢26,0; — 262

e39?, + e4ég — 2e1606; — 2e16,6; — elég + e20.g

elé? + eZég

G[o]
G(6) = l G[1] l

G[2]
G[0] = glemomosinbo + glomyainty + gloma sinbs + G[1]
G[1l] = glemimisin(fo + 6:) + glimasin(6o + 6:) + G[0]
G[2] = glemamasin(6o + 61 + 63)
lemalimaaind, e’ lemalimacosf;
lemalomasin(6y + 63) e8 = lemalomacos(6y +63)
lemilomi8ind, e9 = lcmilomicosty
lolimasiné, el0 lolymacosh,

23



