~

Efficient Transaction Support for

Dynamic Information Retrieval SystemsJr

Mohan Kamath and Krithi Ramamritham
Computer Science Technical Report 96-15
Department of Computer Science
University of Massachusetts
Amherst MA 01003
{kamath, krithi} @cs.umass.edu

Abstract

To properly handle concurrent accesses to documents by updates and queries in informa-
tion retrieval (IR) systems, efforts are on to integrate IR features with database management
system (DBMS) features. However, initial research has revealed that DBMS features optimized
for traditional databases, display degraded performance while handling text databases. Since
efficiency is critical in IR systems, infrastructural extensions are necessary for several DBMS
features, transaction support being one of them. This paper focuses on developing efficient trans-
action support for IR systems where updates and queries arrive dynamically, by exploiting the
data chiaracteristics of the indexes as well as of the queries and updates that access the indexes.
Results of performance tests on a prototype system demonstrate the superior performance of
our algorithms.

Keywords: Concurrency Control, Recovery, Transaction Management, Index Management,
Information Retrieval, Optimization, Performance, Digital Libraries

t Supported by NSF grant IR1-9314376 and a grant from Sun Microsystems Labs

Contents

1
2

Introduction 1
Data and Transaction Characteristics 3
21 DataModel 3
2.2 Query and Update Processing e e e e 3
2.3 Performance and Correctness Requirements 5
System Architecture ' 7
-Concurrency Control 8
4.1 Scheme 8
4.2 Discussion e e e e e e e e 11
Logging and Recovery 13
5.1 Scheme 13
5.2 Discussion 14
Performance Tests 15
6.1 Prototype System e e e e e .. 15
6.2 Natureoftests 15
6.3 Results e e e 16

Conclusions S 19

1 Introduction

Recently there has been an explosion in the size of text databases and the number of on-line sites
containing text databases. To handle this growth and to cater to more sophisticated queries, in-
formation retrieval (IR) systems have been evolving rapidly. Providing transaction semantics for
concurrent accesses by updates and queries to documents has been a long recognized goal. Hence
recently there have been some research efforts to integrate information retrieval (IR) features
with database management system (DBMS) features [Fuh93, BCCM94, DDS+95]. However, ini-
tial findings have revealed that DBMS features optimized for large traditional databases show
performance degradation while handling text databases [DDS*95]. Efficiency is a critical factor
that governs the success of large IR systems and hence successful integration of IR and DBMS
features requires careful analysis and redesign of some of the DBMS features. One of them is
transaction support for IR and it has received little attention both from the IR and DBMS
research communities.

This paper proposes efficient transaction techniques for IR systems, focusing on index man-
agement. Specifically, to achieve high performance, our concurrency control and recovery al-
gorithms exploit the data characteristics of the indexes as well as of the queries and updates
that access the indexes. In this paper, we primarily focus on dynamic IR systems (DIRS) where
queries and updates arriving dynamically are processed. Thus the articles of interest to a user
are known only when a query arrives. This is unlike systems like SIFT [YGM95a| and Tapestry
[TGNO92] which are geared to continuously respond to statically specified queries or filters. In
these systems, a new document that arrives is routed to a user only if it passes the filtering
criterion specified by that user. Neverthless the techniques we describe for dynamic queries
are applicable to these static queries as well. An'example of a system that handles dynamic
queries is an on-line search system for web pages and news articles (like Infoseek search). Here
documents arriving over the network with rates sometimes as high as 100 MB/hour [Cro94] are
continuously analyzed and added to the system, while several thousand queries are processed
every hour.

In many IR systems, for example, news retrieval systems, the most recently added items
are often the most relevant ones. Also for any general query, the best document that satisfies
the query could be among the latest documents added to the system. Thus, all efforts should
be made to consider the most latest documents for processing a query. A similar situation
exists in distributed IR systems, comprised of 1000s of independent text databases. In the
tezt-database discovery problem[YGMO95b], before answering a query, the most af)propriate site
which contains documents that best match a query is to be determined. This is achieved by
accessing a local database that is continuously updated using meta-information arriving from

other sites. If concurrent updates (latest updates in particular) to this local database are not
handled properly, the query could be directed to a less appropriate site when in fact there
are better sites. Our concurrency control and recovery algorithms are specifically geared to
handle such scenarios where changing information must be accessed in dynamic decision making
scenarios.

Since text databases store huge collections of documents, they can be efficiently retrieved
only with the use of indexes, which are usually referred to as. inverted-lists. An inverted-list exists
for each keyword (term) that exists in one or more documents in the text database. It contains
the document IDs of documents that contain the keyword. Optionally, other information like the
number of documents that contain the keyword and the location information about the keyword
(within the documents) will also be stored. Since the document themselves are immaterial to
the processing of query/update transactions, in this paper, we concentrate mainly on index
management.

In DIRS, when new documents are added, updates to the indexes can be modeled as trans-
actions. If updates to indexes are done as database transactions, traditional concurrency control
schemes would acquire long term locks on the data items for updates. However, an analysis of
the data characteristics of the indexes and transactions that access the indexes reveals that there
are no tight inter-relationships between the index entries as is the case between data items in tra-
ditional database systems. Consider the addition of two independent documents (we will return
to dependent documents later). This will result in the document ID being added to the index
entries of the keywords that appear in the two documents. Thus the updates are actually ap-
pends and hence there'is no dependency between the different data items being updated. There
is thus no need to ‘perform inplace updates as far as document additions are concerned. This
has tremendous implicatiohs on the design of concurrency control and recovery schemes. We
have designed a concurrency control scheme that uses latches (short term locks) in combination
with a novel technique called operation reofden’ng to achieve the correctness of updates while
also satisfying the recency requirement. Because update transactions are of long duration, use
of latches with operation reordering significantly improves the efficiency of the system since the
locking overheads incurred for reading indexes to process queries and for updating indexes after
document -analysis are reduced. We have also incorporated special schemes to efficiently handle
deletions and modifications to documents. To handle recovery, simple but effective schemes have
been designed since there is no need to undo changes that have already been made by updates.
Because update transactions are of long duration, transaction splitting techniques have been
used to reduce restart time while recovering from system failures. From the point of view of
information service providers, the high performance resulting from the use of our schemes will
be very attractive in order to remain competitive.

The rest of the paper is organized as follows. Section 2 discusses the data and transaction
characteristics in IR systems. Section 3 presents the architecture of system. Section 4 describes
our concurrency control and locking schemes. Section 5 discusses our logging/recovery schemes.
In section 6 we describe our prototype system, performance tests and present the results of our
performance tests. Section 7 concludes the paper.

-2 Data and Transaction Characteristics

In this section we present our data model and then analyze the performance and correctness
requirements of transactions in IR environments.

2.1 Data Model

Documents added to the system can be structured or unstructured. Irrespective of the structure
of the documents, in this paper we will assume that they are manipulated as a complete entity,
As they are added to the system, they are assigned monotonically increasing IDs that serve as
logical identifiers. Since inverted-lists have to be accessed quickly, normally B-trees (or some
other index structure) are used to maintain a keyword-index. There are several ways in which the
inverted-lists (secondary index) can be linked to a keyword in a B-tree node [GR93], especially
for non-unique keyword additions. The choice reflects the tradeoff in the number and type of
accesses. The type of structure used for maintaining the keyword-index or the inverted-list is
not relevant to us since the techniques we are proposing in this paper are independent of the
structure used.

In the case of static queries (filters), user-profiles are stored in the database. Users can
modify them at any point in time, even while they are being continuously evaluated as inverted-
lists are updated. The user’s new profile should go into effect as early as possible. Both static
profiles and dynamic queries consist of a set of keywords and the operators connecting (logical -
AND/OR, proximity - NEXT, etc.) them. The query goes through an optional query expansion
phase by referring to the context dictionary, t.e., a user specified query is transformed to have
more semantic context (by changing/adding new keywords) before it reads the inverted-lists
[LK94, BGAS94]. Any changes made to the context dictionary should also be reflected in the
system at the earliest.

2.2 Query and Update Processing

When a document is added to the database, the indexes must be updated to reflect the addi-
tion of the new document to the database. Suppose a new document has fifty keywords, say,

“summer”, “olympics”, “Atlanta” and so on. When this document is added to the database, the

fifty keywords must be added to the keyword-index, if they are not already there, and the ID
of the document must be added to the inverted-lists associated with them. Thus, these updates
are typically in the form of appends, i.e., the document ID is appended to the inverted-list
associated with each of the keywords. ' :

Although it is-possible to access and update these indexes on the fly as the documents are
analyzed, it is not done so for two reasons. The cost of accessing the indexes and acquiring locks
several times is high. Hence the new documents are analyzed first in a batch and the keywords
extracted, and all the inverted-lists are updated at the end in an incremental fashion as shown in
figure 1. The incremental strategy also obviates the need to rebuild indexes[BCC94, TGMS94].

Given the keywords relevant to a query, the set of inverted-lists corresponding to these
keywords is identified. After reading the inverted-lists, the document IDs and other required
information are extracted from the inverted-lists. Further query processing is done based on
the type of the query and other operators specified in the query. Once the document IDs are
determined, query processing is complete and the user is presented with the basic information
about the documents like the abstract or the first few lines. Several optimizations can be
performed to truncate the search process [Bro95).

The shaded areas in figure 1 show the scope of the transactions during query and update
processing. Accesses to inverted-lists in this area are to made only after acquiring locks.

UPDATE TRANSACTION) QUERY TRANSACTION
e <¢— BEGIN Transaction
Add Documents
Doctll<ment P(r’ocessinig gz
and Keyword extraction : R
to create incremental » [Vse information to <¢— END Transaction
inverted lists determine documents
e ra] € DEGIN Transaction | that best qualify fora
query
Browse/Retrieve
Documents

=~ END Transaction

Figure 1: Transactions in DIRS environments

2.3 Performance and Correctness Requirements

To amortize the cost of accessing and updating the indexes, a group of documents is analyzed as
a batch. Thus updates are performed on a large number of inverted-lists, increasing the duration
of such updates. When updates are of long duration, queries will have longer response times and
the probability of transactions deadlocks also increase [GR93]. After identifying the performance
and correctness considerations, we exploit them to design high performance concurrency control
and recovery schemes tailored for DIRSS.

~ There are a number of distinctions between the réquirements of DIRS environments and that
of traditional applications like bankingt .+ . :

o In banking, an account’s value depends on other subaccounts or related accounts and
hence there exist dependencies between the individual data items. In DIRS applications,
the index entries for two documents are not tightly related. Of course, the indexes must
correctly reflect the contents of a document and this leads to con51stency requirements

relating a document and its correspondmg index entries.

e Updates often add entries to the indexes!, i.e., a’ particular index entry is not written
based on the content/value of the same or some other index entry and thus the contents
of one data item are independent of other data items. Thus, in DIRSs, as opposed to
arbitrary operations which update the data in-place, appends/additions are the norm.
These operations commute.

These distinctions lead to differences in the way updates and queries are structured as trans-
actions in DIRS and in the atomicity, consistency, and durability properties associated with
them:

o The atomicity requirement is that all the changes to the document database and the
indexes must exist at the end of the update transaction.

o The consistency requirement is that at the end of the transaction both the documents and
the indexes must be mutually consistent.

o The durability requirement is that at the end of an update transaction all the documents
and changes to their index entries must be durable in the database. If there are system
failures, the transaction must continue from the point where the failure occurred since
in unacceptable to start the transaction all over again from the beginning. We should
attempt to perform forward recovery upon a failure.

!We will consider the issue of deletes and modifications later in section 4.

Because update transactions can be of long duration we should be concerned about the
isolation properties of these updates especially since queries are typically of short duration.
Isolation requirements can be usually specified based on the dependencies between the read (R)
and write (W) operations. The three dependencies we need to consider are W-W, W-R and
R-W [BHGS87]. '

o W-W dependencies: Since updates are in the form of appends and appends to a set can be
considered to be idempotent?. Appends also commute and hence these dependencies need
not be tracked. If the index also stores a count of documents that contain the keyword,
it will have to be updated based on the previous value. However additions of documents
entail incrementing this counter and increment operations are commutative. For these
reasons, W-W dependency can be ignored.

o W-R and R-W dependencies: These correspond to a query and an update executing con-
currently. Since (1) .an update transaction updates the index entries associated with the
documents one keyword at a time and at most once, (2) a query reads the index entries
associated with a keyword only once, and (3) thereare no integrity constraints between the
keywords, not tracking these dependencies simply means that a query and a concurrent
update are unaware of each other; the index entries read by the query will reflect all the
updates done until then to the indexes and so the query results will be correct in the sense

that it will not return any extraneous documents. Thus, from a correctness point of view,
W-R and R-W dependencies need not be tracked.

Unfortunately, if W-R and R-W dependencies are ignored, the query results will not reflect
updates to index-entries that are yet to be done by updating transactions which are still in
progress. The net effect is that a query may not consider the most recent articles. Suppose new
documents on “relational database products” are being added to the database and the update
transaction has only updated the index entries for keyword “relational” and is yet to update the
keyword “database”. If a query needs articles that contain “relational” and “database” in it,
it would read the updated metadata for “relational” and nonupdated metadata for “database”
and miss out on all the new documents that would have really qualified. Thus tracking updates,
and more specifically, the needs of queries vis. a vis. the concurrent updates, is very important
since they affect the result of the query. If a query does not consider the most recent additions
to the database, its results will be outdated. The age of the documents considered by a query is
an indication of the recency metric. To improve this metric, query processing must be cognizant
of concurrent updates.

2The append operation can be implemented in an idempotent manner to avoid duplicates.

Documens Queries

Query
Anulyzer Pre—processor

Update Trunsactions Trunsformed Queries

Lack Tr N Query Transactions | Query
Munager . Manager I Processor
\ Index

Log Data
Munager

Figure 2: Software Architecture of DIRS Server

_To summarize, the isolation requirements of queries and updates justify use of latches, which
is a major advantage - since updates and queries need to latch only one data item at a time, index
accesses involve only short waits and no deadlocks occur. This indicates that long terms locks
used in several traditional applications can unnecessarily degrade performance in IR systems.
Because latches do not help track W-R or R-W dependencies on specific metadata items, we
need some other means to satisfy the recency criterion. Towards this end we have introduced
the notion of operation reordering as discussed in section 4. Because dependencies need not be
tracked, the update can be programmed as a mini-batch® [GR93]. Since there no dependencies
between index entries and there are no operations that can lead to logical errors, logical failures
are rare. This allows us to realize efficient forward recovery as discussed in section 5.

3 System Architecture

The software architecture for the DIRS server is shown in figure 2. It contains the essential IR
components and DBMS components necessary for our study.

New documents are processed by the analyzer which forms the incremental inverted-lists.
The analyzer then submits an update transaction to the transaction manager whose data items
are the documents and the incremental inverted-lists. Queries that arrive from various clients go
through the query pre-processor where queries are expanded using the help of a context/semantic
dictionary. The query processor then submits query transactions to the transaction manager
whose data items are the inverted lists for the keywords in the transformed query. The rest of

3Short transactions that perform part of the update. The atomicity granularity is still that of the long update
transaction.

the interactions take place in the DBMS components.

The transaction manager keeps track of the queries and updates concurrently in progress.
The lock manager implements the concurrency control scheme. The transaction manager gets the
required locks on each of the inverted-lists by contacting the lock manager. Once the locks have
been acquired the transaction manager informs the data manager about the data items. The data
manager performs the required read and write operations on the documents and indexes. Index
entries requested by the query processor is obtained from the data manager. The log manager
. oversees the operations of the data manager and logs the occurrence of significant events during
updates. The log manager is responsible for ensuring the durability of the updates, i.e., both
the newly added documents and their index entries are made persistent on the disk.

4 Concurrency Control

Having analyzed the correctness requirements, in this section we will first present our scheme
to handle queries concurrently with document additions. Then we describe extensions to this
scheme to handle document deletions/modifications and handle other situations.

4.1 Scheme

Our concurrency control scheme uses latches?, i.;., short duration locks®, for reads and writes.
A latch is the cheapest form of lock that can be used to ensure consistency of data in case of
physical rearrangement of data on pages. If we are interested only in correctness and “recency”
of documents is not a concern then just using latches is sufficient. However, since recency is of '
interest to us, we introduce a new locking technique called laiching with operation-reordering.
This technique exploits knowledge about data and transactions. The algorithms are shown in
figures 3 and 4. '

Recall that after the documents have been analyzed, the inverted-lists to be read and written
by the queries and updates respectively are known and an inverted-list is accessed only once.
When a transaction arrives, the transaction manager informs the lock manager about all the
inverted-lists that will be accessed by the transaction. The lock manager also keeps track of all
the active update transactions. When a query arrives the lock manager will perform a conflict
check with all active update transactions to see if there are any common inverted-lists. If there
are inverted-lists common to a query and a concurrently executing update transaction, then the
ID of that update transaction is added to the query’s conflict list and “hints” are passed to
the update transaction to update these common inverted-lists at the earliest. The transaction

“In the rest of our discussion, we will use the term latch and lock inter-changeably.
®Locks acquired prior to an access are released immediately after the access.

Add inverted-list 1Ds (keyword) to access-set of Transaction;
If (Transaction == Update)
Add Transaction-ID to active-update-transactions list;
else /* Transaction type is Query*/
Check for conflicts with each transaction in active-update-transactions list;
For each transaction that conflicts, add that Transaction-ID to the query’s conflict-list;
Pass “hints” to the transaction manager to reorder the operations of the conflicting transaction
such that the conflicting operations are performed at the earliest;

Figure 3: Establishing conflict set at lock manager & passing hints to iransaction manager

manager in turn reorders the operations of the update transaction and submits updates on the
common inverted-lists first. Once a common inverted-list is updated and the write latch is
released, the query can latch the item and read it. Our mechanism ensures that the query does
not latch the item before the update write latches it and that the updates write to these items
first. This way the lock waiting time for queries is drastically reduced and we can ensure that
the query sees the most recent documents without paying a high price.

The locking mechanisms and data structures are similar to the ones described in [GR93). The
main data structure is a hash table and each hash chain contains a number of locked inverted-
lists. The lock header for each inverted-list contains a list of transactions to whom locks have
been granted and a waiting queue for transactions that need a lock on that inverted-list. When
transactions to whom locks have been granted finish their work, the next item from the waiting
queue is granted a lock. The operations on the lock table are serialized. We have made some
enhancements to the lock hash table to maintain additional information required for operation-
reordering. For each inverted-list, there is a processed list apart from the usual granted list and
waiting queue. The processed list contains transaction IDs of active updates that have already
done an update to the inverted-list after obtaining a write lock. A lock for a inverted-list is
available if there is no entry corresponding to that inverted-list in the table. The lock requests
corresponding to inverted-lists of four keywords are shown in figure 5. We now explain how

locking is done for queries and updates and in the process show how the entries in the table are
utilized. ' '

When an update requests a lock, it is handled as follows: A write lock is granted if it is
available else it is put on the wait queue. After a lock is granted and the write has been
performed, the transaction ID of the update is added to the processed list. When all the
operations of the update complete, the entries corresponding to this update are removed from
the respective processed lists. For this purpose all lock table entries for an update transaction
are chained. When a query requests a lock, the lock is granted only if it is safe (figure 4) and

1. Read Lock/Unlock Request from Query:
If (Operation == Lock)
Perform safety check - ensure transactions in conflict-list have completed or written the inverted-list;
(the above is done in conjunction with the processed-list of the inverted-list);
If safe and lock not granted to write
issue read lock; -
else . N
place request on wait queue for inverted-list;
else /* Operation is Unlock */
If nobody is in the wait queue
. release read lock & delete entry from lock table;
; else /* somebody is in wait queue */
i grant lock to inverted-list on wait queue;

2. Write Lock/Unlock Request from Update:
If (Operation == Lock)
If lock not granted
issue read lock;
else /* lock has been granted */
place request on wait queue for inverted-list;
else /* Operation is Unlock */
Enter Transaction-ID in processed-list of inverted-list
If nobody is in the wait queue
release read lock & deleted entry from lock table;
else /* somebody is in wait queue */
grant lock(s) to inverted-list(s) on wait queue; /* multiple grants only for reads*/
(locks granted to queries only after safety check)

Figure 4: Algorithms for reordering write operations

available else the request is inserted into the wait queue. Then when the lock is available it is
granted and after the operation is performed the entry is removed from the lock table. Note
that only updates are inserted into the processed list.

Note that the above scheme reorders the operations such that the query sees the inverted-
lists after the updates from concurrent update transactions have taken place, thus ensuring that
the query results reflect all documents that have been or would have been added to the database
by all active update transactions present in the system when the query begins. The other case,
where a update begins when a query is in progress is also worthy of consideration. However,
experimental results have shown that the payoffs are negligible, especially since queries are short
compafed to the update transactions. We return to this issue later in section 6.

10

Keyword Locks

Processed | Granted | Waiting ||
;lympics Ul;.Uz 6.2.3 [}s
i.ibrary ‘ l':/;; Q.;Qa [.f'e
D N N R
;ummer Uz;.Us Q“.; : l;e

Figure 5: Lock Table (U; denotes update i, Q; represents query i)

4.2 Discussion

Deletions and modifications are not as frequent as additions in IR environments. Deletion of
a document involves removing the document ID from the various inverted-lists and removing
the document itself from the database. Modification can be handled in two ways. One op-
tion is to add the modified version as a new document and delete the old version. The other
option is to determine the deleted and added keywords by determining the difference between
the documents® and removing the document ID from the inverted-lists corresponding to deleted
keywords and adding the document ID to inverted-lists corresponding to added keywords. Ir-
respective of how the deletion or modification is achieved, they have to be done via an update
transaction. Hence our concurrency control scheme does not need modifications to ensure that
the deletion/modifications are immediately reflected in query results without much overheads.

It should be noted however that deletions and modifications are costly operations in terms
of locking overheads. Hence the following approach can be used to reduce the amortized locking
costs. In the case of deletion, the document IDs for the deleted articles can be maintained in a
purged-documents list ‘with a bound on the maximum size of the list. When the qualifying list
of documents is determined for any query, a check can be performed against this list and the
IDs of the purged documents can be removed from the qualifying list. For modifications, the
first option mentioned above can be used in conjunction with this approach. When the bound is
exceeded or the load is light, the purged-documents list can be analyzed as a batch to determine
all the keywords and the document IDs removed from the corresponding inverted lists. This

6Using a Unix diff like program.

11

approach gives very good performance, especially since deletions or modifications are rare in

DIRS.

Now we discuss the addition of related documents. Although relationships exist for example
in hypertext documents, they do not carry over to their respective index entries. This is because
the documents are first added to the database and the only then are the index entries updated.
When the hypertext documents are addéd, all the documents exist in the database and con-
sistency must be ensured only in terms of having a link in a document point to the correct

_document. Hence our concurrency control schemes do not need any modifications to handle the
" updates of related documents. A document which is pointed to by a link is not permitted to be
deleted unless the IR administrator permits this.

We now discuss how our latching with operation reordering scheme applies to updates to
data entities other than the indexes.

1. The use of our concurrency control scheme for updating the context dictionary is simple.
The updates to the dictionary are done before queries can access the keyword contexts
from the dictionary.

2. The application of our concurrency control scheme to the text-database discovery problem

mentioned earlier is also straightforward. The latest keyword meta-information updates

. arriving from other sites are seen by the query posed against the local database before

routing a request to a site. Thus the queries will be routed to the best site based on the
latest available information without incurring much overheads.

3. In the context of static continuous queries, when a user submits a new profile or makes a -
profile modification, the profile inverted-lists corresponding to these profiles are to be up-
dated. The queries from the document analyzer read these profile inverted-lists [YGM95a]
only after the updates from the profile-modification have updated the profile inverted-
lists. The responses received by a user from the IR system will thus immediately reflect
the profile changes.

To summarize, we have presented a concurrency control scheme that guarantees that the
“queries see the most recent documents without paying a huge cost. Another advantage of
our scheme is that it is independent of the index structure used for the keyword-index and
the inverted-lists. Hence it can be used in the integration of IR with any type of DBMS —
RDBMS or an OODBMS and with any index structure like hashing or B-tree and its variants.
Since our schemes are independent of the index structure used, applications can store and
interpret the indexes [LS88, DDS*95]. We did not discuss the details of concurrency control

scheme for the different tyoe of index structure since they have been thoroughly investigated
[Moh90, ML92, MN92, SC92, LS92].

- 12

5 - Logging and Recovery

In this section we present logging techniques for making document changes durable on the disk
and recovery techniques to ensure consistency in the event of failures. These are implemented
by the log manager. Recall from section 2 that the document analysis phase by itself is outside
the scope of the update transaction and the system inverted lists for each. keyword is updated
all at once inside the update transaction.

5.1 Scheme

‘

First we discuss operations outside the scope‘ of the update transaction. Although these opera-
tions are not logged, since document analysis is a CPU intensive operation, it is unacceptable to
start analyzing a whole batch from scratch in the case of failures. Hence persistent savepoints
are to be taken periodically to flush the partial results (incremental inverted-lists) onto the
disk. Note that these partial results are not stored in the database itself but in a temporary
area. Since there are no logs, persistent savepoints are much simpler than checkpointing — the
inverted-list buffers are flushed to disk and a savepoint record that contains the document ID
of the last document analyzed is saved persistently on the disk. If there is a system failure,
only a little work is lost since the analysis can continue from the next document after the last
savepoint, i.e., the document next to the one which has been analyzed and whose incremental
inverted-lists have been flushed to the temporary area on the disk.

Next we discuss operations inside the scope of the update transaction. Since data items
(inverted-lists) in the database are not written based on the value of other data-items in the
database, logical failures do not occur. Also since inverted-lists are just appended to, there is
no need to keep track of what the previous value of a data item was before writing to it. These
significantly simplify logging in terms of what is logged. Specifically there is no need to log
the before values of the data items. Since we already store the incremental inverted-lists in a
temporary area on the disk, there is also no need to store the new value that is written. Hence
a log record just contains the (transaction-ID, keyword) pair. If there is a system failure, for
each ongoing update transaction it is known as to which of the keyword inverted-lists have been
updated and which are yet to be and thus forward recovery is possible. Since the value of the
data-items are not logged, log records are much smaller and hence logging an update is much
quicker. '

An elegant solution to handle failure situations for long transactions in database systems’ is
the use of a mini-batch and this idea is applicable for update transactions in IR system. For our

For e.g., interest computation for all accounts in a bank

13

concurrency control scheme, a mini-batch would be the updates to inverted-lists corresponding
to a small set of keywords. The updates within the mini-batches are performed by fetching
the disk resident database pages of the required inverted-lists (bringing the last page of each
list is sufficient) into the buffer and appending the new document IDs from the incremental
inverted-list. After the set of updates within a mini-batch have been performed, the transaction
is committed. But this does not mean that the buffer changes have been made persistent on the
disk. Hence we force the log records of the committed mini-batch to the disk at commit time.
A checkpoint is to be taken periodically. How often a checkpoint is to be done is a tradeoff and
" studies have been made in this regard [Reu84]. When a checkpoint is taken, all system inverted-
list database buffers are flushed to the disk and a checkpoint record that contains the LSN
(log sequence number) of the last log record processed is also flushed to the disk. For system
inverted-lists whose database pages have been updated and flushed to the disk, incremental
inverted-lists stored in the temporary area on disk removed. Note that there is no need to
maintain and update a page LSN as in traditional transaction processing systems.

Recovery from system failures that can occur between checkpoints is to be handled carefully.
Since we have not store the after values in the log records for the updates, it is possible that
a few mini-batches committed between the previous checkpoint and the failure. For all such
committed mini-batches we have flushed the log records to the disk. The log record from which
the redo pass is to begin is identified based on the LSN of the last checkpoint record persistent
on the disk. Hence for all the keywords in such log records, we have to fetch the incremental
inverted-lists saved in the temporary area on disk into the buffer. Then these changes are to be
applied by bringing in the disk resident database pages corresponding to the system inverted-
lists on the disk. When such updates have been performed, the system inverted-list buffers are
flushed to the disk and their copy is removed from the temporary area. A new checkpoint record
with the LSN of the last log record processed is also then flushed to the disk. Recall that since
none of the update transactions has to be aborted, an undo pass is not required. Recovery is
now complete and the system can start the next mini-batch update and process queries.

5.2 Discussion

To get additional performance, more optimizations are possible. Document analysis and the
system inverted-list updates can be pipelined, i.e., as the savepoints occur in the document
analysis phase, the system inverted-lists can be updated with the incremental inverted-lists
created during that savepoint. If system failures are not frequent, then the two stages of the
pipeline can be collapsed into one, i.e., document analysis and the system inverted-lists update
can be done together. If this is the case then the incremental inverted-lists need not be stored

14

in & temporary area, instead directly used to update the system inverted list. This also implies
that the log records must now store the after value of an update, i.e., the incremental inverted-
list. Note that if the updates are of long duration and documents are arriving at a high rate,
more than 2 update transactions can be executing concurrently in the system. Our logging and
concurrency control scheme are flexible enough to handle such situations.

To summarize, we presented l'ogging and recovery techniques for IR systems that are much
simpler -than techniques needed for traditional databases and yet guarantee the correctness
required by IR systems. Specifically, the log records and the logging process have been made as
simple as possible based on the characteristics of IR systems. These simpler techniques reduce
the overheads and hence the system can perform very efficiently.

6 Performance Tests

In this section we briefly discuss the details of the prototype system, nature of the tests and the
performance results. We have only concentrated on the performance of the concurrency control
schemes. The benefits of the logging/recovery scheme is clear since we perform much less work
compared to traditional recovery schemes and hence performance tests are not needed to verify
them.

6.1 Prototype System

We have built a prototype by extending our bibliography search system following the archi-
tecture presented in section 3. The bibliography search system has been in use on our world
wide web site® for a few months. The system has been built on a SunSparc 20 multiprocessor
workstation with 96 MB of main memory, 2 GB SCSI disk and running Solaris 2.3 version of
Unix. Most of the components shown in figure 2 have been implemented as independent Unix
processes communicating using IPC messages. Our prototype system does not contain a query
pre-processor or a log manager. We use a variant of the B-tree to manage the keyword-index.

6.2 Nature of tests

To create an environment where documents arrive over the network, documents were preanalyzed
and continuously added to the system. In order to evaluate the system in real world situations,
several queries have been taken from the access log of the web server. They range from 2 to
4 keywords and the keywords are well distributed among the spectrum of words present in the

8(at URL http://wwu-ccs.cs.umass.edu/db/bib .htnl).

15

documents. The rest of the important characteristics of document collections for updates are

presented in the table below:

” Characteristic | Value ||

Avg. no. of unique keywords in a batch | 1,694
Total no. of word occurrences in a batch | 17,326
Avg. number of documents in a batch 1,000

The above data set reflects short documents arriving in large quantities over the network
and hence we decided to process 1000 documents in a batch, although this is a tradeoff based
on several parameters. The total size of a batch is about 0.45 MB, which is close to that used
in [DDS*95]. Notice that updates are long since on an average 1694 inverted-lists are to be
updated. To avoid deadlocks arising from long duration updates in the DB-locking scheme, we
rearranged the keywords whose inverted-lists are to be updated in an alphabetical order.

We use two performance metrics to compare the different schemes we are testing. The
response time for update and query transactions is the wall clock time elapsed in seconds. The
response time for an update is the time taken to update the inverted-lists while for the query it
is the time taken to read the inverted-lists and determine the documents that satisfy the query.
Recency is measured in terms of the percentage of query transactions that failed to read the
documents that are being added by the transactions that are concurrently performing updates.

We compare our scheme denoted by ‘Latch with Operation-Reordering’ with two other
schemes. Latching refers to the scheme that uses latches and satisfies the correctness require-
ment that the query returns only the correct documents, i.e., those in the database: DB-locking
provides isolation level 2, i.e., cursor stability. This was implemented to study the effect of using
an off-the-shelf transaction processing approach, one most suitable for our needs. This is the
popular locking mode used by most traditional DBMS applications. Here queries use short term
locks and updates use long term locks.

The tests have been performed by varying the multiprogramming. level (MPL) of query and
update transactions. To maintain the desired query and update MPL, a query and an update
spawner fork the required number of threads respectively. The threads in turn invoke the update
and query transactions. In our tests, we fixed the update MPL to a particular value and then
varied the query MPL over a range.

6.3 Results

We first study the recency properties of the queries executed by the three schemes, we examined
the percentage of queries that failed to fetch the latest documents being added by the concurrent

16

w d0a- - —a Luch ' 4 40 == —a Luch

g [RERER 8 DB-Lock (Isolation Level 2) E [REEES ® DB-Lock (Isolation Level 2)

5 35 [e——e Lutch with Operation-Reordering § 35 [Fe————e@ Lutch with Operation-Reordering

Q

] = N et -

g W0 I

2 =2

R e Rl ~ ? uf

3 8

b4]

§ 20 E 20 —

2 st £ 5}

3 3

(=4

5 10 —- g 10 |-

o | @ L SN " PN

:‘.‘; sL Wttt - ;:I.ﬂ s _. te @ rreea, R ™

g g

§ 0 T PO S D G B I B RS Y| 5 0 T TOAE U DD W T T SR T G |
0 2 4 6 8 1012 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22

Query MPL (Update MPL fixedat 1) : Query MPL (Update MPL fixed at 2)

Figure 6: Percentage of querz’e:s that missed the latest documents

60 4~ = =a Latch . 100 A= = —=a Latch
sslmeeeee ® DB-Lock (Isolation Level 2) Bra..... ® DB-Lock (lsolation Level 2)
e Latch with Operation-Reordering e Latch with Operution-Reordering

.
B
.

Avg. Query Response Time (sec)
‘>
=)
™

Avg. Query Response Time (sec)
84

IllllllllJlllolIlJ.l

R N N N A A I 8 il .
0 2 4 .6 8 10 12 14 16 18 20 22 0o 2 6 8 10 12 14 16 18 20 22

Query MPL (Update MPL fixed at 1) Query MPL (Update MPL fixed at 2)

e
4
Figure T: Avg. response time of queries

update transactions. This is determined by comparing the (1) timestamps of the queries and
updates and (2) document IDs returned by the queries with those added to the inverted-lists by
the updates. Specifically, if we know query @ executed concurrently with update U and @ did
not return the document IDs of qualifying documents added by U, then query @ failed to fetch
the latest documents.

As shown in figure 6, it can be seen that queries using our scheme fetch the latest documents
(99.5 % of the time). Upon close examination of the system we found that when a query requests
a set of latches, the hints from the lock manager to the transaction manager and the subsequent
write operation on the common keywords from the updates are done almost immediately in
quick succession. Thus our idea of operation reordering has a huge pay off and contributes to
good recency. The 0.5 % we miss in terms of latest documents can be attributed to update
transactions that start while query transactions are in progress. Similar to the compensation
based on-line query processing technique [SC91], we could force the query to check if there are

17

new updates before it completes and if so re-execute the query. The fact that only 0.5 % of
the queries miss the latest documents suggests that such a situation is very infrequent because
queries are short and updates are long. For this reason, the rare query that does benefit from
this extra check may not warrant the extra costs that are incurred by the additional check at
the end of each query. However if an increase in query response time is tolerable, this technique
can be a.dcipted to ensure that all the queries see the latest data. ’

The latching scheme performs badly since it misses a fairly large number of updates. This
behaviour worsens further when the update MPL is increased to 2 since it now misses appends
" from both updates. |

The DB-locking scheme performs moderately. Even here, while on an average most queries
fetch the recent documents there are certain queries that fail to get the latest articles. These
are queries that acquired read locks on the items before the update could get write locks on
them. In our implementation of DB-locking, write locks are acquired in a growing phase and
then released as a batch at the end. If the locks were acquired and released the other way, i.e.,
all locks are acquired at the beginning and released in a slow shrinking phase, the queries would
have seen the latest articles but the average response time will also increase substantially.

The excellent behaviour of our technique incurs a small overhead — seen in the form of
a slight increase in the response time. Response time is the time that elapses between query
submission time and the time when the query finishes reading the required inverted-lists and
determining the qualifying documents. The results are shown in figure 7 (note the two graphs
have a different scale along the Y axis).

The response time of DB-locking is very high compared to that of latching and our scheme. -
The difference between our scheme and latching is in the order of a second and can be attributed
to (1) the cost of checking common keywords between queries and concurrent updates and (2)
the time spent by read operations from queries waiting for updates to happen on the inverted-
lists of those common keywords. For an update MPL of 1, we also measured the average time
for an update transaction as 378 seconds for the latching and DB-locking scheme. Due to the
additional checks performed by our scheme, the updates take about 4% more time. As the
update MPL increases to 2, the update transaction time for the DB- locking scheme shoots up
rapidly due to write lock contention while for the other two schemes it increases only marginally.

In summary we see that our latching with operation reordering considers the latest articles
without paying a high price. If there are no concurrent updates, since there are no checks to be
performed, our scheme performs the same as the latching scheme.

18

7 = Conclusions

Transaction processing techniques optimized for traditional database system are unsuitable for
efficiently handling queries and updates in text databases. Hence new schemes are needed to
successfully integrate IR features with DBMS features. In this paper we focused on developing
efficient concurrency control and recovery schemes that exploit the characteristics of data and
transactions in IR.systems. Our focus was on systems where queries and updates arrive dy-
namically. A sigm'ﬁcémt advantage of our techniques is tliat they are independent of the scheme
used for indexing. |

Our specific contributions are as follows:

o We analyzed the characteristics of transactions in dynamic IR environments by studying
queries and updates on indexes and determined the correctness properties of interest.
Our observation is that traditional transactions and transaction processing techniques are
unnecessarily restrictive for these environments and can degrade performance.

e To satisfy the requirements of dynamic queries, we proposed a concurrency control scheme
which — (a) exploits data and transaction knowledge, (b) uses short term locks for both
reading and writing, and (c) allows dynamic reordering of accesses to achieve high perfor-
mance.

o We proposed simple logging and recovery techniques to reduce restart time while recovering
from system failures.

e To quantify the benefits of our échemes, we implemented the schemes on a prototype
system and compared the performance of competing approaches. Qur schemes showed
substantial improvement in performance.

By concentrating on correctness and system related performance issues, our work complements
the work done thus far in information retrieval for building correct, scaleable, high performance
text database systems and digital libraries. Each of our schemes is based on simple ideas and
is founded on sound observations about the nature of the data, of the queries and updates.
Nevertheless the practical impact of these ideas has been shown to be significant.

References

[BCC94] E.W. Brown, J.P. Callan, and W.B. Croft. Fast incremental indexing for full-text
information retrieval. In Proc. of Intl. Conference on Very Large Databases (VLDB),
Santiago, Chile, 1994.

[BCCM94] E.W. Brown, J.P. Callan, W.B. Croft, and J.E.B Moss. Supporting Full-Text In- .
formation Retrieval with a Persistent Object Store. In Proc. of Intl. Conference ori
Eztending Database Technology, Cambridge, UK, 1994.

[(BGAS94] g Buckley, G.Salton, J. Allan, and A. Singhal. Auotmatic %uery Expansion Using

MART: TREC3. In Third Tezt REtrieval Conference (TREC-3), pages 69-80,
Gaithersburg, Maryland, 1994. :

19

[BHGS7]
[Bro95]

(Cro94]
[DDS*95]

 [Fuh93]

[GR93]
[LK94]

[LS88)

[LS92)
[ML92]

[MN92]
[Moh90]
[Reus4)
[SCo1]

[SC92]
[TGMS94]

[TGNO92]
[YGM95a]

[YGMY5b]

P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison Wesley, 1987.

E.W. Brown. Fast Evaluation of Structured Queries for Information Retrieval. In
ﬁrgsc. of SIGIR Intl. Conf. on Research and Development in Information Retrieval,
W. B. Croft. What do People Want from Information Retrieval? In D-Lib Magazine.
Available at hitp://www.dlib.org/dlib/november95/11croft.html, 1994. .

S. DeFazio, A. Daoud, L. Smith, J. Srinivasan, B. Croft, and J. Callan. Integrating
IR and RDBMS Using Cooperative Indexing. In Proc. of SIGIR Intl. Conf. on
Research and Development in Information Retrieval, pages 84-92, 1995.

N. Fuhr. A probabilistic relational model for the integration of IR and databases. In
Proc. of SI&IR Intl. Conf. on Research and Development in Information Retrieval,
pages 309-317, 1993.

J. Gray and A. Reuter. Transaction Processing: Concepts and Technigques. Morgan
Kaufmann, San Mateo, CA, 1993.

X. A. Lu and R. B. Keefer. Query Expansion/Reduction and its Impact on Re-
trieval Effectiveness. In Third Tezt REtrieval Conference (TREC-3), pages 231-240,
Gaithersburg, Maryland, 1994.

C. Lynch and M. Stonebraker. Extended user-defined indexin% with application to
textual databases. In Proc. Int’l. Conf. on Very Large Data Bases, page 306, Los
Angeles, CA, August 1988.

D. Lomet and B. Salzberg. Access method concurrency with recovery. In Proc. ACM
SIGMOD Conf., page 351, San Diego, CA, June 1992.

C. Mohan and F. Levine. ARIES/IM: An efficient and high-concurrency index
management method using write-ahead logging. In Proc. ACM SIGMOD Conf.,
page 371, San Diego, CA, June 1992.

C. Mohan and I. Narang. Algorithms for creating indexes for very large tables
without quiescing updates. In ACM SIGMOD Conf. on the Management of Data,
San Diego, June 1992.

C. Mohan. ARIES/KVL: A key-value locking method for concurrencty control of

multiaction transactions oBeratmg on BTree indexes. In Proceedings of the 16th
Conference on Very Large Databases, Morgan Kaufman pubs. (Los Altos CA), Bris-

bane, August 1990.

A. Reuter. Performance analysis of recovery techniques. ACM Trans. on Database

Sys., 9(4):526, December 1984.

V. Srinivasan_and M. J. Carey. Performance of B-tree concurrency control algo-

rithms. In ACM SIGMOD Conf. on the Management of Data, Boulder, May 1991.

V. Srinivasan and M. J. Carey. Compensation-based on-line query processing. In
Proc. ACM SIGMOD Conf., page 331, San Diego, CA, June 1992. :

A. Thomasic, H. Garcia-Molina, and K. Shoens. Incremental Updates of Inverted
Lists for Text Document Retrieval. In Proc. of SIGMOD Intl. Conference on Man-
agement of Data, May 1994. :

D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over append-
i)g%)é databases. In Proc ACM SIGMOD Conf., pages 321-330, San Diego, California,
T. W Yan and H. Garcia-Molina. SIFT - A Tool for Wide-Area Information Dis-
slsxslsination. In In Proc. of 1995 USENIX Technical Conference, pages 177-186,
T.W. Yan and H. Garcia-Molina. Information Finding in a Digital Library: the
Stanford Perspective. SIGMOD Record, 24(3), September 1995.

20

