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In general, we would like any static analysis method
to be conservative; for a given property, the analysis must
not overlook cases where the property fails to hold.  To
ensure conservativeness, methods typically use program
representations that overestimate the behavior of the
program being analyzed.  As a result, these methods may
produce spurious results -- that is, report that a property
fails when in fact the cases in which it fails do not
correspond to actual program behaviors.  Usually, an
analysis method produces a spurious result as a
consequence of considering paths that can never be
executed in the program (commonly called infeasible
paths) or of considering aliasing that can never occur in
the program.  For an example of an infeasible path,
consider the program in Figure 1.  In the caller2 task, the
path through the true branch of the first conditional and
the false branch of the second conditional is infeasible,
assuming the value of BranchCond does not change
between the two conditionals.  Infeasible paths are
natural phenomena of the internal representations we use
for analysis and are usually not indicative of a fault in the
code.

Abstract

Spurious results are an inherent problem of most static
analysis methods.  These methods, in an effort to produce
conservative results, overestimate the executable
behavior of a program.  Infeasible paths and imprecise
alias resolution are the two causes of such inaccuracies.
In this paper we present an approach for improving the
accuracy of Petri net-based analysis of concurrent
programs by including additional program state
information in the Petri net.  We present empirical results
that demonstrate the improvements in accuracy and, in
some cases, the reduction in the search space that result
from applying this approach to concurrent Ada programs.

1 Introduction

Developers of concurrent software need cost-effective
analysis methods to acquire confidence in the reliability
of that software.  Analysis of concurrent programs is
difficult because, in many cases, the patterns of
communication among the various parts of the program
are complicated and the number of possible
communications is large.  One class of methods that can
be used for analysis of concurrent programs is static
analysis, which uses compile-time information to prove
properties about a program.

  This paper presents an approach for improving the
accuracy of Petri net-based static analysis methods by
eliminating some infeasible paths from consideration.
We conjecture a scenario in which an analyst submits a
program and property to a static analysis tool and then
examines the anomaly report that results from the
analysis.  Since some of the reported anomalies might be
spurious, due to consideration of infeasible paths or
imprecise alias resolution, the analyst must examine each
anomaly to determine if it is a spurious result or not.  If a
large number of the results are spurious, weeding these
out might overwhelm the analyst, causing results that
actually do correspond to erroneous program behavior to
be discarded.  If the number of spurious results is
extremely large, the analyst may lose confidence in the
analysis tool altogether and forego using it.

_________________________________
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It has been our experience that, after looking at an
anomaly report, an analyst easily recognizes certain
infeasible paths that are the cause of at least some of the



task body caller1 is
begin
   accepter.entry2;
end caller1;

task body accepter is
begin
   accept entry1;
   accept entry2;
end accepter;

task body caller2 is
   BranchCond : boolean;
begin

   if BranchCond then
      accepter.entry1;

   end if;

   if BranchCond then
      null;
   else
      accepter.entry2;

   else
      null;

   end if;
end caller2;

         ...

         ...

Figure 1.  Example Program

spurious results.  Early experience with static analysis
tools indicated that analysts identified impossible pairs of
statements after examining anomaly reports.  Using
information about these impossible pairs to recognize
spurious results was shown to be intractable for analyses
based on control flow graph representations of a program
[GMO76].  The approach presented in this paper for
improving accuracy is based on a Petri net model of a
concurrent program.  We describe how certain kinds of
infeasible path information can be effectively captured in
this model, improving the accuracy of the analysis results
without degrading the performance of the analysis.

enter during execution; this information may be in the
form of sequences of program statements or in the form
of variable values.  Petri nets are used because including
additional program state information in the net and using
that information to control the transitions in the net is
relatively straightforward.  We hypothesize that, by
including additional program state information in the
Petri net, we can generate a more accurate estimate of the
program state space.  Analysis of this more accurate state
space considers fewer infeasible paths, potentially
reducing the number of spurious results reported by the
analysis and increasing the value of the analysis results.

The following section describes some of the major
methods that have been used to perform static analysis of
concurrent programs, Section 3 describes the program
representations we use to analyze concurrent programs
with our approach, and Section 4 explains how we
represent certain state information to improve the
accuracy of those representations.  Section 5 presents our
empirical results, and Section 6 offers some conclusions
based on those results and some pointers to future work.

Thus, the basic idea is that an analyst would apply the
static analysis method to the Petri net model of the
program.  Through examination of the anomaly report,
certain infeasible paths that are causing spurious results
to be reported become apparent.  The analyst, using our
approach, refines the Petri net model of the program with
this information and reapplies the analysis.  Of course, if
the analyst knew of infeasible paths before running the
initial analysis, that information could be incorporated
immediately.  In our experience, however, analysts do
not tend to think about infeasible paths until after
examining an anomaly report with some obvious spurious
results.  The new anomaly report typically contains fewer
spurious results than the previous report, since the
additional information should have eliminated the cause
of some inaccuracies.  Frequently, the new report is
significantly smaller since additional, as yet undetected,
spurious results are eliminated as well.  This smaller
report may not be so overwhelming to evaluate, perhaps
allowing the analyst to recognize additional spurious
results more easily.  The effect is an iterative process in
which the analyst examines an anomaly report, adds
additional information to the analysis, and reapplies the
analysis repeatedly until the desired accuracy is achieved.

2 Related Work

Numerous methods for static analysis of concurrent
programs have been proposed.  In this section we survey
the major methods and describe accuracy-improving
approaches that have been suggested for reducing the
number of infeasible paths considered by these methods.

Reachability analysis checks whether a selected
property, often called the property of interest, can occur
in a concurrent program by considering all reachable
states of the program being analyzed.  The set of
reachable program states can be generated using a variety
of program representations, including flow graphs
[Tay83a, YTF+89] and Petri nets [Pet77, SC88, DCN95].
Theoretical results [Tay83b] imply that, in general, the
time and space requirements for this method are
exponential.  Several approaches have been proposed to
reduce the number of infeasible paths considered by

Our approach allows the analyst to include selected
control and/or data information in the Petri net model of
the program.  The basic idea is to introduce information
about the states that the program being analyzed can



reachability analysis.  One proposed approach is to
combine reachability analysis with symbolic execution to
prune infeasible paths from the estimated reachable state
space [YT88].  Symbolic execution, however, is an
expensive method that can not be guaranteed to
determine feasibility.  Our approach entails
straightforward extensions of the Petri net representation.

properties [TO80, RS90, MR91, CK93, DC94].
Infeasible synchronization events can be excluded from
consideration by identifying program statements that can
not execute concurrently [MR93].  An approach, similar
to the approach described here, is being explored where
the number of infeasible paths is reduced by including
selected information about program paths and program
variable values [DC94].  This approach encodes the
information with the property, whereas our approach
encodes the information in the program representation.

Other proposed approaches use program variable
value information to exclude some infeasible paths from
consideration [BDF92, DBD+94].  These approaches
assume that, if a variable value is to be modeled, that
value is always statically determinable.  This assumption
seems overly restrictive in general.  In contrast, our
variable value technique accounts for regions in which
the value is not statically determinable, but can only
improve accuracy in regions in which the value is
determinable.  Additionally, the effect of modeling
selected variable values is not quantified in [BDF92] or
[DBD+94], while Section 5 below compares the sizes of
reachability graphs generated with and without modeling
of selected variable values.

An advantage of our approach and that described in
[DC94] is that they provide a flexible means for
incrementally including additional program state
information to improve the accuracy of the analysis.
After examining the anomaly report from an analysis run,
an analyst can specify additional information to be
included to improve the accuracy of the results as needed.
In addition, the analyst can choose whether to represent
this additional information in terms of control or data
information, depending on which representation is best
suited to the situation at hand.

Symbolic model checking methods [BCM+90]
represent the program state space symbolically rather
than explicitly.  With this method, the program to be
analyzed is modeled using Binary Decision Diagrams
(BDDs), and the property of interest is specified by a
formula.  A fixed point algorithm is used to determine
whether the property formula is valid in the program
model.  Because checking Boolean satisfiability is NP-
complete, determining the validity of the formula in the
program model can require exponential time in the worst
case.  In addition, the BDD representations can require
exponential space in the worst case.  Note that these
representations are structured to symbolically capture the
entire program state, so this method is already as accurate
as possible given only compile-time information.  In
contrast, our approach only adds information as it is
needed, thereby limiting the size of the program
representation.

3 Program Representations

Because Ada is one of the few commonly used languages
supporting concurrency, we use Ada examples to explain
our static analysis method and our accuracy-improving
approach.  The approach, however, is applicable to any
language using rendezvous-style communication, and
could be extended to most other communication styles as
well.  In Ada programs, potentially concurrent activities
occur in tasks1.  Ada tasks typically communicate with
each other using a rendezvous.  In a rendezvous, the
calling task makes an entry call on a specific entry in the
called task; the calling task then suspends execution until
the called task terminates the rendezvous.  The called
task executes any statements contained in the accept body
for the entry, then terminates the rendezvous and
continues execution.
  Our static analysis method builds upon a variety of
internal representations of a concurrent Ada program to
capture information about the program.  First, we
represent each task with a Task Interaction Graph (TIG)
[LC89], which abstracts sequential regions of control
flow into single nodes.  The nodes in the TIG for a task
are connected by edges representing possible interactions
(entry calls/accepts) between that task and other tasks in
the program.  We then combine the set of TIGs for all the
tasks in a program into a  Petri net [DCN95] to model the
system as a whole.  Finally, we use the Petri net to
generate a reachability graph to represent an estimate of
all states the program can enter when started in the initial

The Constrained Expression method [ABC+91]
avoids representing the state space of the program
altogether.  Selected program behavior and a set of
necessary conditions for the property of interest are
expressed as a system of inequalities, and integer linear
programming techniques are used to determine whether
the necessary conditions can be satisfied by the program.
In the worst case, solving the system of inequalities can
require exponential time.  Including information about
certain program variable values [Cor93] in the set of
inequalities has been proposed as one way to efficiently
provide accurate results.  This approach is more limited
than the approach we propose here.

Data flow analysis is another method that has been
applied to concurrent programs.  This method  employs
polynomial-time algorithms to prove a range of program

                                               
1Concurrent activities in Ada programs can also occur in
procedures; for simplicity, we call them tasks in this paper.



program state.  Petri nets and reachability graphs are
central to the techniques we use for improving accuracy,
so these representations are described more fully below.

termination points for a task are represented with double
circles.  For example, the caller2 task could potentially
terminate at place 6 (by taking the false branch of the
first conditional and the true branch of the second), place
7 (by taking the true branch of both conditionals), or
place 8 (by taking the true branch of the first conditional
and the false branch of the second).  We use TIG-based
Petri Nets (TPNs) because it has been shown that TPNs
substantially reduce the size of the Petri net, thereby
increasing the size of the programs that can be
successfully analyzed [DCN95].  Although this example
is small, in general Petri nets can be extremely complex
and are not usually visualized.

Petri Nets

Petri nets have been proposed as a natural and powerful
model of information flow in a system [Pet77].  A Petri
net can be represented as a 5-tuple (P, T, I, O, M0).  P is
the set of places in the Petri net, where a place can hold
zero or more tokens.  If a place holds one or more tokens,
the place is said to be marked.  T is the set of transitions
in the Petri net.  Tokens are moved between places in the
net by the firing of transitions.  A transition can only be
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Figure 2. Petri Net

fired if it is enabled; for a transition to be enabled, each
of the input places for the transition must contain at least
one token.  I is a function mapping places in P to inputs
of transitions in T.  When a transition fires, a token is
removed from each of the places that are inputs to the
transition, and a token is deposited in each of the output
places of the transition; O is a function mapping places in
P to outputs of transitions in T.  M0 is a list of all the
places in the net that are initially marked.

A Petri net is called safe if each place in the Petri net
can contain at most one token.  Safety is a desirable
property, because safe Petri nets are guaranteed to have a
finite number of reachable states.  It has been shown that
TPNs are safe [Cha95].

Reachability Graphs

Often, developers want to determine whether or not the
concurrent program being analyzed could potentially
enter a state in which a specified property is violated; for
instance, is it possible for the program to enter a state in
which it deadlocks.  One method for answering such
questions is to enumerate all possible program states and
check the property at each state.  A reachability graph
can be used to represent the program state space.

Petri nets appear to be a valuable representation for
modeling concurrent software [SC88].  In our analysis
method, we use a Petri net representation generated from
the set of TIGs for the concurrent program.  Each place in
the Petri net corresponds to a sequential region of code in
one of the tasks in the program, and each transition
represents a possible interaction (entry call/accept)
between two tasks in the program.  For an example Petri
net, based on the TIGs generated for the program in
Figure 1, see Figure 2.  In Figure 2, the places
representing a task's states are displayed in a column
under the task name and each transition, which represents
an inter-task communication, is displayed between the
two interacting tasks2.  Places that represent potential

A reachability graph for a Petri net consists of a set of
nodes, N = {ni}, and a set of arcs, A = {ai}.  Nodes in the
reachability graph correspond to markings of the Petri
net; the root node of the reachability graph corresponds to
the initial marking (M0) of the Petri net.  An arc goes

                                                                            
accepter and caller2 tasks for the entry2 entry.  Transition 2
represents the interaction occurring after caller2 takes the false
branch in the first conditional and transition 3 represents the
interaction occurring after caller2 takes the true branch in the
first conditional.

                                               
2Because of the optimized representation used in a TIG, two
transitions are used to represent the interaction between the



from ni to nj if and only if the marking of the Petri net
can change from ni to nj with the firing of a single
transition.  Although in actuality several interactions,
represented by fired transitions, can take place
concurrently, we can capture all possible execution
sequences by firing a single transition at a time; we use
this approach, because the resulting graph is greatly
simplified.  We note that only markings reachable from
the initial marking by some sequential combination of
transition firings are included in the reachability graph.
It is helpful to observe that a marking of a Petri net
simply represents the states of all the tasks being modeled
by the Petri net; we therefore consider nodes in the
reachability graph as states the program can reach when
started from the initial program state.  Figure 3 provides
the reachability graph for the Petri net in Figure 2.  Each
node in the figure is annotated with the Petri net places
that are marked in the corresponding program state.

complicated conditions or when interactions between
certain program statements are easily recognized by the
analyst.  The second technique, representing variable
values, eliminates some infeasible paths by modeling
variable values.  This technique is suitable when
conditionals are controlled by a small number of boolean
or enumerated variables.  We would expect an analyst to
select the technique that seems most appropriate or
natural for the problem at hand.

For either technique, it is important that the enhanced
Petri net continue to be an accurate representation of the
program under analysis; in other words, adding the
additional control or data information must not hide
errors that would have been exposed through analysis of
the original Petri net.  Although not presented here,  to
ensure our techniques are error-preserving we have
verified that the new Petri net is still an accurate
representation of the program.  Since the new Petri net is
actually a more accurate representation than the original
Petri net, it can be shown that the only program states
removed from the reachability graph are those that are
reached through infeasible paths.
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Figure 3.  Reachability Graph

Enforcing Impossible Pairs

Impossible pairs [GMO76] are pairs of program
statements that can not both execute in the same
execution of the program.  In the mid-seventies,
impossible pairs were recognized as an intuitive concept
that developers could potentially exploit to improve the
accuracy of their results.  It was demonstrated in
[GMO76], however, that deciding whether or not a path
exists that does not include any impossible pairs is an
NP-complete problem.  Rather than explicitly solving the
above problem to improve accuracy, we implicitly
remove some infeasible paths from consideration by
adding information about impossible pairs to the Petri
net.

4 Improving Accuracy

In this section we examine an approach for improving the
accuracy of static analysis without adding significantly to
the cost of such analysis.  To improve accuracy, we
include additional program state information in the Petri
net.  Although we describe the approach in terms of
TPNs, the approach is also applicable to other Petri net
representations, such as those from [SC88].  The
reachability graph generated from this enhanced Petri net
representation provides a more accurate estimate of the
program state space than the original reachability graph.
Analysis of the revised reachability graph is thus more
accurate, and the number of spurious results reported by
the analysis should be less than or, in the worst case, the
same as the number of spurious results reported for the
original reachability graph.  Since we propose a scenario
where an analyst introduces additional information in
response to discovering spurious results in the anomaly
report, we would expect the number of such results to
decrease.  The increase in cost to gain this accuracy
improvement includes the cost of incorporating the
additional program state information in the Petri net and
the cost of analyzing the resulting reachability graph.

In this paper, we use a less restrictive definition of
impossible pairs than the one given in [GMO76], since
we believe our definition more accurately captures the
restriction that an analyst would want to include.  In our
definition, executing the first member of the impossible
pair inhibits execution of the second member, but
executing the second member of the impossible pair has
no impact on the executability of the first member3.  In
an extension of our technique, we also account for cases
in which the second member of an impossible pair should
only be disabled temporarily; this can occur if the
condition that causes the second member to be disabled

Our approach can incorporate additional control flow
or data flow information in the Petri net.  The first
technique, enforcing impossible pairs, retains information
about past program states to eliminate some infeasible
paths from consideration by the analysis; this technique
may be suitable when conditionals are controlled by

                                               
3Of course, using our definition an analyst could
represent two statements a and b as an impossible pair as
described in [GMO76] by specifying two impossible
pairs, [a,b] and [b,a].



can subsequently change.  Finally, we restrict our
attention here to cases in which the impossible pair
consists of two interaction (entry call or accept)
statements, since the majority of concurrency analysis is
concerned with communication events.

we assume that these are relatively easy for an analyst to
manually identify after examining the anomaly report.
We would expect that after discovering several spurious
results in the report, the analyst would introduce specific
impossible pair information to improve the accuracy of
the results.  In any case, for this presentation we assume
that some method has been used to recognize the
impossible pairs and the regions re-enabling them, so our
discussion below focuses on including information about
these impossible pairs in our Petri net.

We observe that statements in an impossible pair are
conceptually different from statements that Can't Happen
Together (CHT)  [MR93].  Impossible pairs identification
is concerned with identifying invalid sequences of
statements, whereas CHT analysis is concerned with
identifying statements that can not execute concurrently. To simplify our explanation, we assume a single

impossible pair in the program but note that the technique
can be extended to multiple impossible pairs [Cha95].
Also note that, using the same basic technique, more
complicated flow constraints than impossible pairs could
be incorporated given Petri net representations of those
constraints.

The technique described below involves representing
additional program state information to eliminate
infeasible paths that contain both members of an
impossible pair.  For an example of when this technique
is useful, consider the program in Figure 1, and assume
for the moment that the conditions in the if statements are
much more complicated than the value of a boolean
variable.  If the condition in the first conditional in the
caller2 task evaluates to true, leading to the entry call on
entry1 in the first conditional, the call on entry2 in the
second conditional is impossible because the truth value
of the condition does not change.  Note that, similar to
symbolic model checking, we could try to encode the
possible values of the complicated condition in the Petri

To illustrate the ideas presented here, we modify the
Petri net given in Figure 2.  Transition 1, which
corresponds to the accepter.entry1 statement in the
caller2 task, is the first member of the impossible pair.
Transitions 2 and 3, which correspond to the
accepter.entry2 statement in the caller2 task, represent
the second member of the impossible pair.  The enhanced
Petri net is shown in Figure 4.
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Figure 4.  Petri Net With Impossible Pairs Represented

net.  For general boolean expressions, however, the
encoding of the condition in the Petri net could be quite
large.  Instead, we use information about this impossible
pair to improve the accuracy of the Petri net and the
corresponding reachability graph.

In general, to include impossible pair information in
our Petri net we add two new places that control firing of
the transitions corresponding to the second member of the
impossible pair in the program, and also add duplicates of
the transitions corresponding to the first member of the
impossible pair.  The first new place, called the Enabled
place for the second member, is used to enable execution
of the second member; the second new place, called the
Disabled place for the second member, is used to inhibit
execution of the second member.  Because we restrict our
attention here to impossible pairs of interaction
statements, the first member and second member of the
impossible pair are each represented by one or more

There are three distinct activities associated with
enforcing impossible pairs: recognizing the impossible
pairs in a program, recognizing which regions in the
program re-enable second members of the impossible
pairs, and including information about the impossible
pairs in the Petri net.  Although sophisticated methods,
such as symbolic evaluation [CR81], could be used to
recognize impossible pairs and regions re-enabling them,



transitions in the Petri net.  We connect the Enabled
place as an input to all transitions that correspond to the
task statement for the second member, which ensures the
statement can only execute when the Enabled place
contains a token (transitions 2 and 3 in Figure 4) .  We
also connect the Enabled place as an output of these
transitions, which lets the task statement execute multiple
times.  Since executing the first member of the
impossible pair prohibits the second member from
executing, we must ensure that firing the transition
corresponding to the first member of the impossible pair
results in an unmarked Enabled place and a marked
Disabled place for the second member of the impossible
pair.  Because the second member may be enabled or
disabled before executing the first member, we copy the
transition corresponding to the first member, including all
inputs and outputs of the transition.  We then use the
original transition (transition 1 in Figure 4) to change the
second member from enabled to disabled when the first
member is executed and the duplicate transition
(transition 5 in Figure 4) to keep the second member
disabled if it is already disabled when the first member is
executed; we call these disabling transitions.

In our example, the Petri net without impossible pair
information is shown in Figure 2, and the corresponding
reachability graph is shown in Figure 3.  Node 4 in the
reachability graph represents a deadlock of the caller1
task.  The transition fired to enter this node, however,
represents an interaction that is not possible, because the
true branch is traversed in the first conditional in the
caller2 task to reach node 2, and the condition is not
changed before the second conditional.  Therefore, an
analysis result that reports deadlock for this program is a
spurious result, since the program can not actually
execute the path required to reach the deadlocked node.
Using the technique for impossible pairs described above,
we add impossible pairs information to the Petri net as
shown in Figure 4; the corresponding reachability graph
is shown in Figure 5.  Note that in Figure 5 we have
retained the reachability graph node numbering from
Figure 3 to facilitate comparison.  For this example the
spurious result has been removed by the additional
information included, and thus analysis of the resulting
graph can yield more accurate results.
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Figure 5.  Reachability Graph With Impossible Pairs
Represented

To ensure that the second member is enabled or
disabled (but not both), we have connected the new
places to the net such that exactly one of the Enabled
place/Disabled place pair for the second member is
marked at any given time.  The Enabled place is initially
marked, and the Disabled place is initially unmarked (see
Figure 4).

In an extension of the technique described above, we
also consider the possibility that the second member of an
impossible pair should only be disabled temporarily.  For
example, if the first member of an impossible pair is
contained within a loop and the condition is changed at
the end of the loop, the second member of the impossible
pair should be re-enabled at the end of the loop.  Because
the statement changing such a condition will typically not
be an interaction statement, this statement is contained
within the TIG region corresponding to a place in the
Petri net; we call this region a re-enabling region, since it
re-enables execution of a statement.  To re-enable the
second member, we modify transitions into the place
corresponding to the re-enabling region.  Because the
statement to be re-enabled may be enabled or disabled
before we reach the transition to be modified, we copy
the transition, including all inputs and outputs of the
transition.  We then use the original transition to change
the statement from disabled to enabled and the duplicate
transition to keep the second member enabled if it is
already enabled; we call these re-enabling transitions.  In
our example program the second member of the
impossible pair is never re-enabled, so these transition
modifications are not required for the Petri net in Figure
4.

Representing Variable Values

When we include representation of impossible pairs
information in our Petri net, we eliminate some infeasible
paths from consideration by explicitly representing
information about paths in the program execution.  We
can also implicitly eliminate some infeasible paths by
representing the values of selected variables in the
program.  This technique is applicable when conditions in
the program conditionals are relatively simple and
include a small number of boolean or enumerated
variables whose values can be statically determined in at
least some regions of the program.  As with the
impossible pairs technique, we modify the Petri net to
capture additional information about the program states.
In this case, however, the state information is in the form
of variable values.  We can use this additional
information to exclude interactions that are infeasible
based on those values, thereby excluding some infeasible
paths from our analysis.

For an example of when this technique is useful,
consider again the program in Figure 1 and assume that
BranchCond is set to true at the beginning of caller2.
Thus, caller2 makes the entry call on entry1, but the entry



call on entry2 is impossible, based on the value of
BranchCond.  If we modify the corresponding Petri net to
include information about values of the variable
BranchCond, we can improve the accuracy of the
reachability analysis by eliminating consideration of the
entry call on entry2.

a variable of the given type; for example, the valid
operations on a boolean variable are "Assign True",
"Assign False", and "Not".  For each operation, we
connect the corresponding operation place to transitions
between the appropriate value places.   For example, the
Boolean variable subnet contains a transition with
"Assign True" and "False" as inputs and "True" as an
output.  The variable subnet is effectively a finite state
machine for the variable, with transitions between the
states (values) of the variable controlled by operations on
the variable.

There are four activities to be considered when we
represent variable values in a Petri net: recognizing the
interactions that are controlled by specific variable
values, recognizing the regions that change the variable's
value (and how they change it), building the
representation for the variable, and connecting it to the
existing Petri net.  We believe that this is often
straightforward in practice, particularly when a boolean
variable is used to control communication in the
program.  For these cases, an analyst should easily be
able to identify such controlling variables and could
specify those variables for inclusion in the Petri net.  In
this paper, we assume the first two actions have been
accomplished and focus on the actual representation and
inclusion of the variable value information.

To make the resulting subnet safe, we modify the
Petri net to ensure the operation places can never contain
more than one token, using transformations similar to
those described by Peterson [Pet81].  For every operation
place for the variable, we add an operation prime place,
yielding two places for each possible operation on the
variable.  For each transition with an operation place as
an output, we add the corresponding operation prime
place as an input.  For each transition with an operation
place as an input, we add the corresponding operation
prime place as an output.  This transformation yields a
safe subnet, with the additional property that only one of
the operation place/operation prime place pair for a given
operation can be marked at any given time.  If none of
the regions corresponding to marked places in the initial
marking of the original Petri net modify the modeled
variable, all operation prime places are marked in the
initial marking of the Petri net; otherwise, the appropriate
operation places are marked, with the corresponding
operation prime places left unmarked.  We also note that,
since it is possible for the program to exit a region in
which the value of a variable is statically determinable
into a region in which the value is not statically
determinable, we need to provide an "Assign Unknown"
operation as well.  The resulting variable subnet for a
Boolean variable is as shown in Figure 6, but the subnet
shown has not yet been connected to the Petri net for a
program.

    We represent a variable in the program for which we
want to maintain value information with a variable
subnet.  This subnet contains two kinds of places: value
places and operation places.  The subnet includes a value
place for each possible value of the variable, plus an
"Unknown" place to account for those occasions on
which we can not statically determine the variable's
value.  To simplify the presentation, we describe a
variable subnet for a boolean variable.  The variable
subnet for a Boolean variable would have a "True" place,
a "False" place, and an "Unknown" place.  When the
"Unknown" place is marked, the variable could be true or
false; based on the connections described below, both
possibilities are considered during generation of the
reachability graph.  The "Unknown" place is marked in
the initial marking of the Petri net.  The variable subnet
also includes operation places for the valid operations on

False True Unknown

AssignFalse AssignFalse' AssignTrue AssignTrue' AssignUnknown AssignUnknown' Not Not'

Figure 6.  Boolean Variable Subnet



To use the additional information provided by the
variable subnet, we need to connect the variable subnet to
the Petri net.  Figure 7 illustrates the revisions to the Petri
net using the example shown in Figures 1 and 2.  The
variable subnet for the BranchCond variable is abstracted
to facilitate understanding.  In Figure 7, a T, F, or U on
an arc represents a connection to the True, False, or
Unknown value place in the BranchCond Subnet.  Also,
connections between transitions and operation prime
places are as described below, but are omitted from this
figure for clarity.

modifying regions.  If we assign BranchCond the value
true initially in the caller2 task then the corresponding
place (place 6 in Figure 7) corresponds to a modifying
region.  For each of these regions, we add the appropriate
operation place as an output and the corresponding
operation prime place as an input of all transitions
leading into the modifying region; this initiates
modification of the variable on entry into the modifying
region.  We also add the operation prime place as an
input and output of all transitions exiting the modifying
region; because the operation prime place will not be

caller1 accepter caller2

1

2
34

5

6
7

BranchCond
Subnet

UT

T

U

F

F

U
U

U

F
FU

1

2 5

4

3 6

7

8
Figure 7. Petri Net With Variable Subnet Added

A variable subnet is connected to the Petri net for a
program in two cases: at transitions controlled by the
variable and at transitions leading into or out of places
corresponding to regions that modify the value of the
variable.  In the first case, a transition is controlled by a
variable if the transition can only occur if the variable has
a certain value.  In this case, we copy the transition.  The
appropriate value place for the variable is connected as
an input to the original transition (transitions 1, 2, and 3
in Figure 7), and the same value place is connected as an
output of the transition to preserve the value of the
variable.  We add the Unknown value place as an input
and output for the duplicated transition (transitions 5, 6,
and 7 in Figure 7) to represent the fact that the interaction
may be possible in the case where the variable's value is
currently undetermined.  In addition, we add all operation
prime places for the variable as inputs and outputs for the
original and duplicate transitions to ensure any required
modifications to the variable have been completed before
we use the variable's value.  In this manner, we exclude
all markings from the reachability graph that include
firing this transition when the variable does not have the
required value, thereby improving the accuracy of the
analysis.

marked until the operation on the variable is completed,
this ensures the modification is complete before the
program exits the modifying region.  Since the operation
prime places have already been added to transitions 1 and
5 as described above, no further changes are required in
Figure 7.

Note that a single region can potentially modify a
given variable in several different ways.  To simplify the
description we assume a simpler model here, in which a
single region modifies a given variable in one specific
way.  Note that more complicated modeling can be used
to handle the more general case.  Also note that since the
region represented by place 6 in the Petri net would
contain BranchCond := true,  in our initial marking
the AssignTrue place is marked (and the AssignTrue'
place is unmarked).

Using a variable subnet as described above yields the
Petri net shown in Figure 7.  The corresponding
reachability graph is shown in Figure 8, where the
reachability graph nodes are annotated with the marked
Petri net places as well as the marked value, operation,
and operation prime places in the BranchCond Subnet.
Again we see that the spurious result is no longer
reported.

In the second case, to effect changes to the variable
values, we need to account for regions from the program
(places in the Petri net) in which the variable is changed
(by assignment, for instance); we call these regions

Information about variable values could also be
incorporated using an FSM, with states of the FSM
representing variable values and transitions in the FSM
representing operations on the variable.  While the FSM
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Figure 8.  Reachability Graph Using Variable Subnet

control communications.  If the control flow decisions on
those variables are not extremely complicated,
recognizing the transitions controlled by the variable
values and making the appropriate connections is
relatively straightforward.  The additional information
added to the Petri net is based on the variable type, so the
variable subnet for a variable with relatively few values
(such as a boolean variable), used in relatively few
locations, does not increase the Petri net size
significantly.  Limitations of this technique include the
requirement to be able to statically determine variable
values to gain accuracy improvement, the difficulties
determining the proper connections to account for
complicated conditions, and the rapid growth of the size
of the variable subnet as the number of possible values of
the represented variable grows.

5 Empirical Results

We have run experiments on a small set of programs to
gather information about how the application of our
approach affects the sizes of the Petri nets and
reachability graphs for these examples.  We hypothesize
that our accuracy-improving approach can improve
analysis accuracy without significantly impacting
performance.

would certainly be easier to understand than Figure 6, the
difficulty comes when incorporating the FSM into the
model.  An FSM can not be "connected" to the Petri net
as our variable subnets are, so the FSM would need to be
used during reachability graph generation, potentially
slowing down the generation process significantly.
Representing variables with variable subnets provides the
same accuracy improvements as would be provided with
FSMs, while retaining a standard Petri net as the program
model.

In each of the techniques presented, the size of the
Petri net is increased by the places and transitions added
to model the additional semantic information.  On one
hand, we expect the size of the reachability graph to grow
as the size of the Petri net grows, since the upper bound
on the size of the reachability graph is exponential in the
number of Petri net places.  On the other hand, we would
expect the additional modeling in the Petri net to remove
some infeasible paths from consideration, thereby
reducing the size of the reachability graph.  We perform
the experiments to acquire preliminary indications of
which scenario is more common and also to gain
experience applying the approach.

Choosing Between the Two Techniques

The two techniques described above give the analyst
flexibility when determining what kind of additional
information to include to improve analysis accuracy.  In
general, we expect the analyst to choose whichever
technique appears more natural given the program being
analyzed and the property of interest.

Whenever the approach is applied, the resulting
reachability graph more accurately represents the
program state space.  However, this does not necessarily
guarantee that the number of spurious results in the
anomaly report will be reduced.  For instance, if the
states removed from the reachability graph are
independent of the property being checked, the number of
spurious results in the anomaly report will stay the same.
For that reason, we consider our accuracy improvements
as improvements in the reachability graph as a
representation of the program state space, rather than as
reductions in the number of spurious results in the
anomaly report.  While we expect that improving the
accuracy of the reachability graph will commonly reduce
the number of spurious results, whether or not this occurs
in practice depends on the property being checked.

The impossible pairs technique seems particularly
attractive when static information about the impossible
pairs in the program is readily available and transitions
correspond to members of a single impossible pair.  If the
control flow decisions in the program are complicated,
the impossible pairs technique may be more suitable than
the variable values technique.  The impossible pairs
technique will tend to be expensive for programs for
which the Petri net contains transitions that affect
multiple members of impossible pairs, since the number
of these transitions grows exponentially in the number of
impossible pairs affected.

In the variable values technique, efficient algorithms
for recognizing the regions that affect a variable's value
are available.  An analyst may also be able to easily
identify those variables that are used in the program to



To perform the experiments below we modified an
existing tool set.  Tools to convert an Ada program to a
TIG and a set of TIGs to a Petri net were already
available.  We developed a general tool to generate the
reachability graph from a Petri net, and also built several
specialized tools to include impossible pair information
and variable subnets in the Petri net.

resulting variable subnet and manually connect it to the
original Petri net by recognizing interactions that are
controlled by the variable value and also identifying
regions in which an operation is performed on the
variable.  This activity could be automated by scanning
for the variable name in branches and select guards and
by collecting information about operations on the
variable for each region.For the experiments described here, we used various

sizes of the readers/writers problem and the gas station
problem.  The notation rwXY indicates an instance of the
readers/writers problem with X readers and Y writers.
The code for readers/writers programs is fairly standard,
with a Boolean variable WriterPresent used to track the
presence of a writer.  The notation gasXY indicates an
instance of the standard gas station problem [HL85] with

The effects of using these techniques for the sample
programs can be found in Table 1.  In the table, NA
means that no additional information is included in the
Petri net for the program.  Imp specifies a Petri net that
includes information about impossible pairs and Var
specifies a Petri net that includes one or more variable
subnets.

Program Refinement Places Transitions Nodes Arcs
Petri Net Reachability Graph

rw21 NA
Imp
Var
NA
Imp
Var
NA
Imp
Var
NA
Imp
Var
NA
Imp
Var
NA
Imp
Var
NA
Imp
Var
NA
Imp

rw22

rw23

rw32

rw25

rw52

gas31

gas51

17
25
28
20
28
31
23
31
34
23
31
34
29
37
40
29
33
40
39
45
87
59
64

48
183
105

66
306
138

84
429
171

81
336
168
120
675
237
111
638
228

75
111
224
163
463

41
31
52

175
98

166
609
248
426
579
308
502

6,229
1,320
2,330
5,811
2,972
4,678

493
931
559

9,746
22,841

119
71
94

692
276
348

3,031
794
978

2,884
1,097
1,295

43,571
4,888
5,908

40,660
14,955
16,665

987
1,773

885
26,785
57,655

Table 1.  Effects of Approach on Petri Nets and Reachability Graphs

X customers and Y pumps. For the Imp version of the Petri net for readers/writers
problems, we model the impossible pairs resulting from
whether or not a writer is present.   These pairs were easy
to recognize given the simple guards in the control task.
Including this information improves the accuracy of the
analysis by eliminating consideration of some infeasible
paths through the program and reduces the size of the
reachability graph as well.

For the impossible pair technique, identifying the
impossible pairs in the program to be analyzed is done
manually.  Once we have identified which regions
correspond to impossible pairs, we provide this
information to a tool that scans the transitions in the Petri
net and automatically modifies the transitions as
described in the previous section.

When we use the variable subnet technique, we
provide the name of the variable to be modeled to the
Petri net toolset.  The toolset then automatically
generates a variable subnet with the appropriate value
and operation places.  Currently, we only automatically
build Boolean variable subnets.  We then take the

For the Imp version of the gas station problems, we
use impossible pairs to reflect the fact that if a customer
enters an empty pump queue, then that customer gets
their change before any other customer.  Including
information about impossible pairs in gas31 and gas51



yields reachability graphs with approximately twice as
many nodes and arcs as the original reachability graph.

the customer queue was sufficiently time-consuming that
we did not attempt this for the gas51 program.

Including impossible pairs information in the Petri net
can cause an increase in the reachability graph size
because we encode not just the current program state, but
also information about the path leading to that state.  For
example, consider the state in which customer 1 and
customer 2 have both pre-paid the operator.  Without
impossible pairs information, this state is represented by
a single node in the reachability graph.  When we include
impossible pairs information, the reachability graph
contains one node for this state in which customer 1
entered the (empty) queue first, one node in which
customer 2 entered the (empty) queue first, and one state
in which neither entered an empty queue.  In such cases,
the improvement in accuracy comes at the cost of a larger
reachability graph to be analyzed.

   For the readers/writers problem, the impossible pairs
and variable value techniques implicitly model the
"same" information (the value of the WriterPresent
variable).  It is therefore valid to directly compare the
sizes of the resulting reachability graphs (since they have
the same accuracy), and to note that the impossible pairs
technique is more effective at reducing the size of the
graph.  On the other hand, the Imp Petri nets contain
many more transitions than the Var  Petri nets for this
problem, so it may take longer to actually generate the
(smaller) Imp reachability graphs.  With both techniques,
the accuracy of the reachability graph is improved; the
reduction in size is a beneficial side effect.

For the gas station problem, our impossible pairs
results are not comparable to the Var version, since we
are not capturing the same information in our Petri net.
The Var version captures a significant amount of state
information for only a slight increase in reachability
graph size, but manually adding the required variable
value modeling was difficult.  The Imp version captures
less information than the Var version, and yields a large
increase in reachability graph size, but including the
modeling was straightforward.

For the Var version of readers/writers, we model the
WriterPresent variable that is included in the guards of
the main select statement.  Selecting this variable to be
modeled and recognizing the appropriate connection
points for the variable subnet were straightforward
because of the basic operations on the variable and the
simplicity of the guards containing the variable.  We
observe that, for instances of readers/writers larger than
rw21, the technique yields two benefits: it improves the
accuracy of the analysis by eliminating consideration of
some infeasible paths through the program and it reduces
the size of the reachability graph.  For rw21, this
technique increases the size of the reachability graph.
This occurs because of the possible interleavings of firing
transitions that change the variable value and firing
transitions that are independent of the variable value.  As
the problem is scaled, the affect of these interleavings
seems to decrease, and we see reduction in the
reachability graph size instead of growth.

Table 2 lists several properties of each program
considered.  Entries is the number of unique entries in the
program and Entry Calls is the total number of calls on
those entries.  Variables provides the number of variables
modeled in the Var version of the Petri net, with the
number of possible variable values (including unknown)
following in parentheses.  For instance, for the Var
version of the gas31 Petri net, we model 3 variables with
4 possible values and 1 variable with 5 possible values.
Impossible Pairs provides the number of impossible pairs
modeled in the Imp version of the Petri net.  For the
readers/writers programs, the numbers of variables and
impossible pairs modeled stay constant as the problem is
scaled.  This occurs because the additional modeling is
applied to the control task, which does not change as the
problem is scaled.  For the gas station problems, the

For the Var version of gas31, we implement a variable
subnet for each element of the customer queue, in
addition to the counter for the number of active
customers.  Because our tools don't currently
automatically build subnets for enumerated or subrange
types, we manually built the subnets for this version.
Modeling the customer queue and number of active
customers yields a slight increase in the number of
reachability graph nodes, so simply checking for a
property at each node would take somewhat longer.  In
addition, we note that manually building the variable
subnets was tedious.  Although building the subnet for
each queue element is straightforward, the difficulty
comes in recognizing where the gas31 code moves the
queue forward and representing that movement with the
subnets.  In any case, the analysis is more accurate, since
using the variable subnets ensures that change is always
given to the correct customer.  Developing the model of

Program Entries
Entry

Variables     Pairs
rw21
rw22
rw23
rw32
rw25
rw52
gas31

Calls
Impossible

4
4
4
4
4
4
10 17

14
14

10
10

6
8

1 (3)
1 (3)
1 (3)
1 (3)
1 (3)
1 (3)

3 (4), 1 (5)

7
7
7
7
7
7
6

gas51 14 27 - 20

Table 2.  Program Properties



number of impossible pairs modeled grows as the
problem is scaled because the modeling is applied in the
operator task, which grows as the problem size grows.

state information leads to larger graphs, because we add
possible interleavings between activities on our variable
subnets or Enabled/Disabled impossible pair places and
the original Petri net.  In all cases, the generated
reachability graph represents more accurately the
possible states of the program because of the additional
information modeled.

6 Conclusions

Static analysis can be used to answer questions about
properties of concurrent programs, although often with
the inclusion of spurious results.  We have identified an
approach that can be used to improve the accuracy of
Petri net-based analysis of concurrent programs.  In
several cases that we examined, the approach reduced the
size of the reachability graph for the system as well.  The
impossible pairs technique retains additional program
state information in the form of the impossible pair
transitions that are currently enabled and disabled, and
the variable subnet technique retains additional program
state information in the form of the current values of
selected variables.

We have examined how to incorporate accuracy-
improving semantic information into Petri nets.  It is not
as easy to modify the semantics of other internal
representations that are commonly used for analysis, such
as control flow graphs, abstract syntax trees, and program
dependency graphs.  A complementary and somewhat
similar approach is explored in [DC94], but instead of
modifying the internal representation, the approach
incorporates the additional semantic constraints in the
analysis algorithms.  Similarly, information about
impossible pairs or variable values could be incorporated
in the reachability graph generation algorithm rather than
in the Petri net representation of the program.  It is not
clear how this would affect the size of the resulting
reachability graph, but the added complexity in the
algorithm might lead to a significant increase in
reachability graph generation time.  It is too early to
determine when one approach might be superior to the
other.

The cost of using the above techniques can vary
considerably from program to program.  To effectively
use variable subnets, we must first recognize which
variables affect the control flow of the program and
identify the regions in which those variables are
modified.  We must also determine how the represented
values should be connected  to the transitions of the Petri
net to accurately reflect how the values influence the
interactions of the program.  The difficulty of doing this
ranges from very easy (for control flow decisions based
on a Boolean variable's value only, for example) to very
difficult (for control flow decisions containing
complicated conditions).  Alternatively, we can
sometimes account for complicated conditions by
including impossible pairs information instead.  The
complexity of adding the information for the impossible
pairs is linear in the number of original transitions in the
Petri net; the difficulty comes in recognizing the regions
of the program that represent impossible pairs.
Ultimately, the decision about which technique to use
will fall on the analyst.  For some programs, the
impossible pairs may be easily recognized by the analyst,
whereas for other programs, representing key variables
that control communications in the program may seem
more straightforward.

Because of various limitations, we have only
demonstrated the viability of our approach on a small
sample of programs.  It is doubtful, however, that these
programs are representative of the population of "real"
concurrent programs.  To more accurately quantify how
well these techniques work in general, more experiments
need to be run on a larger sample of programs.  Our
future plans include performing a series of experiments
using this approach on a wider range of program sizes
and complexities.

For the programs examined here, we have manually
detected variables and impossible pairs to model, then
added them to the Petri net using partially automated
tools.  More support could be provided to the analyst
through automatic recognition of variables that control
interaction patterns in the program; these variables could
then be automatically included in the Petri net or
recommended as useful variables to model.
Automatically detecting impossible pairs in the program
may not be feasible except in simple cases, but further
automating the process of modeling variables and
impossible pairs is a potential area for future research.

In several of the programs examined, the reachability
graph size or complexity was reduced as a side effect of
the improved accuracy.  Static analysis models generally
include infeasible as well as feasible paths through the
program; the state space which needs to be searched for
the property is therefore larger than the actual possible
state space of the program.  Because our goal was to
improve accuracy by eliminating impossible program
states from the reachability graph, it is reasonable to
expect a smaller reachability graph to result.  On the
other hand, in some cases our modeling of the additional

It would also be interesting to make the tool
interactive to determine the effects on analysis accuracy
of representing other user-supplied information.  If the
analysis yields spurious results that are not easily
eliminated using the above techniques, it may be possible
to include additional information from the user to refine
the Petri net to improve accuracy.  Other constraints on



the control flow, such as sequences of certain statements
that can never occur or must always occur, can be
modeled with subnets and attached appropriately.  More
generally, any constraints that can be expressed with a
subnet could be used to improve the accuracy of analysis
results, as long as the analyst or an enhanced tool could
determine how to attach the subnet appropriately.  To
ensure conservativeness, the modifications would need to
be error-preserving, at least for the property being
checked.
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