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Abstract

The easy-hard-easy pattern in the difficulty of combinatorial search problems as
constraints are added has been explained as due to a competition between the
decrease in number of solutions and increased pruning. We test the generality of
this explanation by examining one of its predictions: if the number of solutions
is held fixed by the choice of problems, then increased pruning should lead to a
monotonic decrease in search cost. Instead, we find the easy-hard-easy pattern in
median search cost even when the number of solutions is held constant, for some
search methods. This generalizes previous observations of this pattern and shows
that the existing theory does not explain the full range of the peak in search cost.
In these cases the pattern appears to be due to changes in the size of the minimal
unsolvable subproblems, an aspect of the transition not previously reported.
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1 Introduction

Recently, many authors have shown that the solution cost for various kinds of combinato-
rial search problems follows a pattern of easy-hard-easy as a function of how tightly con-
strained the problems are. For example, this pattern appears for graph coloring as a func-
tion of the average graph connectivity [Cheeseman et al., 1991, Hogg and Williams, 1994],
for propositional satisfiability (SAT) as a function of the ratio of number of clauses to num-
ber of variables [Cheeseman et al., 1991, Mitchell et al., 1992, Crawford and Auton, 1993,
Gent and Walsh, 1994b], and for constraint satisfaction problems (CSPs) as a function of
the number of nogoods [Williams and Hogg, 1994] and constraint tightness [Smith, 1994,
Prosser, 1996].

This regularity raises the possibility of determining, prior to search, the likely difficulty
of problems. Unfortunately, this is not yet possible because of the high variance associated
with the observations. This is compounded by the fact that a single problem can be viewed
as belonging to a variety of problem classes, each with somewhat different transition
points. Thus one important direction for improvement is to investigate whether there are
simple additional parameters that can reduce this variance and allow predictions with
higher confidence.

One approach to this question is based on the explanation of the easy-hard-easy pat-
tern as a competition between changes in the number of solutions and pruning of unpro-
ductive search paths as a function of some measure of the degree to which the problems
are constrained. In particular this predicts that problems with many solutions tend to
be easier, on average, than those with fewer for a given number of constraints. Thus, at
least one aspect of the high variance in search cost appears to be due to the variance in
number of solutions in the problems of a fixed degree of constraint. This observation has
motivated the introduction of additional parameters describing problem structure based
on a more precise specification of the number of solutions [Hogg, 1996].

In this paper we investigate the generality of this explanation by examining problems
for which the number of solutions is restricted, including cases where the number is
specified exactly to be either zero or one. If the peak in search cost in fact arises generally
from a competition between changes in the number of solutions and pruning, cases with a
fixed number of solutions should not show a peak. In fact, we find that a peak continues
to appear in these cases for some sophisticated search algorithms while it fails to appear
in other cases. This calls into question the generality of the explanation based on number
of solutions, and also suggests that a search for additional problem structure parameters
based solely on reducing the variance in the number of solutions is not likely to be sufficient
to accurately predict search cost.

In the next section we describe some classes of search problems. We then review the
pattern of search behavior and the current theoretical explanation for it. In the following



section we uncover some limitations of this explanation by examining problems with some
specification on their number of solutions. This shows the easy-hard-easy pattern is a more
general phenomenon than suggested by current explanations. We then discuss some of the
implications of these observations and suggestions for obtaining a better understanding
and predictability for hard search problems.

2 Some Classes of Search Problems

In common with many previous studies of the transition phenomenon, we use random
CSPs and graph coloring as example classes of search problems. This section describes
how the problems were generated and searched.

2.1 Random CSPs

The constraint satisfaction problems we used in most of our experiments consist of 10
variables with 3 possible values for each one. The constraints are specified by a number
of binary nogoods, i.e., assignments to a pair of variables that are considered to be incon-
sistent. The search problem is then to find a consistent complete assignment, i.e., a value
for each of the 10 variables that does not include any of the inconsistent pairs.

We generated problems in a number of ways to fully sample the range of behaviors. In
the first method (“generate-select”) we generate CSPs by randomly selecting the specified
number of binary nogoods. From the problems generated in this way, we consider only
those that satisfy particular requirements on the number of solutions. In the general case,
all such problems are included. For solvable problems, only those with a solution are
included. Finally, for problems with a fixed number of solutions, only those problems
with a specified number of solutions are included.

This random generation method gives a simple, uniform selection from the various
problem classes. However, it can also be very ineflicient in generating problems. For in-
stance, with few nogoods, most randomly generated problems are solvable, hence requiring
a large number of random trials to obtain even a few unsolvable cases.

To address this problem, we also used more efficient (“hill-climbing”) methods. Specif-
ically, for generating solvable problems with many nogoods, starting with a randomly
generated unsolvable problem, we removed constraints at random until the problem be-
came solvable, then restored the number of constraints removed with constraints chosen
randomly, but with the requirement that the problem not become unsolvable again.

For generating unsolvable problems with few nogoods, the hill-climbing method started
with a randomly generated solvable problem, removed the constraint that constrained the
problem the least (the one whose removal increased the number of solutions the least),
and added a randomly chosen constraint that resulted in a problem with fewer solutions



than the problem had before the constraint removal. If, having removed one constraint,
no other constraint could decrease the number of solutions, the constraint that increased
the number of solutions the least was chosen — a slightly backwards step. To speed this
process up, we checked only one third of the possible constraints before giving up, choosing
the one that increased the number of solutions the least, and starting another iteration.

Other methods for generating problems with specified requirements on the number
of solutions have also been studied. One popular method for solvable problems is to
randomly select an assignment to all of the variables (a pre-specified solution) and then,
during the random selection of nogoods, avoid any that are inconsistent with this pre-
specified solution. This tends to emphasize problems with many solutions and results
in instances that are somewhat easier than uniform random selection. [Cha and Iwama,
1995] have also used the approach of generating problems with specific attributes, for SAT
problems, using the AIM generators developed by [Asahiro et al., 1993].

We solved these problems using dynamic backtracking [Ginsberg, 1993] in most cases.
For comparison, we also did some searches with simple chronological backtrack instead.
The search cost is measured as the number of nodes explored.

2.2 Graph Coloring

We also experimented with the 3-coloring problem. This constraint satisfaction problem
consists of a graph and the requirement to assign each node one of three colors so that
no pair of nodes linked by an edge have the same color. Each edge in the graph defines
some binary nogoods for the problem, namely all pairs of assignments giving the same
color to the two nodes connected by the edge. Thus each edge in the graph gives three
binary nogoods. A convenient measure of the number of constraints is 7, the connectivity
or average degree of the nodes in the graph. This is equal to twice the number of edges
in the graph divided by the number of nodes, because each edge is incident on two nodes.
For the 100-node graphs we studied, the number of binary nogoods is given by 150+.

In this case, we used a simple chronological backtrack search in combination with
the Brelaz heuristic for variable and value ordering [Johnson et al., 1991]. This heuris-
tic assigns the most constrained nodes first (i.e., those with the most distinctly colored
neighbors), breaking ties by choosing nodes with the most uncolored neighbors, and with
any remaining ties broken randomly. The colors are considered in a fixed ordering for
all of the nodes in the search. As a simple optimization, the search never changes the
colors selected for the first two nodes. Any such changes would amount to unnecessarily
repeating the search with a permutation of the colors for unsolvable cases. Search cost is
measured by the number of nodes explored.
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Figure 1: Typical transition pattern. Median solution cost for dynamic backtracking (solid
line) and probability of a solution (dotted line) as a function of number of nogoods. Each point
represents 1000 problems, each solved 100 times. Error bars showing 95% confidence intervals
are included, but are in some cases smaller than the size of the plotted points.

3 The Easy-Hard-Easy Pattern

In this section, we present an example of the how search cost varies with the tightness
of constraints for a class of problems, and describe how this behavior can be understood
in terms of changes in the structure of the problems, independent of particular search
algorithms. This review and summary of previous studies of the transition then forms a
basis for comparison with the new results presented in subsequent sections.

3.1 An Example

Figure 1 shows a typical example of the easy-hard-easy pattern as a function of the
constrainedness of the problem. Problems with few or many constraints tend to be easy
to solve while those with an intermediate number are more difficult. The fraction of
solvable problems is also shown in Figure 1, scaled from 1.0 on the left to 0.0 on the right.
This illustrates that the hard problems are concentrated in the so-called “mushy region”
[Smith and Dyer, 1996] where the probability of a solution is changing from 1.0 to 0.0. In
particular, the peak in search cost is near the “crossover point,” the point at which half
the problems are solvable and half unsolvable. For this problem class, the crossover point



occurs at just over 75 binary nogoods, and the peak in dynamic backtracking solution
cost occurs at about 85 binary nogoods.

In all of our results in this paper, we include 95% confidence intervals. The 95%
confidence intervals for the estimate of the median obtained from our samples is given
approximately [Snedecor and Cochran, 1967, p. 124] by the percentiles 50 + 100/v/N
of the data, where N is the number of samples. The 95% confidence intervals for the
estimate of fractions is given approximately [Snedecor and Cochran, 1967, p. 210] by

f£2y/f(1—f)/N, where f is the estimated value of the fraction. In many cases in

this paper, there are sufficient samples to make this interval smaller than the size of the
plotted points.

A key point from examples such as this is that the difficult instances within a class of
search problems tend to be concentrated near a particular value of the constraint tightness
(here measured by the number of binary nogoods). Because this behavior is seen for a
variety of search methods, it indicates this concentration does not depend much on the
details of the search algorithm. Instead, it appears to be associated with a change in the
properties of the problems themselves, namely their solvability.

3.2 An Explanation

These observations raise a number of questions, such as why a peak in search cost exists,
why the peak occurs near the transition from mostly solvable to mostly unsolvable prob-
lems and is thus independent of the particular search algorithm, and why this behavior
is seen for a large variety of constraint satisfaction problems.

The existing explanation for the concentration of hard problems relies on a competi-
tion between changes in the number of solutions and the amount of pruning provided by
the problem constraints[Williams and Hogg, 1994]. With few constraints, there are many
solutions so the search is usually easy. As constraints are added the number of solutions
drops rapidly, making problems harder. But the new constraints also increase the prun-
ing of unproductive search choices, tending to make search easier. When there are few
constraints, the decrease in the number of solutions overwhelms the increase in pruning,
giving harder problems on average. Eventually the last solution is eliminated and all that
remains is the increased pruning from additional constraints, leading to easier problems.
Thus the phase transition, the point at which there is a precipitous change from solv-
ability to unsolvability, more or less coincides with the peak in solution cost. All these
effects become more pronounced as larger problems are considered, leading to sharper
peaks and more abrupt transitions. This qualitative description explains many features
of the observed behavior. This pruning explanation was also offered by [Cheeseman et
al., 1991] with respect to finding Hamiltonian circuits in highly constrained problems.

This explanation can also be used to obtain a quantitative understanding of the behav-



ior. For instance, the location of the transition region can be understood by an approxi-
mate theory predicting that the cost peak occurs when the expected number of solutions
equals one [Smith and Dyer, 1996, Williams and Hogg, 1994]. In our example there are
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possible binary nogoods for the problem, which counts the number of ways to select a pair
of variables and the different assignments for that pair. A given complete assignment for
the 10 variables will be a solution provided each of the selected binary nogoods does not

use the same assignment for its pair of variables as in the given complete assignment. This
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310 possible assignments to the 10 variables in the problem. There are

leaves ) (32 — 1) = 360 possible choices for the binary nogoods. Thus the expected
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for problems with m randomly selected binary nogoods. This expression equals one at
m = 82.9, fairly close to the location of the observed cost peak. Furthermore, because
the expected number of solutions grows exponentially with the number of variables when

number of solutions is given by

m is smaller than this threshold value and decreases exponentially to zero when m is
larger, the range of m values over which the expected number of solutions is near one
rapidly decreases as variables are added. This accounts for the observed sharpening of
the transition for larger problems.

A further quantitative success of relating the search cost peak to transition phenomena
is the evaluation of scaling behavior of the transition and search cost peak [Kirkpatrick

and Selman, 1994, Gent et al., 1995).

4 Search Difficulty and Solvability

In this section we take a closer look at the behavior of the search cost, specifically, by
examining how the behavior depends on whether the problem has a solution and, if so,
the number of solutions.

4.1 Search Behavior

Figure 2 shows the median dynamic backtracking solution cost for solvable and unsolv-
able random CSPs generated as described above. We generated 1000 solvable and 1000
unsolvable problems with 10 variables and 3 values. Solvable problems up to 130 binary
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Figure 2: Solution cost for solvable problems (solid line), and unsolvable problems generated
with the “generate-select” (dotted line) and “hill-climbing” (dashed line) methods, solved using
dynamic backtracking. The isolated point at 140 nogoods is for solvable problems generated
with the “hill-climbing” method. Each point is the median of 1000 problems each solved 100
times, except for the unsolvable problems generated by “generate-select” at 40 nogoods, which

is based on 248 problems. Error bars showing 95% confidence intervals are included, but are
smaller than the size of the plotted points.

nogoods were generated by the generate-select method. At 140 nogoods, generating solv-
able problems this way became quite difficult, so we used the hill-climbing method. We
generated unsolvable problems with 40 or more nogoods by the generate-select method.
For fewer nogoods, however, this method became infeasible, so we used the hill-climbing
method. To show how the different generation methods affect search cost, a few points
were generated both ways, resulting in the overlap of curves shown in the plot.

This figure clearly shows the easy-hard-easy pattern of solution cost for both solvable
and unsolvable problems. The two methods of generating unsolvable problems give dis-
tinct curves: the unsolvable problems generated by the “hill-climbing” method are harder
than those generated by the “generate-select” method.

Another example with the same behavior is shown in Figure 3 for the median search
cost for instances of 3-coloring of random graphs. In contrast to Figure 2, the solvable
and unsolvable cases have similar median search costs near the peaks. This is because,
as described above, the graph coloring searches for unsolvable cases used the symmetry
with respect to permutations of the colors to avoid unnecessary search. Without this
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Figure 3: Median solution cost for 3-coloring random graphs with 100 nodes as a function of
connectivity v using backtrack search with the Brelaz heuristic. The solid and dashed curves
correspond to solvable and unsolvable cases respectively. These results started with 100,000
random graphs at each value of 4, and additional samples were generated at the extremes to
produce at least 100 samples for each point. For random graphs, the crossover from mostly

solvable to mostly unsolvable occurs around a connectivity of 4.5. Error bars showing 95%
confidence intervals are included.

optimization, the costs for unsolvable cases would be six times greater than the values
shown in the figure. Similar peaks are seen for other classes of graphs, such as connected
ones, although at somewhat different values of ~.

These data show that both random CSPs and graph coloring problems exhibit an
easy-hard-easy pattern for solvable and unsolvable problems considered separately.

4.2 Solvable Problems

How does the existence of a peak for solvable problems fit with the explanation given
above? Certainly an explanation based on a transition from solvable to unsolvable prob-
lems cannot apply directly to the class of solvable problems. However, the competition
between increased pruning and decreased number of solutions still applies. As shown in
Figure 4, the number of solutions for solvable random CSPs at first decreases rapidly as
constraints are added but then nears its minimum value of one, giving a slower decrease.
Except for the change in minimum value from 0 to 1 solution, this behavior for the num-
ber of solutions is qualitatively similar to that for the general case including both solvable
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Figure 4: Mean (solid) and median (dashed) number of solutions on a log scale as a
function of the number of binary nogoods, for solvable problems with 10 variables, 3
values each, based on 1000 problems at each multiple of 10 binary nogoods. At 0 nogoods
there are 3'® = 59049 solutions. These were generated by the “generate-select” method,
except for 140 nogoods where the “hill-climbing” method was used (mean and median on
top of each other). Error bars showing 95% confidence intervals are included.

and unsolvable problems. The additional constraints continue to increase the pruning
of unproductive search paths. Thus the explanation given above continues to apply but
now predicts the peak will be at the point where solutions can drop no further (i.e., one
solution) rather than becoming unsolvable (i.e., zero solutions).

That this is in fact correct is shown in Figure 5 for random CSPs. The second to
last solution disappears, on average, between 90 and 100 nogoods: the median number
of solutions has dropped to 2 by 90 nogoods, and to 1 by 100 nogoods (Figure 4). The
peak in solution cost for solvable problems is slightly lower than this, at between 80
and 90 nogoods, close to the crossover point of Figure 5 where half the solvable problems
have only one solution. However, comparing with Figure 1 shows the disappearance of the
second to last solution is more gradual than the change in solvability for general problems.
An open question is whether this becomes more abrupt for larger solvable problems as
happens with the transition in solvability for general problems.

Thus the location of the solution cost peak is consistent with the explanation based on
the competition between the number of solutions and pruning. The association with the
disappearance of the second to last solution for solvable problems has not been previously
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Figure 5: Fraction of problems with at least two solutions as a function of number of nogoods
based on 1000 solvable problems at each point. All points except at 140 nogoods were created

by the “generate-select” method, while the point at 140 is from problems generated by the
“hill-climbing” method. Error bars showing 95% confidence intervals are included.

noted, which left open the question as to why a class of solvable problems should have
a peak in search cost at the point where a different class, i.e., containing both solvable
and unsolvable problems, has a transition in solvability. This is especially so since other
changes in the definition of the class of problems generally result in some shift in the
location of the transition point.

An additional generalization of these comments generates a prediction for the case
of graph coloring. For this problem, a permutation of any consistent coloring is also
a solution to the problem. Thus, for instance, a 3-colorable graph will usually have
a minimum of six solutions and we would expect the peak for colorable graphs to be
associated with the point at which any solutions beyond those required by this symmetry
disappear.

The peak in search cost for solvable problems has also been seen extensively in stud-
ies of local-repair search methods and for problems generated with a pre-specified so-
lution [Yugami et al., 1994, Kask and Dechter, 1995, Williams and Hogg, 1994]. These
search methods start with some assignment to all of the variables in the problem and then
attempt to adjust them until a solution is found. Generally, such methods are not system-
atic searches: they can never determine that a problem has no solution. Thus empirical
studies of these methods are restricted to consider solvable problems and incidentally

10
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Figure 6: Solution cost as a function of number of nogoods for problems of 10 variables, 3
values each, with exactly one solution, generated using the “generate-select” method (dotted
line), and by hill-climbing down to one solution starting from solvable problems with many
solutions produced using “generate-select” (dashed line), solved using dynamic backtracking.
Each point is the median of 1000 problems each solved 100 times, except for hill-climbing
generated problems at 25, 30 and 35 nogoods, of which there are 100. Error bars showing 95%
confidence intervals are included.

provide a useful examination of the properties of solvable problems.

Furthermore, a study of satisfiability problems with backtracking search is consistent
with a peak in cost for solvable problems [Mitchell et al., 1992], but there were insufficient
highly constrained solvable problems to make a definite conclusion for the behavior with
many constraints.

4.3 Problems With a Fixed Number of Solutions

A more interesting case is the behavior of the problems with no solutions shown in Figures
2 and 3. As a further example, Figure 6 shows the solution cost for problems with exactly
one solution. This also shows a peak. These observations on problems with zero or one
solution show that even with the number of solutions held constant, problems exhibit an
easy-hard-easy pattern of solution cost.

According to the explanation of the transition, if the number of solutions is held
constant then the increase in pruning will be the only factor, giving rise to a monotonic
decrease in search cost as constraints are added. Instead, we see in Figures 2 and 6, that

11



: : : : : : — Nogoods

20 40 60 80 100 120 140

Figure 7: Comparison of median solution cost on a log scale using the same sets of unsolvable
problems for chronological backtracking (black) and dynamic backtracking (gray). Dashed lines
are for problems generated using the “hill-climbing” method, solid lines for the “generate-select”
method. Each point is the median of 1000 problems each solved 100 times, except for the

“generate-select” method at 40 nogoods, which is based on 248 problems. Error bars showing
95% confidence intervals are included, but are smaller than the size of the plotted points.

even when the number of solutions is held fixed at zero or one, there is still a peak in
solution cost, and at a smaller number of nogoods. Thus the existing explanation does
not capture the full range of behaviors. Instead, it appears that there are other factors
at work in producing hard problems. By focusing more closely on these factors we can
hope to gain a better understanding of the structure of hard problems, which may lead
to more precise predictions of search cost.

In contrast to our observations, a monotonic decrease in cost has been reported for
unsolvable binary constraint problems [Smith and Dyer, 1996] and for unsolvable 3SAT
problems [Mitchell et al., 1992].

What might account for the different pattern we see here? Smith’s plots are based
on one trial per generated problem, while we solve each generated problem 100 times to
avoid characterizing any given problem by what may actually be merely a “bad luck”
search path. In addition, Smith used chronological backtracking, but we use dynamic
backtracking. To determine the relative importance of these differences, we repeated the
search of random CSPs using chronological backtracking. A comparison of this with our
previous dynamic backtrack search for unsolvable problems is shown in Figure 7. In

12



this figure, the curves for dynamic backtracking are the same as those for the unsolvable
problems shown in Figure 2, except here the cost curves are shown on a logarithmic scale.
Because we do not see a peak in unsolvable problems using the less sophisticated method
of chronological backtrack, we conclude that it is the choice of algorithm in Smith’s work
that accounts for the difference in the observed patterns.

This observation raises an important point: the easy-hard-easy pattern is not a uni-
versal feature of search algorithms for problems restricted to a fixed number of solutions.
This suggests that the competition between number of solutions and pruning, when it
occurs, is sufficiently powerful to affect most search algorithms (very simple methods,
such as generate-and-test, do not make use of pruning and show a monotonic increase in
search cost as the number of solutions decreases). However, only some algorithms are able
to exploit the features of weakly constrained problems with a fixed number of solutions
that make them easy.

5 Discussion

Our observations on classes of problems with restrictions on the number of solutions they
may have shows that the common identification of the peak in solution cost with the
algorithm-independent transition in solvability seen in general problem classes does not
capture the full generality of the easy-hard-easy pattern.

In our observation for solvable problems, this explanation can be readily modified to
use a transition in the existence of solutions beyond those specified by the construction
of the class of problems and symmetries those problems might have that constrain the
allowable range of solutions. This modification is a simple generalization of the existing
explanation based on the competition between the number of solutions and pruning.

When the number of solutions is held constant, however, competition between in-
creased pruning and decreasing number of solutions cannot possibly be responsible for a
peak in solution cost. The decrease in search cost for highly constrained problems (to
the right of the peak) is adequately explained by the prevailing explanation, based on the
increase in pruning with additional constraints. But this does not explain why weakly
constrained problems are also found to be easy, at least for some search methods. The
low cost of unsolvable problems in the underconstrained region is a new and unexpected
observation in light of previous studies of the easy-hard-easy pattern and its explanation.
This raises the question of whether there is a different aspect of problem structure that
can account for the peak in search cost for problems with a fixed number of solutions.

One possibility that is often mentioned in this context is the notion of critically con-
strained problems. These are problems just on the boundary between solvable and unsolv-
able problems, i.e., neither underconstrained (with many solutions) nor overconstrained
(with none). This notion forms the basis for another common interpretation of the cost

13
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Figure 8: Median minimal unsolvable subproblem size as a function of number of nogoods,
for unsolvable problems generated using the “hill-climbing” (dashed line) and “generate-select”
(dotted line) methods. Each point is based on the median, for 1000 problems, of the median
unsolvable subproblem size for the problem (some problems have multiple minimal unsolvable
subproblems). Error bars showing 95% confidence intervals are included.

peak. That is, these critically constrained problems will typically be hard to search (be-
cause most of the constraints must be instantiated before any unproductive search paths
can be identified) and, since they are concentrated at the transition [Smith and Dyer,
1996], give rise to the search peak. This explanation does not include any discussion
of the changes in pruning capability as constraints are added. Taken at face value, this
explanation would predict no peak at all for solvable problems because such a class has
no transition from solvable to unsolvable problems. Moreover, this description of crit-
ically constrained problems is not simply a characteristic of an individual problem (as,
say, the number of solutions is) but rather is partly dependent on the class of problems
under consideration because the exact location of the transition depends on the method
by which problems are generated. Thus, as currently described, the notion of critically
constrained problems does not explain our observations nor does it give an explicit way
to characterize individual problems.

A more precisely defined alternative characteristic is the size of minimal unsolvable
subproblems, i.e., a subproblem that is unsolvable, but for which any subset is solvable.
Some problems have more than one minimal unsolvable subproblem. For example, they
might have one such subproblem of 5 variables, and another, different one, of say, 6.

14



We found that problems with 140 nogoods usually have around 40 minimal unsolvable
subproblems, those with 70 nogoods have about 5, and problems with 50 or fewer nogoods,
just 1 or 2.

The behavior of the size of these minimal unsolvable subproblems is shown in Figure 8.
Comparing with Figure 2, we see that the peak in the size of minimal unsolvable subprob-
lems matches the location of the search cost peak for unsolvable problems. This result
is independent of whether we plot medians, as shown in Figure 8, or means or mimina,
which we have not shown here; regardless of the particular choice of how to plot minimal
unsolvable subproblem size, the shape of the plot is the same. Moreover, the location
of the peaks in minimal unsolvable subproblem size for the different generation methods
correspond to the location of their respective search cost peaks. The peak in both search
cost and minimal unsolvable subproblem size occurs at around 40 nogoods for problems
generated using the “hill-climbing” method, and significantly higher, around 60 nogoods,
for problems generated using the “generate-select” method. The strong correspondence
between minimal unsolvable subproblem size and search cost is very suggestive that min-
imal unsolvable subproblem size is a structural characteristic of problems that plays an
important role in search cost.

The behavior of the minimal unsolvable subproblem size as a function of the number
of constraints has a simple explanation. In order for weakly constrained problems to be
unsolvable, they will generally need to concentrate most of the available constraints on a
few variables in order to make all assignments inconsistent. This will tend to give small
minimal unsolvable subproblems. As more constraints are added, this concentration is
no longer required and, since problems where most of the randomly selected constraints
happen to be concentrated on a few variables are rare, we can expect larger minimal
unsolvable subproblems. Finally, as more and more constraints are added, the increased
pruning is equivalent to the notion that instantiating only a few variables is all that is
required to find an inconsistency. This means we can expect a large number of unsolvable
subproblems. This qualitative description corresponds to what we observe in Figure 8.

Our observations of weakly constrained problems suggest that some search algorithms,
such as dynamic backtracking, are able to rapidly focus in on one of the unsolvable
subproblems and hence avoid the extensive thrashing, and high search cost, seen in other
methods. In such cases, one would expect that the smaller the unsolvable subproblem is,
the easier it will be for the search to determine there are no solutions.

This discussion is also relevant to solvable problems: once a series of choices is made
during the search that precludes a solution, the remaining subproblem is now an unsolv-
able one. For example, in a 10 variable CSP, suppose values are given to the first two
variables that are incompatible with all solutions to the problem. This means that in
the context of these two assignments, the remaining 8 variables constitute an unsolv-
able subproblem. The number of search steps required to determine this subproblem

15



is in fact unsolvable will be the cost added to the search before backtracking to the
original two variables and trying a new assignment for one of them. Thus, the cost
of identifying unproductive search choices for solvable problems is determined by how
rapidly the associated unsolvable subproblem can be searched. As described above, when
there are few constraints we can expect that such unsolvable subproblems will them-
selves have small minimal unsolvable subproblems and hence be easy to search with
methods that are able to focus on such subproblems. While the unsolvable subprob-
lems associated with incorrect variable choices in solvable problems may have a dif-
ferent structure, this argument suggests that the changes in minimal unsolvable sub-
problems explain the behavior of solvable problems with a fixed number of solutions as
well. Thus this could also explain observations of thrashing behavior for rare but ex-
tremely costly searches seen in the underconstrained region [Gent and Walsh, 1994a,
Hogg and Williams, 1994]. It would also be interesting to study the behavior of local
repair search methods for problems with a single solution to see if they also are affected
by the change in minimal subproblem size.

6 Conclusions

We have presented evidence that the explanation of the easy-hard-easy pattern in solution
cost based on a competition between changes in the number of solutions and pruning is
insufficient to explain the phenomenon completely for sophisticated search methods. It
does explain the overall pattern for problems not restricted by solvability or number of
solutions. However, the explanation fails when the number of solutions is held constant
and sophisticated search methods are used. In these cases the solution cost peak does
not disappear as would be predicted. Alternatively, we can view this explanation as
adequate for less sophisticated methods that are not able to readily focus in on unsolvable
subproblems encountered during the search.

By considering relatively small search problems, we are able to exhaustively examine
the properties of the search space. This allowed us to identify a new aspect of problem
structure that is important for search behavior: the size of minimal unsolvable subprob-
lems. This contrasts with much work in this area that involves solving problems as large
as feasible within reasonable time bounds. While this approach gives a better indication
of the asymptotic behavior of the transition, it is not suitable for exhaustive evaluation
of the nature of the search spaces encountered.

We believe that detailed examination of the structure of combinatorial problems can
yield information about why certain types of problems are difficult or easy. As a class
graph coloring or random CSPs are NP-complete, yet in practice many such problems
are actually very easy. In addition, while theoretical work in this area has produced
predictions that are asymptotically correct on average, the variance among individual
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problems in a predicted class is enormous. Increased understanding of the relationships
between problem structure, problem solving algorithm, and solution cost is important to
determining whether, and if so, how, we can determine prior to problem solving which
problems are easy versus infeasibly hard. In contrast to previous theoretical studies that
focus on the number of solutions, this suggests the size of minimal unsolvable subproblems
is an alternate characteristic to study with the potential for producing a more precise
characterization of the transition behavior and the nature of hard search problems.
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