Parallel and Distributed Search for Structure
in Multivariate Time Series

Tim Oates, Matthew D. Schmill and Paul R. Cohen
Computer Science Department, LGRC
University of Massachusetts
Box 34610
Ambherst, MA 01003-4610
Voice: 1-413-545-3616
Fax: 1-413-545-1249

{oates,schmill,cohen }@cs.umass.edu

Abstract

Efficient data mining algorithms are crucial for effective knowledge discovery. We
present the Multi-Stream Dependency Detection (MsDD) data mining algorithm that
performs a systematic search for structure in multivariate time series of categorical
data. The systematicity of MSDD’s search makes implementation of both parallel and
distributed versions straightforward. Distributing the search for structure over multiple
processors or networked machines makes mining of large numbers of databases or very
large databases feasible. We present results showing that MsDD efficiently finds complex
structure in multivariate time series, and that the distributed version finds the same
structure in approximately 1/n of the time required by MsDD, where n is the number of
machines across which the search is distributed. MspD differs from other data mining
algorithms in the complexity of the structure that it can find. MSDD also requires
no domain knowledge to focus or limit its search, although such knowledge is easily
incorporated when it is available.

Keywords: data mining, parallel and distributed algorithms, systematic
search, multivariate time series

1 Introduction

Knowledge discovery in databases (KDD) is an iterative process in which data is repeatedly
transformed and analyzed to reveal hidden structure.! The analysis portion of KDD, the
actual search for structure in data, is called data mining. Efficient data mining algorithms
are necessary when the number of databases to be mined is large, when the amount of data
in a given database is large, or when many iterations of the transform/analyze cycle are
required. The ease with which vast quantities of electronically available information can be
generated and stored gives rise to the former two conditions. Parallel and distributed data
mining algorithms can quickly mine large amounts of data by taking full advantage of existing
hardware, both multiple processors on one machine and multiple machines on a network.
Multi-Stream Dependency Detection (MSDD) is an easily parallelized data mining algorithm
that performs an efficient systematic search for complex structure in multivariate time series
of categorical data. Consider the streams of data flowing from the monitors in an intensive
care unit, or periodic measurements of various indicators of the health of the economy, a
computer network, or the earth’s various ecosystems. There is clearly utility in determining
how current and past values in those streams are related to future values. Empirical results
demonstrate that MSDD’s representation and core search algorithm are capable of expressing
and finding interesting and complex structure, and that the distributed version of MSDD (D-
MSDD) running on n networked machines is approximately n times faster than the centralized
version.

MSDD finds dependencies between patterns of values that occur in multivariate time series
of categorical data. We call each univariate time series a stream of data. Dependencies are
unexpectedly frequent or infrequent co-occurrences of patterns in the streams, and can be
expressed as rules of the following form: “If an instance of pattern z begins in the streams at
time ¢, then an instance of pattern y will begin at time ¢t+4§ with probability p.” A dependency
is strong if the empirically determined value of p is very different from the probability of
seeing a co-occurrence of ¢ and y under the assumption that they are independent. Strong
dependencies capture structure in the streams because they tell us that there is a relationship
between their constituent patterns, that occurrences of those patterns are not independent.

Because many interesting and important databases contain a temporal component, such
as those describing the ebb and flow of the stock market or the health of a patient in an
intensive care unit, the constituent patterns of MSDD rules (z and y) can span multiple time
steps, and they can be associated across arbitrary temporal lags (). In addition, right-hand-
sides of rules can be as complex as left-hand-sides, specifying values for multiple streams over
multiple time steps. Contrast the expressiveness of MSDD’s rules with those found by other
rule discovery algorithms, which often assume that databases contain temporally independent
feature vectors and that only the values of a single pre-specified feature can serve as rule
right-hand-sides. MSDD discovers structure that these algorithms cannot even represent.

MSDD finds the k strongest dependencies in a set of streams by performing a systematic

1KDD is a new term for an old activity, exploratory data analysis (EDA) [14]. Whereas EDA is typically
associated with continuous-valued data and statistical procedures for transformation and analysis, KDD
encompasses more complex forms of data (e.g. relational data) and transformation and analysis techniques
(e.g. induction learning algorithms). However, KDD and EDA share the same underlying principles and
goals.

search over the space of all possible dependencies. Systematic search expands the children
of search nodes in a manner that ensures that no node can ever be generated more than
once [6,8-10,15]. Because non-redundant expansion is achieved without access to large,
rapidly changing data structures, such as lists of open and closed nodes, the search space
can be divided between multiple processes on multiple machines. Only a small amount of
inter-process communication is required to keep the list of the k strongest dependencies
globally consistent.

Because MSDD returns a list of the k strongest dependencies, rather than all of the
dependencies that it encounters during the search, it is possible to use upper bounds on the
values of a node’s descendants to prune. The expressiveness of MSDD’s rule representation
allows the algorithm to find complex structure in data, but also leads to an exponential
search space, making effective pruning essential. We use the G statistic as a measure of
dependency strength, and develop optimistic bounds on the value of G for the descendants
of a node to prune.

The remainder of the paper is organized as follows: Section 2 discusses systematic search
in detail. Section 3 presents the MSDD algorithm, defines the space of dependencies that
the algorithm explores, and develops domain independent pruning techniques. Section 4
shows how the systematicity of MSDD’s search can be exploited to develop parallel and
distributed versions of the algorithm. Section 5 explores the ability of the core algorithm to
find interesting and complex structure in multivariate time series, and compares the speed
of the centralized (MSDD) and distributed (D-MSDD) versions of the algorithm. Section 6
reviews related work, and Section 7 concludes and explores future directions.

2 Systematic Search

MSDD’s search for the k strongest dependencies in a set of streams is systematic, leading
to search efficiency and parallelizability. Systematic search non-redundantly enumerates the
elements of search spaces for which the value or semantics of any given node are independent
of the path from the root to that node. Webb calls such search spaces unordered [15].
Consider the space of disjunctive concepts over the set of literals {A, B,C}. Given a root
node containing the empty disjunct, false, and a set of search operators that add a single
literal to a node’s concept, a non-systematic elaboration of the search space is shown in
Figure 1. Note that the concept AV BV C appears six times, with each occurrence being
semantically the same as the other five, yet syntactically distinct. In the space of disjunctive
concepts, the semantics of any node’s concept is unaffected by the path taken from the root
to that node. For example, the two paths below yield semantically identical leaf nodes:

false + A— AVB—AVBVC
false - C —-CVB—-CVBVA

The search tree in Figure 1 contains six syntactic variants of the concept AV BV C, and
two syntactic variants of the concepts AV B, AV C and BV C. Clearly, naive expansion of
nodes in unordered search spaces leads to redundant generation and wasted computation.
Systematic search of unordered spaces generates no more than one syntactic form of each
semantically distinct concept. That is accomplished by imposing an order on the search

false

A B C
AvB AvC BvA BvC CvA CvB
AvBvC AvCvB BvAvC BvCvA CvAvB CvBVvA

Figure 1: A naive elaboration of the space of disjunctive concepts over the set {A, B,C}
generated by applying all valid search operators at every node. Naive search generates
multiple syntactic variants of individual concepts.

operators used to generate the children of a node, and applying only those operators at
a node that are higher in the ordering than all other operators already applied along the
path to the node. Let ops,opp and opc be the operators that add the literals A, B and
C respectively to a node’s concept. If we order those operators so that opy < opp < opc,
then the corresponding space of disjunctive concepts can be enumerated systematically as
shown in Figure 2. Note that each semantically distinct concept appears exactly once. The
concept A is obtained by applying operator op, to the root node. Because opg > ops and
opc > opy, both opp and ope can be applied to the concept A, generating the child concepts
AV B and AV C. In contrast, the concept C, which is obtained by applying op¢ to the root
node, has no children. Because all other operators (ops4 and opg) are lower in the ordering
than opc, none will be applied and no children will be generated.

Systematic search of unordered spaces is significantly more efficient than naive search
because many fewer nodes are generated. Naive search may be made more efficient by
maintaining a list of expanded nodes, and checking each newly expanded node against that
list to determine if a semantically identical syntactic variant already exists somewhere in the
tree. However, this approach adds both computational and storage overhead, and it does
not completely eliminate redundant generation of syntactic variants. For example, if the
concept AV B exists in the tree, the subtree rooted at the concept B V A can be pruned
when that node is expanded. However, the concept BV A is a redundant syntactic variant of
the concept AV B, and pruning cannot take place until BV A is expanded and the concept
AV B is found to already exist. In contrast, systematic search prunes the subtree rooted at
BV A without ever expanding the redundant root of that subtree.

The fact that unordered search spaces can be explored without redundant node generation
through systematic search is the key to parallelizing MSDD. Given any search node in the
tree, the only information required to simultaneously generate that node’s children and avoid
redundant node generation is the operator ordering (e.g. opa < opp < opc). Consider the
systematic search space shown in Figure 2. Each of the subtrees rooted at the three children
of the root node, A, B and C, could be expanded by systematic search algorithms running on

AvB AvC BvC

AvBvC

Figure 2: Systematic elaboration of the space of disjunctive concepts over the set {A, B, C}.
Only one syntactic form of each semantically distinct concept is expanded.

different machines. The machine expanding node B would generate its children by applying
all operators higher in the ordering than opg, yielding the single child B V C through the
application of operator opc. Because no operators are higher in the ordering than op¢, the
node B V C has no children, and the subtree rooted at B has been completely explored.
Not only was no communication with the search algorithms running on the other machines
required to expand that subtree, there was no need to know that they even existed or that
other portions of the search space were being explored.

After presenting the core MSDD algorithm in the next section, we discuss the use of
systematic search to create parallel and distributed versions in Section 4.

3 The MSDD Algorithm

MSDD accepts as input a set of streams that are used to define the space of dependencies
the algorithm will search and to evaluate the strength of dependencies. The set of m input
streams is denoted S = {s1,...,5m}, and the 7** stream is composed of categorical values,
called tokens, taken from the set V;. All of the streams in S must have the same length, and
we assume that all of the tokens occurring at a given position in the streams were recorded
synchronously. Consider the following streams:

S1: DBBADCDABC
S2: XYY ZYXZZXY
S3: 2132212321

All three streams contain ten tokens. Stream s; is composed of tokens drawn from the set
Vi ={A,B,C,D}. Likewise, V, = {X,|Y, Z} and V3 = {1, 2, 3}.
Recall that MSDD searches for dependencies expressed as rules of the following form:

“If an instance of pattern = begins in the streams at time ¢, then an instance of pattern
7

y will begin at time ¢ 4+ § with probability p.” Such rules are denoted z LN y. We call z

the precursor and y the successor. p is computed by counting the number of time steps on
which an occurrence of the precursor is followed § time steps later by an occurrence of the
successor, and dividing by the total number of occurrences of the precursor. To keep the
space of patterns and the space of dependencies finite, we consider patterns that span no
more than a constant number of adjacent time steps. Precursors can span at most w, time
steps, and successors can span at most w, time steps. Both w, and w, are parameters of the
MSDD algorithm.

Patterns of tokens (precursors and successors) are represented as sets of 3-tuples of the
form 7 = (v, s,d). Each 3-tuple specifies a stream, s, a token value for that stream, v, and a
temporal offset, d, relative to an arbitrary time ¢. Because such patterns can specify token
values for multiple streams over multiple time steps, they are called multitokens.? Tuples that
appear in precursors are drawn from the set T, = {(v,s,d)|1 < s <m,v € V,,0 < d < wp}.
Likewise, tuples that appear in successors are drawn from the set T, = {(v,s,d)|1 < s <
m,v € V,,0 < d < w,}. For example, the multitoken z = {(B,1,0),(Y,2,1)} specifies a
pattern that occurs twice in the streams above. For ¢t = 2 and ¢t = 9, we see token B in
stream one at time t + 0 and token Y in stream 2 at time ¢ 4+ 1. Likewise, the multitoken
y = {(X,2,0),(2,3,0),(Y,2,1),(1,3,1)} occurs twice in the streams above, once at time
t = 1 and again at time ¢ = 9. The following streams are a copy of the streams above,
except we have removed all tokens not involved in occurrences of z or y.

sit: B.B.
s2: Xy.XY
s3: 2121

Although the input parameters w,, w, and & together with the streams in S define
the space of precursors, successors and dependencies that MSDD will explore, any given
dependency can be expressed for a large number of different settings of those parameters.
This makes MSDD’s ability to find structure in streams robust with respect to variations
in the settings of w,, w, and §. Figure 3 shows how one particular relationship between
two multitokens can be captured by dependency rules for three different settings of w,, w,
and 4. Unfortunately, it is also the case that any given dependency can often be expressed
in different ways within the confines of a single specification of values for w,, w, and 4.
For example, the patterns in the left-most two blocks in Figure 3 could be shifted right by
one time step, resulting in a syntactically distinct yet semantically identical dependency.
Therefore, during the search we prune dependencies that can be shifted in the manner just
described, knowing that an unshiftable syntactic variant exists elsewhere in the search space.

MSDD performs a general-to-specific search over the space of possible dependencies, start-
ing with a root node that specifies no token values for either the precursor or the successor
({} = {}). Search operators either add a term from T, to a node’s precursor or add a term
from T, to a node’s successor. To perform a systematic search over the space of possible
dependencies between multitokens, we impose the following order on the terms in 7, and T}:
All of the terms in T}, are lower than all of the terms in 7,. For any 7, 7; € T}, 7; is lower
than 7; if d; < d; or if d; = d; and s; < s;. That is, terms in 7, are ordered first by their

2The definition of a multitoken given here is an extension of the one given in previous descriptions of the
algorithm [6].

S1: . |AB|. . |AB|.|. .|]. .|. AB|.|.|.
S2: . o X o e e X e e e X
S3: .|C . Y . .. C] |Y). . C LY

Figure 3: Any given relationship between two multitokens can be captured by dependencies
for a wide variety of settings of w,, w, and §. Therefore, MSDD’s ability to find structure in
streams is robust with respect to variations in those parameters. The figure shows one such
relationship as captured by dependencies with the following values: w, = w, = 3, § = 3 (the
left-most two blocks); w, = ws, = 2, § = 3 (the middle two blocks); and w, = 3, w, = 1,
§ = 4 (the right-most two blocks).

temporal offset, and then by their stream index. Likewise for terms in 7,. By ordering all
of the terms in T, below all of the terms in T, we force precursors to be constructed before
successors. As long as no terms have been added to a node’s successor, terms may be added
to its precursor. However, as soon as a single term is added to the successor, the precursor
must thereafter remain unchanged because all of the search operators that would add new
terms to the precursor are lower than the operator that added the term to the successor.

Because MSDD returns a list of the k strongest dependencies, if we can derive an upper
bound on the value of the evaluation function f for all of the descendants of a given node,
then we can use that bound to prune the search. Suppose the function fmaz(N) returns
a value such that no descendant of N can have an f value greater than fmaz(N). If at
some point during the search we remove a node N from the open list for expansion, and
fmaz(N) is less than the f value of all k£ nodes in the current list of best nodes, then we
can prune N. There is no need to generate N’s children because none of the descendants of
N can have an f value higher than any of the current best nodes; none of N’s descendants
can be one of the k best nodes that will be returned by the search. The use of an optimistic
bounding function is similar to the idea behind the h function in A* search. That is, if a
goal node is found whose cost is less than underestimates of the cost-to-goal of all other
nodes currently under consideration, then that goal node must be optimal. Pruning based
on optimistic estimates of the value of the descendants of a node has been used infrequently
in rule induction algorithms, with ITRULE [12] and OPUS [15] being notable exceptions.

The G statistic computed for 2x2 contingency tables is a statistical measure of non-
independence, and we have derived bounds on the value of G for the descendants of a
node, making it an ideal candidate for f. Given a 2x2 contingency table whose four cells
(n1,m2,n3,n4) indicate the frequency with which occurrences and non-occurrences of the
precursor are followed § time steps later by occurrences and non-occurrences of the successor,
G 1s computed as follows:

4
G=2 Znilog(ni/ﬁi)
i=1

n; is the expected value of n; under the assumption of independence, and is computed from
the margins and the table total [16]. Because the ordering imposed on MSDD’s search opera-
tors causes precursors to be elaborated before successors, it is possible to reason about how
the mass of a contingency table may move as one descends along a path in the search tree. As

a consequence, given any node’s dependency (z EN y) and contingency table (n1,ns, n3, n4),

we can establish the following upper bound on the value of G for the descendants of that

node:
Gmaz(ni,na,ng,ng) =

(1)
if ny <mny+nz+ny
G(nl, 0, 0, o —|— ns —|— 'I’L4)
else
G(”l +ﬂ2-|2-ﬂ3 +ng , 07 07 ny -I-ﬂz;ﬂs-l-ﬂ‘;)

maz | (2)
if ny > abs(ny — n3)
G(O, n1+”22+713 , ﬂ1+7122+ﬂ3 ,'I’L4)

else if ny > ng
G(07 N2, N + UED ’I’L4)
else

G(0,n; + ng,n3,n4)

We omit the proof due to lack of space.

A pseudo-code specification of MSDD is given below in Algorithm 3.1. MSDD requires
seven input parameters: a set of streams, S, that is to be searched for structure; the max-
imum number of time steps that precursor and successor multitokens can span, w, and w,
respectively; the lag to be used when counting co-occurrences of precursors and successors,
d; an evaluation function that determines the strength of a given dependency, f; a function
that returns an upper bound on the value of f for the descendant of a node, fmaz; and the
number of dependency rules to return, k. In all of our experiments, we used G as the node
evaluation function and Gmaz as defined above to prune.

Algorithm 3.1 MSDD

MSDD(S, wp, w,, 4, f,fmax, k)
1. best = ()
2. nodes = ({} = {})

3. while not EMPTY(nodes) do

node = NEXT-NODE(open)

children = SYSTEMATICALLY-EXPAND(node, wp, w,)
children = REMOVE-PRUNABLE(children, fmaz)
add children to open

for child in children do

i. if LENGTH(best) < k or dn € best s.t. f(child,S,8) > f(n,S,d) then
add chald to best

i. if LENGTH(best) > k then
remove from best the node with the lowest f value

o o T

4. return best

4 Parallel and Distributed MSDD

In the same way MSDD guarantees non-redundant generation of search nodes, MSDD guar-
antees that distinct nodes at the same depth in the search tree are parent to completely
disjoint sets of children. The result is a search space that can be trivially partitioned into
computationally independent subsets, and consequently MSDD is an algorithm well suited for
parallel and distributed implemetation. We begin by discussing a parallel implementation
of MSDD

The easy partitioning of MSDD’s search space allows us to treat any intermediate search
node as a root of a new search tree. Consider the goal of “basic” MSDD; search for elaborations
on the completely general rule {} — {} that maximize the evaluation function f. A more
general, parallelized approach is to search for elaborations on an arbitrary rule that maximize
f. In this way, we treat each node as an “island”, independent of anything else MSDD has
learned, and perform the search is if it were the root. The code for a parallel MSDD is given
in algorithm 4.1.

Algorithm 4.1 PARALLEL MSDD

P-MSDD (node)
SPAWN {

1. children < SYSTEMATICALLY-EXPAND (node,w,,w,)
2. for ch in chaldren do

a. if LENGTH(best) < k or In € best s.t. f(child,S,8) > f(n,S,6) then
GET-SEMAPHORE (best)
add ch to best
RELEASE-SEMAPHORE (best)
b. if (not PRUNE(ch)) then
P-MSDD(ch) }

An efficient parallel implementation of MSDD is possible because the search at any given
node does not require access to previously elaborated search tree. The threads of P-MSDD
need only non-exclusive read access to the time series and exclusive write access for insertions
into the queue of k best nodes. Using a semaphore to provide exclusive writes to the k best
list, the computation of MSDD can be effectively balanced over many processing elements.

4.1 Distributed MSDD

The implementation of parallel MSDD can be translated easily to an efficient distributed
algorithm. This algorithm, D-MSDD, makes use of a client-server TCP tools to perform
D-MSDD’s search over a network of cooperating systems.

The D-MSDD algorithm begins with the server. The server is responsible for initiating
the search, mediating communication, and declaring the search finished. Any number of
client machines may contact the server to declare themselves as eligible for aiding in the

search. This declaration process is called registration, where the server takes note of each
client machine, issuing it a unique identifier for future communication. Once a desirable
number of clients have registered, the server is ready to initiate the search process. This
process, executed on both client and server machines, is given in algorithm 4.2.

Algorithm 4.2 DISTRIBUTED MSDD

D-MSDD()
1. loop until SEARCH-FINISHED

if EMPTY (Agenda) then
REQUEST-MORE-NODES
else

a. CurrentNode < NEXT-NODE (Agenda)
b. Children < GENERATE-CHILDREN (CurrentNode)
c. for ch in Children do
a. if LENGTH(best) < k or In € best s.t. f(child,S,8) > f(n,S,6) then
GET-SEMAPHORE (best)
add ch to best
RELEASE-SEMAPHORE (best)
b. if (not PRUNE(ch)) then
add ch to agenda

The distributed search proceeds on each participant machine according to alocal agenda.
Each machine’s agenda is an independent partition of the unexplored MSDD search space.
As with P-MSDD, the only shared strucutres are the list of k& best dependencies and the
dataset itself. Each machine participating in a D-MSDD search maintains local copies of
these structures, keeping them synchronized through network message passing. We simulate
the accessing of shared data by sending best messages to describe a candidate node for the
k best list. We emulate the load balancing that goes on on a parallel machine by passing
node messages that transfer nodes from an overloaded machine’s agenda to a machine with
a lighter agenda.

5 Empirical Results

To demonstrate the power and flexibility of MSDD, we applied the algorithm to the real-
world task of discovering structure in DNA sequences represented as strings of nucleotides
(one of A, G, T or C). The dataset, which was taken from the UC Irvine machine learning
repository, contains 106 sequences, each comprising 57 nucleotides. Half of the sequences
correspond to promoters, genetic regions that initiate the expression of an adjacent gene.
Most rule discovery algorithms learn classification rules from this dataset, rules that use
combinations of nucleotides to predict whether a sequence is a promoter. In contrast, MSDD
can search for more complex structure, finding rules that combine subsets of domain variables
on both sides of rules. Running MSDD with w, = w, = 1 and § = 0 eliminates the temporal

10

component of dependencies, allowing the algorithm to find structure in a set of temporally
independent vectors of categorical values. Note that the space of dependencies between
patterns of nucleotides is enormous, containing in excess of 10%° elements.

The biological literature suggests that a small subset of the 57 positions in each sequence
are important in distinguishing promoters from non-promoters [7]; valid positions range from
—50 to +6, and are denoted Px where —50 < z < +6. Therefore, we ran an initial MSDD
search with & = 50 to depth five in an attempt to determine those positions. Only the class
label (4+ or —) and values for 13 of the 57 possible positions appeared in one or more of the
50 strongest dependencies. We then ran a depth-unlimited search for the & = 100 strongest
dependencies in that subset of relevant nucleotide positions. The top six rules of the 100
rules returned by that search are shown below in Table 1.

Rule Contingency | G
Table

1. (P-35 T) (P-14 T) (P-9 T) = (P-13 &) (P-10 A) (14 2 1 89) 63.39
2. (CLASS +) (P-14 T) (P-9 T) = (P-13 4) (P-10 A) (14 31 89) 59.90
3. (P-35T) (P-14 T) (P-9 T) = (P-13 A) (P-10 &) (P-2 C) | (12 4 0 90) 56.88
4. (CLASS +) (P-14 T) (P-7 C) = (P-13 4) (P-8 G) (1221 91) 56.38
5. (P-14 T) (P-10 &) (P-9 T) = (P-13 4) (P-7 C) (P-2 C) | (1130 92) 56.11
6. (P35 T) (P-34 G) = (CLASS +) (34119 52) | 55.38

Table 1: The top six rules of 100 found by MSDD in the promoter dataset.

Both the syntax and semantics of the rules in Table 1 are interesting. First, consider their
syntax. Five of the six rules have conjunctive right-hand-sides, only half of them refer to the
class label, and only rule number 6 is a classification rule. Most rule discovery algorithms are
incapable of representing the five strongest dependencies in this dataset. Consider the most
highly ranked rule, (P-35 T) (P-14 T) (P-9 T) = (P-13 A) (P-10 A). Rule discovery
algorithms with less expressive representations may be able to find the two “constituents”
of that rule: (P-35 T) (P-14 T) (P-9 T) = (P-13 A) and (P-35 T) (P-14 T) (P-9 T)
= (P-10 A4). However, the GG value of the former rule is 33.91 and the value of the latter is
19.45; both are much lower than the value of the original rule with a complex right-hand-side,
63.39.

The rules in Table 1 capture semantically interesting structure in the data, as demon-
strated by comparing them to a previously published domain theory derived from the bi-
ological literature [13]. The domain theory states that promoters contain patterns drawn
from each of three sets, two different sets of contact patterns (ct; and cty) and one set of
conformation patterns. All of the patterns in ct; contain a T at position P-35 and a G at
position P-34, and we see (P-35 T) in several of the rules found by MSDD. One of the pat-
terns in ct, specifies the sequence TATAAT starting at position P-14. The first rule in Table 1
captures the fact that promoters have patterns from both ct; and ct, by strongly associating
an occurrence of (P-35 T) and part of the pattern from ct,, (P-14 T) (P-9 T), with other
parts of that pattern, (P-13 4) (P-10 A). Portions of the conformation pattern GCGCC*CC
occurring at position P-8 are captured in rules 3, 4 and 5. Also, because all of the patterns
in ct; have T at position P-35 and G at position P-34, co-occurrences of those nucleotides

11

are a strong indicator that the sequence is a promoter. That structure is captured in the
one classification rule in Table 1.

In another set of experiments, we compared the performance of MSDD and D-MSDD. For
each of three datasets, the two algorithms found the & = 20 strongest dependencies. We
ran D-MSDD on both two and three machines connected via a local area network. The
datasets, which were all taken from the UC Irvine repository, included chess end-games,
solar flares, and congressional voting records. The results are summarized below in Tables
2, 3 and 4. Each table shows the number of nodes expanded, CPU cycles consumed, and
the number of messages sent to keep the list of the k best dependencies consistent. When D-
MSDD ran on two and three machines (the D-MSDD — 2 and D-MSDD — 3 cases respectively),
table entries contain the sum of the value over all machines participating in the search.
Note that relatively few search nodes were required to find the 20 strongest dependencies
in exponential spaces; pruning based on optimistic estimates of G is effective. Because the
distributed search may be at different depths on different machines, the total number of
nodes expanded may vary depending on when strong dependencies are found and used for
subsequent pruning. However, in each case the total number of CPU cycles required to
complete the search remains fairly constant, independent of the number of participating
machines. Because load-balancing between the machines is fine grained, » machines can
complete the search for structure roughly n times faster than one machine.

Algorithm | Search Nodes | CPU Cycles | Messages
MSDD 107,858 6,911,826 0

D-MSDD — 2 | 124,234 7,915,858 7024
D-MsDD — 3 | 115,375 7,963,435 6697

Table 2: Comparison of MSDD and D-MSDD on the congressional voting records dataset.

Algorithm | Search Nodes | CPU Cycles | Messages
MSDD 22,346 1,507,160 0

D-MSDD — 2 | 27,073 1,573,309 1321
D-MsSDD - 3 | 31,955 1,793,743 2964

Table 3: Comparison of MSDD and D-MSDD on the chess dataset.

Algorithm | Search Nodes | CPU Cycles | Messages
MSDD 12,199 805,920 0

D-MSDD — 2 | 13,544 906,188 457
D-MSDD - 3 | 17,941 1,095,695 1,706

12

Table 4: Comparison of MSDD and D-MSDD on the solar flares dataset.

6 Related Work

Several systematic search algorithms have appeared in the literature [6,8-10,15], all of them
variations on the basic idea of imposing an order on search operators, and applying only
those operators at a node that are higher in the order than all other operators that have
been applied on the path from the root to the node. Some of these cut off the search at an
arbitrary depth to limit the size of the search space (e.g. [8,10]). In contrast, MSDD returns
a list of the k strongest dependencies, regardless of the depth at which they exists in the
search tree. Our use of optimistic bounds on the value of the node evaluation function for
pruning systematic search spaces is similar to the OPUS algorithm [15], which in turn is a
generalization of the same idea as applied to non-systematic search in the ITRULE induction
algorithm [12]. MSDD and ITRULE return the k best rules, whereas OPUS returns a single
goal node or the single node with the highest value.

Both parallel algorithms and consideration of data with a temporal component are rare in
the KDD and data mining literature. Holsheimer and Kersten describe a system for inducing
rules from large relational databases that performs a parallelized beam search over the space
of possible rules and accesses the data through a parallel DBMS [3]. However, their system
is limited to classification rules (a conjunct of literals predicting a single literal), and it can
miss high quality rules due to the use of beam search. Aronis and Provost developed a
parallel algorithm that builds new features from existing features in relational databases [1].
The newly constructed features are then passed to a standard (serial) inductive learning
algorithm. While parallelism speeds the search for new features, it does not affect the speed
with which rules using those features can be learned. Finally, Berndt and Clifford describe a
dynamic programming algorithm for finding recurring patterns in univariate time series [2].

Our approach to rule discovery in databases differs from others, including all of those
cited above that perform systematic search, in that it does not require the user to specify a
set of target concepts to serve as rule right-hand-sides. Most existing rule discovery methods
return rules that use the values of one or more domain variables (e.g. attribute values), ap-
propriately combined, to characterize one of a small number of pre-specified target concepts
(e.g. class labels). Often, such algorithms must be run multiple times to learn rules for
multiple concepts, once for each concept [10,15], losing the benefit of pruning information
generated during previous runs. The ITRULE algorithm is somewhat more general in that it
simultaneously searches for rules whose right-hand-sides can specify the value of any single
domain variable, not just the one containing the class label. In contrast, MSDD explores the
space of dependencies between pairs of arbitrary patterns of values, looking for structure
in the data regardless of where it exists. That is advantageous when there is no a prior:
knowledge concerning probable relationships that exist in the streams, or when the “target
concepts” themselves involve complex combinations of domain variables that may be difficult
for a human to accurately express.

7 Conclusion

In this paper we presented the MSDD data mining algorithm which performs a systematic
search for structure in multivariate time series. MSDD discovers the k strongest dependencies

13

between pairs of multitokens, arbitrary patterns of values that can span multiple streams and
multiple time steps. MSDD prunes the search space with an upper bound on the value of the
descendant of a given node, and we derived such a bound on the value of G. We recognized
that systematic search over unordered spaces is easily parallelized, and developed D-MSDD,
a distributed version of MSDD. MSDD is a powerful tool for discovering complex structure
in very large databases due to the efficiency and expressiveness of the core algorithm and
the ease with which the search for structure can be distributed over multiple machines on a
network via D-MSDD.

Current work includes an incremental version (I-MSDD) of the basic algorithm [11], and
an investigation of techniques for dynamically adjusting the search operator ordering to
maximize the effects of pruning [15]. In terms of applications, work is proceeding in two areas.
First, we are using MSDD to find structure in the interactions of an artificial agent with its
environment for the purpose of learning planning operators [5]. Precursor multitokens encode
state/action pairs, and successor multitokens encode state changes. Strong dependencies
capture state changes that the agent can reliably bring about. Second, we are using MSDD
to learn how current and past states of computer networks are related to future states for the
purpose of acquiring rules that will allow network managers to predict and avoid problems
in their networks before they arise [4].

Acknowledgements

This research was supported by ARPA/Rome Laboratory under contract numbers F30602-
91-C-0076 and F30602-93-0100, and by a National Defense Science and Engineering Graduate
Fellowship. The U.S. Government is authorized to reproduce and distribute reprints for
governmental purposes not withstanding any copyright notation hereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements either expressed or implied,
of the Advanced Research Projects Agency, Rome Laboratory or the U.S. Government.

References

[1] John M. Aronis and Foster J. Provost. Efficiently constructing relational features from
background knowledge for inductive machine learning. In Working Notes of the Knowl-
edge Discovery in Databases Workshop, pages 347-358, 1994.

[2] Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns
in time series. In Working Notes of the Knowledge Discovery in Databases Workshop,
pages 359-370, 1994.

[3] Marcel Holsheimer and Martin L. Kersten. Architectural support for data mining. In
Working Notes of the Knowledge Discovery in Databases Workshop, pages 217-228,
1994.

14

4]

[11]

[12]

Tim Oates. Fault identification in computer networks: A review and a new approach.
Technical Report 95-113, University of Massachusetts at Amherst, Computer Science
Department, 1995.

Tim Oates and Paul R. Cohen. Searching for structure in multiple streams of data.
Submitted to the Thirteenth International Conference on Machine Learning, 1996.

Tim Oates, Dawn E. Gregory, and Paul R. Cohen. Detecting complex dependencies
in categorical data. In Preliminary Papers of the Fifth International Workshop on
Artificial Intelligence and Statistics, pages 417-423, 1994. Does not contain work on
incremental algorithm reported in book version.

M. O’neill. Escherichia coli promoters: I - consensus as it relates to spacing class, speci-
ficity, retreat substructure, and three dimensional organization. Journal of Biological

Chemistry, 264:5522-5530, 1989.

Patricia Riddle, Richard Segal, and Oren Etzioni. Representation design and brute-force
induction in a boeing manufacturing domain. Applied Artificial Intelligence, 8:125-147,
1994.

Ron Rymon. Search through systematic set enumeration. In Proceedings of the Third
International Conference on Principles of Knowledge Representation and Reasoning,

1992.

Jeffrey C. Schlimmer. Efficiently inducing determinations: A complete and systematic
search algorithm that uses optimal pruning. In Proceedings of the Tenth International
Conference on Machine Learning, pages 284-290, 1993.

Matthew D. Schmill, Tim Oates, and Paul R. Cohen. Tools for detecting dependencies
in Al systems. In Proceedings of the 7th IEEE International Conference on Tools with
Artificial Intelligence, pages 148-155, February 1995.

Padhraic Smyth and Rodney M. Goodman. An information theoretic approach to rule
induction from databases. IEEFE Transactions on Knowledge and Data Engineering,

4(4):301-316, 1992.

Geoffrey G. Towell, Jude W. Shavlik, and Michiel O. Noordeweir. Refinement of ap-
proximate domain theories by knowledge-based neural networks. In Proceedings of the

Eighth National Conference on Artificial Intelligence, pages 861-866, 1990.
John W. Tukey. Fzploratory Data Analysis. Addison-Wesley, 1977.

Geoffrey I. Webb. OPUS: An efficient admissible algorithm for unordered search. Jour-
nal of Artificial Intelligence Research, 3:45-83, 1996.

Thomas D. Wickens. Multiway Contingency Tables Analysis for the Social Sciences.
Lawrence Erlbaum Associates, 1989.

15

