Dyn-Fo-
A Dynamic Complexity Class
Sushant Patnaik & Neil Immerman

CMPSCI Technical Report 96-24
April, 1996

Abstract

Traditionally, computational complexity has considered only static prob-
lems. Classical Complexity Classes such as NC, P, NP, and PSPACE are de-
fined in terms of the complexity of checking — upon presentation of an entire
input — whether the input satisfies a certain property. These complexity classes
are not completely appropriate for database systems. Unfortunately, appropri-
ate Database Complexity Classes have not yet been defined. This thesis makes
a step towards correcting this situation.

Here, we introduce the complexity class, Dynamic First-Order Logic (Dyn-
FO). We define it to be the set of dynamic problems that can be expressed in
first-order logic. What this means is that we maintain a database of relevant
information so that the action invoked by each insert, delete, and query is
first-order expressible.

This corresponds to the sets of properties that can be maintained and
queried in first-order logic, i.e., relational calculus, on a relational database.
This is very natural in the database setting. In fact, Dyn-FO is really the set
of queries that are computable in a traditional first-order query language.

Our results shed light on some of the interesting differences between static
and dynamic complexity. We show the surprising fact that a wealth of problems,
including connectivity, are in Dyn-FO. Thus, considered as dynamic problems -
and that is what database problems are — these problems are already first-order
computable. The problems we show to be in Dyn-FO include: reachability in
undirected graphs, maintaining minimum spanning forest, k-edge connectivity
and bipartiteness. All regular languages are shown to be in Dyn-FO. We even
show that decent approximation algorithms for several NP complete problems
are in Dyn-FO. The static versions of all these problems are, of course, not
first-order.

1 Introduction

In our view, the main two differences between database complexity and traditional
complexity are:

1. Databases are dynamic. The work to be done consists of a long sequence of
small updates and queries to a large database. Each update and query should
be performed very quickly in comparison to the size of the database.

2. Computations on databases are for the most part disk access bound. The
cost of computing a request is usually tied closely to the number of disk pages
that must be read or written to fulfill the request.

Of course, a significant percentage of all uses of computers have the above two
features. In this thesis, we focus on the first issue. Dynamic Complexity is quite
relevant in most day to day tasks. For example: Texing a file, Compiling a program,
Processing a visual scene, Performing a complicated calculation in Mathematica, etc.
Yet an adequate theory of dynamic complexity is lacking. (Recently, there have been
some significant contributions in this direction, e.g. [MSTV93]. Note that dynamic
complexity is different although somewhat related to On-line complexity which is
receiving a great deal of attention lately.)

For many, if not most, applications of computers including: databases, text edi-
tors, program development, it is more appropriate to model the process as a dynamic
one. There is a fairly large object being worked on over a period of time. The object
is repeatedly modified by users and computations are performed. Thus a dynamic
algorithm for a certain class of queries is one that can maintain an input object, e.g.
a database, and process changes to the database as well as answering queries about
the current database.

11. Related Work

In [DST93], Dong, Su and Topor consider the incremental evaluation problem for
Datalog queries, namely, repeatedly evaluating the same Datalog query to a database
that is being updated between successive query requests. They define a first or-
der incremental evaluation system (FOIES), with respect to a given Datalog query,
where the incremental evaluation is carried out by a non-recursive Datalog program.
They point out that non-recursive Datalog programs are much better than recursive
ones using elaborate data structures for database applications, since they reduce the
number of relational join operations.

Our approach is similar to their approach in the sense that both store derived
relations for reuse after updates. However, Dyn-FO is a general complexity class
and it involves both insertions and deletions. Monotone Dyn-FO (which allows only
insertions) is equivalent to FOIES. Defining the arity of a Dyn-FO expression as the
arity of the auxiliary (norn-input) relations used in the first order logic formulae for
handling updates, we see that the notion of space-free FOIES is related to devising
minimum arity Dyn-FO! expressions, in the sense that problems in space-free FOIES,
by definition, have minimum arity Dyn-FO expressions.

Previously, Dong and Su, in [DS93] have shown that reachability in directed,

acyclic graphs and in function graphs is in Dyn-FO. But they do not consider a
general framework for dynamic complexity.

1We shall use Dyn-FO interchangably to denote a class of decision problems and a language.

The incremental approach, namely, to use the difference between successive database
states and the answer to the query in one state to reduce the cost of evaluating the
query in the next state, plays a role in maintaining materialized views upon updates
([J92], [GMS93], [I85]), and in integrity constraint simplification ([LST87], [N82]). In
these studies, the authors investigate how to maintain first-order definable views effi-
ciently under updates to the underlying database. In our framework, we can interpret
their approaches as determining ways to implement fast Dyn-TIME solutions for a
subclass of Dyn-FO. For example, [GMS93] show that a very restricted subclass of
Dyn-FO is in Dyn-TIME[1).

The design of dynamic algorithms is an active field. See, for example, [E*92a),
[E*92b], [R92], [CT91], [F83a], [F83b] amongst others. Our work is also informed by
[MSTV93] which does some of the ground work for a complexity theory of dynamic
complexity.

This chapter is organized as follows. In section 2, for any static complexity class
C, we define the corresponding dynamic class, Dyn-C. The class Dyn-FO is the case
we emphasize. Then, in section 3, we present several of the above mentioned Dyn-FO
algorithms.

2 Dynamic Complexity Classes

We think of an implementation of a problem S C STRUCT|¢| as a mapping, I,
from STRUCT[¢] to STRUCT|r] where T C STRUCT]|7] is an easier problem. The
map I should be a many-one reduction from S to T' meaning that any structure A
has the property S iff I(.A) has the property T. (Actually, in our definition below,
the mapping J will map a sequence of inserts and deletes 7 to a structure. In the
interesting special case when I(7) depends only on the corresponding structure A and
not which sequence of inserts and deletes created it, we call I memoryless.)

We are thinking and talking about a structure 4 € STRUCT[o], but the struc-
ture that we actually have in memory and disk and are manipulating is I(A) €
STRUCT([r]. In this way, each insert or delete on A is interpreted as a corresponding
series of actions on I{.A). The fact that I is a many-one reduction insures that the
query asking whether A € S can be answered according to whether I(A) € T

In traditional static complexity, the entire input structure A is fixed and we are
interested in deciding whether A € S for a relevant property, S. In the dynamic
case, the structure changes over time. The actions we have in mind are a sequence
of insertions and deletions of tuples in the input relations. We will usually think of
our dynamic structure, A = ({0,1,...n -1}, Ry,..., R,,c1,...,¢), as having a fixed

size potential universe, |A| = {0,1,...n — 1}, and a unary relation R,, specifying
the elements in the active domain. The initial structure of size n for this vocabulary
will be taken to be A2 = ({0,1,...n — 1},{0},0,...,0,0,...,0), having R, = {0}
indicating that the single element 0 is in the active domain and all the other relations
are empty.

Next we give the formal definition of dynamic complexity classes. The issue is that
the structure I(.A) can be updated efficiently in response to any insert or delete to A.
In particular, if 7 € FO and all such inserts and deletes are first-order computable,
then S € Dyn-FO.

21. Definition of Dyn-C

For any complexity class C we define its dynamic version, Dyn-C, as follows. Let

o= (R} ...R%,ci,...,c;) be a vocabulary and let S C STRUC[r] be any problem.
Let

Rn,a‘ = {ins(i"—l)7del(i’a)’set(jia')|1 S i S s’a e {0"' *)n - 1}6")1 S j S t}

be the set be possible requests to insert tuple @ into the relation R;, delete tuple @
from relation R;, or set constant ¢; to a.

Let eval,, : R}, , = STRUCT(o] be the naturally defined evaluation of a sequence
of requests, initialized by eval, ,(0) = Aj.

Define, S € Dyn-C iff there exist another problem T C STRUC|7] such that T € C
and there exist maps,

f: R}, — STRUCT[r]; g:STRUCT[r] X Ryn, — STRUCT(7]
satisfying the following properties.
1. For all 7 € R, ,, (eval,.(7) € §) & (f(F) €T)
2. For all s € Ry, and 7 € R}, ,, f(eval,o(7s)) = g(f(eval,q(F)), s)
3. ﬂ F(7)] = Jeval, o (7)|°), where for any structure, A, |.A| denotes the size of A

4. The functions g and the initial structure f(@) are computable in complexity C,
(as a function of n).

2This expec.ts that the complexity class C is closed under polynomial increases in the input size.
For more restricted classes C, such as linear time, we insist that |f(7)] = O([eval, . (7)]).

We will say that the above map f is memoryless if the value of f(7) depends only
on eval, o (7).

In the above, if only inserts and queries are considered, i.e., no deletes, then we
get the class Dyn,-C, the semi-dynamic version of C. One can also consider amortized
versions of these two classes. Furthermore, there are some cases where we would like
extra, but polynomial, precomputation to compute the initial structure f(@). If we
relax condition (4) in this way, then the resulting class is called Dyn-C* — Dyn-C with
polynomial precomputation.

We have thus defined the dynamic complexity classes Dyn-C for any static class,
C. Two particularly interesting examples are Dyn-FO and Dyn-TIME([t(n)) for ¢(n) €
o(n), where the latter is the set of problems computable dynamically on a RAM (with
word size O(log n)) in time t(n).

" In [TY79], Tarjan and Yao propose a dynamic model whose complexity measure
is the number of probes into a data structure and any other computation is for free.
The idea is to be able to optimize the number of disk input-outputs. There are two
versions of this model: Bit Probe model, in which the word size of the RAM is 1 bit
and the Uniform Probe model in which the word size is O(log n). Recently Miltersen
in [M2] renewed investigation into the Bit probe model and got some interesting
results. In our framework, Dyn-PROBE(t(n)], and Dyn-BIT-PROBE[t(n)| refer to
the set of problems computable dynamically on a RAM with word size O(log n) and
O(1), respectively, making at most ¢(n) probes.

3 Problems in Dyn-FO

Let graph reachability denote the following problem: given a graph, G, and vertices
z,y, determine if there is a path from z to y in G. We shall use 1GAP, UGAP,
GAP (acyclic), respectively, to denote graph reachability on directed graphs with
out-degree at most 1, undirected graphs and acyclic directed graphs where the inserts
preserve acyclicity. It is well known that the graph reachability problem is not first-
order expressible and this has often been used as a justification for using database

query languages more powerful than FO [CH1]. Thus, the following two theorems are
striking.

Theorem 3.1 UGAP is in Dyn-FO.

Proof: We maintain a spanning forest of the underlying graph via relations, F(z,y)
and PV(z,y,u) and the input relation, E. F(z,y) means that the edge (z,y) is in the

current spanning forest. PV(z,y, u) means that there is a (unique) path in the forest
from z to y via vertex u. The vertex, u, may be one of the endpoints. So, for example,
if F(z,y) is true, then so are PV(z,y,z) and PV(z,y,y). We maintain the undirected
nature of the graph by interpreting insert(E,a, b) or delete(E,a, b) to do the operation
on both (a,b) and (b, a).

Insert(E,a, b): We denote the updated relations as E', F' and PV'. In the sequel, we
shall use P(z,y) to abbreviate (z =y V PV(z,y,z)), and Eq(z,y, ¢, d) to abbreviate
the formula,

(z=cAy=d)V(z=dAy=c)).

Maintaining the input edge relation is trivial:

E'(z,y) = E(z,y)V Eq(z,y,a,b)

The edges in the forest remain unchanged, if vertices, a and b, were already in the
same connected component. Otherwise, the only new forest edge is (a, b).

Fl(m:y) = F(z,y) Vv (Eq(z,y,0,5) A —P(a,d))

Now all that remains is to compute PV’. The latter changes iff edge (a,b) connects
two formerly disconnected trees. In this case, the new tuples (z,y,2) have = and y
coming from one each of the trees containing a and b.

PV'(z,y,2) = PV(z,y,2) V (Eq(z,y,a,b) A (z=aV z = b))
V(-P(z,y) A (3u,v) Eq(u,v,a,b) A P(z,u) A P(v,y)
ANz=aVz=bV PV(z,u,z) V PV(v,y,2)))

Delete(E,a, b): If edge (a,b) is not in the forest (- F(a, b)), then the updated rela-
tions are unchanged, except that E'(a,d) is set to false. Otherwise, we first identify
the vertices of the two trees in the forest created by the deletion, and then we pick
an edge, say e, out of all the edges (if any) that run between the two trees and insert
e into the forest, updating the relations, PV and F, appropriately.

We define a temporary relation T to denote the PV relation after (a, b) is deleted,
before the new edge, e, is inserted.

T(z,y,2) = PV(z,y,2) A ~(PV(z,y,a) A PV(z,y,b))

Using T, we then pick the new edge that must be added to the spanning forest.
New(z,y) is true if and only if edge (z,y) is the minimum?® edge that connects the

3Note that this uses an ordering on the vertices. If no such ordering is given, then we can order
edges by their order of insertion. In either case, this reduction is not memoryless because it depends
on the history. It is open as to whether there exists a memoryless first order formula.

New(z,y) = E(z,y) A T(a,z,a) A T(b,y,b)
A (Yu,v)(E(z,v) A T(a,u,a) A T(b,v,b)) - (2 <u V(z=uAy <v))

E', F' and PV’ are then defined as follows:
E'(z,y) = E(z,y) A -Eq(z,y,q,b)
We remove (a, b) from the forest and add the new edge.

F'(z,y) = (F(z,y) A ~Eq(z,y,4,b)) V New(z,y)V New(y,z)

The paths in the forest, from z to y via z, that did not pass through @ and b,
are valid. Also, new paths have to be added as a result of the insertion of a
new edge in the forest.

PV'(z,y,2z) = T(z,y,2) V [(Fu,v)(New(u,v) V New(v,u)) A T(z,u,z)
A T(y,v,9) A (T(2,u,2) V T(y,v,2))]

We give a new Dyn-FO algorithm for the following result.

Theorem 3.2 ([DS93]) 1GAP and GAP (acyclic) are in Dyn-FO.

Proof: 1GAP follows easily from UGAP. For the GAP (acyclic) case, the inserts
are assumed to always preserve acyclicity. We maintain the path relation, P(z,y)
which means that there is a path from z to y in the graph. (see figure 1).

Insert(E,a,b):
P'(z,y) = P(z,y)V (P(z,a) A P(b,y))
Delete(E,a, b):

P'(z,y) = P(z,y) A [(P(z,a) A P(b,y))V (u,v) P(z,u)A P(u,a)A E(u,v)
A=P(v,a)A P(v,y) A (v# bV u # a))

In the case where there is a path from z to y using the edge (a,b), consider any
path not using this edge. Let u be the last vertex along this path from which a is
reachable. Note that u # y because the graph was acyclic even before the deletion

?—9\
b

Figure 1: GAP

v

of edge, (@,b). Thus, the edge, (u,v), described in the above formula must exist and
acyclicity insures that the path ¢ — u — v — y does not involve the edge, (a,b). |

Let TR denote the following problem: For G, a directed acyclic graph, recall that
the Transitive Reduction, TR(G), is the minimal subgraph of G having the same
transitive closure as G.

Corollary 3.3 Transitive Reduction for directed acyclic graphs is in memoryless
Dyn-FO.

Proof: We maintain the path relation, P, as in Theorem 3.2.
Insert(E,(a,b)): If P(a,b) already holds, then there is no change. Otherwise, we
may have to remove some edges from TR. TR'(z,y) is given by

(TR(z,y) A P(a,6))V [~P(a,b) A(z = aAy =b)V[TR(z,y) A =(P(z,a) A P(b,3))]]

Delete(E,(a,b)): We have to determine the new edges that might be added in TR.
New(z,y) holds if there was a path from z to y via (a,b) and no path of length > 1
remains when (a, b) is deleted.

New(z,y) = E(z,y) A ~“TR(z,y)A P(z,a)A P(b,y)
A (Vu,v) =[P(z,u)A P(u,a)A E(u,v)
A=P(v,a)A P(v,y) A (v # bV u # a)]

TR'(z,y) = (TR(z,y) A ~(z = a Ay = b)) V New(z,y)
[|

Let Minimum Spanning Forest denote the following problem: given an undirected
graph G with weights on the edges, determine the minimum weighted spanning forest
of G.

Theorem 3.4 Minimum Spanning Forest is in Dyn-FO.

Proof: The general idea is to maintain the forest edges and non-forest edges dynam-
ically and to maintain the relations PV(z,y, €) and F(z,y) as in the case of UGAP.
Let W(a,b) denote the weight of edge (a,b). The difference from UGAP is that we
have to maintain the minimum weighted forest. That changes our update procedures
in the following way.

Deletion of an edge, say (a,b), is handled as follows. We determine, using PV, all
the vertices that can be reached from a in the tree and all those that can be reached
from b. These give the vertices in the two trees that the original tree splits into.
Then, instead of choosing the lexicographically first non-forest edge that reconnects
the two pieces, we choose the minimum weight such edge, and insert it. If there is
more than one such minimum edge, then we break the tie with the ordering. PV is
updated accordingly to reflect the merging of two disconnected trees into one.

When an edge,say (a,b) is inserted, we determine if there exists a path between a
and b. If there is no path, then (a,b) merges two trees into one, and PV is updated
as before for UGAP. Otherwise, using PV, we can determine the forest-edges that
appear in the unique path in the forest between b and a, and check to see if weight of
the new edge, (a, b) is less than the weight of any of these edges. If not, then (a, b) is
not a forest edge and nothing changes. Otherwise, let (c,d) be the maximum weight
edge on the path from a to b. We make F'(c, d) false and F/(a, b) true and update PV
accordingly. It is easy to see that if the weights are all distinct, or in the presence of
an ordering on the edges, this construction is memoryless.]

We next show that similar algorithms exist for Bipartiteness, Edge Connectivity,
Least Common Ancestor queries (in rooted trees), Maximal Matching and Maximal
Independent Set (in bounded degree graphs). These latter two have no known sub-
linear time fully dynamic solutions.

Theorem 3.5 Let k be a fized constant. Dyn-FO algorithms ezist for the following
problems:

1. Bipartiteness,
2. k-FEdge Connectivity,
8. Mazimal Matching in undirected graphs,

4. Least Common Ancestor in rooted trees.t

Proof:

1. We maintain bipartiteness in undirected graphs by maintaining relations PV(z, y, 2)
and F(z,y), as for UGAP, and also, Odd(z,y), which means that there exists
a path of odd length from z to y in the spanning forest. The graph is bipartite
iff (Vo,) E(z,y) — 0dd(z,).
We show how to update Odd in Dyn-FO.
Insert(E,a,b): If the new edge, (a,b) becomes a forest-edge, we determine for
all newly connected vertices z and y whether the new path is odd: If on the
other hand, (a,b) is added as a non-forest edge, Odd is unchanged.

0dd'(z,y) = Odd(z,y) V[-PV(a,b,a)A
(3u,v)Eq(%,v,a,b) A PV(z,u,z) A PV(y,v,y)
A((Odd(z,2) A Odd(y,v)) Vv (-0dd(z,u) A ~Odd(y,v))))

Delete(E, a,b): If (a, b) is a non-forest edge, Odd is unchanged. Otherwise, for
all vertices z,y, which are in the two disconnected trees that result from deletion
of (a,b), make Odd(z,y) and PV(z,y, z) false. Then, we select some edge (if
any) that spans the disconnected components and insert it in and update Odd
and PV exactly as for the insertion case. The Dyn-FO expressions for doing
that are as shown before.

2. As before, we maintain the relations, E,F and PV. Insertions and deletions are
handled as for UGAP. The query is handled as follows. Since k is constant, we
universally quantify over k edges, say, (21,%1),- . -,(2k, ¥&), and then, for every
pair of vertices, and y, check for a path between and y in the graph that is
obtained after deletion of edges, (21,%1),...,(Z, ¥x), by composing the Dyn-FO
formula (for a single deletion) k times.

*Rooted trees are trees where all the edges have an orientation toward a fixed vertex called the
root.

10

3. We maintain a maximal matching in DYN-FO by maintaining, under insertions
and deletions of edges, a relation, Match(z, y) which means that the edge (z,y)
is in the matching. Initially, for the empty graph, Match(z, y) is false for all =
and y. As usual, all relations are symmetric. We shall use MP(z) to abbreviate
the formula:

(32)Match(z, 2)

Insert(E,a,b): The matching remains unchanged except that the edge (a,b) is
checked to see whether it can be added. Match'(z,y) is given by

Match(z,y) V (Eq(z,y, e,b) A -MP(a) A ~MP(b))

Delete(E,a,b): If (a,b) is not in the matching, then Match is unchanged.
Otherwise, we remove (a,b) from the matching. We pick vertices (the lexico-
graphically minimum) adjacent to e and b, if any, and add the corresponding
edge(s) to the new matching. Match'(z,y) is given by

(Match(z,y) A -Eq(z,y, a,b)) vV (Match(a, b) A (New(z,y) V New(y,z)))

where New(z,y) means that z = a and y is the new vertex matched with a
or ¢ = b and y is the new vertex matched with b. Let New,(u,v) denote that
u = a and v is the new vertex matched with a.

New,;(u,v) = (v = a A "MP(v) A E(u,v) A (V2)[(E(a, z) A -MP(z)) — v < 2])

Then, New(wu,v) can be expressed as follows: either New;(u,v) is true or u = b
and v is the new vertex matched with b.

New(u,v) = New;(u,v) V (v = bA ~-MP(v) A E(u,v) A —New,(z)
A(V2)[(E(b, z) A “MP(z) A ~New,(a,z)) - v < 2])

The solution above can be maintained in Dyn-TIME[1] if for each vertex we
maintain separate linked lists of the matched and unmatched neighbouring ver-
tices.

4. Least common ancestors in a forest of rooted trees are readily maintained, under
deletions and insertions of edges that preserve acyclicity, using PV and the
relations, Level(z,7) meaning that vertex z is at level 7 from the root of the
unique tree to which it belongs, and Root(z) < Level(z,0), meaning that vertex
z is a root of a tree. F is not needed because the inserts preserve the acyclicity
of the graph. In the following expressions, we shall frequently use PV(z,y,y)

11

meaning that there is a path from z to y. Now, LCA(z,y,a) meaning a is the
least common ancestor of vertices, ¢ and y iff

(3¢) PV(z,a,a) A PV(y,a,a)A Level(a,i)A

(Vb # a)((37) PV(=z,b,b) A PV(y,b,b) A Level(b,j) — j > 1)

We know how to maintain PV. Level and Root can be easily maintained by first-
order formulae. Level changes only if an insert removes a root from the forest,
or a delete adds a root to the forest. In these cases, Root changes appropriately.
Let New(z) denote that is a new vertex that is an end point of the edge added
in: New(z) = (Vv)-E(v,2) A -E(z,v).

Insert(E,a,b): Note that since inserts preserve the acyclicity of the graph,
insert never adds an edge between two old nodes in the same tree. There are
several other cases to consider. Level(z,1) is easily updated in each case as
follows.

e If a is a new node and b is any (root or non-root) old node (the opposite
case is analogous): Level is unchanged except for the new vertex.

Level'(z,%) = (z = a A ((3j)Level(b,j) A j + 1 =1)) V Level(z,1)

e If both a and b are new nodes: In this case, edge (a,b) is the sole edge
in the tree containing a and b. Level is unchanged except for the levels of
nodes, a and b. We arbitrarily choose one to be the root (in this case, the
lexicographically smaller node). Then, Level'(z,%) is given by:

(z=aAi=1Aa>b)V(z=bAi=0Aa>b)
Vie=bAi=1Ab>a)V(z=aAi=0Ab>a)V Level(z,i)

o If both a and b are roots: We arbitrarily choose the lexicographically
smaller one to be the root and increment the levels of all the vertices in

the other tree by 1. The level of other vertices is unchanged. Level'(z,3)
is as follows:

(Fy)((e>bAy=a)V(b>aAy=Db)A
(PV(z,y,y) A (Fk)Level(z, k) A k+1 = 1))
Viz=yA i=1)V (Level(z,i) A #yA-PV(z,y,7))

12

e If both a and b are old nodes and say, a is a root node and b is a non-root
node (the opposite case is analogous): In this case, the level of nodes in the
forest remain unchanged except in b’s tree where the levels are recomputed
to reflect the new orientation of the tree wherein a is the new root and b
is its child, and all the nodes in b’s tree are linked to a via b. The new
level of any node, say z, in b’s tree is computed from the level of b, level
of LCA(b, z) and level of z. Thus, Level'(z,1) is given by:

(=PV(z,b,b) A Level(z,z)) V(z=bAi=1)V
((32,7,k,))LCA(z,b,z) A Level(b,k) A Level(z,5) A Level(z,1)
A=j+k—2l)

In the case when both a and b are non-root old nodes, we choose the
lexicographically greater of the two as the parent node and proceed as
above, but taking care now that a is not the root and hence it is at some
non-zero level, 29, to begin with.

Delete(E,a,b): In this case, the tree containing a and b breaks into two new
trees, one containing a and the other, b. Suppose level of a is greater than b.
The opposite case is analogous. Node a becomes a new root of a tree in the
forest. The level of the nodes in the other subtrees of b’s tree and all other trees
remain unchanged. The new level of a is 0 and the new level of any node in its
tree is just the previous value minus the previous value of a’s level. We need
the following predicate: Thus, in this case, Level'(z, 1) is given by

(Level(z,i) A ~PV(z, a,a)) V (Level(z,i) A PV(z,a,b))V (z=aAi=0)
V((34, k)Level(a,j) A Level(z,k) A PV(z,a,a) A -PV(z,a,b) At =k — j)
i

It is an interesting phenomenon that constant-approximations to certain NP com-
plete optimization problems can be maintained by FO relational formulae. We will
see this in a future paper.

4 Dyn-FO versus NC!, L and NL

We have shown that 1GAP and GAP(acyclic) are in Dyn-FO. These problems are
hard for L and NL respectively via ordinary first order reductions that do not preserve

13

dynamic complexity in general. Hence, it does not follow that NL, or even L, or even
NC! is contained in Dyn-FO. The relationship between Dyn-FO and even a low level
parallel complexity class such as TC?, that is contained in NC?, is not clear. Problems
such as Addition and Multiplication of two n bit numbers, z,y, which are both in
TC®, are in Dyn-FO, under updates such as Change(z, ¢, b) or Change(y, 1, b) meaning
that the i-th bit (from the right/least significant position starting at 0) of = is set to
b,for 1 <i<mn,b=0/1.

Proposition 4.1 Multiplication s in Dyn-FO.

Proof: Given two n bit numbers, z,y, their addition can be expressed in FO C
Dyn-FO. We maintain the product in a bit array, P. Suppose the update operation is
Change(z,1,b). (Change (y,?,b) is analogous.) There are two cases:

If the bit is changed from 0 to 1, then P’ is given by shifting y by 7 bits to the right
and then adding it to P. It is easily accomplished by a first-order formula.

If the bit is changed from 1 to 0, then P’ is given by shifting y by 2 bits to the right
and then adding the 2’s complement of the resulting number to P. Again this is easily
accomplished by a first-order formula. n

However, UGAP and Transitive Reduction which are suspected not to be in NC?!
can be expressed in Dyn-FO. We can prove the following, but most relations between
Dyn-FO and static complexity classes are open.

Theorem 4.2 The following classes of problems are in Dyn-FO:

1. All regular languages,

2. D, the Dyck language on k parentheses, for any constant k.

Proof:

1. Given any regular language, let @, X, A, o, F' denote the state set, the alphabet,
the transition function, the initial state and the set of final states of the DFA
that accepts L. We show two different solutions. The first uses O(n?) and the
second O(n) bits of memory.

The first idea is to maintain the partial product of the fixed sized mapping
@ — @ that is induced by every sub-sequence of the input word, w; . . .Wj_, for
all 7 and j, in a relation, A, and update it in parallel. Let w = wyw,...w,. Let

14

o; : @ — @ be the map induced by the transition function on w; i. e. oy(p) =
A(p,w;), and let 0;; : @ — Q be the map

gi:...* 0y,

where - denotes composition. We shall use Boolean constants é,,, to encode

A.
For all z € ¥ and p,q € @, 8.4 equals 1 iff A(p,z) = q.
A will have the following property: For all p,ge Q andn <i<j5<1,
A(i,5,p,9) © 04-1(p) = q.
The query, “Is w in L?”, is answered by checking whether
Af(A(L,n+ 1,90, /)N f € F).

The update operation is Change(m, z) meaning change the mth input symbol
to z, where 1 <m < n and z € ¥. Then, A is updated as follows:

A'li,j,p,9] = GE=jAp=q)V[(E<)A
[((t>mVj<m)A A(i,5,p,q))V
(<m<jA

Va,teQ A(i,m,p, ‘9) A 6E,H.t A A(m + 1:j: t; q))]]

To reduce the number of bits of storage in the second solution, we maintain the
fixed sized mapping @ — @ that is induced by every symbol of the input word,
w (Jw| = n) at the leaves of a balanced binary tree, and at every internal node
the composition of the mappings of its children. The height of the tree is log n.
Changing any symbol in the input word, say w;, changes the induced map on
the state set 0;:QQ — @, and in effect that changes all the maps stored in the
nodes along the path from the leaf corresponding to i to the root. Since, the
information stored at any node is only of constant size (2|@Q|), on changing sym-
bol, w(i], a first-order formula can guess the O(log n) bits along the unique path
from leaf 7 to the root and verify it in parallel against the values of the stored
tree relation and then update it in parallel (by computing the new composition
at the internal nodes).

Assume for convenience that n = 2% — 1 for some k. Let ¢ = 2|Q|. Let
o0 : @ — @ denote a mapping from @ to Q. We can encode o by a block
pair of constant size, viz., 2log g bits. We shall denote the vertices in the

15

tree as pairs (z,2), for 1 < 2 < n and 0 < 7 < logn and the input bits
being (z,0). We shall use the relations TreePath(z,0,y,%), Contents(v,%,0)
and Child(v,%,u,7 — 1) to maintain the balanced binary tree and the contents
at each node. TreePath(z,0,y,:) means that there is a path in the tree from
the input node, (z,0), to node, (y,1). Contents(v,,0) means that node, (v,12),
stores the mapping, o. Child(v,%,u,? — 1) means that node (u,7 — 1) is a child
of node (v,7). Then, the query, “Is w in L?” is answered by checking whether

\/ Contents(root, i, o)
a(s)eF

i. e. if the root of the tree stores an induced map that maps the initial state
to a final state. This is a finite disjunction over a constant number = |Q]I?!
possibilities.

Since Q is constant, it is trivial to encode a mapping o : Q — @ by Boolean
variables by, ...,b, where s = 2q and for all i, |b;| = ¢ and o(bsi—1) = by:. Let
¢ = 2¢°. We can then define a formula Value(z;,...,zqy,k, o) meaning that
the k-th bits of first-order variables z;, for 1 < i < ¢/, encode the mapping, o,
for 0 < k <logn — 1. Using Value, TreePath, Contents and Child, we can then
define the updated relation, Content’.

Change(wy,) to w),. Let o}, denote the new induced map on the state set at
the leaf-node, m:

Content'(v,1,0) = (~TreePath(m,0,v,1) A Content(v,1, 7))
V (3zy,...,2¢)R(21,...,2¢,m,0h) A Value(zy,...,zq,1,0)

where R(z1,...,24,m,0’) is a first-order formula that checks in parallel that
for every level, I, of the tree, oy (such that Value(z,,...,zq,l,01)) is encoded
in z,...,2y, and that o - oy = o141 (or, onn + 01 = 0y41) where oy is the left
(resp., right) sibling of the vertex at level [+ 1. We leave the remaining details
as an exercise for the interested reader.

. We show the D? case. The theorem follows by an easy adaptation. D? can
be parsed using the level trick: assign a level to each parenthesis starting at
one and ignoring the differences in parenthesis type. The level of a parenthesis
equals the number of left parentheses to its left (including it) minus the number
of right parentheses strictly to its left. A right parenthesis matches a left one
if it is the closest parenthesis to the right on the same level. A string is in D2

iff all parentheses have a positive level and each left parenthesis has a matching
right parenthesis of the same type.

16

In [BC89], the authors showed that D € TC®. We basically note that the
relations they used can be updated in FO. Let

LEFT(RIGHT)(z) = parenthesis at position 7 is a left (right)type

LEVEL(z,l) = parenthesis at position 1 is at level [
MATCH(7,j) = parenthesis at position i matches parenthesis at j
D2 = input is in D2,
LEFT, RIGHT, MATCH and D2 can be described by FO formulae. For exam-
ple, D? =
(V9)(3)(I > 0A LEVEL(%, 1)) A (V7)(3k)LEFT(5) A RIGHT(k)A MATCH(j, k)

Let {#z : f(z)} denote the number of z’s such that f(z) is true. LEVEL is

then expressed as:

LEVEL(z,!) = (Jy)(y = #z : 2 <t A OPEN(z))
AN3Iz)(z=#=z:2 <iA CLOSE(z)) Ay 2 2Al=y—2z

Clearly LEVEL is in Dyn-FO, i.e., LEVEL can be updated in FO: under an
insert(z,’ [{) operation, for example, we have for ¢ < z, LEVEL'(z,l) same
as LEVEL(s,1), for ¢« > z, LEVEL'(3,l) if LEVEL(:,l — 1), and for i = =z,
LEVEL/(z, 1) iff for some m, LEVEL(z—1,m) and (({ = m—1 and OPEN(z—1))
or (CLOSE(z — 1) and I = m)). The deletes and insert of a closed parenthesis
can be handled similarly. [

Theorem 4.3 The following complezity classes are contained in Dyn-FO*:

1. Read-k times only L, for any constant k,

2. Read-k times NL, for any constant k.

Proof: We shall use the following lemma. Let LAYERED-GAP denote the reach-

ability problem in a layered (with edges between vertices in adjacent layers) acyclic
directed graph.

Lemma 4.4 LAYERED-GAP is in Dyn-FO.

17

Proof: Assume w.l.o.g. that the number of vertices in each level is the same. Let

l,n denote the number of levels and number of vertices in each level. We denote the
graph as G = (V,E) where V is given by a pair (z,1), where z € [n] and i € [I]. We
maintain the relations E and P as before.

Consider an insert(E, (a, k), (b,m)) operation: if m = k+ 1, we disregard the update,
otherwise we insert the new edge into E’ and update P as follows:

P'((2,3),(,9)) = [(P((2,3),(a,k))V (z =aAni=F))A
(P((6,m), (3,5))V (b =y Am = j))]
VP((z,4),(¥,7))

Consider a delete(E, (a, k), (b, m)) operation: if m = k + 1, we disregard the update,
otherwise we update E easily and P as follows:

P'((2,i),(3,9)) = (P((2,3),(%,9))A (G <kVi>m))V
(Fu, v)(E'((u, k), (v, b+ 1)) A

P((=,1), (u, k)) A P((v, k + 1), (3,5)))
i

Actually the proof shows that polynomially many edge insertions and deletions
can be handled simultaneously in parallel as long as they occur between two adjacent
layers.

1. Given any logspace Turing machine, M, in polynomial time (actually FO) we
(see, for example {I87], [P]) build a layered acyclic directed graph, G, (with
out-degree at most 1) corresponding to M’s computation on blank input, such
that there is an edge from vertex z to y iff a valid move takes M from the
configuration corresponding to z to that corresponding to y. We precompute G
and the reachability predicates on G in polynomial time. Then, for any single
bit change in the input, possibly a large number of edges are deleted and/or
inserted in G. By the lemma above, for edges occurring between adjacent levels,
we can easily maintain the reachability predicates on G in Dyn-FO. We complete
the proof by noting that since any input bit is read only a constant number of

times along any single path in the graph, only constantly many levels are altered
in G.

2. The proof for read-k times non-deterministic logspace is similar. The computa-
tion graph in this case has outdegree greater than 1, but the lemma still holds
and the proof goes through as for the deterministic case. |

18

References

[AHU]

[AUT9]

[A*90]

[AVS89]

[ACF90]

[AV91]

[AVSS)]

[A84]

[AFK83]

[ACS89]

[AL*92]

Aho, A., Hopcroft, J. and Ullman, J. The Design and Analysis of Algo-
rithms, 1979, McGraw Hill.

Aho, A. and Ullman, J. “Universality of data retrieval languages,” Pro-
ceedings of the 6th ACM Symposium on POPL, 1979, 110-117. .

Alpern, B., Hoover, R., Rosen, B. K., Sweeney, P. F. and Zadeck, F.K.
“Incremental Evaluation of computational circuits,” Proceedings of the 1st
ACM-SIAM Symposium on Discrete Algorithms, 1990, 32-42.

Abiteboul, S. and Vianu, V. “Fixpoint extensions of first-order logic and
datalog-like languages,” Proceedings of the Symposium on Logic in Com-
puter Science, 1989, 2-11.

Alpern, B., Carter, L. and Feig, E. “Uniform Memory Hierarchies,” Pro-
ceedings of the 31st IEEE Symposium on Foundations of Computer Sci-
ence, 1990, 600-608.

Abiteboul, S. and Vianu, V. “Generic Computation and its Complexity,”
Proceedings of the 32nd IEEE Symposium on Foundations of Computer
Science, 1991, 209-219.

Agarwal, A. and Vitter, J.S. “The Input/Output Complexity of Sorting
and Related Problems,” Communications of the ACM 31 No. 9, 1988.

Ajtai, M. “A lower bound for finding predecessors in Yao’s probe model,”
Combinatorica 8, 3, 1988, 235-247.

Ajtai, M., Fredman, M. and Komlos, J. “Hash functions for Priority
Queues,” Proceedings of the 24th IEEE Conference on Foundations of
Computer Science, 1983, 299-303.

Arafati, F. and Cosmadakis, S. “Expressiveness of restricted recursive
queries,” Proceedings of the 21st ACM Symposium on Theory of Comput-
ing, 1989, 113-126.

Arora, S., Lund, C., Motwani, R., Szegedy, M. and Sudan, M. “Proof
Verification and Hardness of Approximation Problems,” Proceedings of
the 33rd IEEE Symposium on Foundations of Computer Science, 1992,
14-23.

19

[AT*90]

[B87]

[BC89)

[DT89]

[B84]

[BC92]

[B92]

[BK90]

[BRS91]

[BM]

[CFI89]

[CH1]

Ausiello, G., Italiano, G. F., Marchetti-Spaccamela, A. and Nanni, U. “In-
cremental Algorithms for Minimal Length Paths,” Proceedings of ACM-
SIAM Symposium on Discrete Algorithms, 1990, 12-21.

Barrington, D. M. “Bounded-width Polynomial-size Branching Programs
Recognize Exactly Those Languages in NC!,” Journal of Computer Sys-
tem and Sciences, 38, 1989, 150-164.

Barrington, D. M. and Corbett, J. C. “On the Relative Complexity of some
Languages in NC!,” Technical Report 89 — 22, Department of Computer
Science, University of Massachusetts, Amherst.

Di-Battista, G. and Tamassia, R. “Incremental Planarity Testing,” Pro-
ceedings of the 30th IEEE Symposium on Foundations of Computer Sci-
ence, 1989, 436-441.

Beame, P. “A General Sequential Time-space Tradeoff for Finding Unique
Elements,” Proceedings of the 21st ACM Symposium on Theory of Com-
putation, 1989, 197-203.

Bellantoni, S. and Cook, S. “A New Recursion-Theoretic Characterization
of Polynomial Time”, Proceedings of the 24th Annual ACM Symposium
on the Theory of Computing, 1992, 283-293.

Bellantoni, S. “Predicative Recursion and Computational Complexity,”
Technical Report 264/92, University of Toronto, September 1992.

Broder, A. and Karlin, A. “Multilevel Adaptive Hashing,” Proceedings of
the 1st ACM-SIAM Symposium on Discrete Algorithms, 1990, 43-53.

Borodin, A., Razborov, R. and Smolensky, S. “On Lower Bounds for Read-
k Times Branching Programs,” Preprint, 1991.

Boyer, R. S. and Moore, J. S. A Computational Logic, 1979, Academic
Press.

Cai, J. Y., Firer, M., Immerman, N. “An Optimal Lower Bound on the
Number of Variables for Graph Identification,” Combinatorica 12:4, 1992,
389-410.

Chandra, A. and Harel, D. “Structure and Complexity of Relational
Queries,” Journal of Computer and System Sciences 25, 1982, 99-128.

20

[CH2]

[CHS2b]

[Chs1]

[CSV]

[CJ90]

[Cob4]

[C70]

[(C72a

[C72b]

[CT91]

[CKS85]

[CLR]

[CP84]

Chandra, A. and Harel, D. “Horn Clause Queries and Generalizations,”
Journal of Logic Programming 1, 1985, 1-15.

Chandra, A. and Harel, D. “Horn Clauses and Fixpoint Query Hierarchy,”
Proceedings of the 14th ACM Symposium on Theory of Computing, 1982,
158-163.

Chandra, A. “Programming Primitives for Database Languages,” Proceed-

ings of the ACM Symposium on POPL, 1981, 50-62.

Chandra, A., Stockmeyer ,L. J. and Vishkin, U. “Constant Depth Re-
ducibility,” STAM Journal of Computing 13, No. 2, 1984, 423-439.

Cheng, S.W. and Janardan, R. “Efficient Maintenance of the Union of
Intervals on a Line, with Applications,” Proceedings of the 1st ACM-SIAM
Symposium on Discrete Algorithms, 1990, 74-83.

Cobham, A. “The Intrinsic Computational Difficulty of Functions,” Pro-
ceedings of the 1964 Congress for Logic, Philosophy and Methodology of
Science, North Holland, 24-30.

Codd, E. “A Relational Model for Large Shared Databanks,” Communi-
cations of the ACM, 13(6), 1977, 377-387.

Codd, E. “Further Normalization of the Database Relational Model,” In

. R. Rustin, ed., Database systems, 1972, Prentice Hall, 33-64.

Codd, E. “Relational Completeness of Database Sublanguages,” In
R. Rustin, ed., Database systems, 1972, Prentice Hall, 65-98.

Cohen, R. and Tamassia, R. “Dynamic Expression Trees and their Ap-
plications,” Proceedings of the 2nd Annual ACM-SIAM Symposium on
Discrete Algorithms, 1991.

Cosmadakis, S. and Kanellakis, P. “Parallel Evaluation of Recursive Rule
Queries,” Proceedings of the 5th ACM SIGACT-SIGART-SIGMOD Sym-
posium on PODS, 1986, 280-290.

Cormen, T., Leicerson, C. E. and Rivest, R. A. Introduction to Algorithms,
1990, McGraw Hill.

Cosmadakis, S. S. and Papadimitriou, C.H. “Updates of Relational
Views,” Journal of the ACM, 1984.

21

[D84]

[D93]

[D8Y]

[DS88)

[D*88)

[DPZ91]

[DS93]

[DST93]

[D*86]

[DRS8S]

Dahlhaus, E. “Reduction to NP-Complete Problems by Interpreta-
tions,” Logic and Machines: Decision Problems and Complezity, Borger,

Rodding, and Hasenjaeger eds., Lecture Notes In Computer Science 171,
Springer-Verlag, 1984, 357-365.

Dawar, A. “Feasible Computation through Model Theory”, Phd thests,
University of Pennsylvania, Philadelphia, 1993.

Dietz, P.F. “Fully Persistent Arrays,” Proceedings of the Conference on
Foundations of Software Technology and Theoretical Computer Science,
1989, Springer Verlag, 67-73.

Dietz, P. F. and Sleator, D. D. “Two Algorithms for Maintaining Or-
der in a List”, Technical Report CMU-CS-88-113, 1988, Carnegie Mellon

University.

Dietzfelbinger, M., Karlin, A., Mehlorn, K., Meyer auf der H<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>