The Complexity of ‘
Uniform Traversal Combinator
Sushant Patnaik

CMPSCI Technical Report 96-26
April, 1996

Abstract

In [FSS92], Fegaras, Sheard and Stemple propose and study a family of
algebraic database programming languages based on a new recursion scheme,
the so-called Uniform Traversal Combinator (UTC), that greatly facilitates
verification and theorem proving. The complexity of their languages was left as
an open question. It turns out that their novel recursion construct imposes a
syntactic restriction that is akin to the formulation independently conceived of
by Bellantoni and Cook (in [BC92, B92]), where they separate safe and normal
variables in the notational (and predicative) primitive recursion template and
they prove that the resulting recursion schemes capture exactly the functions
in P and Linear Space. We combine the two perspectives to show how the
presence of types in association with this restricted form of recursion limits
the complexity of the resulting languages. In particular, we use the proof
techniques of [BC92] to show that the class of functions, from A/ — N, that can
be expressed in the UTC-languages are exactly the functions in the complexity
classes: Linear Space, P, Logspace and ETIME, depending on whether traversal
on the typed objects, integer or list of integer or an appropriate combination,

is allowed.

Keywords: Semantics of programming languages, expressive complexity, types, database
transaction languages, recursion theory.

1. Introduction

In [FSS92], Fegaras, Sheard and Stemple proposed a new algebraic language based
on a specific traversal scheme for simulating recursion and looping that was better
suited for theorem proving. Bulk data structures are defined inductively by a small
number of type constructors. There is only one primitive for traversing structures:
the Traversal Combinator, which is defined inductively according to the recursive
type definition of the structures being traversed. However, the latter is a variant
of the usual primitive recursive template and it captures all of Primitive Recursive
Functions (PrimRec). They then imposed a syntatic restriction that the accumulative
variables could not be traversed and they referred to it as the Uniform Traversal
Combinator, UTC. Here, traversals traverse variables only, and not the results of
other computations such as other traversals. This restriction limits the search space
of optimization of programs making the program translation and optimization process
very effective and efficient. They showed how such an algebraic framework is used
to facilitate automated theorem-proving. Database transactions, when specified in
this algebra, can then be checked efficiently (in an automated way) to see if they

satisfy any integrity constraints or, other theorems regarding the properties of such
programs can be proved systematically. Most standard optimization techniques such
as pushing a selection inside a join, are captured by a single reduction method. The
salient features of their algebra are as follows ([FSS92]):

e it is rich enough to capture most bulk data types,
e programs are expressed in a highly stereotyped recursive form,

e the theorem prover is just a reduction algorithm that uses the inductive prop-
erties of the program of programs,

e abstract programs are translated by the type transformation model into concrete
programs that are expressed in concrete primitives only,

e cost functions for uniform traversal combinators are easier to write than for
more general forms,

e integrity constraints attached to types offer alternative methods of execution.

However, its exact complexity was not known prior to this.

In [BC92, B92], Bellantoni and Cook, motivated by purely theoretical reasons,
consider a syntactic restriction on primitive recursion wherein recursive terms (de-
noted as safe) are not allowed to be substituted into a position which was used for
an earlier definition by recursion. They call this restricted form of primitive recur-
sion - Predicative Primitive Recursion. They distinguish between normal and safe
variables. They define a class A as the set of functions with normal inputs closed
under this restricted form of recursion and a suitable composition that respects the
safeness of variables. They also define a similar syntactic restriction on Cobham’s
([Cob4])notational recursion template and call it Predicative Notational Recursion,
and they denote the corresponding class of functions as B. They prove that B equals
the class of functions in P and A equals the class of functions in Linear Space. Their
result is striking because they show that syntactic restrictions alone, without impos-
ing any resource bounds, are sufficient to capture tractable classes inside PrimRec.
The definitions in the two frameworks have the same flavor except for a couple of
crucial differences. Firstly, composition is handled differently. While Bellantoni has
to restrict composition explicitly by defining a safe version, Fegaras handles it implic-
itly in the semantics of the operator. The other important feature that distinguishes
the UTC model from Bellantoni’s framework is the support for typed variables. The
language based on UTC is strongly typed. A possible way of enforcing types in
Bellantoni’s framework would be to add two different sorts of integers.

We show that in the UTC framework we can capture the functions in P and Lin-
ear Space, in a manner similar to Bellantoni’s algebras, A and B, with UTC on bksts
(with cdr operation) and integers, respectively. Further, we exhibit the interesting
interaction of types with the complexity. Allowing both integer and list typed vari-
ables, and taking closure under composition in the UTC framework, we capture the
class of functions in ETIME, allowing UTC on lsts and allowing only integer typed
variables in the UTC template for storing the partial values and taking closure under
composition, we capture exactly the functions in Logspace and allowing only inieger
types and extending the algebra to include two new notational successor operations,
namely, suce;(z) = 2z + 1 and succo(z) = 2z, as initial functions and taking closure
under composition, we get the class of Elementary Functions.

Note that the complexity results here differ from the results of Gurevich([Gu83]),
Immerman([Imm82]), Immerman etal. ([IPS91)), Vardi ([Va82]) and others in the
finite model theoretic framework, where the domain over which relations are inter-
preted is finite. In fact, in [Gu83], Gurevich shows that primitive recursion over finite
domains exactly captures the functions in Logspace. On the other hand, in [L92],
Leivant reports interesting results on characterizing functions in polynomial time
(FP) in a flavor similar to Bellantoni and Cook’s framework. He uses a free term
algebra, which is like the Iist type (list of bits representing the integer), to realise FP.

In Section 2., we formally define the Uniform Traversal Combinator and the class
of languages based on it. In Section 3., we state our results on resolving the complexity
of UTC based classes and give the proofs in the following section. The techniques
used are based on standard complexity theoretic arguments and Bellantoni’s ([BC92])
results. We are able to get a slightly different (from that of [BC92]) characterization
of functions in Linear Space and a new characterization of functions in Logspace,
ETIME and HYPEREXP (or, Elementary Functions). Finally, in Section 5., we
mention some open problems in characterizing the complexity of UTC, and we pose
a question about the complexity of FOLD over integer types.

2. Definitions

Definition 2.1 (Traversal combinator)([FSS92]) Let T be a canonical type with
constructors C;(%;,%;). A traversal combinator Hr(fi,...,f,) : T — b, where b is
any type, is defined in general, as follows: ([FSS92])

[z] - case z

{ ..
Ci(z, %) — fi(@, 7 He(fy -, f)@), - He(f, -, Fa)(9E));

}

In the Traversal Combinator, the types can be arbitrary structured types. Indeed,
in [FSS92], the authors investigate recursion with various data types such as lists,
integers, trees, etc.. In this paper, we shall only look at traversal combinators over two
types: integer and list of 0 and 1’s (or, in general, integers). Thus, T' = integer or list,
and we denote the corresponding combinator, Hr(f1,-- -, fa), as TC-INT(fi,..., fa)
and TC-LIST(f1,..., fn), respectively.

Definition 2.2 For any positive integer, ¢, the operator is:
TC-INT(f, g)(é) = (zero — g(), Ma,7) f(a,7))(?)

= f(i,(f(i—-1,..., f(suce(0),9())--.)))
For any list, | = (l4,...,l,), where [; € {0,1}, the operator is:

TC-LIST(f, g)(!) = (ail ~ (), e,) £(a,))(1)
= f({lyeeor Loy F({laye s Ty, F((), 90)-)

The varniable 7 is called an accumulative variable.

We define Uniform-TC, or UTC operation, as the above traversal but with the
restriction that variable =, in the template above, or any value returned by any
function, say, f, using 7, cannot be recursed or traversed upon i.e. the language
does not allow a TC-INT or TC-LIST, as the case may be, on any accumulative
variable.

The recursion template resembles the primitive recursion template but the crucial
difference arises from the new semantics. Note that this restricts composition inside
the scope of an accumulative variable in a way such that the value returned by any
function, that is defined in terms of a function that itself uses an accumulative vari-
able, cannot be recursed upon. It may seem, at first glance, to be a very constraining

requirement but surprisingly enough, as we shall see shortly, it can express a relatively
large class of functions.

Adopting the notation in [BC92], we separate the accumulative from the normal
variables in the function argument list by a semi-colon. Thus, in f(y, z;r, ¢), variables,

7, ¢, to the right of the semi-colon, are accumulative (or, safe as in [BC92]) and hence,
cannot be recursed upon.

Example 2.3 Consider the following examples of TC-INT and TC-LIST operator.
Let succ(z) = = + 1, for any integer, z. Let z,y be two positive integers.

Add(z;y) = TC-INT(0 — y, A(a, r)suce(r))(x)
computes z + y.
Mult(z,y) = TC-INT(0 — 0, A(a,r)Add(y;))(z)

computes zy.

Length(l) = TC-LIST(nil — 0, A(a, r)succ(r))({)
computes the length of a list, I.

Exp(x,y) = TC-INT(0 — 1, A(a, t)Mult(y,t))(z)

computes y°.

Add and Mult are UTC-INT expressions and Length is an UTC-LIST expression,
since they do not recurse on the accumulative variable, ». Exp is not a UTC-INT
expression, since it recurses on the accumulative variable, {, when the functions,
Mult and then, Add, are invoked. In fact, one cannot compute y* using UTC-INT
recursion.

Definition 2.4 Following Bellantoni, a function f is defined using safe composition

from functions g, h, r if:
f(z;3) = g(h(z;); v(2; a)).

The idea is that composition should not violate the non-recursiveness property. Hence,
the values returned by functions that use accumulative variables in the TC template
are ensured to remain safe i.e. non-recursive. Safe composition is implicitly enforced
by the restriction that defines the Uniform Traversal Combinator.

Let N denote the class of Natural numbers. Hereafter, when we refer to a class of
functions, we mean functions from N' — N. Let T and £ denote integer and list
of integer types respectively. Depending on whether functions in the language under
consideration return values that are list or integer typed, we shall distinguish between
types of function families: 7, : I x £ — Z, 5, : T x £ — L. Abusing notation, we
shall consider functions from Z — Z and £ — L, as special cases of F; and Fa,
respectively.

Definition 2.5 Let UTC(int, =) denote the smallest class of functions € F; contain-
ing

4.
5.

Zero function, 0

Projection(.), e.g. any tuple variable z, of width k, z.7, 1 <1 < k; and Tupling
(), e-g 7= [z1,--.,2k)

Succ e.g. succ(z) =1 +1
Equality (z = y)
Conditional (if @ = 0 then b else c)

and closed under UTC-INT operator and safe composition.

Note that composition outside the scope of any accumulative variable is the usual
composition.

Definition 2.6 Let UTC(int, pred) denote the corresponding class of functions with
pred(i) = i — 1 (predecessor) replacing = on integers as an initial function.

Let UTC(int) denote the corresponding class of functions without = as an initial
function.

Definition 2.7 Let UTC(int, pred, succo, succ;) be the smallest class of functions
€ F, containing

1.
2.

N vk

Zero function, 0

Projection(.), e.g. any tuple variable z, of width k, z.z, 1 < ¢ < k; and Tupling
(1), eg §=[21,..., 2]

Succ e.g. succ(?d) =i+1

Succo() = 2

Succy(i) =2¢+ 1

Pred(z) =2 — 1

Conditional (if @ = 0 then b else c)

and closed under UTC-INT operator and safe composition.

In the following definition, we only allow lists containing 1’s and 0’s, and we use
such lists to encode numbers in the obvious way.

Definition 2.8 Let UTC(list, cdr) denote the smallest class of functions € F; con-
taining

1. Nil

2. Projection(.), e.g. any tuple variable z, of width k, ¢.7, 1 <4 < k; and Tupling
(), e-g- ¥ = [®1,-..,2k] where z; are lists.

3. Cons e.g. Cons(a,{...)) = (a,...)
4, Cd].' c.g. Cdl’((ll, lz, ey ln)) = (lz, ‘e ,lu)
5. Conditional (if Car(l;) = 0 then I, else l3)

and closed under UTC-INT operation and safe composition.

Note that we allow equality on the elements of the list. Any function expressed in
this language inputs a list-typed variable and outputs a list-typed value.

Definition 2.9 Let UTC(list, =) denote the corresponding class of functions as above
with equality on lists replacing cdr as an initial function.

Let UTC(list) denote the corresponding class of functions as above without cdr as
an initial function.

The following definitions differ from the previous in that the input and output
values of the functions expressed in the language may be of different types.

Definition 2.10 Let UTC(list, cdr,int, pred) denote the smallest class of functions
€ Fi1,F, containing the initial functions of Definitions 2.5 and 2.8 and closed under
TC-INT and TC-LIST operations and safe composition.

Let UTC(list, cdr,int,=) denote the corresponding class of functions as above
with = on integers replacing pred on integers as an initial function.

Definition 2.11 Let UTC(list, boundint, =) (or, UTC(list, boundint, pred)) denote

the smallest class of functions € F; containing the following initial functions on
integers:

1. Zero function, 0

2. Projection(.), e.g. any tuple variable z, of width &, .7, 1 <1 < k; and Tupling
(), eg 7=[21,...,2]

3. Succ e.g. succ(z) =i +1
4. Equality (z = y) (or, Pred(z) = = — 1)
5. Conditional (if a = 0 then b else c)

and closed under TC-LIST operation and safe composition.

We constrain the algebra to accept inputs of list type and return integer typed values.
This constraint on types is somewhat contrived, but it serves to capture logspace, as
we shall see shortly.

Let n be the input size (= log z, if = is an input integer). Let FL denote the class of
functions computable in logspace i.e. SPACE[log n).

Let FP denote the class of functions in polynomial time i.e. TIME[z°(1)].

Let FLS denote the functions in Linear Space i.e. SPACE(n].

Let FETIME denote the functions computed by deterministic Turing machines in
time 0(2°(™)). Note that FLS C FETIME.

2
Let FHYPEREXP denote the functions computable in time 0(22'"2), where the
height of the tower of 2’s is O(1).

Definition 2.12 ([R]) The Elementary functions are the smallest class of functions
containing zero, succ, addition, multiplication, projection and closed under bounded
addition and bounded multiplication and composition.

Definition 2.13 (/R]) Let £ denote the 3rd level of the Gregorzyck hierarchy which
is defined to be the smallest class of functions containing the functions: zero, succ,
projection, Ey, E; and E,:
EO(“’: y) =z+y
El(:l:) = :122 + 2
Ey(z + 1) = Ey(Ey(z))

and closed under composition and limited recursion: a function f is defined by limited
recursion from g, h, 7

f(0,3) = ()
flz+1,9) = h(z,y,f(z,7))
f(z,y) < j(=,v)

&2 is known to be equal to the class of Elementary Functions, a proper subclass of
PrimRec ([R]) (since the Gregorzyck hierarchy is a strict hierarchy and PrimRec =
U;). 1t is well known that

Fact 2.14 £ = FHYPEREXP.

3. Results

We characterize the exact complexity of the UTC classes defined in the previous
section. The types allowed in the language restrict the complexity of the functions
that can be expressed. UTC(list, cdr) is functionally similar to Bellantoni’s B algebra,
but couched in a more algebraic language framework. For completeness sake, we show

here that it can express exactly the polytime functions. In one direction our proof is
different from his.

Theorem 3.1 (/[BC92]) UTC(list,cdr) = FP.

For integer types, adding pred or = does not make a difference to expressiveness.
Bellantoni’s C algebra is identical to UTC(int, pred), except for the differences in
the frameworks, mentioned earlier. His proof basically shows that UTC(int, pred) =
FLS. Replacing pred with =, we can capture the same class.

Theorem 3.2 UTC(int,=) = FLS.

Since we have integer typed variables and succ and = on integers in UTC(list, boundint, =
), we can capture Logspace exactly. Bellantoni captures Logspace by restricting the
output to be at most logarithmic size. As it turns out, constraining the values of each
function to be integer typed in the TC-LIST template achieves the same purpose.
Capturing logspace in a more natural way in this framework seems difficult.

Theorem 3.3 UTC(list,boundint,=) = FL.

Functions in ETIME are in general not closed under composition. But in the frame-
work of UTC, the safe composition scheme maintains each integer value to be of linear
length and each list to be of exponential length. Thus, in a language framework with
support for a {yping scheme, we have a “resource-independent characterization” (in
the terminology of [BC92]) of functions in ETIME. We do not constrain the recur-
sion by explicitly bounding the values of the functions or variables. Indeed, typing
constraints seem to be more natural than limiting recursion depth explicitly (as in
the seminal result of [Co64]), especially in the context of programming languages.

Theorem 3.4 UT((list,cdr,int,=) = FETIME.

UTC(int, pred, succo, succ,) is much more expressive, since, we can recurse on any
integer using either Predicative Notational or Predicative Primitive recursion or both
and hence we cannot bound the lengths of any integer tractably. However, it is still
strictly contained in PrimRec.

Proposition 3.5 UTC(int, pred, succy, succ;) = £ (= FHYPEREXP).

4. Proofs

One direction of all our proofs relies on a technical lemma (4.2) which for different
cases gives upper bounds on the size of any function expressed in the different UTC
languages. We prove Theorem 3.4 first because it uses the most general version of
the above mentioned lemma. The other theorems use various restricted versions of
it. The proof of the lemma is an adaptation of Bellantoni’s result ([BC92, B92]). We
shall use the following notation:

For any (tuple of) positive integers, Z, let I(Z) = Z and |Z| (or, lg(Z)) denote the vector
of lengths of the binary representation of each integer, z; i. e. [log, z1],..., [log, z.].
For any lsts, &, let I(Z) = |21],. .., |Zc|, where |z;| is the length of list z;.

Proof: (Theorem 3.4)

To show that FETIME C UTC(int,pred, list, cdr), let M be any ETIME Turing
machine that on input = computes f(z). Let §3s denote its transition function, let its
alphabet ¥ = {0,1}, let Q = {qo,...,q.} be the state set. Let |y| denote the length
of y if y is of type list, else Ig(y) if y is of type inieger. By assumption, there exists
a constant k, such that M computes f(z) in number of steps bounded by 2*I°I). Let
W denote the input integer (or, list). Let y be any integer, and let EXP(y) return
an integer of value 2%l = y* for some constant k. Let BIT(p,y) denote the pth bit
of y. Theorem 3.2 shows that UTC(int, pred) expresses exactly FLS. Hence, all the
usual arithmetic operations can be done in FLS. In particular,

Proposition 4.1 Given integers z,p, EXP(z), BIT(p,z) can be ezpressed in UTC(int, pred).

Proof: Let W be the input integer. Let EXP(W) = W* return an integer, for some
constant k. Since W is the input, it is a normal variable and hence, can be traversed.

EXP is thereby easily expressed using composition on a multiplication function k
times:

Mul(z, W) = TC-INT(0 — 0, A(z, »)Add(W, r))(z)

10

EXP(W) = Mul(W, Mul(W, . .., Mul(W, W))...)

Let P2DIV(p,z) = z/27, and SUB(y,z) = ¢ — y. Then, BIT(p,z) = P2DIV(p,)
mod 2.
P2DIV(p,z) = TC-INT(0 — z,(a,r) — r div 2)(p)

SUB(y,z) = TC-INT(0 — z,(a,r) — pred(r))(y)

z div 2 = TC-INT(0 — 0,
(a,7) — if SUB(a + a,z) =0 then a
else if SUB(a+a+1,z) =0 then a
else r)(EXP(W))

Next we simulate M by using variables: L to represent the contents of the tape
to the left of the head, R to represent the contents to the right, h to represent the
content under the tape head, Q the state of the machine. Let INIT(W) return a list
of length W containing each bit BIT(p, W) of the integer W. (If W is of type lst,
then INIT(W) =W.)

INIT(W) = TC-INT(0 — nil, X(a,l)cons(BIT(a, W),))(W)

We can now express M’s computation as:

TC-INT(0 — (nil, Wmod 2, cdr(INIT(W)),),
)‘(a'a L: h) R! Q) if SM(Q’ h’ ql’ ’L)
then (cdr(L), car(L), cons(h, R),q')

else if 6m(Q, k,q’, ,R)
then (cons(h, L), car(R), cdr(R),q')

else if §p(Q, h,q,0,5)
then (L,0, R,q")

) (EXP(W))

The IF-THEN-ELSE'’s are a finite constant sized block of statements depending on
Sm.

11

In the other direction, we have to show that if f(Z) denotes a function in this lan-
guage, that returns either a lst or an integer, where Z are normal (i.e. they can be
recursed upon) input variables (integers or lists), then I(f(2)) < ps(!(Z)), where py is
a polynomial. In other words, we have to show that the lengths of any list and any in-
teger constructed in this language are exponential and linear respectively in the length
(in binary) of the input integers or lists. Following Bellantoni, we bound the size of
the functions computed in this class of languages. For any function f € F; or F;, we
shall refer to I(f()) as the size of f. The proofs are similar for all the cases, the only
difference being the proofs of the induction basis depending on whether the functions
are in F; or JF; i.e. they return integers or lists. Let p,, pr be two polynomials.

Lemma 4.2 I(f(y,%;2)) < U(y)pa(U(y), U(Z)) + po(U(Z)) + maz(I(c:) + 1).

Proof: There are several cases depending on whether f € F;, 2, and whether f is
defined using TC-INT or TC-LIST. (Note that fixing f’s type implies that g, h are of
the same type.)

f(y,%;€) = TC-INT(0 — g(Z;2), A(3, 7)h(3, Z; 7, 8))(v).

Case 1: When f € Fyie. f: I x L — I, and y is integer typed. Case 2: When
feFie f:IxL — L, and y is integer typed.

f(y,%;¢) = TC-LIST(0 — g(&;c), A(,7)h(3, & 7,))(y).

Case 3: When y is of type list and f € F;. Case 4: When y is of type list and f € F,.

The proof is by induction on the depth of derivation of f. The proofs for Cases 3,4
are analogous to those for 1,2.

Basis: The initial functions (for the case 1 when they return integers as in Definition
2.5, or lists for case 2 as in Definition 2.8) are easily seen to satisfy the assertion.
I(y) = 0: By definition of f, we see that I(f(y,Z;2)) = U(g(%;¢)) < p,(I(&)) +
max;(l(¢;) + 1) (by the ind. hyp. on g)

Induction Step: Assume true for y. Consider y’ such that I(y’) = I(y) + 1:

Uf(y',3;2) = Uh(Y', %5, f(y, ;7))

< pa(l(y),U(=Z)) + max(I(f(y,%;)) + 1,U(c:) + 1)
(by the ind. hypothesis on k)

< p(l(y), 1)) + Uw)pn(l(y), U(Z)) + 1 + p,(UZ)) + maxi(I(c;) + 1)
(by the ind. hypothesis on f)

< Uy)pa(Uy"), U(Z)) + po(U(Z)) + maxi(I(<;) + 1).

12

That completes the induction step. |

For safe composition, let

f(2; &) = h(5(2); 7(2; 2))
Lemma 4.3 I(f(%;¢)) < ps({(Z)) + max;(c; + 1), where p; is some polynomial.

Proof: We induct on the composition depth. By the induction hypothesis on g, k, 7,
we have corresponding polynomials pg,, pp, pr;, respectively, such that I(h(Z;E)) <
pu(1(8)+ maxi(i(ce)+1), L(5i(2)) < Par(i(2)) a0 (rs(; 7)) < pri(I(5))+ max{i(es) +
1).

I(f(z;2)) I(h(g(z); 7(3; 7)) ‘
Pa(1(3(2))) + maxi(p,(I()) + max;(c; +1)+1)
Pa(75(U(Z))) + p-(U(Z)) + 1 + maxi(c; +1)

ps(i(2)) + maxi(c; +1)

IAIN IA

where p;s(1(Z)) = pa(p,(1(2))) + p-({(Z)) + 1. That completes the induction step. W

For example, in the particular case of f € F3, and v, Z,¢ are integers, we have
that

|f(y,%;€)| < ypu(y, Z) + pg(Z) + maxi(c; + 1).

The proof is completed by noting that all input variables are normal, i.e. they
can be recursed upon. Therefore, I(€), for the accumulative variables, ¢, whether lists
or integers, is bounded by a polynomial in I(Z) where, Z denote the input variables
(and hence, by an exponential in the lengths (in binary representation) of the integer
typed variables, since for any accumulative integer variable, ¢, and input integer, w,
l(c) < l(w)* — ¢ < w* = 2%(ls(»)))). By Lemmae 4.2,4.3, the length of any output
lists computed by any function in this language is polynomial in the values of the

integer variables and polynomial in the lengths of the list variables. Thus, we have
that

Lemma 4.4 I(f(2)) < p;#(I(Z)), where p; is a fixed polynomial.

If any function returns integer values, they can be written in binary using space at
most linear in the (binary) lengths of the input integers, and if it returns kst values,
they have lengths exponential in the (binary) length of the input integers, and hence,
can be written using time exponential in the input length. The initial functions are

13

easily seen to be in ETIME. Let g,k be functions in ETIME. Let f be defined from
g, h using TC-LIST as follows (The proof for TC-INT case is analogous.) :

f(y,%;8) = TC-LIST(nil — g(&;a), A(z,7)h(3, Z; 7, @))(y)

A Turing Machine can easily compute f by setting up a counter to run through
variable y, an integer (of size at most linear in the input size) or list (of length at
most exponential in the input size), and compute g and h as it goes along, needing
at most time I(y)(I(y) + U(Z) + () + max(I(g()),!(k()))) to store and update the
partial result(s). By the inductive hypothesis, (y), 1(€), {(g()), {(h()) are exponential
in the length (in binary) of the input intgers. So, the time taken by the Turing
machine is order of exponential in the size of its input. Similarly, if f is defined using
safe composition from functions g, h,r, then as shown before, since I(f()) is at most
exponential in the size of the inputs, a Turing machine needs only exponential time

to compute f. Likewise, the case, when f is defined using composition from g, h,r,
can be handled similarly. | |

Proof: (Theorem 3.1)

UTC(list,cdr) C FP follows by applying Lemmae 4.2,4.3 to the case when f,g,h
are in J, and all input and output values and all variables are list typed. Noting
that all input variables are normal i.e. they can be traversed upon by a TC-LIST
recursion, we conclude that the length of each list computed by any function, say,
f in this language is bounded by a polynomial in the length of the input variables
(lists) and the length of the accumulative variables (lists). By induction, length of
each accumulative variable is itself bounded by a polynomial in the length of the
input. The initial functions of the algebra are clearly in FP. Let g, A be functions in
FP. Let

f(y,%;@) = TC-LIST(nil — g(z; a), A(i:"')h(":) z;7,a))(y)

Since g and h require only poly time for their computation, a Turing Machine can
easily compute f by running through the polynomially long list ¥y and computing
g and h as it goes along, needing time at most some polynomial in (|y| + |Z| +
|a| + max(|g()|, |~()])) to manipulate the partial result. By the inductive hypothesis,
lengths of @, g, h are polynomial in the length of the input.

In the other direction, let M be any polytime Turing machine that on input z computes
f(z). Let its alphabet ¥ = {0,1}, let Q = {qo, . .., .} be the state set. Let 8pr denote
the usual transition function that encodes whether M on reading the bit under its

head in a given state changes state and moves right or left or writes a new bit and
remains stationary.

Let |y| denote the length of y. By assumption, there exists a constant k, such

14

that M computes f(z) in number of steps < O(|z|¥). Let y be a list and let poly(y)
return a list of lenght |y|*.

Proposition 4.5 Given any list typed variable =, poly(z) can be expressed in UTC(list).
Proof:

Add(z,y) = TC-LIST(nil — y, A(a,7)Cons(a,r))(z)
computes a list of length |z| + |y|.

Square(z) = TC-LIST(nil — nil, A(a,r)Add(z,r))(z)
computes a list of length |z|2. Now [z|* can be obtained by composing & times. 1

Next we simulate M on input w = (wyw; ... w,) by using variables, L to represent the
contents of the tape to the left of the head, R to represent the contents to the right,
h to represent the content under the tape head, and Q the state of the machine. Let
w denote the input list. We can express M’s computation by:

TC-LIST(nil — (nil,wy, (ws,. .., w,), %),
A(a'a La h; R) Q) if 6M(Q1 h’ ql’) L)
then (edr(L), car(L), cons(k, R),q')

else if 63(Q,h, 4, ,R)
then (cons(h, L), car(R), cdr(R), q')

else if 6 (@, k,q',0,5)
then (L,o, R, q')

) (poly(w))

The IF-THEN-ELSE’s are a finite constant sized block of statements depending on
Sn- |

Proof: (Theorem 3.2)

UTC(int,=) C FLS follows from application of Lemmae 4.2, 4.3 once we note that
f19,h € 71 and all the input and output values and all variables are integer typed and
hence, the value of any function, say, f(y,%;a) computed in this language is polyno-
mial in the values of the normal variables, y,Z, and that of accumulative variables, &.

15

All the input integers are normal and by induction, each of the accumulative variables
have values that are polynomial in the value of the inputs. The initial functions of
the algebra are clearly in FLS. Let g, b be functions in FLS. Let

f(y,%;@) = TC-INT(0 — g(Z; a), A3, 7)h(3, Z; 7, @))(y)

We have to show that f is in FLS. Since g and k require only linear space for their
computation, a Turing Machine can easily compute f by cycling through all values
of y and computing g and k as it goes along, needing space at most linear in (Ig(y) +
lg(z) + lg(a) + max(lg(g()), lg(h()))) to store the partial results. By induction, values
of @, g, h are polynomial in the values of the input integers, and hence, the length of
their binary representation is linearly related to the length of the inputs. The case
when f is defined by composition from g, h,r can be handled similarly.

In the other direction, let M be any linear space Turing machine that on input z
computes f(z). Let 8y denote its transition function, let its alphabet X = {0, 1}, let
Q = {qo,- - ., 4.} be the state set. By assumption, there exists a constant k, such that
M computes f(z) using space at most klg(z), and hence, in number of steps bounded
by O(z*). Let y be any integer and let poly(y) = y*. Similar to list typed variables,
it can be shown that,

Proposition 4.6 Given any integer z, poly(z) = z* can be ezpressed in UTC(int).
We need a few other easy technical propositions.
Proposition 4.7 Given any integer variable ¢ and input w, € mod 2, = div 2, 2z +
1, 2z (only values mod w* are required) can be ezpressed in UTC(int,=) without
Tecursing on .
Proof: z div 2 (and similarly, z mod 2) can be expressed as
TC-INT(0 — 0, A(e,7)IF Add(a,a) =z V succ(Add(a,a)) ==

THEN a

ELSE 7)(poly(w))
2z (and similarly, 2z + 1) can be expressed as
TC-INT(0 — 0, A(a,r)IF(adiv 2) = z A (amod 2) = 0

THEN a
ELSE r)(poly(w))

16

As before, next we simulate M by using variables: L to represent the contents of the
tape to the left of the head, R to represent the contents to the right, h to represent
the content under the tape head, Q the state of the machine. Let W denote the input
integer. We can express M’s computation by:

TC-INT(zero — (0, Wmod 2, Wdiv 2, go),
z\(a, L, h, R, Q) if 5M(Qa h7 Q', 7L)
then (Ldiv 2, Lmod 2,2R + h,q')

else if 6p(Q, k,q', ,R)
then (2L + h, Rmod 2, Rdiv 2,¢')

else if SM(Q) h: q,) a, S)
then (L,0, R, q')

) (poly(W))

The IF-THEN-ELSE’s are a finite constant sized block of statements depending on

" Proof: (Theorem 3.3)

To show that UTC(list,boundint,=) C FL, we apply Lemma 4.2, 4.3, keeping in
mind that in this case the functions are in J; and variables could be either of list or
integer type. The integer typed variables cannot be recursed upon, since the language
does not allow TC-INT operator. We can assume that all input variables are lists
since, any integer input variable can only be used as a counter under bounded number
of compositions. The kst typed accumulative variables, if any, cannot be modified,
since no initial functions on lists are allowed in the language. Hence, we may assume
that all accumulative variables are integer typed. Thus, the value of any function,
say, f(y,Z; @), in this language is bounded by a polynomial in the lengths of the input
lists, |y|, |Z|, and the values of the integer accumulative variables, @. By induction, the
value of each accumulative variable is a polynomial in the length of the inputs, since
only the inputs (which are of type list) can be recursed upon. The initial functions
(on integers) are clearly in FL. Let g,k be functions in FL. Let

f(y,%;a) = TC-LIST(nil — g(%;a), A(3, r)h(3, Z; r, a))(y)

Note that g, h return integer typed values. Each g; is itself bounded by a polynomial
in the length of the input. Since g() and A() can be at most polynomial in the length

17

of the input lists, they can be written in binary using space at most logarithmic in
the lengths of the input lists. A Turing Machine can easily compute f by setting
up a counter to run through the input list y needing at most space logarithmic in
(ly|+|2|+@+max(g(), k())) to store the partial result(s). By the inductive hypothesis,
a,g(), h() are polynomial in the length of the input. The proof is completed by noting
that logspace is closed with respect to composition.

In the other direction, let f be any function in FL. Let M be any Turing machine and
let W denote the input (of list type). M computes f(W) using space O(log(|W)).
Let ¢ be some integer constant such that f(W) < |W|°. Let ép denote its transition
function, let its alphabet £ = {0,1}, let Q = {qo,...,g.} be the state set. We are
considering functions from N to N and lists can encode any natural number the
obvious way.

For a fixed integer constant, ¢ > 0, and a fixed UTC(list, boundint, =) expression,
say P, we can express a function Polyiterate(W) that on input a list, W, iterates P
|W|¢ times. Note that any function in this language, such as P, returns only integer

values.

Proposition 4.8 Polyiterate(W) is expressible in UTC(list, boundint,=).
Proof:

Polyiterate(W) = ITERATE (W)

ITERATE.(W) = TC-LIST(nil — 0, A(a, R)ITERATE,_,(W))(W)
ITERATE,_;(W) = TC-LIST(nil — 0, \(a, R)ITERATE._,(W))(W)

ITERATE (W) = TC-LIST(nil — 0,(a, R)P(a, R, W))(W) N

Note that the initialization part in ITERATE; may vary depending on P, and the lat-
ter returns an integer. We shall abbreviate the above procedure as POLYITERATEp (W).

Further, since we have = and succ on integers, we can do mod |W|° arithmetic
easily. Let BIT(p, W) represent the pth symbol of the list W.

Proposition 4.9 2z, z div 2, z—1, BIT(p, W) can be expressed in UTC(l4st, boundint, =

).

Proof:
z—1= HI(POLYITERATEP,C(W))

18

where the initialization is nil — [0,0], and P is the UTC expression:
Ma, [r1,72))IF succ(r2) = ¢ THEN [r2, succ(r2)] ELSE [r1, succ(r2)]

2z = II''(POLYITERATEq (W))
where the initialization is nzl — [0,0], and Q is the UTC expression:

Aa, [r1,72))IF 72 = 2THEN [succ(0), succ(r2))
ELSE IF r1 = THEN [2, (]
ELSE [r1, succ(r2))

z div 2 = POLYITERATERg (W)
where the initialization is nil — 0, and R is the UTC expression:

A(a,r)IF 2a = z THEN a ELSE r

BIT(p, W) = TC-LIST(nil — [0,0],
A(a,r1,72)IF r1 = p THEN [succ(rl),
ELSE [suce(rl),2])(W) B

We can then simulate M: we use variables L to represent the contents of the worktape
to the left of the head, R to represent the contents to the right, h to represent the
content under the tape head, P to represent the position of the input tape head, and
Q the state of the machine. We assume w.l.o.g. that the machine has one work-tape
and a read-only input tape, and accordingly, §py : @ X T x T x @ x T x {1,—1,0} x
{1,-1,0} — {0,1} (The transition function codes the movement of the machine’s
input-tape head and the work-tape head separately.). We simulate M’s computation
as:

POLYITERATEp (W)

where the initialization is nil — (0,0, 0, W, succ(0), o) representing, respectively, the
initial values of the worktape-contents to the left of the head’s position, the current
position of the head, the value of the worktape contents to the right of the head, the

input, the position of the input head and the initial state; and P is the following UTC
expression:

1Project the first coordinate

19

’\(a; [L: h) R)w: P; Q]) if 6M(Q7 h) BIT(wa),qI: y @1, —1)
then [L div 2, L mod 2,2R + h,w, P + a1, ']

else if (@, h, BIT(P,w),q’, ,b1,1)
then [2L + h, R mod 2, R div 2,w, P + b,, 4]

else if §x(Q, h, BIT(P,w), ', 0, ¢1,0)
then [L,o,R,w, P + c1,']

)

where, a;,by,¢; € {0,—1,1} and represent directions of the input tape head move-
ments. The IF-THEN-ELSE’s are a finite constant sized block of statements depend-
ing on the transition function, éps.]

Proof: (Theorem 3.5) To show that FEHYPEREXP C UTC(int, pred, succy, succ;),
let M be any HYPEREXP time Turing machine that on input = computes f(z). Let
dm denote its transition function, let its alphabet ¥ = {0,1}, let Q = {qo,...,4c}
be the state set. Let |y| denote the length (in binary) of y. By assumption, there

exists constants k,c, such that M computes f(z) in number of steps bounded by
k

0(22'"2), where the height of the tower of 2’s is ¢. Let W denote the input number.
All variables, here, are integer typed. Let y be any integer and let HYPEREXP(y)
k

v
return a list of length 0(22"'2), for some constants k, c, where the height of the tower
of 2’s is ¢. Given z, it is easy to express in C an integer poly(z) such that poly(z) =
z¥. Let Exp(y) = 2¥. Then, it is easy to compute HYPEREXP(y) by composing the
function Exp() ¢ times:

E(y) = TC-INT(0 — 0, A(z, 7)sucei(r))(y)
Exp(y) = succ(E(y))
HYPEREXP(y) = EXP(EXP...(EXP(poly(y)))...)

Next we simulate M by using variables: L to represent the contents of the tape to
the left of the head, R to represent the contents to the right, h to represent the

content under the tape head, Q the state of the machine. We can now express M’s
computation as:

20

TC-INT(0 — (0, Wmod 2, Wdiv 2, go),
A(a,, L, h, R, Q) if 5M(Q; h) q’) ? L)
then (Ldiv 2, Lmod 2,2R + h,q’)

else if §p(Q,h,q, ,R)
then (2L + k, Rmod 2, Rdiv 2,¢’)

else if 83(Q, h,q',0,9)
then (L, 0, R, q')

) (HYPEREXP:(W))

The IF-THEN-ELSE’s are a finite constant sized block of statements depending on
Sn.

In the other direction, since FHYPEREXP is closed under composition and it contains
the initial functions of UTC(int, pred, succy, succy), it suffices to show that it is closed

zk
with respect to the TC-INT recursion. Let k, c be any constants. Let T} o(z) = 92~ ,
where the height of the tower of 2’s is ¢. Let g, h be functions in FHYPEREXP. Then,
there exist functions, Ty, T, which bound the values of g, h respectively. Analogous
to Lemmae 4.2, 4.3, we can show by induction on the depth of derivation of f that
the value of any function

f(y,%;a) = TC-INT(0 — g(2;a), A(i, r)h(3, &; 7, 3)(y))
computed in this language is bounded by

f(y,%;8) < yTu(y,) + Ty(2) + maxi(a;)

If
f(2,9) = h(g(2),9)
then
f(y,%;8) < Th(Ty(2),9)

The proof is then completed by noting that the inputs, say, #, are normal i.e. they
can be recursed upon and hence by induction, y,a < HYPEREXP(poly(z)). Thus,
f(Z) can be computed by a Turing machine in time hyperexponential in the input
length. |

21

5. Conclusion

The complexity of UTC(int) and UTC(list) are open. Multiplication can be expressed
in both languages. UTC(list) contains REG, the class of regular languages. It seems
to be incomparable to FO. It would be nice to show, for example, that equality of
two input lists cannot be done in UTC(list). UTC(list, =) is another puzzling class.
It contains FO and REG but seems to very weak otherwise.

For any integer ¢, the operator FOLD is defined as follows:
FOLD(f, 9)(5) = (zer0 — g(), A(r) £(r))(i)
= f((F(---, £(90))---)))

The variable 7 is called an accumulative variable. Note that FOLD differs from
TC-INT in that it cannot recurse on any predecessors of the argument i. Let
FOLD(2nt) denote the class of functions containing the initial functions: zero, projec-
tion, successor, conditional, and closed under FOLD operation and composition. Let
UFOLD(int) denote the uniform version of this language: the accumulative variable 7
cannot be recursed upon. Further, in this algebra, = and pred are not available as ini-
tial functions (It follows from our results that UFOLD(int, =) or, UFOLD(int, pred)
equal FLS.). The complexity of FOLD and UFOLD(int) are open. They contain
the class of regular languages. However, multiplication (which is not regular) can be
expressed in it, and UFOLD is closed with respect to addition and multiplication.

6. Acknowledgements

References

[BC92] S. Bellantoni and S. Cook, “A New Recursion-Theoretic Characterization
of Polynomial Time”, preliminary version appeared in Proceedings of the
24th Annual ACM Symposium on the Theory of Computing, May 1992.

[(B92] S. Bellantoni, “Predicative Recursion and Computational Complexity”,
- Technical Report 264/92, University of Toronto, September 1992.

| [Co64] A. Cobham, The Intrinsic Computational Difficulty of Functions. Proceed-

ings of the 1964 Congress for Logic, Philosophy and Methodology of Science,
North Holland, 24-30.

22

[FSS92]

[FS93]

[Gu83]

[Imm82]

[IPS91]

[L92]

[R]

[Va82]

L. Fegaras, T. Sheard, D. Stemple, “Uniform Traversal Combinators: Defi-
nition, Use and Properties”, Proceedings of 11th Conference on Automated
Deduction (CADE-11), Saratoga Springs, New York, 1992.

L. Fegaras, T. Sheard, “A Fold for All Seasons”, Preprint, Oregon Graduate
Institute, 1993.

Y. Gurevich, “Algebras of Feasible Functions”, Proceedings of 24th IEEE
Symposium on Foundations of Computer Science, October 1983, 210-214.

N. Immerman, “Relational Queries Computable in Polynomial time”, Pro-
ceedings of the 14th ACM STOC, May 1982, 147-152. Revised version ap-
peared in Information and Control 68, 1986, 147-152.

Neil Immerman, Sushant Patnaik, and David Stemple, “The Expressiveness
of a Family of Finite Set Languages,” Tenth ACM Symposium on Principles
of Database Systems, 1991, 37-52.

D. Leivant, “A Foundational Delineation of Poly-time”, Proceedings of Sizth
Annual IEEE Symposium on Logic in Computer Science, (1991).

H. E. Rose, “Subrecursion: Functions and Hierarchies”, Ozford Logic Guides
9, Clarendon Press, Oxford, 1984.

M.Y. Vardi, The Complexity of Relational Query Languages. Proceedings
of 14th ACM STOC, May 1982, 137-146.

23

